forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIRGen.cpp
915 lines (779 loc) · 31.4 KB
/
IRGen.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
//===--- IRGen.cpp - Swift LLVM IR Generation -----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the entrypoints into IR generation.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "irgen"
#include "swift/Subsystems.h"
#include "swift/AST/AST.h"
#include "swift/AST/DiagnosticsIRGen.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/LinkLibrary.h"
#include "swift/SIL/SILModule.h"
#include "swift/Basic/Dwarf.h"
#include "swift/Basic/Platform.h"
#include "swift/Basic/Timer.h"
#include "swift/Basic/Version.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/LLVMPasses/PassesFwd.h"
#include "swift/LLVMPasses/Passes.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Bitcode/BitcodeWriterPass.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Linker/Linker.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/MD5.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Transforms/ObjCARC.h"
#include "llvm/Object/ObjectFile.h"
#include "IRGenModule.h"
#include <thread>
using namespace swift;
using namespace irgen;
using namespace llvm;
static void addSwiftARCOptPass(const PassManagerBuilder &Builder,
PassManagerBase &PM) {
if (Builder.OptLevel > 0)
PM.add(createSwiftARCOptPass());
}
static void addSwiftContractPass(const PassManagerBuilder &Builder,
PassManagerBase &PM) {
if (Builder.OptLevel > 0)
PM.add(createSwiftARCContractPass());
}
static void addSwiftStackPromotionPass(const PassManagerBuilder &Builder,
PassManagerBase &PM) {
if (Builder.OptLevel > 0)
PM.add(createSwiftStackPromotionPass());
}
static void addAddressSanitizerPasses(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
PM.add(createAddressSanitizerFunctionPass());
PM.add(createAddressSanitizerModulePass());
}
static void addThreadSanitizerPass(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
PM.add(createThreadSanitizerPass());
}
std::tuple<llvm::TargetOptions, std::string, std::vector<std::string>>
swift::getIRTargetOptions(IRGenOptions &Opts, ASTContext &Ctx) {
// Things that maybe we should collect from the command line:
// - relocation model
// - code model
// FIXME: We should do this entirely through Clang, for consistency.
TargetOptions TargetOpts;
auto *Clang = static_cast<ClangImporter *>(Ctx.getClangModuleLoader());
clang::TargetOptions &ClangOpts = Clang->getTargetInfo().getTargetOpts();
return std::make_tuple(TargetOpts, ClangOpts.CPU, ClangOpts.Features);
}
void setModuleFlags(IRGenModule &IGM) {
auto *Module = IGM.getModule();
// These module flags don't affect code generation; they just let us
// error during LTO if the user tries to combine files across ABIs.
Module->addModuleFlag(llvm::Module::Error, "Swift Version",
IRGenModule::swiftVersion);
}
void swift::performLLVMOptimizations(IRGenOptions &Opts, llvm::Module *Module,
llvm::TargetMachine *TargetMachine) {
SharedTimer timer("LLVM optimization");
// Set up a pipeline.
PassManagerBuilder PMBuilder;
if (Opts.Optimize && !Opts.DisableLLVMOptzns) {
PMBuilder.OptLevel = 3;
PMBuilder.Inliner = llvm::createFunctionInliningPass(200);
PMBuilder.SLPVectorize = true;
PMBuilder.LoopVectorize = true;
PMBuilder.MergeFunctions = true;
} else {
PMBuilder.OptLevel = 0;
if (!Opts.DisableLLVMOptzns)
PMBuilder.Inliner =
llvm::createAlwaysInlinerPass(/*insertlifetime*/false);
}
PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly,
addSwiftStackPromotionPass);
// If the optimizer is enabled, we run the ARCOpt pass in the scalar optimizer
// and the Contract pass as late as possible.
