forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathParseType.cpp
977 lines (848 loc) · 29.5 KB
/
ParseType.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
//===--- ParseType.cpp - Swift Language Parser for Types ------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Type Parsing and AST Building
//
//===----------------------------------------------------------------------===//
#include "swift/Parse/Parser.h"
#include "swift/AST/Attr.h"
#include "swift/AST/ExprHandle.h"
#include "swift/AST/TypeLoc.h"
#include "swift/Parse/Lexer.h"
#include "swift/Parse/CodeCompletionCallbacks.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace swift;
TypeRepr *Parser::applyAttributeToType(TypeRepr *ty,
const TypeAttributes &attrs) {
// Apply those attributes that do apply.
if (attrs.empty())
return ty;
return new (Context) AttributedTypeRepr(attrs, ty);
}
ParserResult<TypeRepr> Parser::parseTypeSimple() {
return parseTypeSimple(diag::expected_type);
}
/// parseTypeSimple
/// type-simple:
/// type-identifier
/// type-tuple
/// type-composition
/// type-simple '.Type'
/// type-simple '.Protocol'
/// type-simple '?'
/// type-simple '!'
/// type-collection
ParserResult<TypeRepr> Parser::parseTypeSimple(Diag<> MessageID,
bool HandleCodeCompletion) {
ParserResult<TypeRepr> ty;
// If this is an "inout" marker for an identifier type, consume the inout.
SourceLoc InOutLoc;
consumeIf(tok::kw_inout, InOutLoc);
switch (Tok.getKind()) {
case tok::kw_Self:
case tok::identifier:
ty = parseTypeIdentifier();
break;
case tok::kw_protocol:
ty = parseTypeComposition();
break;
case tok::l_paren:
ty = parseTypeTupleBody();
break;
case tok::code_complete:
if (!HandleCodeCompletion)
break;
if (CodeCompletion)
CodeCompletion->completeTypeSimpleBeginning();
// Eat the code completion token because we handled it.
consumeToken(tok::code_complete);
return makeParserCodeCompletionResult<TypeRepr>();
case tok::kw_super:
case tok::kw_dynamicType:
case tok::kw_self:
// These keywords don't start a decl or a statement, and thus should be
// safe to skip over.
diagnose(Tok, MessageID);
ty = makeParserErrorResult(new (Context) ErrorTypeRepr(Tok.getLoc()));
consumeToken();
// FIXME: we could try to continue to parse.
return ty;
case tok::l_square:
ty = parseTypeCollection();
break;
default:
checkForInputIncomplete();
diagnose(Tok, MessageID);
return nullptr;
}
// '.Type', '.Protocol', '?', and '!' still leave us with type-simple.
while (ty.isNonNull()) {
if ((Tok.is(tok::period) || Tok.is(tok::period_prefix))) {
if (peekToken().isContextualKeyword("Type")) {
consumeToken();
SourceLoc metatypeLoc = consumeToken(tok::identifier);
ty = makeParserResult(ty,
new (Context) MetatypeTypeRepr(ty.get(), metatypeLoc));
continue;
}
if (peekToken().isContextualKeyword("Protocol")) {
consumeToken();
SourceLoc protocolLoc = consumeToken(tok::identifier);
ty = makeParserResult(ty,
new (Context) ProtocolTypeRepr(ty.get(), protocolLoc));
continue;
}
}
if (!Tok.isAtStartOfLine()) {
if (isOptionalToken(Tok)) {
ty = parseTypeOptional(ty.get());
continue;
}
if (isImplicitlyUnwrappedOptionalToken(Tok)) {
ty = parseTypeImplicitlyUnwrappedOptional(ty.get());
continue;
}
}
break;
}
// If we parsed an inout modifier, prepend it.
if (InOutLoc.isValid())
ty = makeParserResult(new (Context) InOutTypeRepr(ty.get(),
InOutLoc));
return ty;
}
ParserResult<TypeRepr> Parser::parseType() {
return parseType(diag::expected_type);
}
/// parseType
/// type:
/// attribute-list type-function
/// attribute-list type-array
///
/// type-function:
/// type-simple '->' type
///
ParserResult<TypeRepr> Parser::parseType(Diag<> MessageID,
bool HandleCodeCompletion) {
// Parse attributes.
TypeAttributes attrs;
parseTypeAttributeList(attrs);
// Parse Generic Parameters. Generic Parameters are visible in the function
// body.
