-
Notifications
You must be signed in to change notification settings - Fork 942
/
Copy pathtrain_ds.py
228 lines (188 loc) · 7.84 KB
/
train_ds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
import os
import sys
import torch
import torch.nn as nn
import hydra
import logging
import time
import argparse
from io import BytesIO
from contextlib import nullcontext
import torch.distributed as dist
from omegaconf import DictConfig, OmegaConf
from torch.cuda.amp import autocast, GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.algorithms.join import Join
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from funasr.train_utils.average_nbest_models import average_checkpoints
from funasr.register import tables
from funasr.optimizers import optim_classes
from funasr.train_utils.trainer_ds import Trainer
from funasr.schedulers import scheduler_classes
from funasr.train_utils.initialize import initialize
from funasr.download.download_model_from_hub import download_model
from funasr.models.lora.utils import mark_only_lora_as_trainable
from funasr.train_utils.set_all_random_seed import set_all_random_seed
from funasr.train_utils.load_pretrained_model import load_pretrained_model
from funasr.utils.misc import prepare_model_dir
from funasr.train_utils.model_summary import model_summary
from funasr import AutoModel
try:
import deepspeed
except:
deepspeed = None
@hydra.main(config_name=None, version_base=None)
def main_hydra(kwargs: DictConfig):
if kwargs.get("debug", False):
import pdb
pdb.set_trace()
assert "model" in kwargs
if "model_conf" not in kwargs:
logging.info("download models from model hub: {}".format(kwargs.get("hub", "ms")))
kwargs = download_model(is_training=kwargs.get("is_training", True), **kwargs)
main(**kwargs)
def main(**kwargs):
# set random seed
set_all_random_seed(kwargs.get("seed", 0))
torch.backends.cudnn.enabled = kwargs.get("cudnn_enabled", torch.backends.cudnn.enabled)
torch.backends.cudnn.benchmark = kwargs.get("cudnn_benchmark", torch.backends.cudnn.benchmark)
torch.backends.cudnn.deterministic = kwargs.get("cudnn_deterministic", True)
# open tf32
torch.backends.cuda.matmul.allow_tf32 = kwargs.get("enable_tf32", True)
rank = int(os.environ.get("RANK", 0))
local_rank = int(os.environ.get("LOCAL_RANK", 0))
world_size = int(os.environ.get("WORLD_SIZE", 1))
if local_rank == 0:
tables.print()
use_ddp = world_size > 1
use_fsdp = kwargs.get("use_fsdp", False)
use_deepspeed = kwargs.get("use_deepspeed", False)
if use_deepspeed:
logging.info(f"use_deepspeed: {use_deepspeed}")
deepspeed.init_distributed(dist_backend=kwargs.get("backend", "nccl"))
elif use_ddp or use_fsdp:
logging.info(f"use_ddp: {use_ddp}, use_fsdp: {use_fsdp}")
dist.init_process_group(
backend=kwargs.get("backend", "nccl"),
init_method="env://",
)
torch.cuda.set_device(local_rank)
# rank = dist.get_rank()
logging.info("Build model, frontend, tokenizer")
device = kwargs.get("device", "cuda")
kwargs["device"] = "cpu"
model = AutoModel(**kwargs)
# save config.yaml
if rank == 0:
prepare_model_dir(**kwargs)
# parse kwargs
kwargs = model.kwargs
kwargs["device"] = device
tokenizer = kwargs["tokenizer"]
frontend = kwargs["frontend"]
model = model.model
del kwargs["model"]
# freeze_param
freeze_param = kwargs.get("freeze_param", None)
if freeze_param is not None:
if "," in freeze_param:
freeze_param = eval(freeze_param)
if not isinstance(freeze_param, (list, tuple)):