if (!Opts.DisableLLVMARCOpts) {
PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
addSwiftARCOptPass);
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addSwiftContractPass);
}
if (Opts.Sanitize == SanitizerKind::Address) {
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addAddressSanitizerPasses);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addAddressSanitizerPasses);
}
if (Opts.Sanitize == SanitizerKind::Thread) {
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addThreadSanitizerPass);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addThreadSanitizerPass);
}
// Configure the function passes.
legacy::FunctionPassManager FunctionPasses(Module);
FunctionPasses.add(createTargetTransformInfoWrapperPass(
TargetMachine->getTargetIRAnalysis()));
if (Opts.Verify)
FunctionPasses.add(createVerifierPass());
PMBuilder.populateFunctionPassManager(FunctionPasses);
// The PMBuilder only knows about LLVM AA passes. We should explicitly add
// the swift AA pass after the other ones.
if (!Opts.DisableLLVMARCOpts) {
FunctionPasses.add(createSwiftAAWrapperPass());
FunctionPasses.add(createExternalAAWrapperPass([](Pass &P, Function &,
AAResults &AAR) {
if (auto *WrapperPass = P.getAnalysisIfAvailable<SwiftAAWrapperPass>())
AAR.addAAResult(WrapperPass->getResult());
}));
}
// Run the function passes.
FunctionPasses.doInitialization();
for (auto I = Module->begin(), E = Module->end(); I != E; ++I)
if (!I->isDeclaration())
FunctionPasses.run(*I);
FunctionPasses.doFinalization();
// Configure the module passes.
legacy::PassManager ModulePasses;
ModulePasses.add(createTargetTransformInfoWrapperPass(
TargetMachine->getTargetIRAnalysis()));
PMBuilder.populateModulePassManager(ModulePasses);
// The PMBuilder only knows about LLVM AA passes. We should explicitly add
// the swift AA pass after the other ones.
if (!Opts.DisableLLVMARCOpts) {
ModulePasses.add(createSwiftAAWrapperPass());
ModulePasses.add(createExternalAAWrapperPass([](Pass &P, Function &,
AAResults &AAR) {
if (auto *WrapperPass = P.getAnalysisIfAvailable<SwiftAAWrapperPass>())
AAR.addAAResult(WrapperPass->getResult());
}));
}
// If we're generating a profile, add the lowering pass now.
if (Opts.GenerateProfile)
ModulePasses.add(createInstrProfilingPass());
if (Opts.Verify)
ModulePasses.add(createVerifierPass());
if (Opts.PrintInlineTree)
ModulePasses.add(createInlineTreePrinterPass());
// Do it.
ModulePasses.run(*Module);
}
/// An output stream which calculates the MD5 hash of the streamed data.
class MD5Stream : public llvm::raw_ostream {
private:
uint64_t Pos = 0;
llvm::MD5 Hash;
void write_impl(const char *Ptr, size_t Size) override {
Hash.update(ArrayRef<uint8_t>((uint8_t *)Ptr, Size));
Pos += Size;
}
uint64_t current_pos() const override { return Pos; }
public:
void final(MD5::MD5Result &Result) {
flush();
Hash.final(Result);
}
};
/// Computes the MD5 hash of the llvm \p Module including the compiler version
/// and options which influence the compilation.
static void getHashOfModule(MD5::MD5Result &Result, IRGenOptions &Opts,
llvm::Module *Module,
llvm::TargetMachine *TargetMachine) {
// Calculate the hash of the whole llvm module.
MD5Stream HashStream;
llvm::WriteBitcodeToFile(Module, HashStream);
// Update the hash with the compiler version. We want to recompile if the
// llvm pipeline of the compiler changed.
HashStream << version::getSwiftFullVersion();
// Add all options which influence the llvm compilation but are not yet
// reflected in the llvm module itself.
