-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_poseestimator.py
412 lines (348 loc) · 14.7 KB
/
train_poseestimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
#!/usr/bin/env python
# coding: utf-8
# Seems to run a bit faster than with default settings and less bugged
# See https://github.com/pytorch/pytorch/issues/67864
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy("file_system")
from typing import List, NamedTuple, Optional, Any, Mapping
from os.path import join, dirname, realpath
import numpy as np
import cv2
import argparse
import functools
import itertools
from collections import defaultdict
import tqdm
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
import torch.optim as optim
import torch
import torch.nn as nn
import trackertraincode.neuralnets.losses as losses
import trackertraincode.neuralnets.models as models
import trackertraincode.neuralnets.negloglikelihood as NLL
import trackertraincode.train as train
import trackertraincode.pipelines
from trackertraincode.datasets.batch import Batch
from trackertraincode.pipelines import Tag
class MyArgs(argparse.Namespace):
backbone: str
batchsize: int
lr: float
find_lr: bool
epochs: int
ds: str
plotting: bool
plot_save_filename: Optional[str]
swa: bool
outdir: str
ds_weight_are_sampling_frequencies: bool
with_pointhead: bool
with_nll_loss: bool
rotation_aug_angle: float
with_image_aug: bool
with_blurpool: bool
export_onnx: bool
input_size: int
roi_override: str
with_roi_train: bool
dropout_prob: float
rampup_nll_losses: bool
def parse_dataset_definition(arg: str):
"""Parses CLI dataset specifications
Of the form <name1>[:<weight1>]+<name2>[:<weight2>]+...
"""
dsmap = {
"300wlp": trackertraincode.pipelines.Id._300WLP,
"synface": trackertraincode.pipelines.Id.SYNFACE,
"aflw2k": trackertraincode.pipelines.Id.AFLW2k3d,
"biwi": trackertraincode.pipelines.Id.BIWI,
"wider": trackertraincode.pipelines.Id.WIDER,
"repro_300_wlp": trackertraincode.pipelines.Id.REPO_300WLP,
"repro_300_wlp_woextra": trackertraincode.pipelines.Id.REPO_300WLP_WO_EXTRA,
"wflw_lp": trackertraincode.pipelines.Id.WFLW_LP,
"lapa_megaface_lp": trackertraincode.pipelines.Id.LAPA_MEGAFACE_LP,
}
splitted = arg.split("+")
# Find dataset specification which has weights in them
# and add them to a dict.
it = (tuple(s.split(":")) for s in splitted if ":" in s)
dataset_weights = {dsmap[k]: float(v) for k, v in it}
# Then consider all datasets listed
dsids = [dsmap[s.split(":")[0]] for s in splitted]
dsids = list(frozenset(dsids))
return dsids, dataset_weights
def setup_datasets(args: MyArgs):
dsids, dataset_weights = parse_dataset_definition(args.ds)
train_loader, test_loader, ds_size = trackertraincode.pipelines.make_pose_estimation_loaders(
inputsize=args.input_size,
batchsize=args.batchsize,
datasets=dsids,
dataset_weights=dataset_weights,
use_weights_as_sampling_frequency=args.ds_weight_are_sampling_frequencies,
enable_image_aug=args.with_image_aug,
rotation_aug_angle=args.rotation_aug_angle,
roi_override=args.roi_override,
)
return train_loader, test_loader, ds_size
def find_variance_parameters(net: nn.Module):
if isinstance(net, (NLL.FeaturesAsTriangularScale, NLL.FeaturesAsDiagonalScale, NLL.DiagonalScaleParameter)):
return list(net.parameters())
else:
return sum((find_variance_parameters(x) for x in net.children()), start=[])
def find_transformer_parameters(net: nn.Module):
if isinstance(net, (nn.TransformerEncoderLayer, nn.TransformerDecoderLayer)):
return list(net.parameters())
else:
return sum((find_transformer_parameters(x) for x in net.children()), start=[])
def setup_lr_with_slower_variance_training(net, base_lr):
variance_params = find_variance_parameters(net)
transformer_params = find_transformer_parameters(net)
# print ("Transformer param shapes: ", [p.shape for p in transformer_params])
other_params = list(
frozenset(net.parameters()).difference(frozenset(variance_params) | frozenset(transformer_params))
)
return [
{"params": other_params, "lr": base_lr},
{"params": variance_params, "lr": 0.1 * base_lr},
{"params": transformer_params, "lr": 0.01 * base_lr, "weight_decay": 0.01},
]
def create_optimizer(net, args: MyArgs):
optimizer = optim.Adam(
setup_lr_with_slower_variance_training(net, args.lr),
lr=args.lr,
)
