-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathosd_regression_test.cc
181 lines (157 loc) · 6.02 KB
/
osd_regression_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/*
Regression Test for ordered statistics decoding
Copyright 2020 Ahmet Inan <inan@aicodix.de>
*/
#include <random>
#include <cassert>
#include <iostream>
#include <functional>
#include "osd.hh"
#include "galois_field.hh"
#include "bose_chaudhuri_hocquenghem_encoder.hh"
#include "bose_chaudhuri_hocquenghem_decoder.hh"
int main()
{
#if 1
// BCH(127, 64) T=10
const int O = 4;
const int N = 127;
const int K = 64;
const int NR = 20;
const int loops = 10;
const double low_SNR = -5;
const double high_SNR = 5;
const double QEF_SNR = -1.5;
typedef CODE::GaloisField<7, 0b10001001, uint8_t> GF;
std::initializer_list<int> minpols {
0b10001001, 0b10001111, 0b10011101,
0b11110111, 0b10111111, 0b11010101,
0b10000011, 0b11101111, 0b11001011,
};
#endif
#if 0
// NASA INTRO BCH(15, 5) T=3
const int O = 1;
const int N = 15;
const int K = 5;
const int NR = 6;
const int loops = 100000;
const double low_SNR = -7;
const double high_SNR = 7;
const double QEF_SNR = 3.5;
typedef CODE::GaloisField<4, 0b10011, uint8_t> GF;
std::initializer_list<int> minpols {
0b10011, 0b11111, 0b00111
};
#endif
GF instance;
const int NW = (N+7)/8;
const int KW = (K+7)/8;
const int PW = (N-K+7)/8;
int8_t genmat[N*K];
CODE::BoseChaudhuriHocquenghemGenerator<N, K>::matrix(genmat, true, minpols);
CODE::BoseChaudhuriHocquenghemEncoder<N, K> bchenc(minpols);
CODE::LinearEncoder<N, K> linenc;
CODE::OrderedStatisticsDecoder<N, K, O> osddec;
CODE::BoseChaudhuriHocquenghemDecoder<NR, 1, K, GF> bchdec;
GF::value_type erasures[NR];
uint8_t message[KW], parity[PW], decoded[NW], codeword[NW];
int8_t orig[N], noisy[N];
std::random_device rd;
typedef std::default_random_engine generator;
typedef std::uniform_int_distribution<int> distribution;
auto data = std::bind(distribution(0, 255), generator(rd()));
double symb[N];
double min_SNR = high_SNR;
for (double SNR = low_SNR; SNR <= high_SNR; SNR += 0.1) {
//double mean_signal = 0;
double sigma_signal = 1;
double mean_noise = 0;
double sigma_noise = std::sqrt(sigma_signal * sigma_signal / (2 * std::pow(10, SNR / 10)));
typedef std::normal_distribution<double> normal;
auto awgn = std::bind(normal(mean_noise, sigma_noise), generator(rd()));
int awgn_errors = 0;
int quantization_erasures = 0;
int uncorrected_errors = 0;
int ambiguity_erasures = 0;
int frame_errors = 0;
int bchdec_errors = 0;
for (int l = 0; l < loops; ++l) {
for (int i = 0; i < KW; ++i)
message[i] = data();
linenc(codeword, message, genmat);
for (int i = 0; i < K; ++i)
assert(CODE::get_be_bit(codeword, i) == CODE::get_be_bit(message, i));
bchenc(message, parity);
for (int i = K; i < N; ++i)
assert(CODE::get_be_bit(codeword, i) == CODE::get_be_bit(parity, i-K));
for (int i = 0; i < N; ++i)
orig[i] = 1 - 2 * CODE::get_be_bit(codeword, i);
for (int i = 0; i < N; ++i)
symb[i] = orig[i];
for (int i = 0; i < N; ++i)
symb[i] += awgn();
// $LLR=log(\frac{p(x=+1|y)}{p(x=-1|y)})$
// $p(x|\mu,\sigma)=\frac{1}{\sqrt{2\pi}\sigma}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
double DIST = 2; // BPSK
double fact = DIST / (sigma_noise * sigma_noise);
for (int i = 0; i < N; ++i)
noisy[i] = std::min<double>(std::max<double>(std::nearbyint(fact * symb[i]), -127), 127);
bool unique = osddec(decoded, noisy, genmat);
for (int i = 0; i < N; ++i)
awgn_errors += noisy[i] * orig[i] < 0;
for (int i = 0; i < N; ++i)
quantization_erasures += !noisy[i];
for (int i = 0; i < N; ++i)
uncorrected_errors += CODE::get_be_bit(decoded, i) != CODE::get_be_bit(codeword, i);
if (unique) {
bool error = false;
for (int i = 0; i < N; ++i)
error |= CODE::get_be_bit(decoded, i) != CODE::get_be_bit(codeword, i);
frame_errors += error;
} else {
ambiguity_erasures += N;
++frame_errors;
}
for (int i = 0; i < K; ++i)
CODE::set_be_bit(message, i, noisy[i] < 0);
for (int i = K; i < N; ++i)
CODE::set_be_bit(parity, i-K, noisy[i] < 0);
int erasures_count = 0;
for (int i = 0; erasures_count < NR && i < N; ++i)
if (!noisy[i])
erasures[erasures_count++] = i;
bchdec(message, parity, erasures, erasures_count);
for (int i = 0; i < K; ++i)
bchdec_errors += CODE::get_be_bit(message, i) != CODE::get_be_bit(codeword, i);
for (int i = K; i < N; ++i)
bchdec_errors += CODE::get_be_bit(parity, i-K) != CODE::get_be_bit(codeword, i);
}
double frame_error_rate = (double)frame_errors / (double)loops;
double bit_error_rate = (double)uncorrected_errors / (double)(N * loops);
if (!uncorrected_errors && !ambiguity_erasures)
min_SNR = std::min(min_SNR, SNR);
int MOD_BITS = 1; // BPSK
double code_rate = (double)K / (double)N;
double spectral_efficiency = code_rate * MOD_BITS;
double EbN0 = 10 * std::log10(sigma_signal * sigma_signal / (spectral_efficiency * 2 * sigma_noise * sigma_noise));
double bchdec_ber = (double)bchdec_errors / (double)(N * loops);
if (0) {
std::cerr << SNR << " Es/N0 => AWGN with standard deviation of " << sigma_noise << " and mean " << mean_noise << std::endl;
std::cerr << EbN0 << " Eb/N0, using spectral efficiency of " << spectral_efficiency << " from " << code_rate << " code rate and " << MOD_BITS << " bits per symbol." << std::endl;
std::cerr << awgn_errors << " errors caused by AWGN." << std::endl;
std::cerr << quantization_erasures << " erasures caused by quantization." << std::endl;
std::cerr << uncorrected_errors << " errors uncorrected." << std::endl;
std::cerr << ambiguity_erasures << " ambiguity erasures." << std::endl;
std::cerr << frame_error_rate << " frame error rate." << std::endl;
std::cerr << bit_error_rate << " bit error rate." << std::endl;
std::cerr << bchdec_ber << " BCH decoder bit error rate." << std::endl;
} else {
std::cout << SNR << " " << frame_error_rate << " " << bit_error_rate << " " << bchdec_ber << " " << EbN0 << std::endl;
}
}
std::cerr << "QEF at: " << min_SNR << " SNR" << std::endl;
assert(min_SNR < QEF_SNR);
std::cerr << "Ordered statistics decoding regression test passed!" << std::endl;
return 0;
}