HashStream << Opts.getLLVMCodeGenOptionsHash();
HashStream.final(Result);
}
/// Returns false if the hash of the current module \p HashData matches the
/// hash which is stored in an existing output object file.
static bool needsRecompile(StringRef OutputFilename, ArrayRef<uint8_t> HashData,
llvm::GlobalVariable *HashGlobal,
llvm::sys::Mutex *DiagMutex) {
if (OutputFilename.empty())
return true;
auto BinaryOwner = object::createBinary(OutputFilename);
if (!BinaryOwner)
return true;
auto *ObjectFile = dyn_cast<object::ObjectFile>(BinaryOwner->getBinary());
if (!ObjectFile)
return true;
const char *HashSectionName = HashGlobal->getSection();
// Strip the segment name. For mach-o the GlobalVariable's section name format
// is <segment>,<section>.
if (const char *Comma = ::strchr(HashSectionName, ','))
HashSectionName = Comma + 1;
// Search for the section which holds the hash.
for (auto &Section : ObjectFile->sections()) {
StringRef SectionName;
Section.getName(SectionName);
if (SectionName == HashSectionName) {
StringRef SectionData;
Section.getContents(SectionData);
ArrayRef<uint8_t> PrevHashData((uint8_t *)SectionData.data(),
SectionData.size());
DEBUG(if (PrevHashData.size() == sizeof(MD5::MD5Result)) {
if (DiagMutex) DiagMutex->lock();
SmallString<32> HashStr;
MD5::stringifyResult(*(MD5::MD5Result *)PrevHashData.data(), HashStr);
llvm::dbgs() << OutputFilename << ": prev MD5=" << HashStr <<
(HashData == PrevHashData ? " skipping\n" : " recompiling\n");
if (DiagMutex) DiagMutex->unlock();
});
if (HashData == PrevHashData)
return false;
return true;
}
}
return true;
}
/// Run the LLVM passes. In multi-threaded compilation this will be done for
/// multiple LLVM modules in parallel.
static bool performLLVM(IRGenOptions &Opts, DiagnosticEngine &Diags,
llvm::sys::Mutex *DiagMutex,
llvm::GlobalVariable *HashGlobal,
llvm::Module *Module,
llvm::TargetMachine *TargetMachine,
StringRef OutputFilename) {
if (Opts.UseIncrementalLLVMCodeGen && HashGlobal) {
// Check if we can skip the llvm part of the compilation if we have an
// existing object file which was generated from the same llvm IR.
MD5::MD5Result Result;
getHashOfModule(Result, Opts, Module, TargetMachine);
DEBUG(
if (DiagMutex) DiagMutex->lock();
SmallString<32> ResultStr;
MD5::stringifyResult(Result, ResultStr);
llvm::dbgs() << OutputFilename << ": MD5=" << ResultStr << '\n';
if (DiagMutex) DiagMutex->unlock();
);
ArrayRef<uint8_t> HashData(Result, sizeof(MD5::MD5Result));
if (Opts.OutputKind == IRGenOutputKind::ObjectFile &&
!Opts.PrintInlineTree &&
!needsRecompile(OutputFilename, HashData, HashGlobal, DiagMutex)) {
// The llvm IR did not change. We don't need to re-create the object file.
return false;
}
// Store the hash in the global variable so that it is written into the
// object file.
auto *HashConstant = ConstantDataArray::get(Module->getContext(), HashData);
HashGlobal->setInitializer(HashConstant);
}
llvm::SmallString<0> Buffer;
std::unique_ptr<raw_pwrite_stream> RawOS;
if (!OutputFilename.empty()) {
// Try to open the output file. Clobbering an existing file is fine.
// Open in binary mode if we're doing binary output.
llvm::sys::fs::OpenFlags OSFlags = llvm::sys::fs::F_None;
std::error_code EC;
auto *FDOS = new raw_fd_ostream(OutputFilename, EC, OSFlags);
RawOS.reset(FDOS);
if (FDOS->has_error() || EC) {
if (DiagMutex)
DiagMutex->lock();
Diags.diagnose(SourceLoc(), diag::error_opening_output,
OutputFilename, EC.message());
if (DiagMutex)
DiagMutex->unlock();
FDOS->clear_error();
return true;
}
// Most output kinds want a formatted output stream. It's not clear
// why writing an object file does.