GenericParamList *generics = nullptr;
if (isInSILMode()) {
generics = maybeParseGenericParams().getPtrOrNull();
}
ParserResult<TypeRepr> ty = parseTypeSimple(MessageID, HandleCodeCompletion);
if (ty.hasCodeCompletion())
return makeParserCodeCompletionResult<TypeRepr>();
if (ty.isNull())
return nullptr;
// Parse a throws specifier. 'throw' is probably a typo for 'throws',
// but in local contexts we could just be at the end of a statement,
// so we need to check for the arrow.
ParserPosition beforeThrowsPos;
SourceLoc throwsLoc;
bool rethrows = false;
if (Tok.isAny(tok::kw_throws, tok::kw_rethrows) ||
(Tok.is(tok::kw_throw) && peekToken().is(tok::arrow))) {
if (Tok.is(tok::kw_throw)) {
diagnose(Tok.getLoc(), diag::throw_in_function_type)
.fixItReplace(Tok.getLoc(), "throws");
}
beforeThrowsPos = getParserPosition();
rethrows = Tok.is(tok::kw_rethrows);
throwsLoc = consumeToken();
}
// Handle type-function if we have an arrow.
SourceLoc arrowLoc;
if (consumeIf(tok::arrow, arrowLoc)) {
ParserResult<TypeRepr> SecondHalf =
parseType(diag::expected_type_function_result);
if (SecondHalf.hasCodeCompletion())
return makeParserCodeCompletionResult<TypeRepr>();
if (SecondHalf.isNull())
return nullptr;
if (rethrows) {
// 'rethrows' is only allowed on function declarations for now.
diagnose(throwsLoc, diag::rethrowing_function_type);
}
auto fnTy = new (Context) FunctionTypeRepr(generics, ty.get(),
throwsLoc,
arrowLoc,
SecondHalf.get());
return makeParserResult(applyAttributeToType(fnTy, attrs));
} else if (throwsLoc.isValid()) {
// Don't consume 'throws', so we can emit a more useful diagnostic when
// parsing a function decl.
restoreParserPosition(beforeThrowsPos);
return ty;
}
// Only function types may be generic.
if (generics) {
auto brackets = generics->getSourceRange();
diagnose(brackets.Start, diag::generic_non_function);
}
// Parse legacy array types for migration.
while (ty.isNonNull() && !Tok.isAtStartOfLine()) {
if (Tok.is(tok::l_square)) {
ty = parseTypeArray(ty.get());
} else {
break;
}
}
if (ty.isNonNull() && !ty.hasCodeCompletion()) {
ty = makeParserResult(applyAttributeToType(ty.get(), attrs));
}
return ty;
}
ParserResult<TypeRepr> Parser::parseTypeIdentifierWithRecovery(
Diag<> MessageID, Diag<TypeLoc> NonIdentifierTypeMessageID) {
ParserResult<TypeRepr> Ty = parseType(MessageID);
if (!Ty.isParseError() && !isa<IdentTypeRepr>(Ty.get()) &&
!isa<ErrorTypeRepr>(Ty.get())) {
diagnose(Ty.get()->getStartLoc(), NonIdentifierTypeMessageID, Ty.get())
.highlight(Ty.get()->getSourceRange());
Ty.setIsParseError();
Ty = makeParserResult(
Ty, new (Context) ErrorTypeRepr(Ty.get()->getSourceRange()));
}
assert(Ty.isNull() ||
isa<IdentTypeRepr>(Ty.get()) ||
isa<ErrorTypeRepr>(Ty.get()));
return Ty;
}
bool Parser::parseGenericArguments(SmallVectorImpl<TypeRepr*> &Args,
SourceLoc &LAngleLoc,
SourceLoc &RAngleLoc) {
// Parse the opening '<'.
assert(startsWithLess(Tok) && "Generic parameter list must start with '<'");
LAngleLoc = consumeStartingLess();
do {
ParserResult<TypeRepr> Ty = parseType(diag::expected_type);
if (Ty.isNull() || Ty.hasCodeCompletion()) {
// Skip until we hit the '>'.
RAngleLoc = skipUntilGreaterInTypeList();
return true;
}
Args.push_back(Ty.get());
// Parse the comma, if the list continues.
