-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy paththe_skyline_problem.dart
313 lines (263 loc) · 9.35 KB
/
the_skyline_problem.dart
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
/*
-* The Skyline Problem *-
A city's skyline is the outer contour of the silhouette formed by all the buildings in that city when viewed from a distance. Given the locations and heights of all the buildings, return the skyline formed by these buildings collectively.
The geometric information of each building is given in the array buildings where buildings[i] = [lefti, righti, heighti]:
left-i is the x coordinate of the left edge of the ith building.
right-i is the x coordinate of the right edge of the ith building.
height-i is the height of the ith building.
You may assume all buildings are perfect rectangles grounded on an absolutely flat surface at height 0.
The skyline should be represented as a list of "key points" sorted by their x-coordinate in the form [[x1,y1],[x2,y2],...]. Each key point is the left endpoint of some horizontal segment in the skyline except the last point in the list, which always has a y-coordinate 0 and is used to mark the skyline's termination where the rightmost building ends. Any ground between the leftmost and rightmost buildings should be part of the skyline's contour.
Note: There must be no consecutive horizontal lines of equal height in the output skyline. For instance, [...,[2 3],[4 5],[7 5],[11 5],[12 7],...] is not acceptable; the three lines of height 5 should be merged into one in the final output as such: [...,[2 3],[4 5],[12 7],...]
Example 1:
Input: buildings = [[2,9,10],[3,7,15],[5,12,12],[15,20,10],[19,24,8]]
Output: [[2,10],[3,15],[7,12],[12,0],[15,10],[20,8],[24,0]]
Explanation:
Figure A shows the buildings of the input.
Figure B shows the skyline formed by those buildings. The red points in figure B represent the key points in the output list.
Example 2:
Input: buildings = [[0,2,3],[2,5,3]]
Output: [[0,3],[5,0]]
Constraints:
1 <= buildings.length <= 104
0 <= left-i < right-i <= 231 - 1
1 <= height-i <= 231 - 1
buildings is sorted by left-i in non-decreasing order.
*/
import 'dart:math';
class A {
List<List<int>> getSkyline(List<List<int>> buildings) {
// int n = buildings.length;
List<int> keys = [];
for (List<int> building in buildings) {
keys.add(building[0]);
keys.add(building[1]);
}
keys.sort();
int last = 0;
int lastKey = -1;
List<int> temp = [];
List<List<int>> result = [].map((e) => <int>[]).toList();
for (int left in keys) {
if (left == lastKey) continue;
lastKey = left;
int height = 0;
for (List<int> building in buildings) {
if (left >= building[0] && left < building[1])
height = max(height, building[2]);
else if (building[0] > left) break;
}
if (height != last) {
temp.add(left);
temp.add(height);
result.add(temp);
temp.clear();
}
last = height;
}
return result;
}
}
class C {
// Time Limit exceed
List<List<int>> getSkyline(List<List<int>> buildings) {
Set new_set = Set();
buildings.forEach((b) {
new_set.add(b[0]);
new_set.add(b[1]);
});
List temp = List.from(new_set);
temp.sort((a, b) => a - b);
List<List<int>> result = [].map((e) => <int>[]).toList();
temp.forEach((x) {
List<List<int>> b =
buildings.where((b) => b[0] == x || b[0] < x && b[1] > x).toList();
int maxi = 0;
for (int i = 0; i < b.length; i++) {
maxi = max(maxi, b[i][2]);
}
result.add([x, maxi]);
});
for (int i = 1; i < result.length; i++) {
List<int> last = result[i - 1];
List<int> current = result[i];
if (last[1] == current[1]) {
result.sublist(1, i);
i--;
}
}
return result;
}
}
class KeyPoint {
int key;
int height;
KeyPoint? next = null;
KeyPoint(int this.key, int this.height);
}
class D {
// Runtime: 592 ms, faster than 100.00% of Dart online submissions for The Skyline Problem.
// Memory Usage: 147.5 MB, less than 100.00% of Dart online submissions for The Skyline Problem.
List<List<int>> getSkyline(List<List<int>> buildings) {
List<List<int>> res = [].map((e) => <int>[]).toList();
KeyPoint dummy = KeyPoint(-1, 0); // dummy head
KeyPoint pre = dummy;
for (List<int> bd in buildings) {
int L = bd[0];
int R = bd[1];
int H = bd[2];
while (pre.next != null && pre.next!.key <= L) pre = pre.next!;
int preH = pre.height;
if (pre.key == L)
pre.height = max(pre.height, H);
else if (pre.height < H) {
KeyPoint? next = pre.next;
pre.next = new KeyPoint(L, H);
pre = pre.next!;
pre.next = next;
}
KeyPoint preIter = pre;
KeyPoint? curIter = pre.next;
while (curIter != null && curIter.key < R) {
preH = curIter.height;
curIter.height = max(curIter.height, H);
if (curIter.height == preIter.height)
preIter.next = curIter.next;
else
preIter = curIter;
curIter = curIter.next;
}
if (preIter.height != preH &&
preIter.key != R &&
(curIter == null || curIter.key != R)) {
KeyPoint? next = preIter.next;
preIter.next = KeyPoint(R, preH);
preIter.next!.next = next;
}
}
KeyPoint? first = dummy;
KeyPoint? second = dummy.next;
while (second != null) {
if (second.height != first!.height)
//res.add(Arrays.asList(second.key, second.height));
res.add([second.key, second.height]);
first = first.next;
second = second.next;
}
return res;
}
}
class E {
// divide and conquer
// Runtime: 498 ms, faster than 100.00% of Dart online submissions for The Skyline Problem.