//if (Opts.OutputKind != IRGenOutputKind::LLVMBitcode)
// FormattedOS.setStream(*RawOS, formatted_raw_ostream::PRESERVE_STREAM);
} else {
RawOS.reset(new raw_svector_ostream(Buffer));
}
performLLVMOptimizations(Opts, Module, TargetMachine);
legacy::PassManager EmitPasses;
// Set up the final emission passes.
switch (Opts.OutputKind) {
case IRGenOutputKind::Module:
break;
case IRGenOutputKind::LLVMAssembly:
EmitPasses.add(createPrintModulePass(*RawOS));
break;
case IRGenOutputKind::LLVMBitcode:
EmitPasses.add(createBitcodeWriterPass(*RawOS));
break;
case IRGenOutputKind::NativeAssembly:
case IRGenOutputKind::ObjectFile: {
llvm::TargetMachine::CodeGenFileType FileType;
FileType = (Opts.OutputKind == IRGenOutputKind::NativeAssembly
? llvm::TargetMachine::CGFT_AssemblyFile
: llvm::TargetMachine::CGFT_ObjectFile);
EmitPasses.add(createTargetTransformInfoWrapperPass(
TargetMachine->getTargetIRAnalysis()));
// Make sure we do ARC contraction under optimization. We don't
// rely on any other LLVM ARC transformations, but we do need ARC
// contraction to add the objc_retainAutoreleasedReturnValue
// assembly markers.
if (Opts.Optimize)
EmitPasses.add(createObjCARCContractPass());
bool fail = TargetMachine->addPassesToEmitFile(EmitPasses, *RawOS,
FileType, !Opts.Verify);
if (fail) {
if (DiagMutex)
DiagMutex->lock();
Diags.diagnose(SourceLoc(), diag::error_codegen_init_fail);
if (DiagMutex)
DiagMutex->unlock();
return true;
}
break;
}
}
{
SharedTimer timer("LLVM output");
EmitPasses.run(*Module);
}
return false;
}
static llvm::TargetMachine *createTargetMachine(IRGenOptions &Opts,
ASTContext &Ctx) {
const llvm::Triple &Triple = Ctx.LangOpts.Target;
std::string Error;
const Target *Target = TargetRegistry::lookupTarget(Triple.str(), Error);
if (!Target) {
Ctx.Diags.diagnose(SourceLoc(), diag::no_llvm_target, Triple.str(), Error);
return nullptr;
}
CodeGenOpt::Level OptLevel = Opts.Optimize ? CodeGenOpt::Aggressive
: CodeGenOpt::None;
// Set up TargetOptions and create the target features string.
TargetOptions TargetOpts;
std::string CPU;
std::vector<std::string> targetFeaturesArray;
std::tie(TargetOpts, CPU, targetFeaturesArray)
= getIRTargetOptions(Opts, Ctx);
std::string targetFeatures;
if (!targetFeaturesArray.empty()) {
llvm::SubtargetFeatures features;
for (const std::string &feature : targetFeaturesArray)
features.AddFeature(feature);
targetFeatures = features.getString();
}
// Create a target machine.
llvm::TargetMachine *TargetMachine
= Target->createTargetMachine(Triple.str(), CPU,
targetFeatures, TargetOpts, Reloc::PIC_,
CodeModel::Default, OptLevel);
if (!TargetMachine) {
Ctx.Diags.diagnose(SourceLoc(), diag::no_llvm_target,
Triple.str(), "no LLVM target machine");
return nullptr;
}
return TargetMachine;
}
// With -embed-bitcode, save a copy of the llvm IR as data in the
// __LLVM,__bitcode section and save the command-line options in the
// __LLVM,__swift_cmdline section.
static void embedBitcode(llvm::Module *M, const IRGenOptions &Opts)
{
if (Opts.EmbedMode == IRGenEmbedMode::None)
return;
// Embed the bitcode for the llvm module.
