forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIRGen.h
369 lines (299 loc) · 11.1 KB
/
IRGen.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
//===--- IRGen.h - Common Declarations for IR Generation --------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines some types that are generically useful in IR
// Generation.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_IRGEN_IRGEN_H
#define SWIFT_IRGEN_IRGEN_H
#include "llvm/Support/DataTypes.h"
#include "swift/AST/ResilienceExpansion.h"
#include "swift/SIL/AbstractionPattern.h"
#include <cassert>
namespace llvm {
class Value;
}
namespace swift {
class CanType;
class ClusteredBitVector;
enum ForDefinition_t : bool;
namespace irgen {
using Lowering::AbstractionPattern;
/// In IRGen, we use Swift's ClusteredBitVector data structure to
/// store vectors of spare bits.
using SpareBitVector = ClusteredBitVector;
class Size;
enum IsPOD_t : bool { IsNotPOD, IsPOD };
inline IsPOD_t operator&(IsPOD_t l, IsPOD_t r) {
return IsPOD_t(unsigned(l) & unsigned(r));
}
inline IsPOD_t &operator&=(IsPOD_t &l, IsPOD_t r) {
return (l = (l & r));
}
enum IsFixedSize_t : bool { IsNotFixedSize, IsFixedSize };
inline IsFixedSize_t operator&(IsFixedSize_t l, IsFixedSize_t r) {
return IsFixedSize_t(unsigned(l) & unsigned(r));
}
inline IsFixedSize_t &operator&=(IsFixedSize_t &l, IsFixedSize_t r) {
return (l = (l & r));
}
enum IsLoadable_t : bool { IsNotLoadable, IsLoadable };
inline IsLoadable_t operator&(IsLoadable_t l, IsLoadable_t r) {
return IsLoadable_t(unsigned(l) & unsigned(r));
}
inline IsLoadable_t &operator&=(IsLoadable_t &l, IsLoadable_t r) {
return (l = (l & r));
}
enum IsBitwiseTakable_t : bool { IsNotBitwiseTakable, IsBitwiseTakable };
inline IsBitwiseTakable_t operator&(IsBitwiseTakable_t l, IsBitwiseTakable_t r) {
return IsBitwiseTakable_t(unsigned(l) & unsigned(r));
}
inline IsBitwiseTakable_t &operator&=(IsBitwiseTakable_t &l, IsBitwiseTakable_t r) {
return (l = (l & r));
}
/// The kind of reference counting implementation a heap object uses.
enum class ReferenceCounting : unsigned char {
/// The object uses native Swift reference counting.
Native,
/// The object uses ObjC reference counting.
///
/// When ObjC interop is enabled, native Swift class objects are also ObjC
/// reference counting compatible. Swift non-class heap objects are never
/// ObjC reference counting compatible.
///
/// Blocks are always ObjC reference counting compatible.
ObjC,
/// The object uses _Block_copy/_Block_release reference counting.
///
/// This is a strict subset of ObjC; all blocks are also ObjC reference
/// counting compatible. The block is assumed to have already been moved to
/// the heap so that _Block_copy returns the same object back.
Block,
/// The object has an unknown reference counting implementation.
///
/// This uses maximally-compatible reference counting entry points in the
/// runtime.
Unknown,
/// Cases prior to this one are binary-compatible with Unknown reference
/// counting.
LastUnknownCompatible = Unknown,
/// The object has an unknown reference counting implementation and
/// the reference value may contain extra bits that need to be masked.
///
/// This uses maximally-compatible reference counting entry points in the
/// runtime, with a masking layer on top. A bit inside the pointer is used
/// to signal native Swift refcounting.
Bridge,
/// The object uses ErrorType's reference counting entry points.
Error,
};
/// The atomicity of a reference counting operation to be used.
enum class Atomicity : bool {
/// Atomic reference counting operations should be used.
Atomic,
/// Non-atomic reference counting operations can be used.
NonAtomic,
};
/// Whether or not an object should be emitted on the heap.
enum OnHeap_t : unsigned char {
NotOnHeap,
OnHeap
};
/// Whether a function requires extra data.
enum class ExtraData : unsigned char {
/// The function requires no extra data.
None,
/// The function requires a retainable object pointer of extra data.
Retainable,
/// The function takes its block object as extra data.
Block,
Last_ExtraData = Block
};
/// Given that we have metadata for a type, is it for exactly the
/// specified type, or might it be a subtype?
enum IsExact_t : bool {
IsInexact = false,
IsExact = true
};
/// Ways in which an object can be referenced.
///
/// See the comment in RelativePointer.h.
enum class SymbolReferenceKind : unsigned char {
/// An absolute reference to the object, i.e. an ordinary pointer.
///
/// Generally well-suited for when C compatibility is a must, dynamic
/// initialization is the dominant case, or the runtime performance
/// of accesses is an overriding concern.
Absolute,
/// A direct relative reference to the object, i.e. the offset of the
/// object from the address at which the relative reference is stored.
///
/// Generally well-suited for when the reference is always statically
/// initialized and will always refer to another object within the
/// same linkage unit.
Relative_Direct,
/// A direct relative reference that is guaranteed to be as wide as a
/// pointer.
///
/// Generally well-suited for when the reference may be dynamically
/// initialized, but will only refer to objects within the linkage unit
/// when statically initialized.