// Memory Usage: 152 MB, less than 100.00% of Dart online submissions for The Skyline Problem.
List<List<int>> getSkyline(List<List<int>> buildings) {
List<List<int>> res = [].map((e) => <int>[]).toList();
if (buildings.length == 0) return res;
int n = buildings.length;
return findSkyline(buildings, 0, n - 1);
}
List<List<int>> findSkyline(List<List<int>> buildings, int lo, int hi) {
List<List<int>> res = [].map((e) => <int>[]).toList();
;
if (lo == hi) {
res.add([buildings[lo][0], buildings[lo][2]]);
res.add([buildings[lo][1], 0]);
return res;
}
int mid = lo + (hi - lo) ~/ 2;
List<List<int>> skyline1 = findSkyline(buildings, lo, mid);
List<List<int>> skyline2 = findSkyline(buildings, mid + 1, hi);
return mergeSkyline(skyline1, skyline2);
}
List<List<int>> mergeSkyline(
List<List<int>> skyline1, List<List<int>> skyline2) {
List<List<int>> res = [].map((e) => <int>[]).toList();
int i = 0, j = 0;
int h1 = 0, h2 = 0;
while (i < skyline1.length && j < skyline2.length) {
int x1 = skyline1.elementAt(i).elementAt(0);
int x2 = skyline2.elementAt(j).elementAt(0);
int x;
if (x1 < x2) {
h1 = skyline1.elementAt(i++).elementAt(1);
x = x1;
} else if (x1 > x2) {
h2 = skyline2.elementAt(j++).elementAt(1);
x = x2;
} else {
h1 = skyline1.elementAt(i++).elementAt(1);
h2 = skyline2.elementAt(j++).elementAt(1);
x = x1;
}
int h = max(h1, h2);
if (res.isEmpty || h != res.elementAt(res.length - 1).elementAt(1)) {
res.add([x, h]);
}
}
while (i < skyline1.length) res.add(skyline1.elementAt(i++));
while (j < skyline2.length) res.add(skyline2.elementAt(j++));
return res;
}
}
class F {
// Runtime: 835 ms, faster than 100.00% of Dart online submissions for The Skyline Problem.
// Memory Usage: 151.5 MB, less than 100.00% of Dart online submissions for The Skyline Problem.
List<List<int>> getSkyline(List<List<int>> buildings) {
if (buildings.length == 0) return [].map((e) => <int>[]).toList();
return recurSkyline(buildings, 0, buildings.length - 1);
}
List<List<int>> recurSkyline(List<List<int>> buildings, int p, int q) {
if (p < q) {
int mid = p + (q - p) ~/ 2;
return merge(
recurSkyline(buildings, p, mid), recurSkyline(buildings, mid + 1, q));
} else {
List<List<int>> rs = [].map((e) => <int>[]).toList();
rs.add([buildings[p][0], buildings[p][2]]);
rs.add([buildings[p][1], 0]);
return rs;
}
}
List<List<int>> merge(List<List<int>> l1, List<List<int>> l2) {
List<List<int>> rs = [].map((e) => <int>[]).toList();
int h1 = 0, h2 = 0;
while (l1.length > 0 && l2.length > 0) {
int x = 0, h = 0;
if (l1.first[0] < l2.first[0]) {
x = l1.first[0];
h1 = l1.first[1];
h = max(h1, h2);
// remove first
l1.removeAt(0);
} else if (l1.first[0] > l2.first[0]) {
x = l2.first[0];
h2 = l2.first[1];
h = max(h1, h2);
l2.removeAt(0);
} else {
x = l1.first[0];
h1 = l1.first[1];
h2 = l2.first[1];
h = max(h1, h2);
l1.removeAt(0);
l2.removeAt(0);
}
if (rs.length == 0 || h != rs.last[1]) {
rs.add([x, h]);
}
}
rs.addAll(l1);
rs.addAll(l2);
return rs;
}
}
extension Splice<T> on List<T> {
List<T> splice<T>(List<T> list, int index,
[num howMany = 0, /*<T | List<T>>*/ elements]) {
var endIndex = index + howMany.truncate();
list.removeRange(index, endIndex >= list.length ? list.length : endIndex);
if (elements != null)
list.insertAll(index, elements is List<T> ? elements : <T>[elements]);
return list;
}
}