} while (consumeIf(tok::comma));
if (!startsWithGreater(Tok)) {
checkForInputIncomplete();
diagnose(Tok, diag::expected_rangle_generic_arg_list);
diagnose(LAngleLoc, diag::opening_angle);
// Skip until we hit the '>'.
RAngleLoc = skipUntilGreaterInTypeList();
return true;
} else {
RAngleLoc = consumeStartingGreater();
}
return false;
}
/// parseTypeIdentifier
///
/// type-identifier:
/// identifier generic-args? ('.' identifier generic-args?)*
///
ParserResult<IdentTypeRepr> Parser::parseTypeIdentifier() {
if (Tok.isNot(tok::identifier) && Tok.isNot(tok::kw_Self)) {
if (Tok.is(tok::code_complete)) {
if (CodeCompletion)
CodeCompletion->completeTypeSimpleBeginning();
// Eat the code completion token because we handled it.
consumeToken(tok::code_complete);
return makeParserCodeCompletionResult<IdentTypeRepr>();
}
diagnose(Tok, diag::expected_identifier_for_type);
return nullptr;
}
ParserStatus Status;
SmallVector<ComponentIdentTypeRepr *, 4> ComponentsR;
SourceLoc EndLoc;
while (true) {
SourceLoc Loc;
Identifier Name;
if (Tok.is(tok::kw_Self)) {
Loc = consumeIdentifier(&Name);
} else {
// FIXME: specialize diagnostic for 'Type': type cannot start with
// 'metatype'
// FIXME: offer a fixit: 'self' -> 'Self'
if (parseIdentifier(Name, Loc, diag::expected_identifier_in_dotted_type))
Status.setIsParseError();
}
if (Loc.isValid()) {
SourceLoc LAngle, RAngle;
SmallVector<TypeRepr*, 8> GenericArgs;
if (startsWithLess(Tok)) {
if (parseGenericArguments(GenericArgs, LAngle, RAngle))
return nullptr;
}
EndLoc = Loc;
ComponentIdentTypeRepr *CompT;
if (!GenericArgs.empty())
CompT = new (Context) GenericIdentTypeRepr(Loc, Name,
Context.AllocateCopy(GenericArgs),
SourceRange(LAngle, RAngle));
else
CompT = new (Context) SimpleIdentTypeRepr(Loc, Name);
ComponentsR.push_back(CompT);
}
// Treat 'Foo.<anything>' as an attempt to write a dotted type
// unless <anything> is 'Type'.
if ((Tok.is(tok::period) || Tok.is(tok::period_prefix))) {
if (peekToken().is(tok::code_complete)) {
Status.setHasCodeCompletion();
break;
}
if (!peekToken().isContextualKeyword("Type")
&& !peekToken().isContextualKeyword("Protocol")) {
consumeToken();
continue;
}
} else if (Tok.is(tok::code_complete)) {
if (!Tok.isAtStartOfLine())
Status.setHasCodeCompletion();
break;
}
break;
}
IdentTypeRepr *ITR = nullptr;
if (!ComponentsR.empty()) {
// Lookup element #0 through our current scope chains in case it is some
// thing local (this returns null if nothing is found).
if (auto Entry = lookupInScope(ComponentsR[0]->getIdentifier()))
ComponentsR[0]->setValue(Entry);
ITR = IdentTypeRepr::create(Context, ComponentsR);
}
if (Status.hasCodeCompletion() && CodeCompletion) {
if (Tok.isNot(tok::code_complete)) {
// We have a dot.
consumeToken();
CodeCompletion->completeTypeIdentifierWithDot(ITR);
} else {
CodeCompletion->completeTypeIdentifierWithoutDot(ITR);
}
// Eat the code completion token because we handled it.
consumeToken(tok::code_complete);
}
return makeParserResult(Status, ITR);
}
/// parseTypeComposition
///
/// type-composition:
/// 'protocol' '<' type-composition-list? '>'
///
/// type-composition-list:
/// type-identifier (',' type-identifier)*
///
ParserResult<ProtocolCompositionTypeRepr> Parser::parseTypeComposition() {
SourceLoc ProtocolLoc = consumeToken(tok::kw_protocol);
// Check for the starting '<'.
if (!startsWithLess(Tok)) {
diagnose(Tok, diag::expected_langle_protocol);
return nullptr;
}
SourceLoc LAngleLoc = consumeStartingLess();
// Check for empty protocol composition.
if (startsWithGreater(Tok)) {
SourceLoc RAngleLoc = consumeStartingGreater();
return makeParserResult(new (Context) ProtocolCompositionTypeRepr(
ArrayRef<IdentTypeRepr *>(),
ProtocolLoc,
SourceRange(LAngleLoc,
RAngleLoc)));
}
// Parse the type-composition-list.
