-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path29_Apply_Operations_to_Maximize_Score.cpp
164 lines (138 loc) · 5.46 KB
/
29_Apply_Operations_to_Maximize_Score.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
t // 2818. Apply Operations to Maximize Score
// You are given an array nums of n positive integers and an integer k.
// Initially, you start with a score of 1. You have to maximize your score by applying the following operation at most k times:
// Choose any non-empty subarray nums[l, ..., r] that you haven't chosen previously.
// Choose an element x of nums[l, ..., r] with the highest prime score. If multiple such elements exist, choose the one with the smallest index.
// Multiply your score by x.
// Here, nums[l, ..., r] denotes the subarray of nums starting at index l and ending at the index r, both ends being inclusive.
// The prime score of an integer x is equal to the number of distinct prime factors of x. For example, the prime score of 300 is 3 since 300 = 2 * 2 * 3 * 5 * 5.
// Return the maximum possible score after applying at most k operations.
// Since the answer may be large, return it modulo 109 + 7.
// Example 1:
// Input: nums = [8,3,9,3,8], k = 2
// Output: 81
// Explanation: To get a score of 81, we can apply the following operations:
// - Choose subarray nums[2, ..., 2]. nums[2] is the only element in this subarray. Hence, we multiply the score by nums[2]. The score becomes 1 * 9 = 9.
// - Choose subarray nums[2, ..., 3]. Both nums[2] and nums[3] have a prime score of 1, but nums[2] has the smaller index. Hence, we multiply the score by nums[2]. The score becomes 9 * 9 = 81.
// It can be proven that 81 is the highest score one can obtain.
// Example 2:
// Input: nums = [19,12,14,6,10,18], k = 3
// Output: 4788
// Explanation: To get a score of 4788, we can apply the following operations:
// - Choose subarray nums[0, ..., 0]. nums[0] is the only element in this subarray. Hence, we multiply the score by nums[0]. The score becomes 1 * 19 = 19.
// - Choose subarray nums[5, ..., 5]. nums[5] is the only element in this subarray. Hence, we multiply the score by nums[5]. The score becomes 19 * 18 = 342.
// - Choose subarray nums[2, ..., 3]. Both nums[2] and nums[3] have a prime score of 2, but nums[2] has the smaller index. Hence, we multipy the score by nums[2]. The score becomes 342 * 14 = 4788.
// It can be proven that 4788 is the highest score one can obtain.
// Constraints:
// 1 <= nums.length == n <= 105
// 1 <= nums[i] <= 105
// 1 <= k <= min(n * (n + 1) / 2, 109)
class Solution
{
private:
int countDistinctPrimeFactors(int n)
{
int count = 0;
if (n % 2 == 0)
{
count++;
while (n % 2 == 0)
{
n /= 2;
}
}
for (long long i = 3; i * i <= n; i += 2)
{
if (n % i == 0)
{
count++;
while (n % i == 0)
{
n /= i;
}
}
}
if (n > 1)
count++;
return count;
}
int modPow(int base, int exp, int mod)
{
long long result = 1;
long long b = base % mod;
while (exp > 0)
{
if (exp & 1)
{
result = (result * b) % mod;
}
b = (b * b) % mod;
exp >>= 1;
}
return (int)result;
}
public:
int maximumScore(vector<int> &nums, int k)
{
int n = (int)nums.size();
if (n == 0)
return 1;
priority_queue<pair<int, int>> maxValues;
vector<int> rightLarge(n, n), LeftLarge(n, -1), primeScores(n, 0);
stack<int> st, reverse;
for (int i = 0; i < n; i++)
{
primeScores[i] = countDistinctPrimeFactors(nums[i]);
maxValues.emplace(nums[i], i);
}
for (int i = 0; i < n; i++)
{
while (!st.empty() && primeScores[i] > primeScores[st.top()])
{
rightLarge[st.top()] = i;
st.pop();
}
st.push(i);
}
for (int i = n - 1; i >= 0; i--)
{
while (!reverse.empty() &&
primeScores[i] >= primeScores[reverse.top()])
{
LeftLarge[reverse.top()] = i;
reverse.pop();
}
reverse.push(i);
}
int score = 1;
const int MODULE = 1000000007;
while (!maxValues.empty() && k > 0)
{
auto [val, idx] = maxValues.top();
maxValues.pop();
long long t =
1LL * (rightLarge[idx] - idx) * (idx - LeftLarge[idx]);
long long steps = min(t, (long long)k);
int multiply = modPow(val, (int)steps, MODULE);
score = (int)((1LL * score * multiply) % MODULE);
k -= steps;
}
return score % MODULE;
}
};
/*
1. Compute Prime Factor Counts:
- Count the number of distinct prime factors for each element in nums.
2. Find Next Greater Elements (Monotonic Stack):
- Find the next greater element index to the right (rightLarge).
- Find the next greater element index to the left (leftLarge).
3. Use a Max-Heap:
- Sort elements by their values (largest first) and process them greedily.
4. Efficient Exponentiation:
- Use modular exponentiation to handle large values efficiently.
Complexity
Time Complexity:
Prime factorization: (O(sqrt{M})) per number → (O(n*sqrt{M})).
Space Complexity:
Storing indices, prime scores, and priority queue → (O(n)).
*/