std::string Data;
llvm::raw_string_ostream OS(Data);
if (Opts.EmbedMode == IRGenEmbedMode::EmbedBitcode)
llvm::WriteBitcodeToFile(M, OS);
ArrayRef<uint8_t> ModuleData((uint8_t*)OS.str().data(), OS.str().size());
llvm::Constant *ModuleConstant =
llvm::ConstantDataArray::get(M->getContext(), ModuleData);
// Use Appending linkage so it doesn't get optimized out.
llvm::GlobalVariable *GV = new llvm::GlobalVariable(*M,
ModuleConstant->getType(), true,
llvm::GlobalValue::AppendingLinkage,
ModuleConstant);
GV->setSection("__LLVM,__bitcode");
if (llvm::GlobalVariable *Old =
M->getGlobalVariable("llvm.embedded.module")) {
GV->takeName(Old);
Old->replaceAllUsesWith(GV);
delete Old;
} else {
GV->setName("llvm.embedded.module");
}
// Embed command-line options.
ArrayRef<uint8_t> CmdData((uint8_t*)Opts.CmdArgs.data(),
Opts.CmdArgs.size());
llvm::Constant *CmdConstant =
llvm::ConstantDataArray::get(M->getContext(), CmdData);
GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true,
llvm::GlobalValue::AppendingLinkage,
CmdConstant);
GV->setSection("__LLVM,__swift_cmdline");
if (llvm::GlobalVariable *Old = M->getGlobalVariable("llvm.cmdline")) {
GV->takeName(Old);
Old->replaceAllUsesWith(GV);
delete Old;
} else {
GV->setName("llvm.cmdline");
}
}
static void initLLVMModule(const IRGenModule &IGM) {
auto *Module = IGM.getModule();
assert(Module && "Expected llvm:Module for IR generation!");
Module->setTargetTriple(IGM.Triple.str());
// Set the module's string representation.
Module->setDataLayout(IGM.DataLayout.getStringRepresentation());
}
/// Generates LLVM IR, runs the LLVM passes and produces the output file.
/// All this is done in a single thread.
static std::unique_ptr<llvm::Module> performIRGeneration(IRGenOptions &Opts,
swift::Module *M,
SILModule *SILMod,
StringRef ModuleName,
llvm::LLVMContext &LLVMContext,
SourceFile *SF = nullptr,
unsigned StartElem = 0) {
auto &Ctx = M->getASTContext();
assert(!Ctx.hadError());
llvm::TargetMachine *TargetMachine = createTargetMachine(Opts, Ctx);
if (!TargetMachine)
return nullptr;
const llvm::DataLayout DataLayout = TargetMachine->createDataLayout();
// Create the IR emitter.
IRGenModuleDispatcher dispatcher;
const llvm::Triple &Triple = Ctx.LangOpts.Target;
IRGenModule IGM(dispatcher, nullptr, Ctx, LLVMContext, Opts, ModuleName,
DataLayout, Triple,
TargetMachine, SILMod, Opts.getSingleOutputFilename());
initLLVMModule(IGM);
{
SharedTimer timer("IRGen");
// Emit the module contents.
dispatcher.emitGlobalTopLevel();
if (SF) {
IGM.emitSourceFile(*SF, StartElem);
} else {
assert(StartElem == 0 && "no explicit source file provided");
for (auto *File : M->getFiles()) {
if (auto *nextSF = dyn_cast<SourceFile>(File)) {
if (nextSF->ASTStage >= SourceFile::TypeChecked)
IGM.emitSourceFile(*nextSF, 0);
} else {
File->collectLinkLibraries([&IGM](LinkLibrary LinkLib) {
IGM.addLinkLibrary(LinkLib);
});
}
}
}
// Register our info with the runtime if needed.
if (Opts.UseJIT) {
IGM.emitRuntimeRegistration();
} else {
// Emit protocol conformances into a section we can recognize at runtime.
// In JIT mode these are manually registered above.