ParserStatus Status;
SmallVector<IdentTypeRepr *, 4> Protocols;
do {
// Parse the type-identifier.
ParserResult<IdentTypeRepr> Protocol = parseTypeIdentifier();
Status |= Protocol;
if (Protocol.isNonNull())
Protocols.push_back(Protocol.get());
} while (consumeIf(tok::comma));
// Check for the terminating '>'.
SourceLoc EndLoc = PreviousLoc;
if (startsWithGreater(Tok)) {
EndLoc = consumeStartingGreater();
} else {
if (Status.isSuccess()) {
diagnose(Tok, diag::expected_rangle_protocol);
diagnose(LAngleLoc, diag::opening_angle);
Status.setIsParseError();
}
// Skip until we hit the '>'.
EndLoc = skipUntilGreaterInTypeList(/*protocolComposition=*/true);
}
return makeParserResult(Status, ProtocolCompositionTypeRepr::create(
Context, Protocols, ProtocolLoc, SourceRange(LAngleLoc, EndLoc)));
}
/// parseTypeTupleBody
/// type-tuple:
/// '(' type-tuple-body? ')'
/// type-tuple-body:
/// type-tuple-element (',' type-tuple-element)* '...'?
/// type-tuple-element:
/// identifier ':' type
/// type
ParserResult<TupleTypeRepr> Parser::parseTypeTupleBody() {
Parser::StructureMarkerRAII ParsingTypeTuple(*this, Tok);
SourceLoc RPLoc, LPLoc = consumeToken(tok::l_paren);
SourceLoc EllipsisLoc;
unsigned EllipsisIdx;
SmallVector<TypeRepr *, 8> ElementsR;
ParserStatus Status = parseList(tok::r_paren, LPLoc, RPLoc,
tok::comma, /*OptionalSep=*/false,
/*AllowSepAfterLast=*/false,
diag::expected_rparen_tuple_type_list,
[&] () -> ParserStatus {
// If this is an inout marker in an argument list, consume the inout.
SourceLoc InOutLoc;
consumeIf(tok::kw_inout, InOutLoc);
// If the tuple element starts with "ident :", then
// the identifier is an element tag, and it is followed by a type
// annotation.
if (Tok.canBeArgumentLabel() && peekToken().is(tok::colon)) {
// Consume the name
Identifier name;
if (!Tok.is(tok::kw__))
name = Context.getIdentifier(Tok.getText());
SourceLoc nameLoc = consumeToken();
// Consume the ':'.
consumeToken(tok::colon);
// Parse the type annotation.
ParserResult<TypeRepr> type = parseType(diag::expected_type);
if (type.hasCodeCompletion())
return makeParserCodeCompletionStatus();
if (type.isNull())
return makeParserError();
// If an 'inout' marker was specified, build the type. Note that we bury
// the inout locator within the named locator. This is weird but required
// by sema apparently.
if (InOutLoc.isValid())
type = makeParserResult(new (Context) InOutTypeRepr(type.get(),
InOutLoc));
ElementsR.push_back(
new (Context) NamedTypeRepr(name, type.get(), nameLoc));
} else {
// Otherwise, this has to be a type.
ParserResult<TypeRepr> type = parseType();
if (type.hasCodeCompletion())
return makeParserCodeCompletionStatus();
if (type.isNull())
return makeParserError();
if (InOutLoc.isValid())
type = makeParserResult(new (Context) InOutTypeRepr(type.get(),
InOutLoc));
ElementsR.push_back(type.get());
}
// Parse '= expr' here so we can complain about it directly, rather
// than dying when we see it.
