-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathAutoformer_EncDec.py
183 lines (155 loc) · 6.34 KB
/
Autoformer_EncDec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import torch
import torch.nn as nn
import torch.nn.functional as F
from layers.dctnet import dct_channel_block,dct
# from dctnet import dct_channel_block,dct
class my_Layernorm(nn.Module):
"""
Special designed layernorm for the seasonal part
"""
def __init__(self, channels):
super(my_Layernorm, self).__init__()
self.layernorm = nn.LayerNorm(channels)
def forward(self, x):
x_hat = self.layernorm(x)
bias = torch.mean(x_hat, dim=1).unsqueeze(1).repeat(1, x.shape[1], 1)
return x_hat - bias
class moving_avg(nn.Module):
"""
Moving average block to highlight the trend of time series
"""
def __init__(self, kernel_size, stride):
super(moving_avg, self).__init__()
self.kernel_size = kernel_size
self.avg = nn.AvgPool1d(kernel_size=kernel_size, stride=stride, padding=0)
def forward(self, x):
# padding on the both ends of time series
front = x[:, 0:1, :].repeat(1, (self.kernel_size - 1) // 2, 1)
end = x[:, -1:, :].repeat(1, (self.kernel_size - 1) // 2, 1)
x = torch.cat([front, x, end], dim=1)
x = self.avg(x.permute(0, 2, 1))
x = x.permute(0, 2, 1)
return x
class series_decomp(nn.Module):
"""
Series decomposition block
"""
def __init__(self, kernel_size):
super(series_decomp, self).__init__()
self.moving_avg = moving_avg(kernel_size, stride=1)
def forward(self, x):
moving_mean = self.moving_avg(x)
res = x - moving_mean
return res, moving_mean
class EncoderLayer(nn.Module):
"""
Autoformer encoder layer with the progressive decomposition architecture
"""
def __init__(self, attention, d_model, d_ff=None, moving_avg=25, dropout=0.1, activation="relu"):
super(EncoderLayer, self).__init__()
d_ff = d_ff or 4 * d_model
self.attention = attention
self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1, bias=False)
self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1, bias=False)
self.decomp1 = series_decomp(moving_avg)
self.decomp2 = series_decomp(moving_avg)
self.dropout = nn.Dropout(dropout)
self.activation = F.relu if activation == "relu" else F.gelu
self.dct_layer=dct_channel_block(512)
self.dct_norm = nn.LayerNorm([512], eps=1e-6)
def forward(self, x, attn_mask=None):
new_x, attn = self.attention(
x, x, x,
attn_mask=attn_mask
)
x = x + self.dropout(new_x)
x, _ = self.decomp1(x)
y = x
y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1))))
y = self.dropout(self.conv2(y).transpose(-1, 1))
res, _ = self.decomp2(x + y)
# mid = self.dct_layer(res)
# res = res+mid
# res = self.dct_norm(res)# norm 144
# print("dct_work")
return res, attn
class Encoder(nn.Module):
"""
Autoformer encoder
"""
def __init__(self, attn_layers, conv_layers=None, norm_layer=None):
super(Encoder, self).__init__()
self.attn_layers = nn.ModuleList(attn_layers)
self.conv_layers = nn.ModuleList(conv_layers) if conv_layers is not None else None
self.norm = norm_layer
def forward(self, x, attn_mask=None):
attns = []
if self.conv_layers is not None:
for attn_layer, conv_layer in zip(self.attn_layers, self.conv_layers):
x, attn = attn_layer(x, attn_mask=attn_mask)
x = conv_layer(x)
attns.append(attn)
x, attn = self.attn_layers[-1](x)
attns.append(attn)
else:
for attn_layer in self.attn_layers:
x, attn = attn_layer(x, attn_mask=attn_mask)
attns.append(attn)
if self.norm is not None:
x = self.norm(x)
return x, attns
class DecoderLayer(nn.Module):
"""
Autoformer decoder layer with the progressive decomposition architecture
"""
def __init__(self, self_attention, cross_attention, d_model, c_out, d_ff=None,
moving_avg=25, dropout=0.1, activation="relu"):
super(DecoderLayer, self).__init__()
d_ff = d_ff or 4 * d_model
self.self_attention = self_attention
self.cross_attention = cross_attention
self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1, bias=False)
self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1, bias=False)
self.decomp1 = series_decomp(moving_avg)
self.decomp2 = series_decomp(moving_avg)
self.decomp3 = series_decomp(moving_avg)
self.dropout = nn.Dropout(dropout)
self.projection = nn.Conv1d(in_channels=d_model, out_channels=c_out, kernel_size=3, stride=1, padding=1,
padding_mode='circular', bias=False)
self.activation = F.relu if activation == "relu" else F.gelu
def forward(self, x, cross, x_mask=None, cross_mask=None):
x = x + self.dropout(self.self_attention(
x, x, x,
attn_mask=x_mask
)[0])
x, trend1 = self.decomp1(x)
x = x + self.dropout(self.cross_attention(
x, cross, cross,
attn_mask=cross_mask
)[0])
x, trend2 = self.decomp2(x)
y = x
y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1))))
y = self.dropout(self.conv2(y).transpose(-1, 1))
x, trend3 = self.decomp3(x + y)
residual_trend = trend1 + trend2 + trend3
residual_trend = self.projection(residual_trend.permute(0, 2, 1)).transpose(1, 2)
return x, residual_trend
class Decoder(nn.Module):
"""
Autoformer encoder
"""
def __init__(self, layers, norm_layer=None, projection=None):
super(Decoder, self).__init__()
self.layers = nn.ModuleList(layers)
self.norm = norm_layer
self.projection = projection
def forward(self, x, cross, x_mask=None, cross_mask=None, trend=None):
for layer in self.layers:
x, residual_trend = layer(x, cross, x_mask=x_mask, cross_mask=cross_mask)
trend = trend + residual_trend
if self.norm is not None:
x = self.norm(x)
if self.projection is not None:
x = self.projection(x)
return x, trend