Far_Relative_Direct,
/// A relative reference that may be indirect: the direct reference is
/// either directly to the object or to a variable holding an absolute
/// reference to the object.
///
/// The low bit of the target offset is used to mark an indirect reference,
/// and so the low bit of the target address must be zero. This means that,
/// in general, it is not possible to form this kind of reference to a
/// function (due to the THUMB bit) or unaligned data (such as a C string).
///
/// Generally well-suited for when the reference is always statically
/// initialized but may refer to something outside of the linkage unit.
Relative_Indirectable,
/// An indirectable reference to the object; guaranteed to be as wide
/// as a pointer.
///
/// Generally well-suited for when the reference may be dynamically
/// initialized but may also statically refer outside of the linkage unit.
Far_Relative_Indirectable,
};
/// Destructor variants.
enum class DestructorKind : uint8_t {
/// A deallocating destructor destroys the object and deallocates
/// the memory associated with it.
Deallocating,
/// A destroying destructor destroys the object but does not
/// deallocate the memory associated with it.
Destroying
};
/// Constructor variants.
enum class ConstructorKind : uint8_t {
/// An allocating constructor allocates an object and initializes it.
Allocating,
/// An initializing constructor just initializes an existing object.
Initializing
};
/// An alignment value, in eight-bit units.
class Alignment {
public:
typedef uint32_t int_type;
Alignment() : Value(0) {}
explicit Alignment(int_type Value) : Value(Value) {}
int_type getValue() const { return Value; }
int_type getMaskValue() const { return Value - 1; }
bool isOne() const { return Value == 1; }
bool isZero() const { return Value == 0; }
Alignment alignmentAtOffset(Size S) const;
Size asSize() const;
unsigned log2() const {
return llvm::Log2_64(Value);
}
explicit operator bool() const { return Value != 0; }
friend bool operator< (Alignment L, Alignment R){ return L.Value < R.Value; }
friend bool operator<=(Alignment L, Alignment R){ return L.Value <= R.Value; }
friend bool operator> (Alignment L, Alignment R){ return L.Value > R.Value; }
friend bool operator>=(Alignment L, Alignment R){ return L.Value >= R.Value; }
friend bool operator==(Alignment L, Alignment R){ return L.Value == R.Value; }
friend bool operator!=(Alignment L, Alignment R){ return L.Value != R.Value; }
private:
int_type Value;
};
/// A size value, in eight-bit units.
class Size {
public:
typedef uint64_t int_type;
constexpr Size() : Value(0) {}
explicit constexpr Size(int_type Value) : Value(Value) {}
/// An "invalid" size, equal to the maximum possible size.
static constexpr Size invalid() { return Size(~int_type(0)); }
/// Is this the "invalid" size value?
bool isInvalid() const { return *this == Size::invalid(); }
int_type getValue() const { return Value; }
int_type getValueInBits() const { return Value * 8; }
bool isZero() const { return Value == 0; }
friend Size operator+(Size L, Size R) {
return Size(L.Value + R.Value);
}
friend Size &operator+=(Size &L, Size R) {
L.Value += R.Value;
return L;
}
friend Size operator-(Size L, Size R) {
return Size(L.Value - R.Value);
}
friend Size &operator-=(Size &L, Size R) {
L.Value -= R.Value;
return L;
}
friend Size operator*(Size L, int_type R) {
return Size(L.Value * R);
}
friend Size operator*(int_type L, Size R) {
return Size(L * R.Value);
}
friend Size &operator*=(Size &L, int_type R) {
L.Value *= R;
return L;
}
friend int_type operator/(Size L, Size R) {
return L.Value / R.Value;
}
explicit operator bool() const { return Value != 0; }
Size roundUpToAlignment(Alignment align) const {
int_type value = getValue() + align.getValue() - 1;
return Size(value & ~int_type(align.getValue() - 1));
}
bool isPowerOf2() const {
auto value = getValue();
return ((value & -value) == value);
}
bool isMultipleOf(Size other) const {
return (Value % other.Value) == 0;
}
unsigned log2() const {
return llvm::Log2_64(Value);
}
friend bool operator< (Size L, Size R) { return L.Value < R.Value; }
friend bool operator<=(Size L, Size R) { return L.Value <= R.Value; }
friend bool operator> (Size L, Size R) { return L.Value > R.Value; }
friend bool operator>=(Size L, Size R) { return L.Value >= R.Value; }
friend bool operator==(Size L, Size R) { return L.Value == R.Value; }
friend bool operator!=(Size L, Size R) { return L.Value != R.Value; }
friend Size operator%(Size L, Alignment R) {
return Size(L.Value % R.getValue());
}
private:
int_type Value;
};
/// Compute the alignment of a pointer which points S bytes after a
/// pointer with this alignment.
inline Alignment Alignment::alignmentAtOffset(Size S) const {
assert(getValue() && "called on object with zero alignment");
// If the offset is zero, use the original alignment.
Size::int_type V = S.getValue();
if (!V) return *this;
// Find the offset's largest power-of-two factor.
V = V & -V;
// The alignment at the offset is then the min of the two values.
if (V < getValue())
return Alignment(static_cast<Alignment::int_type>(V));
return *this;
}
/// Get this alignment asx a Size value.
inline Size Alignment::asSize() const {
return Size(getValue());
}
} // end namespace irgen
} // end namespace swift
#endif