if (Tok.is(tok::equal)) {
SourceLoc equalLoc = consumeToken(tok::equal);
auto init = parseExpr(diag::expected_init_value);
auto inFlight = diagnose(equalLoc, diag::tuple_type_init);
if (init.isNonNull())
inFlight.fixItRemove(SourceRange(equalLoc, init.get()->getEndLoc()));
}
if (Tok.isEllipsis()) {
if (EllipsisLoc.isValid()) {
diagnose(Tok, diag::multiple_ellipsis_in_tuple)
.highlight(EllipsisLoc)
.fixItRemove(Tok.getLoc());
(void)consumeToken();
} else {
EllipsisLoc = consumeToken();
EllipsisIdx = ElementsR.size() - 1;
}
}
return makeParserSuccess();
});
if (EllipsisLoc.isValid() && ElementsR.empty()) {
EllipsisLoc = SourceLoc();
}
if (EllipsisLoc.isInvalid())
EllipsisIdx = ElementsR.size();
return makeParserResult(Status,
TupleTypeRepr::create(Context, ElementsR,
SourceRange(LPLoc, RPLoc),
EllipsisLoc, EllipsisIdx));
}
/// parseTypeArray - Parse the type-array production, given that we
/// are looking at the initial l_square. Note that this index
/// clause is actually the outermost (first-indexed) clause.
///
/// type-array:
/// type-simple
/// type-array '[' ']'
/// type-array '[' expr ']'
///
ParserResult<TypeRepr> Parser::parseTypeArray(TypeRepr *Base) {
assert(Tok.isFollowingLSquare());
Parser::StructureMarkerRAII ParsingArrayBound(*this, Tok);
SourceLoc lsquareLoc = consumeToken();
ArrayTypeRepr *ATR = nullptr;
// Handle a postfix [] production, a common typo for a C-like array.
// If we have something that might be an array size expression, parse it as
// such, for better error recovery.
if (Tok.isNot(tok::r_square)) {
auto sizeEx = parseExprBasic(diag::expected_expr);
if (sizeEx.hasCodeCompletion())
return makeParserCodeCompletionStatus();
if (sizeEx.isNull())
return makeParserErrorResult(Base);
}
SourceLoc rsquareLoc;
if (parseMatchingToken(tok::r_square, rsquareLoc,
diag::expected_rbracket_array_type, lsquareLoc))
return makeParserErrorResult(Base);
// If we parsed something valid, diagnose it with a fixit to rewrite it to
// Swift syntax.
diagnose(lsquareLoc, diag::new_array_syntax)
.fixItInsert(Base->getStartLoc(), "[")
.fixItRemove(lsquareLoc);
// Build a normal array slice type for recovery.
ATR = new (Context) ArrayTypeRepr(Base,
SourceRange(Base->getStartLoc(), rsquareLoc));
return makeParserResult(ATR);
}
ParserResult<TypeRepr> Parser::parseTypeCollection() {
// Parse the leading '['.
assert(Tok.is(tok::l_square));
Parser::StructureMarkerRAII parsingCollection(*this, Tok);
SourceLoc lsquareLoc = consumeToken();
// Parse the element type.
ParserResult<TypeRepr> firstTy = parseType(diag::expected_element_type);
// If there is a ':', this is a dictionary type.
SourceLoc colonLoc;
ParserResult<TypeRepr> secondTy;
if (Tok.is(tok::colon)) {
colonLoc = consumeToken();
// Parse the second type.
secondTy = parseType(diag::expected_dictionary_value_type);
}
// Parse the closing ']'.
SourceLoc rsquareLoc;
parseMatchingToken(tok::r_square, rsquareLoc,
colonLoc.isValid()
? diag::expected_rbracket_dictionary_type
: diag::expected_rbracket_array_type,
lsquareLoc);
if (firstTy.hasCodeCompletion() || secondTy.hasCodeCompletion())
return makeParserCodeCompletionStatus();
// If we couldn't parse anything for one of the types, propagate the error.
if (firstTy.isNull() || (colonLoc.isValid() && secondTy.isNull()))
return makeParserError();
// Form the dictionary type.
SourceRange brackets(lsquareLoc, rsquareLoc);
if (colonLoc.isValid())
return makeParserResult(ParserStatus(firstTy) | ParserStatus(secondTy),
new (Context) DictionaryTypeRepr(firstTy.get(),
secondTy.get(),
colonLoc,
brackets));
// Form the array type.
return makeParserResult(firstTy,
new (Context) ArrayTypeRepr(firstTy.get(),
brackets));
}
bool Parser::isOptionalToken(const Token &T) const {
// A postfix '?' by itself is obviously optional.
if (T.is(tok::question_postfix))
return true;
// A postfix or bound infix operator token that begins with '?' can be
// optional too. We'll munch off the '?', so long as it is left-bound with
// the type (i.e., parsed as a postfix or unspaced binary operator).
