-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathCountingBits338.kt
81 lines (67 loc) · 1.32 KB
/
CountingBits338.kt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
package easy
/**
* Given an integer n, return an array ans of length n + 1 such that for each i (0 <= i <= n), ans[i] is the number of 1's in the binary representation of i.
Example 1:
Input: n = 2
Output: [0,1,1]
Explanation:
0 --> 0
1 --> 1
2 --> 10
Example 2:
Input: n = 5
Output: [0,1,1,2,1,2]
Explanation:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101
Constraints:
0 <= n <= 105
Follow up:
It is very easy to come up with a solution with a runtime of O(n log n). Can you do it in linear time O(n) and possibly in a single pass?
Can you do it without using any built-in function (i.e., like __builtin_popcount in C++)?
*/
fun countBits(n: Int): IntArray {
val result = mutableListOf<Int>()
for( i in 0..n)
{
result.add(i.countOneBits())
}
return result.toIntArray()
}
fun Int.countOneBits():Int
{
var count=0
var num=this
while (num!=0)
{
if(num%2==1)
count++
num/=2
}
return count
}
// Solution with T = O(N)
fun countBitsSol2(n: Int): IntArray {
val result = IntArray(n+1)
for( i in 1..n)
{
result[i]=i.countBits()
}
return result
}
// using And Algorithm
fun Int.countBits():Int
{
var count=0
var num=this
while (num!=0)
{
num=num.and(num-1)
count++
}
return count
}