-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluate_pose_network.py
319 lines (267 loc) · 11.2 KB
/
evaluate_pose_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#!/usr/bin/env python
# coding: utf-8
# Seems to run a bit faster than with default settings and less bugged
# See https://github.com/pytorch/pytorch/issues/67864
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
from typing import Any, List, NamedTuple, Tuple, Dict, Callable, Literal
import numpy as np
import argparse
import tqdm
import tabulate
import json
import os
import copy
import pprint
from numpy.typing import NDArray
from matplotlib import pyplot
import functools
import torch
from torch import Tensor
from collections import defaultdict
from os.path import commonprefix, relpath
import torchmetrics
from trackertraincode.datasets.batch import Batch, Metadata
import trackertraincode.datatransformation as dtr
import trackertraincode.pipelines
import trackertraincode.vis as vis
import trackertraincode.utils as utils
import trackertraincode.eval as eval
# from trackertraincode.eval import load_pose_network, Predictor, compute_opal_paper_alignment, PerspectiveCorrector
load_pose_network = functools.lru_cache(maxsize=1)(eval.load_pose_network)
# According to this https://gmv.cast.uark.edu/scanning/hardware/microsoft-kinect-resourceshardware/
# The horizontal field of view of the kinect is ..
BIWI_HORIZONTAL_FOV = 57.0
class RoiConfig(NamedTuple):
expansion_factor: float = 1.1
center_crop: bool = False
use_head_roi: bool = True
def __str__(self):
crop = ['ROI', 'CC'][self.center_crop]
return f'{"(H_roi)" if self.use_head_roi else "(F_roi)"}{crop}{self.expansion_factor:0.1f}'
comprehensive_roi_configs = [
RoiConfig(*x)
for x in [
(1.2, False),
(1.1, False),
(1.0, False),
(1.2, False, False),
(1.1, False, False),
(1.0, False, False),
]
]
def determine_roi(sample: Batch, use_center_crop: bool):
if not use_center_crop:
return sample['roi']
w, h = sample.meta.image_wh
return torch.tensor([0, 0, h, w], dtype=torch.float32)
EvalResults = Dict[str, Tensor]
BatchPerspectiveCorrector = Callable[[Tensor, EvalResults], EvalResults]
AlignmentScheme = Literal['perspective', 'opal23', 'none']
class DrawPredictionsWithHistory:
def __init__(self, name):
self.index_by_individual = defaultdict(list)
self.name = name
def print_viewed(self):
return print(self.name + ":\n" + pprint.pformat(dict(self.index_by_individual), compact=True))
def __call__(self, gt_pred: Tuple[Batch, Dict[str, Tensor]]):
gt, _ = gt_pred
try:
individual = gt['individual'].item()
except KeyError:
individual = "unkown"
self.index_by_individual[individual].append(gt['index'].item())
return vis.draw_prediction(gt_pred)
def interleaved(a, b):
c = np.empty((a.size + b.size,), dtype=a.dtype)
c[0::2] = a.ravel()
c[1::2] = b.ravel()
return c
class TableBuilder:
data_name_table = {'aflw2k3d': 'AFLW 2k 3d', 'aflw2k3d_grimaces': 'grimaces'}
def __init__(self):
# Position and size errors are measured relative to the ROI size. Hence in percent.
self._header = [
'Data',
'Pitch°',
'Yaw°',
'Roll°',
'Mean°',
'Geodesic°',
'XY%',
'S%',
'NME3d%',
'NME2d%_30',
'NME2d%_60',
'NME2d%_90',
'NME2d%_avg',
]
self._entries_by_model = defaultdict(list)
def add_row(
self,
model: str,
data: str,
euler_angles: List[float],
geodesic: float,
rmse_pos: float,
rmse_size: float,
unweighted_nme_3d,
nme_2d,
data_aux_string=None,
):
unweighted_nme_3d = unweighted_nme_3d * 100 if unweighted_nme_3d is not None else 'n/a'
nme_2d_30, nme_2d_60, nme_2d_90, nme_2d_avg = (
['/na' for _ in range(4)] if nme_2d is None else [x * 100 for x in nme_2d]
)
data = self.data_name_table.get(data, data) + (data_aux_string if data_aux_string is not None else '')
self._entries_by_model[model] += [
[data]
+ euler_angles
+ [
np.average(euler_angles).tolist(),
geodesic,
rmse_pos,
rmse_size,
unweighted_nme_3d,
nme_2d_30,
nme_2d_60,
nme_2d_90,
nme_2d_avg,
]
]
def build(self) -> str:
prefix = commonprefix(list(self._entries_by_model.keys()))
nicer_model_paths = {m: relpath(m, prefix) for m in self._entries_by_model.keys()}
string_rows = []
for model, rows in self._entries_by_model.items():
string_rows += [nicer_model_paths[model]]
string_rows += tabulate.tabulate(rows, self._header, tablefmt='github', floatfmt=".2f").splitlines()
return '\n'.join(string_rows)
def build_json(self) -> str:
prefix = commonprefix(list(map(os.path.dirname, self._entries_by_model.keys())))
def model_table(rows):
by_header = defaultdict(list)
for row in rows:
for name, value in zip(self._header, row):
by_header[name].append(value)
return by_header
table = {relpath(m, prefix): model_table(rows) for m, rows in self._entries_by_model.items()}
return json.dumps(table, indent=2)
def compute_pred_keys(loader: dtr.SampleBySampleLoader, net: eval.InferenceNetwork):
# Check if model and data support landmark prediction
keys = ['coord', 'pose', 'roi']