if ((T.is(tok::oper_postfix) || T.is(tok::oper_binary_unspaced)) &&
T.getText().startswith("?"))
return true;
return false;
}
bool Parser::isImplicitlyUnwrappedOptionalToken(const Token &T) const {
// A postfix '!' by itself, or a '!' in SIL mode, is obviously implicitly
// unwrapped optional.
if (T.is(tok::exclaim_postfix) || T.is(tok::sil_exclamation))
return true;
// A postfix or bound infix operator token that begins with '!' can be
// implicitly unwrapped optional too. We'll munch off the '!', so long as it
// is left-bound with the type (i.e., parsed as a postfix or unspaced binary
// operator).
if ((T.is(tok::oper_postfix) || T.is(tok::oper_binary_unspaced)) &&
T.getText().startswith("!"))
return true;
return false;
}
SourceLoc Parser::consumeOptionalToken() {
assert(isOptionalToken(Tok) && "not a '?' token?!");
return consumeStartingCharacterOfCurrentToken();
}
SourceLoc Parser::consumeImplicitlyUnwrappedOptionalToken() {
assert(isImplicitlyUnwrappedOptionalToken(Tok) && "not a '!' token?!");
// If the text of the token is just '!', grab the next token.
return consumeStartingCharacterOfCurrentToken();
}
/// Parse a single optional suffix, given that we are looking at the
/// question mark.
ParserResult<OptionalTypeRepr> Parser::parseTypeOptional(TypeRepr *base) {
SourceLoc questionLoc = consumeOptionalToken();
return makeParserResult(new (Context) OptionalTypeRepr(base, questionLoc));
}
/// Parse a single implicitly unwrapped optional suffix, given that we
/// are looking at the exclamation mark.
ParserResult<ImplicitlyUnwrappedOptionalTypeRepr>
Parser::parseTypeImplicitlyUnwrappedOptional(TypeRepr *base) {
SourceLoc exclamationLoc = consumeImplicitlyUnwrappedOptionalToken();
return makeParserResult(
new (Context) ImplicitlyUnwrappedOptionalTypeRepr(
base, exclamationLoc));
}
//===----------------------------------------------------------------------===//
// Speculative type list parsing
//===----------------------------------------------------------------------===//
static bool isGenericTypeDisambiguatingToken(Parser &P) {
auto &tok = P.Tok;
switch (tok.getKind()) {
default:
return false;
case tok::r_paren:
case tok::r_square:
case tok::l_brace:
case tok::r_brace:
case tok::period:
case tok::period_prefix:
case tok::comma:
case tok::semi:
case tok::eof:
case tok::code_complete:
case tok::exclaim_postfix:
case tok::question_postfix:
return true;
case tok::oper_binary_unspaced:
case tok::oper_binary_spaced:
case tok::oper_postfix:
// These might be '?' or '!' type modifiers.
return P.isOptionalToken(tok) || P.isImplicitlyUnwrappedOptionalToken(tok);
case tok::l_paren:
case tok::l_square:
// These only apply to the generic type if they don't start a new line.
return !tok.isAtStartOfLine();
}
}
bool Parser::canParseAsGenericArgumentList() {
if (!Tok.isAnyOperator() || !Tok.getText().equals("<"))
return false;
BacktrackingScope backtrack(*this);
if (canParseGenericArguments())
return isGenericTypeDisambiguatingToken(*this);
return false;
}
bool Parser::canParseGenericArguments() {
// Parse the opening '<'.
if (!startsWithLess(Tok))
return false;
consumeStartingLess();
do {
if (!canParseType())
return false;
// Parse the comma, if the list continues.
} while (consumeIf(tok::comma));
if (!startsWithGreater(Tok)) {
return false;
} else {
consumeStartingGreater();
return true;
}
}
bool Parser::canParseType() {
switch (Tok.getKind()) {
case tok::kw_Self:
case tok::identifier:
if (!canParseTypeIdentifier())
return false;
break;
case tok::kw_protocol:
if (!canParseTypeComposition())
return false;
break;
case tok::l_paren: {
consumeToken();
if (!canParseTypeTupleBody())
return false;
break;
}
case tok::at_sign: {
consumeToken();
if (!canParseTypeAttribute())
return false;
return canParseType();
}
case tok::l_square:
consumeToken();
if (!canParseType())
return false;
if (consumeIf(tok::colon)) {
if (!canParseType())
return false;
}
if (!consumeIf(tok::r_square))
return false;
break;
default:
return false;
}
// '.Type', '.Protocol', '?', and '!' still leave us with type-simple.