# if args.find_lr:
# print("LR finding mode!")
# n_epochs = args.epochs
# lr_max = 1.0e-1
# base = np.power(lr_max / args.lr, 1.0 / n_epochs)
# scheduler = optim.lr_scheduler.LambdaLR(optimizer, lambda e: base**e, verbose=True)
# else:
n_epochs = args.epochs
# scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [n_epochs//2], 0.1)
scheduler = train.ExponentialUpThenSteps(optimizer, max(1, n_epochs // (10)), 0.1, [n_epochs // 2])
# scheduler = train.LinearUpThenSteps(optimizer, max(1,n_epochs//(10)), 0.1, [n_epochs//2])
return optimizer, scheduler
def setup_losses(args: MyArgs, net):
C = train.Criterion
cregularize = [
C("quatregularization1", losses.QuaternionNormalizationSoftConstraint(), 1.0e-6),
]
poselosses = []
roilosses = []
pointlosses = []
pointlosses25d = []
shapeparamloss = []
if args.with_nll_loss:
def ramped_up_nll_weight(multiplier):
if args.rampup_nll_losses:
def wrapped(step):
strength = min(1.0, max(0.0, (step / args.epochs - 0.1) * 10.0))
return 0.01 * strength * multiplier
return wrapped
else:
return multiplier * 0.01
poselosses += [
C("nllrot", NLL.QuatPoseNLLLoss().to("cuda"), ramped_up_nll_weight(0.5)),
C("nllcoord", NLL.CorrelatedCoordPoseNLLLoss().cuda(), ramped_up_nll_weight(0.5)),
]
if args.with_roi_train:
roilosses += [C("nllbox", NLL.BoxNLLLoss(distribution="gaussian"), ramped_up_nll_weight(0.01))]
if args.with_pointhead:
pointlosses += [
C(
"nllpoints3d",
NLL.Points3dNLLLoss(chin_weight=0.8, eye_weight=0.0, distribution="gaussian").cuda(),
ramped_up_nll_weight(0.5),
)
]
pointlosses25d = [
C(
"nllpoints3d",
NLL.Points3dNLLLoss(
chin_weight=0.8, eye_weight=0.0, pointdimension=2, distribution="gaussian"
).cuda(),
ramped_up_nll_weight(0.5),
)
]
shapeparamloss += [
# C('nllshape', NLL.ShapeParamsNLLLoss(distribution='gaussian'), ramped_up_nll_weight(0.01))
]
if 1:
poselosses += [
C("rot", losses.QuatPoseLoss("approx_distance"), 0.5),
C("xy", losses.PoseXYLoss("l2"), 0.5 * 0.5),
C("sz", losses.PoseSizeLoss("l2"), 0.5 * 0.5),
]
if args.with_roi_train:
roilosses += [C("box", losses.BoxLoss("l2"), 0.01)]
if args.with_pointhead:
pointlosses += [
C("points3d", losses.Points3dLoss("l2", chin_weight=0.8, eye_weights=0.0).cuda(), 0.5),
]
pointlosses25d += [
C(
"points3d",
losses.Points3dLoss("l2", pointdimension=2, chin_weight=0.8, eye_weights=0.0).cuda(),
0.5,
),
]
shapeparamloss += [
C("shp_l2", losses.ShapeParameterLoss(), 0.1),
]
cregularize += [
C("nll_shp_gmm", losses.ShapePlausibilityLoss().cuda(), 0.1),
]
train_criterions = {
Tag.ONLY_POSE: train.CriterionGroup(poselosses + cregularize),
Tag.POSE_WITH_LANDMARKS: train.CriterionGroup(
poselosses + cregularize + pointlosses + shapeparamloss + roilosses
),
Tag.POSE_WITH_LANDMARKS_3D_AND_2D: train.CriterionGroup(
poselosses + cregularize + pointlosses + shapeparamloss + roilosses
),
Tag.ONLY_LANDMARKS: train.CriterionGroup(pointlosses + cregularize),
Tag.ONLY_LANDMARKS_25D: train.CriterionGroup(pointlosses25d + cregularize),
}
test_criterions = {
Tag.POSE_WITH_LANDMARKS: train.CriterionGroup(
poselosses + pointlosses + roilosses + shapeparamloss + cregularize
),
}
return train_criterions, test_criterions
def create_net(args: MyArgs):
return models.NetworkWithPointHead(
enable_point_head=args.with_pointhead,
enable_face_detector=False,
config=args.backbone,
enable_uncertainty=args.with_nll_loss,
backbone_args={},
)
class LitModel(pl.LightningModule):
# TODO: plot gradient magnitudes
def __init__(self, args: MyArgs):
super().__init__()
self._args = args
self._model = create_net(args)
train_criterions, test_criterions = setup_losses(args, self._model)
self._train_criterions = train_criterions
self._test_criterions = test_criterions