IGM.emitProtocolConformances();
IGM.emitTypeMetadataRecords();
IGM.emitFieldTypeMetadataRecords();
IGM.emitAssociatedTypeMetadataRecords();
}
IGM.emitSwiftReflectionVersion();
// Okay, emit any definitions that we suddenly need.
dispatcher.emitLazyDefinitions();
// Emit symbols for eliminated dead methods.
IGM.emitVTableStubs();
// Verify type layout if we were asked to.
if (!Opts.VerifyTypeLayoutNames.empty())
IGM.emitTypeVerifier();
std::for_each(Opts.LinkLibraries.begin(), Opts.LinkLibraries.end(),
[&](LinkLibrary linkLib) {
IGM.addLinkLibrary(linkLib);
});
// Hack to handle thunks eagerly synthesized by the Clang importer.
swift::Module *prev = nullptr;
for (auto external : Ctx.ExternalDefinitions) {
swift::Module *next = external->getModuleContext();
if (next == prev)
continue;
prev = next;
if (next->getName() == M->getName())
continue;
next->collectLinkLibraries([&](LinkLibrary linkLib) {
IGM.addLinkLibrary(linkLib);
});
}
IGM.finalize();
setModuleFlags(IGM);
}
// Bail out if there are any errors.
if (Ctx.hadError()) return nullptr;
embedBitcode(IGM.getModule(), Opts);
if (performLLVM(IGM.Opts, IGM.Context.Diags, nullptr, IGM.ModuleHash,
IGM.getModule(), IGM.TargetMachine, IGM.OutputFilename))
return nullptr;
return std::unique_ptr<llvm::Module>(IGM.releaseModule());
}
static void ThreadEntryPoint(IRGenModuleDispatcher *dispatcher,
llvm::sys::Mutex *DiagMutex, int ThreadIdx) {
while (IRGenModule *IGM = dispatcher->fetchFromQueue()) {
DEBUG(
DiagMutex->lock();
dbgs() << "thread " << ThreadIdx << ": fetched " << IGM->OutputFilename <<
"\n";
DiagMutex->unlock();
);
embedBitcode(IGM->getModule(), IGM->Opts);
performLLVM(IGM->Opts, IGM->Context.Diags, DiagMutex, IGM->ModuleHash,
IGM->getModule(), IGM->TargetMachine, IGM->OutputFilename);
if (IGM->Context.Diags.hadAnyError())
return;
}
DEBUG(
DiagMutex->lock();
dbgs() << "thread " << ThreadIdx << ": done\n";
DiagMutex->unlock();
);
}
/// Generates LLVM IR, runs the LLVM passes and produces the output files.
/// All this is done in multiple threads.
static void performParallelIRGeneration(IRGenOptions &Opts,
swift::Module *M,
SILModule *SILMod,
StringRef ModuleName, int numThreads) {
IRGenModuleDispatcher dispatcher;
auto OutputIter = Opts.OutputFilenames.begin();
bool IGMcreated = false;
auto &Ctx = M->getASTContext();
// Create an IRGenModule for each source file.
for (auto *File : M->getFiles()) {
auto nextSF = dyn_cast<SourceFile>(File);
if (!nextSF || nextSF->ASTStage < SourceFile::TypeChecked)
continue;
// Create a target machine.
llvm::TargetMachine *TargetMachine = createTargetMachine(Opts, Ctx);
const llvm::DataLayout DataLayout = TargetMachine->createDataLayout();
LLVMContext *Context = new LLVMContext();
const llvm::Triple &Triple = Ctx.LangOpts.Target;
// There must be an output filename for each source file.
// We ignore additional output filenames.
if (OutputIter == Opts.OutputFilenames.end()) {
// TODO: Check this already at argument parsing.
Ctx.Diags.diagnose(SourceLoc(), diag::too_few_output_filenames);
return;
}
// Create the IR emitter.