while (true) {
if ((Tok.is(tok::period) || Tok.is(tok::period_prefix)) &&
(peekToken().isContextualKeyword("Type")
|| peekToken().isContextualKeyword("Protocol"))) {
consumeToken();
consumeToken(tok::identifier);
continue;
}
if (isOptionalToken(Tok)) {
consumeOptionalToken();
continue;
}
if (isImplicitlyUnwrappedOptionalToken(Tok)) {
consumeImplicitlyUnwrappedOptionalToken();
continue;
}
break;
}
// Handle type-function if we have an arrow or 'throws'/'rethrows' modifier.
if (Tok.isAny(tok::kw_throws, tok::kw_rethrows)) {
consumeToken();
// "throws" or "rethrows" isn't a valid type without being followed by
// a return.
if (!Tok.is(tok::arrow))
return false;
}
if (consumeIf(tok::arrow)) {
if (!canParseType())
return false;
return true;
}
return true;
}
bool Parser::canParseTypeIdentifier() {
if (Tok.isNot(tok::identifier) && Tok.isNot(tok::kw_Self))
return false;
while (true) {
switch (Tok.getKind()) {
case tok::identifier:
consumeToken();
break;
default:
return false;
}
if (startsWithLess(Tok)) {
if (!canParseGenericArguments())
return false;
}
// Treat 'Foo.<anything>' as an attempt to write a dotted type
// unless <anything> is 'Type'.
if ((Tok.is(tok::period) || Tok.is(tok::period_prefix)) &&
!peekToken().isContextualKeyword("Type") &&
!peekToken().isContextualKeyword("Protocol")) {
consumeToken();
} else {
return true;
}
}
}
bool Parser::canParseTypeComposition() {
consumeToken(tok::kw_protocol);
// Check for the starting '<'.
if (!startsWithLess(Tok)) {
return false;
}
consumeStartingLess();
// Check for empty protocol composition.
if (startsWithGreater(Tok)) {
consumeStartingGreater();
return true;
}
// Parse the type-composition-list.
do {
if (!canParseTypeIdentifier()) {
return false;
}
} while (consumeIf(tok::comma));
// Check for the terminating '>'.
if (!startsWithGreater(Tok)) {
return false;
}
consumeStartingGreater();
return true;
}
bool Parser::canParseAttributes() {
while (consumeIf(tok::at_sign)) {
if (!consumeIf(tok::identifier)) return false;
if (consumeIf(tok::equal)) {
if (Tok.isNot(tok::identifier) &&
Tok.isNot(tok::integer_literal) &&
Tok.isNot(tok::floating_literal))
return false;
consumeToken();
} else if (Tok.is(tok::l_paren)) {
// Attributes like cc(x,y,z)
skipSingle();
}
consumeIf(tok::comma);
}
return true;
}
bool Parser::canParseTypeTupleBody() {
if (Tok.isNot(tok::r_paren) && Tok.isNot(tok::r_brace) &&
Tok.isNotEllipsis() && !isStartOfDecl()) {
do {
// The contextual inout marker is part of argument lists.
consumeIf(tok::kw_inout);
// If the tuple element starts with "ident :", then it is followed
// by a type annotation.
if (Tok.canBeArgumentLabel() && peekToken().is(tok::colon)) {
consumeToken();
consumeToken(tok::colon);
// Parse attributes then a type.
if (!canParseAttributes() ||
!canParseType())
return false;
// Parse default values. This aren't actually allowed, but we recover
// better if we skip over them.
if (consumeIf(tok::equal)) {
while (Tok.isNot(tok::eof) && Tok.isNot(tok::r_paren) &&
Tok.isNot(tok::r_brace) && Tok.isNotEllipsis() &&
Tok.isNot(tok::comma) &&
!isStartOfDecl()) {
skipSingle();
}
}
continue;
}
// Otherwise, this has to be a type.
// Parse attributes.
if (!canParseAttributes())
return false;
if (!canParseType())
return false;
if (Tok.isEllipsis())
consumeToken();
} while (consumeIf(tok::comma));
}
return consumeIf(tok::r_paren);
}