-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathheavy_light_decomposition.hpp
176 lines (163 loc) · 6.54 KB
/
heavy_light_decomposition.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#pragma once
#include <algorithm>
#include <cassert>
#include <functional>
#include <queue>
#include <stack>
#include <utility>
#include <vector>
// Heavy-Light Decomposition of trees
// Based on http://beet-aizu.hatenablog.com/entry/2017/12/12/235950
struct HeavyLightDecomposition {
int V;
int k;
int nb_heavy_path;
std::vector<std::vector<int>> e;
std::vector<int> par; // par[i] = parent of vertex i (Default: -1)
std::vector<int> depth; // depth[i] = distance between root and vertex i
std::vector<int> subtree_sz; // subtree_sz[i] = size of subtree whose root is i
std::vector<int> heavy_child; // heavy_child[i] = child of vertex i on heavy path (Default: -1)
std::vector<int> tree_id; // tree_id[i] = id of tree vertex i belongs to
std::vector<int> aligned_id,
aligned_id_inv; // aligned_id[i] = aligned id for vertex i (consecutive on heavy edges)
std::vector<int> head; // head[i] = id of vertex on heavy path of vertex i, nearest to root
std::vector<int> head_ids; // consist of head vertex id's
std::vector<int> heavy_path_id; // heavy_path_id[i] = heavy_path_id for vertex [i]
HeavyLightDecomposition(int sz = 0)
: V(sz), k(0), nb_heavy_path(0), e(sz), par(sz), depth(sz), subtree_sz(sz), heavy_child(sz),
tree_id(sz, -1), aligned_id(sz), aligned_id_inv(sz), head(sz), heavy_path_id(sz, -1) {}
void add_edge(int u, int v) {
e[u].emplace_back(v);
e[v].emplace_back(u);
}
void _build_dfs(int root) {
std::stack<std::pair<int, int>> st;
par[root] = -1;
depth[root] = 0;
st.emplace(root, 0);
while (!st.empty()) {
int now = st.top().first;
int &i = st.top().second;
if (i < (int)e[now].size()) {
int nxt = e[now][i++];
if (nxt == par[now]) continue;
par[nxt] = now;
depth[nxt] = depth[now] + 1;
st.emplace(nxt, 0);
} else {
st.pop();
int max_sub_sz = 0;
subtree_sz[now] = 1;
heavy_child[now] = -1;
for (auto nxt : e[now]) {
if (nxt == par[now]) continue;
subtree_sz[now] += subtree_sz[nxt];
if (max_sub_sz < subtree_sz[nxt])
max_sub_sz = subtree_sz[nxt], heavy_child[now] = nxt;
}
}
}
}
void _build_bfs(int root, int tree_id_now) {
std::queue<int> q({root});
while (!q.empty()) {
int h = q.front();
q.pop();
head_ids.emplace_back(h);
for (int now = h; now != -1; now = heavy_child[now]) {
tree_id[now] = tree_id_now;
aligned_id[now] = k++;
aligned_id_inv[aligned_id[now]] = now;
heavy_path_id[now] = nb_heavy_path;
head[now] = h;
for (int nxt : e[now])
if (nxt != par[now] and nxt != heavy_child[now]) q.push(nxt);
}
nb_heavy_path++;
}
}
void build(std::vector<int> roots = {0}) {
int tree_id_now = 0;
for (auto r : roots) _build_dfs(r), _build_bfs(r, tree_id_now++);
}
template <class T> std::vector<T> segtree_rearrange(const std::vector<T> &data) const {
assert(int(data.size()) == V);
std::vector<T> ret;
ret.reserve(V);
for (int i = 0; i < V; i++) ret.emplace_back(data[aligned_id_inv[i]]);
return ret;
}
// query for vertices on path [u, v] (INCLUSIVE)
void
for_each_vertex(int u, int v, const std::function<void(int ancestor, int descendant)> &f) const {
while (true) {
if (aligned_id[u] > aligned_id[v]) std::swap(u, v);
f(std::max(aligned_id[head[v]], aligned_id[u]), aligned_id[v]);
if (head[u] == head[v]) break;
v = par[head[v]];
}
}
void for_each_vertex_noncommutative(
int from, int to, const std::function<void(int ancestor, int descendant)> &fup,
const std::function<void(int ancestor, int descendant)> &fdown) const {
int u = from, v = to;
const int lca = lowest_common_ancestor(u, v), dlca = depth[lca];
while (u >= 0 and depth[u] > dlca) {
const int p = (depth[head[u]] > dlca ? head[u] : lca);
fup(aligned_id[p] + (p == lca), aligned_id[u]), u = par[p];
}
static std::vector<std::pair<int, int>> lrs;
int sz = 0;
while (v >= 0 and depth[v] >= dlca) {
const int p = (depth[head[v]] >= dlca ? head[v] : lca);
if (int(lrs.size()) == sz) lrs.emplace_back(0, 0);
lrs.at(sz++) = {p, v}, v = par.at(p);
}
while (sz--) fdown(aligned_id[lrs.at(sz).first], aligned_id[lrs.at(sz).second]);
}
// query for edges on path [u, v]
void for_each_edge(int u, int v, const std::function<void(int, int)> &f) const {
while (true) {
if (aligned_id[u] > aligned_id[v]) std::swap(u, v);
if (head[u] != head[v]) {
f(aligned_id[head[v]], aligned_id[v]);
v = par[head[v]];
} else {
if (u != v) f(aligned_id[u] + 1, aligned_id[v]);
break;
}
}
}
// lowest_common_ancestor: O(log V)
int lowest_common_ancestor(int u, int v) const {
assert(tree_id[u] == tree_id[v] and tree_id[u] >= 0);
while (true) {
if (aligned_id[u] > aligned_id[v]) std::swap(u, v);
if (head[u] == head[v]) return u;
v = par[head[v]];
}
}
int distance(int u, int v) const {
assert(tree_id[u] == tree_id[v] and tree_id[u] >= 0);
return depth[u] + depth[v] - 2 * depth[lowest_common_ancestor(u, v)];
}
// Level ancestor, O(log V)
// if k-th parent is out of range, return -1
int kth_parent(int v, int k) const {
if (k < 0) return -1;
while (v >= 0) {
int h = head.at(v), len = depth.at(v) - depth.at(h);
if (k <= len) return aligned_id_inv.at(aligned_id.at(v) - k);
k -= len + 1, v = par.at(h);
}
return -1;
}
// Jump on tree, O(log V)
int s_to_t_by_k_steps(int s, int t, int k) const {
if (k < 0) return -1;
if (k == 0) return s;
int lca = lowest_common_ancestor(s, t);
if (k <= depth.at(s) - depth.at(lca)) return kth_parent(s, k);
return kth_parent(t, depth.at(s) + depth.at(t) - depth.at(lca) * 2 - k);
}
};