IRGenModule *IGM = new IRGenModule(dispatcher, nextSF, Ctx, *Context,
Opts, ModuleName, DataLayout, Triple,
TargetMachine, SILMod, *OutputIter++);
IGMcreated = true;
initLLVMModule(*IGM);
}
if (!IGMcreated) {
// TODO: Check this already at argument parsing.
Ctx.Diags.diagnose(SourceLoc(), diag::no_input_files_for_mt);
return;
}
// Emit the module contents.
dispatcher.emitGlobalTopLevel();
for (auto *File : M->getFiles()) {
if (SourceFile *SF = dyn_cast<SourceFile>(File)) {
IRGenModule *IGM = dispatcher.getGenModule(SF);
IGM->emitSourceFile(*SF, 0);
} else {
File->collectLinkLibraries([&dispatcher](LinkLibrary LinkLib) {
dispatcher.getPrimaryIGM()->addLinkLibrary(LinkLib);
});
}
}
IRGenModule *PrimaryGM = dispatcher.getPrimaryIGM();
// Emit protocol conformances.
dispatcher.emitProtocolConformances();
dispatcher.emitFieldTypeMetadataRecords();
dispatcher.emitAssociatedTypeMetadataRecords();
// Okay, emit any definitions that we suddenly need.
dispatcher.emitLazyDefinitions();
// Emit symbols for eliminated dead methods.
PrimaryGM->emitVTableStubs();
// Verify type layout if we were asked to.
if (!Opts.VerifyTypeLayoutNames.empty())
PrimaryGM->emitTypeVerifier();
std::for_each(Opts.LinkLibraries.begin(), Opts.LinkLibraries.end(),
[&](LinkLibrary linkLib) {
PrimaryGM->addLinkLibrary(linkLib);
});
// Hack to handle thunks eagerly synthesized by the Clang importer.
swift::Module *prev = nullptr;
for (auto external : Ctx.ExternalDefinitions) {
swift::Module *next = external->getModuleContext();
if (next == prev)
continue;
prev = next;
if (next->getName() == M->getName())
continue;
next->collectLinkLibraries([&](LinkLibrary linkLib) {
PrimaryGM->addLinkLibrary(linkLib);
});
}
llvm::StringSet<> referencedGlobals;
for (auto it = dispatcher.begin(); it != dispatcher.end(); ++it) {
IRGenModule *IGM = it->second;
llvm::Module *M = IGM->getModule();
auto collectReference = [&](llvm::GlobalObject &G) {
if (G.isDeclaration()
&& G.getLinkage() == GlobalValue::LinkOnceODRLinkage) {
referencedGlobals.insert(G.getName());
G.setLinkage(GlobalValue::ExternalLinkage);
}
};
for (llvm::GlobalVariable &G : M->getGlobalList()) {
collectReference(G);
}
for (llvm::Function &F : M->getFunctionList()) {
collectReference(F);
}
}
for (auto it = dispatcher.begin(); it != dispatcher.end(); ++it) {
IRGenModule *IGM = it->second;
llvm::Module *M = IGM->getModule();
// Update the linkage of shared functions/globals.
// If a shared function/global is referenced from another file it must have
// weak instead of linkonce linkage. Otherwise LLVM would remove the
// definition (if it's not referenced in the same file).
auto updateLinkage = [&](llvm::GlobalObject &G) {
if (!G.isDeclaration()
&& G.getLinkage() == GlobalValue::LinkOnceODRLinkage
&& referencedGlobals.count(G.getName()) != 0) {
G.setLinkage(GlobalValue::WeakODRLinkage);
}
};
for (llvm::GlobalVariable &G : M->getGlobalList()) {
updateLinkage(G);
}
for (llvm::Function &F : M->getFunctionList()) {
updateLinkage(F);
}
IGM->finalize();
setModuleFlags(*IGM);
}
// Bail out if there are any errors.
if (Ctx.hadError()) return;
std::vector<std::thread> Threads;
llvm::sys::Mutex DiagMutex;
// Start all the threads and do the LLVM compilation.
