-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy path02_retrieve_metadata.py
276 lines (227 loc) · 9.16 KB
/
02_retrieve_metadata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
from argparse import ArgumentParser
import csv
import glob
import itertools
import json
import os
import arff
import numpy as np
from ConfigSpace.configuration_space import Configuration
from ConfigSpace.util import deactivate_inactive_hyperparameters
from autosklearn.data.abstract_data_manager import AbstractDataManager
from autosklearn.constants import *
from autosklearn.metrics import CLASSIFICATION_METRICS, REGRESSION_METRICS
from autosklearn.util import pipeline
def retrieve_matadata(
validation_directory, metric, configuration_space, cutoff=0, only_best=True
):
if not only_best:
raise NotImplementedError()
if cutoff > 0:
raise NotImplementedError()
# Mapping from task id to a list of (config, score) tuples
outputs = dict()
configurations = dict()
configurations_to_ids = dict()
try:
validation_trajectory_files = glob.glob(
os.path.join(validation_directory, "*", "*", "validation_trajectory_*.json")
)
except FileNotFoundError:
return {}, {}
for validation_trajectory_file in validation_trajectory_files:
task_name = None
with open(validation_trajectory_file) as fh:
validation_trajectory = json.load(fh)
best_value = np.inf
best_configuration = None
best_configuration_dir = None
n_configs = 0
n_better = 0
n_broken = 0
for entry in validation_trajectory:
# There's no reason to keep the default configuration
# (even if it's better) because it is run anyway
if validation_trajectory[0][2] == entry[2]:
continue
n_configs += 1
config = entry[2]
task_name = entry[-2]
score = entry[-1].get(str(metric), np.inf)
if np.isinf(score) and np.isinf(best_value) or score < best_value:
n_better += 1
try:
for hp in configuration_space.get_hyperparameters():
if hp.name not in config:
config[hp.name] = hp.default_value
best_configuration = Configuration(
configuration_space=configuration_space,
values=config,
allow_inactive_with_values=True,
)
best_configuration = deactivate_inactive_hyperparameters(
configuration=best_configuration,
configuration_space=configuration_space,
)
best_value = score
best_configuration_dir = validation_trajectory_file
except Exception as e:
print(e)
n_broken += 1
if task_name is None:
print(
"Could not find any configuration better than the default configuration!"
)
continue
if best_configuration is None:
print(
"Could not find a valid configuration; total %d, better %d, broken %d"
% (n_configs, n_better, n_broken)
)
continue
elif best_configuration in configurations_to_ids:
print("Found configuration in", best_configuration_dir)
config_id = configurations_to_ids[best_configuration]
else:
print("Found configuration in", best_configuration_dir)
config_id = len(configurations_to_ids)
configurations_to_ids[config_id] = best_configuration
configurations[config_id] = best_configuration
# We could keep multiple configurations per task (and actually did so before), but
# there is really no reason to already filter them here and only keep the best
# (this is less confusing when looking at the raw data later on).
if task_name not in outputs:
outputs[task_name] = (config_id, best_value)
else:
if best_value < outputs[task_name][1]:
outputs[task_name] = (config_id, best_value)
return outputs, configurations
def write_output(outputs, configurations, output_dir, configuration_space, metric):
arff_object = dict()
arff_object["attributes"] = [
("instance_id", "STRING"),
("repetition", "NUMERIC"),
("algorithm", "STRING"),
(metric, "NUMERIC"),
("runstatus", ["ok", "timeout", "memout", "not_applicable", "crash", "other"]),
]
arff_object["relation"] = "ALGORITHM_RUNS"
arff_object["description"] = ""
data = []
keep_configurations = set()
for dataset, (configuration_id, value) in outputs.items():
if not np.isfinite(value):
runstatus = "not_applicable"
value = None
else:
runstatus = "ok"
line = [dataset, 1, configuration_id + 1, value, runstatus]
data.append(line)
keep_configurations.add(configuration_id)
arff_object["data"] = data
with open(os.path.join(output_dir, "algorithm_runs.arff"), "w") as fh:
arff.dump(arff_object, fh)
hyperparameters = []
for idx in configurations:
if idx not in keep_configurations:
continue
configuration = configurations[idx]
line = {"idx": idx + 1}
for hp_name in configuration:
value = configuration[hp_name]
if value is not None:
line[hp_name] = value
hyperparameters.append(line)
fieldnames = ["idx"]
for hyperparameter in configuration_space.get_hyperparameters():
fieldnames.append(hyperparameter.name)
fieldnames = [fieldnames[0]] + sorted(fieldnames[1:])
with open(os.path.join(output_dir, "configurations.csv"), "w") as fh:
csv_writer = csv.DictWriter(fh, fieldnames=fieldnames)
csv_writer.writeheader()
for line in hyperparameters:
csv_writer.writerow(line)
description = dict()
description["algorithms_deterministic"] = ",".join(
[
str(configuration_id + 1)
for configuration_id in sorted(configurations.keys())
]
)
description["algorithms_stochastic"] = ",".join([])
description["performance_measures"] = metric
description["performance_type"] = "solution_quality"
with open(os.path.join(output_dir, "description.results.txt"), "w") as fh:
for key in description:
fh.write("%s: %s\n" % (key, description[key]))
class DummyDatamanager(AbstractDataManager):
def __init__(self, info, feat_type=None):
super().__init__("Test")
self._info = info
self.feat_type = feat_type
def main():
parser = ArgumentParser()
parser.add_argument("--working-directory", type=str, required=True)
parser.add_argument("--cutoff", type=int, default=-1)
parser.add_argument("--only-best", type=bool, default=True)
args = parser.parse_args()
working_directory = args.working_directory
cutoff = args.cutoff
only_best = args.only_best
for task_type in ("classification", "regression"):
if task_type == "classification":
metadata_sets = itertools.product(
[0, 1],
[BINARY_CLASSIFICATION, MULTICLASS_CLASSIFICATION],
CLASSIFICATION_METRICS,
)
input_directory = os.path.join(
working_directory, "configuration", "classification"
)
elif task_type == "regression":
metadata_sets = itertools.product([0, 1], [REGRESSION], REGRESSION_METRICS)
input_directory = os.path.join(
working_directory, "configuration", "regression"
)
else:
raise ValueError(task_type)
output_dir = os.path.join(working_directory, "configuration_results")
for sparse, task, metric in metadata_sets:
print(TASK_TYPES_TO_STRING[task], metric, sparse)
output_dir_ = os.path.join(
output_dir,
"%s_%s_%s"
% (metric, TASK_TYPES_TO_STRING[task], "sparse" if sparse else "dense"),
)
configuration_space = pipeline.get_configuration_space(
DummyDatamanager(
info={"is_sparse": sparse, "task": task},
feat_type={"A": "numerical", "B": "categorical"}
)
)
outputs, configurations = retrieve_matadata(
validation_directory=input_directory,
metric=metric,
cutoff=cutoff,
configuration_space=configuration_space,
only_best=only_best,
)
if len(outputs) == 0:
print(
"No output found for %s, %s, %s"
% (
metric,
TASK_TYPES_TO_STRING[task],
"sparse" if sparse else "dense",
)
)
continue
try:
os.makedirs(output_dir_)
except:
pass
write_output(
outputs, configurations, output_dir_, configuration_space, metric
)
if __name__ == "__main__":
main()