freeze_param = (freeze_param,)
logging.info("freeze_param is not None: %s", freeze_param)
for t in freeze_param:
for k, p in model.named_parameters():
if k.startswith(t + ".") or k == t:
logging.info(f"Setting {k}.requires_grad = False")
p.requires_grad = False
if local_rank == 0:
logging.info(f"{model_summary(model)}")
trainer = Trainer(
rank=rank,
local_rank=local_rank,
world_size=world_size,
use_ddp=use_ddp,
use_fsdp=use_fsdp,
device=kwargs["device"],
excludes=kwargs.get("excludes", None),
output_dir=kwargs.get("output_dir", "./exp"),
**kwargs.get("train_conf"),
)
model = trainer.warp_model(model, **kwargs)
kwargs["device"] = int(os.environ.get("LOCAL_RANK", 0))
trainer.device = int(os.environ.get("LOCAL_RANK", 0))
model, optim, scheduler = trainer.warp_optim_scheduler(model, **kwargs)
# dataset
logging.info("Build dataloader")
dataloader_class = tables.dataloader_classes.get(
kwargs["dataset_conf"].get("dataloader", "DataloaderMapStyle")
)
dataloader = dataloader_class(**kwargs)
# dataloader_tr, dataloader_val = dataloader_class(**kwargs)
scaler = GradScaler(enabled=True) if trainer.use_fp16 or trainer.use_bf16 else None
scaler = ShardedGradScaler(enabled=trainer.use_fp16) if trainer.use_fsdp else scaler
trainer.resume_checkpoint(
model=model,
optim=optim,
scheduler=scheduler,
scaler=scaler,
)
dataloader_tr, dataloader_val = None, None
for epoch in range(trainer.start_epoch, trainer.max_epoch):
time1 = time.perf_counter()
for data_split_i in range(trainer.start_data_split_i, dataloader.data_split_num):
time_slice_i = time.perf_counter()
dataloader_tr, dataloader_val = dataloader.build_iter(
epoch, data_split_i=data_split_i, start_step=trainer.start_step
)
trainer.train_epoch(
model=model,
optim=optim,
scheduler=scheduler,
scaler=scaler,
dataloader_train=dataloader_tr,
dataloader_val=dataloader_val,
epoch=epoch,
data_split_i=data_split_i,
data_split_num=dataloader.data_split_num,
start_step=trainer.start_step,
)
trainer.start_step = 0
device = next(model.parameters()).device
if device.type == "cuda":
with torch.cuda.device(device):
torch.cuda.empty_cache()
time_escaped = (time.perf_counter() - time_slice_i) / 3600.0
logging.info(
f"\n\nrank: {local_rank}, "
f"time_escaped_epoch: {time_escaped:.3f} hours, "
f"estimated to finish {dataloader.data_split_num} data_slices, remaining: {dataloader.data_split_num-data_split_i} slices, {(dataloader.data_split_num-data_split_i)*time_escaped:.3f} hours, "
f"epoch: {trainer.max_epoch - epoch} epochs, {((trainer.max_epoch - epoch - 1)*dataloader.data_split_num + dataloader.data_split_num-data_split_i)*time_escaped:.3f} hours\n"
)
trainer.start_data_split_i = 0
trainer.validate_epoch(model=model, dataloader_val=dataloader_val, epoch=epoch + 1)
scheduler.step()
trainer.step_in_epoch = 0
trainer.save_checkpoint(
epoch + 1, model=model, optim=optim, scheduler=scheduler, scaler=scaler
)
time2 = time.perf_counter()
time_escaped = (time2 - time1) / 3600.0
logging.info(
f"\n\nrank: {local_rank}, "
f"time_escaped_epoch: {time_escaped:.3f} hours, "
f"estimated to finish {trainer.max_epoch} "
f"epoch: {(trainer.max_epoch - epoch) * time_escaped:.3f} hours\n"
)
trainer.train_acc_avg = 0.0
trainer.train_loss_avg = 0.0
if trainer.rank == 0:
average_checkpoints(
trainer.output_dir, trainer.avg_nbest_model, use_deepspeed=trainer.use_deepspeed
)
trainer.close()
if __name__ == "__main__":
main_hydra()