sample = next(iter(loader))
preds = net(torch.zeros((1, 1, net.input_resolution, net.input_resolution), device=net.device_for_input))
if 'pt3d_68' in sample and 'pt3d_68' in preds:
keys.append('pt3d_68')
return keys
def report(net_filename, data_name, roi_config: RoiConfig, args: argparse.Namespace, builder: TableBuilder):
alignment: AlignmentScheme = args.alignment_scheme
loader = trackertraincode.pipelines.make_validation_loader(
data_name, use_head_roi=roi_config.use_head_roi, return_single_samples=True
)
net = load_pose_network(net_filename, args.device)
pred_keys = compute_pred_keys(loader, net)
predictor = eval.Predictor(net, roi_config.expansion_factor)
metrics = torchmetrics.MetricCollection({'pose_errs': eval.NormalizedXYSError()})
if alignment == 'none':
metrics.add_metrics({"geodesic_errs": eval.GeodesicError(), 'euler_errs': eval.EulerAngleErrors()})
else:
metrics.add_metrics(
{
"geodesic_errs": eval.AlignedRotationErrorMetric(
error_mode='geo', correction_mode=alignment, fov=BIWI_HORIZONTAL_FOV
),
'euler_errs': eval.AlignedRotationErrorMetric(
error_mode='euler', correction_mode=alignment, fov=BIWI_HORIZONTAL_FOV
),
}
)
if 'pt3d_68' in pred_keys:
metrics.add_metrics({'uw_nme_3d': eval.UnweightedKptNME(), 'nme_2d': eval.KptNME(dimensions=2)})
results: dict[str, Tensor] = predictor.evaluate(metrics, loader)
poseerrs: NDArray[Any] = results['pose_errs'].cpu().numpy()
geodesic_errs: NDArray[Any] = results['geodesic_errs'].cpu().numpy()
eulererrs: NDArray[Any] = results['euler_errs'].cpu().numpy()
if 'pt3d_68' in pred_keys:
uw_nme_3d = results['uw_nme_3d'].cpu().numpy()
nme_2d = results['nme_2d']
else:
uw_nme_3d = nme_2d = None
e_posx, e_posy, e_size = poseerrs.T
rmse_pos = np.sqrt(np.average(np.sum(np.square(np.vstack([e_posx, e_posy]).T), axis=1), axis=0))
rmse_size = np.sqrt(np.average(np.square(e_size)))
builder.add_row(
model=net_filename,
data=data_name,
euler_angles=(np.average(np.abs(eulererrs), axis=0) * utils.rad2deg).tolist(),
geodesic=(np.average(geodesic_errs) * utils.rad2deg).tolist(),
rmse_pos=(rmse_pos * 100.0).tolist(),
rmse_size=(rmse_size * 100.0).tolist(),
data_aux_string=' / ' + str(roi_config),
unweighted_nme_3d=np.average(uw_nme_3d) if uw_nme_3d is not None else None,
nme_2d=nme_2d,
)
if args.vis != 'none':
quantity = {'kpts': uw_nme_3d, 'rot': geodesic_errs, 'size': e_size}[args.vis]
if quantity is None:
print(f"Prediction for {args.vis} is not available.")
return []
order = np.ascontiguousarray(np.argsort(quantity)[::-1])
loader = trackertraincode.pipelines.make_validation_loader(data_name, order=order, return_single_samples=True)
def iter_gt_and_preds():
for sample in loader:
pred = predictor.predict_batch([sample['image']], sample['roi'][None, ...])
pred = Batch(Metadata(0, batchsize=1), pred)
sample = dtr.batch.to_numpy(sample)
pred = dtr.batch.to_numpy(pred)
# There is only one sample to unpack. Needs to be done though.
yield from zip(sample.undo_collate(), pred.undo_collate())
history = DrawPredictionsWithHistory(data_name + '/' + net_filename)
fig, btn = vis.matplotlib_plot_iterable(iter_gt_and_preds(), history)
fig.suptitle(data_name + ' / ' + str(roi_config) + ' / ' + net_filename)
return [fig, btn, history]
else:
return []
def run(args):
gui = []
table_builder = TableBuilder()
if not args.comprehensive_roi:
if args.roi_expansion is not None:
roi_configs = [RoiConfig(expansion_factor=args.roi_expansion)]
else:
roi_configs = [RoiConfig()]
else:
assert args.roi_expansion is None, "Conflicting arguments"
roi_configs = comprehensive_roi_configs
datasets = args.ds.split('+')
for net_filename in args.filenames:
for name in datasets:
for roi_config in roi_configs:
gui += report(net_filename, name, roi_config, args, table_builder)
if args.json:
print(f"writing {args.json}")
with open(args.json, 'w') as f:
f.write(table_builder.build_json())
else:
print(table_builder.build())
pyplot.show()
print("Viewed samples per individual:")
for thing in gui:
if not isinstance(thing, DrawPredictionsWithHistory):
continue
thing.print_viewed()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Evaluate pose networks")
parser.add_argument('filenames', help='filenames of checkpoint or onnx model file', type=str, nargs='*')
parser.add_argument(
'--vis', dest='vis', help='visualization of worst', default='none', choices=['none', 'kpts', 'rot', 'size']
)
parser.add_argument('--device', help='select device: cpu or cuda', default='cuda', type=str)
parser.add_argument('--comprehensive-roi', action='store_true', default=False)
parser.add_argument('--alignment-scheme', choices=['perspective', 'opal23', 'none'], default='none')
parser.add_argument('--roi-expansion', default=None, type=float)
parser.add_argument('--json', type=str, default=None)
parser.add_argument('--ds', type=str, default='aflw2k3d')
args = parser.parse_args()
run(args)