for (int ThreadIdx = 1; ThreadIdx < numThreads; ++ThreadIdx) {
Threads.push_back(std::thread(ThreadEntryPoint, &dispatcher, &DiagMutex,
ThreadIdx));
}
ThreadEntryPoint(&dispatcher, &DiagMutex, 0);
// Wait for all threads.
for (std::thread &Thread : Threads) {
Thread.join();
}
// Cleanup.
for (auto it = dispatcher.begin(); it != dispatcher.end(); ++it) {
IRGenModule *IGM = it->second;
LLVMContext *Context = &IGM->LLVMContext;
delete IGM;
delete Context;
}
}
std::unique_ptr<llvm::Module> swift::
performIRGeneration(IRGenOptions &Opts, swift::Module *M, SILModule *SILMod,
StringRef ModuleName, llvm::LLVMContext &LLVMContext) {
int numThreads = SILMod->getOptions().NumThreads;
if (numThreads != 0) {
::performParallelIRGeneration(Opts, M, SILMod, ModuleName, numThreads);
// TODO: Parallel LLVM compilation cannot be used if a (single) module is
// needed as return value.
return nullptr;
}
return ::performIRGeneration(Opts, M, SILMod, ModuleName, LLVMContext);
}
std::unique_ptr<llvm::Module> swift::
performIRGeneration(IRGenOptions &Opts, SourceFile &SF, SILModule *SILMod,
StringRef ModuleName, llvm::LLVMContext &LLVMContext,
unsigned StartElem) {
return ::performIRGeneration(Opts, SF.getParentModule(), SILMod, ModuleName,
LLVMContext, &SF, StartElem);
}
void
swift::createSwiftModuleObjectFile(SILModule &SILMod, StringRef Buffer,
StringRef OutputPath) {
LLVMContext *VMContext = new LLVMContext();
auto &Ctx = SILMod.getASTContext();
assert(!Ctx.hadError());
IRGenOptions Opts;
Opts.OutputKind = IRGenOutputKind::ObjectFile;
llvm::TargetMachine *TargetMachine = createTargetMachine(Opts, Ctx);
if (!TargetMachine)
return;
const auto DataLayout = TargetMachine->createDataLayout();
const llvm::Triple &Triple = Ctx.LangOpts.Target;
IRGenModuleDispatcher dispatcher;
IRGenModule IGM(dispatcher, nullptr, Ctx, *VMContext, Opts, OutputPath,
DataLayout, Triple,
TargetMachine, &SILMod, Opts.getSingleOutputFilename());
initLLVMModule(IGM);
auto *Ty = llvm::ArrayType::get(IGM.Int8Ty, Buffer.size());
auto *Data =
llvm::ConstantDataArray::getString(*VMContext, Buffer, /*AddNull=*/false);
auto &M = *IGM.getModule();
auto *ASTSym = new llvm::GlobalVariable(M, Ty, /*constant*/ true,
llvm::GlobalVariable::InternalLinkage,
Data, "__Swift_AST");
std::string Section;
if (Triple.isOSBinFormatMachO())
Section = std::string(MachOASTSegmentName) + "," + MachOASTSectionName;
else if (Triple.isOSBinFormatCOFF())
Section = COFFASTSectionName;
else
Section = ELFASTSectionName;
ASTSym->setSection(Section);
ASTSym->setAlignment(8);
::performLLVM(Opts, Ctx.Diags, nullptr, nullptr, IGM.getModule(),
TargetMachine, OutputPath);
}
bool swift::performLLVM(IRGenOptions &Opts, ASTContext &Ctx,
llvm::Module *Module) {
// Build TargetMachine.
llvm::TargetMachine *TargetMachine = createTargetMachine(Opts, Ctx);
if (!TargetMachine)
return true;
embedBitcode(Module, Opts);
if (::performLLVM(Opts, Ctx.Diags, nullptr, nullptr, Module, TargetMachine,
Opts.getSingleOutputFilename()))
return true;
return false;
}