-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathllcache_per_query.py
executable file
·205 lines (166 loc) · 5.67 KB
/
llcache_per_query.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#!/usr/bin/env python
#
# llcache_per_query Summarize cache references and cache misses by
# postgres backend. Cache reference and cache miss are
# events defined in uapi/linux/perf_event.h, it varies
# to different architecture. On x86-64, they mean LLC
# references and LLC misses. Postgres backend provides
# a query string. Based on llstat.py from bcc.
# For Linux, uses BCC.
#
# SEE ALSO: perf top -e cache-misses -e cache-references -a -ns pid,cpu,comm
#
# REQUIRES: Linux 4.9+ (BPF_PROG_TYPE_PERF_EVENT support).
# usage: llcache_per_query $PG_BIN/postgres [-d] [-c] [-p PID]
from __future__ import print_function
import argparse
import signal
from time import sleep
from bcc import BPF, PerfType, PerfHWConfig
# load BPF program
bpf_text = """
#include <linux/ptrace.h>
#include <uapi/linux/bpf_perf_event.h>
#define HASH_SIZE 2^14
#define QUERY_LEN 100
struct key_t {
int cpu;
int pid;
char name[TASK_COMM_LEN];
char query[QUERY_LEN];
};
struct backend {
int pid;
char query[QUERY_LEN];
};
BPF_HASH(ref_count, struct key_t);
BPF_HASH(miss_count, struct key_t);
BPF_HASH(queries, u32, struct backend, HASH_SIZE);
static inline __attribute__((always_inline)) int get_key(struct key_t* key) {
key->cpu = bpf_get_smp_processor_id();
key->pid = bpf_get_current_pid_tgid();
struct backend *data = queries.lookup(&(key->pid));
bpf_get_current_comm(&(key->name), sizeof(key->name));
if (data != NULL)
{
bpf_probe_read(&(key->query), QUERY_LEN, &(data->query));
return 1;
}
return 0;
}
int on_cache_miss(struct bpf_perf_event_data *ctx) {
struct key_t key = {};
int result = get_key(&key);
if (result == 0)
return 0;
u64 zero = 0, *val;
val = miss_count.lookup_or_init(&key, &zero);
(*val) += ctx->sample_period;
return 0;
}
int on_cache_ref(struct bpf_perf_event_data *ctx) {
struct key_t key = {};
int result = get_key(&key);
if (result == 0)
return 0;
u64 zero = 0, *val;
val = ref_count.lookup_or_init(&key, &zero);
(*val) += ctx->sample_period;
return 0;
}
void probe_exec_simple_query(struct pt_regs *ctx, const char *query_string)
{
u32 pid = bpf_get_current_pid_tgid();
struct backend data = {};
data.pid = pid;
bpf_probe_read(&data.query, QUERY_LEN, &(*query_string));
queries.update(&pid, &data);
}
void probe_exec_simple_query_finish(struct pt_regs *ctx)
{
u32 pid = bpf_get_current_pid_tgid();
queries.delete(&pid);
}
"""
# signal handler
def signal_ignore(sig, frame):
print()
def attach(bpf, args):
binary_path = args.path
pid = args.pid
bpf.attach_uprobe(
name=binary_path,
sym="exec_simple_query",
fn_name="probe_exec_simple_query",
pid=pid)
bpf.attach_uretprobe(
name=binary_path,
sym="exec_simple_query",
fn_name="probe_exec_simple_query_finish",
pid=pid)
bpf.attach_perf_event(
ev_type=PerfType.HARDWARE, ev_config=PerfHWConfig.CACHE_MISSES,
fn_name="on_cache_miss", sample_period=args.sample_period)
bpf.attach_perf_event(
ev_type=PerfType.HARDWARE, ev_config=PerfHWConfig.CACHE_REFERENCES,
fn_name="on_cache_ref", sample_period=args.sample_period)
def run(args):
print("Attaching...")
debug = 4 if args.debug else 0
bpf = BPF(text=bpf_text, debug=debug)
attach(bpf, args)
exiting = False
print("Listening...")
while True:
try:
sleep(1)
except KeyboardInterrupt:
exiting = True
# as cleanup can take many seconds, trap Ctrl-C:
signal.signal(signal.SIGINT, signal_ignore)
if exiting:
print()
print("Detaching...")
print()
break
miss_count = {}
for (k, v) in bpf.get_table('miss_count').items():
miss_count[(k.pid, k.cpu, k.name)] = v.value
print('{:<8} {:<16} {:<100} {:<4} {:>12} {:>12} {:>6}%'.format(
"PID", "NAME", "QUERY", "CPU", "REFERENCE", "MISS", "HIT"))
tot_ref = 0
tot_miss = 0
for (k, v) in bpf.get_table('ref_count').items():
try:
miss = miss_count[(k.pid, k.cpu, k.name)]
except KeyError:
miss = 0
tot_ref += v.value
tot_miss += miss
# This happens on some PIDs due to missed counts caused by sampling
hit = (v.value - miss) if (v.value >= miss) else 0
msg = '{:<8d} {:<16s} {:<100s} {:<4d} {:>12d} {:>12d} {:>6.2f}%'
print(msg.format(k.pid, k.name.decode(), k.query.decode(), k.cpu,
v.value, miss, (float(hit) / float(v.value)) * 100.0))
if tot_ref != 0:
print()
msg = 'Total References: {} Total Misses: {} Hit Rate: {:.2f}%'
print(msg.format(tot_ref, tot_miss,
(float(tot_ref - tot_miss) / float(tot_ref)) * 100.0))
def parse_args():
parser = argparse.ArgumentParser(
description="Summarize cache references & misses by postgres backend",
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument("path", type=str, help="path to PostgreSQL binary")
parser.add_argument(
"-c", "--sample_period", type=int, default=100,
help="Sample one in this many number of cache reference / miss events")
parser.add_argument(
"-p", "--pid", type=int, default=-1,
help="trace this PID only")
parser.add_argument(
"-d", "--debug", action='store_true', default=False,
help="debug mode")
return parser.parse_args()
if __name__ == "__main__":
run(parse_args())