def training_step(self, batches: list[Batch], batch_idx):
loss_sum, all_lossvals = train.default_compute_loss(
self._model, batches, self.current_epoch, self._train_criterions
)
loss_val_by_name = {
name: val
for name, (val, _) in train.concatenated_lossvals_by_name(
itertools.chain.from_iterable(all_lossvals)
).items()
}
self.log("loss", loss_sum, on_epoch=True, prog_bar=True, batch_size=sum(b.meta.batchsize for b in batches))
return {"loss": loss_sum, "mt_losses": loss_val_by_name}
def validation_step(self, batch: Batch, batch_idx: int) -> torch.Tensor | dict[str, Any] | None:
images = batch["image"]
pred = self._model(images)
values = self._test_criterions[batch.meta.tag].evaluate(pred, batch, batch_idx)
val_loss = torch.cat([(lv.val * lv.weight) for lv in values]).sum()
self.log("val_loss", val_loss, on_epoch=True, batch_size=batch.meta.batchsize)
return values
def configure_optimizers(self):
optimizer, scheduler = create_optimizer(self._model, self._args)
return {"optimizer": optimizer, "lr_scheduler": scheduler}
@property
def model(self):
return self._model
def main():
np.seterr(all="raise")
cv2.setNumThreads(1)
parser = argparse.ArgumentParser(description="Trains the model")
parser.add_argument("--backbone", help="Which backbone the net uses", default="mobilenetv1")
parser.add_argument("--batchsize", help="The batch size to train with", type=int, default=64)
parser.add_argument("--lr", help="learning rate", type=float, default=1.0e-3)
# parser.add_argument("--find-lr", help="Enable learning rate finder mode", action="store_true", default=False)
parser.add_argument("--epochs", help="Number of epochs", type=int, default=200)
parser.add_argument("--ds", help="Which datasets to train on. See code.", type=str, default="300wlp")
# parser.add_argument(
# "--no-plotting", help="Disable plotting of losses", action="store_false", default=True, dest="plotting"
# )
# parser.add_argument(
# "--save-plot",
# help="Filename to enable saving the train history as plot",
# default=None,
# type=str,
# dest="plot_save_filename",
# )
parser.add_argument(
"--with-swa", help="Enable stochastic weight averaging", action="store_true", default=False, dest="swa"
)
parser.add_argument(
"--outdir", help="Output sub-directory", type=str, default=join(dirname(__file__), "..", "model_files")
)
parser.add_argument(
"--ds-weighting",
help="Sample dataset with equal probability and use weights for scaling their losses",
action="store_false",
default=True,
dest="ds_weight_are_sampling_frequencies",
)
parser.add_argument(
"--no-pointhead", help="Disable landmark prediction", action="store_false", default=True, dest="with_pointhead"
)
parser.add_argument("--with-nll-loss", default=False, action="store_true")
parser.add_argument("--raug", default=30, type=float, dest="rotation_aug_angle")
parser.add_argument("--no-imgaug", default=True, action="store_false", dest="with_image_aug")
# parser.add_argument('--no-blurpool', default=True, action='store_false', dest='with_blurpool')
# parser.add_argument("--no-onnx", default=True, action="store_false", dest="export_onnx")
parser.add_argument(
"--roi-override",
default="original",
type=str,
choices=["extent_to_forehead", "original", "landmarks"],
dest="roi_override",
)
parser.add_argument("--no-roi-train", default=True, action="store_false", dest="with_roi_train")
parser.add_argument("--rampup-nll-losses", default=False, action="store_true")
args: MyArgs = parser.parse_args()
args.input_size = 129
train_loader, test_loader, _ = setup_datasets(args)
model = LitModel(args)
model_out_dir = join(args.outdir, model.model.name)
checkpoint_cb = ModelCheckpoint(
save_top_k=1,
save_last=True,
monitor="val_loss",
enable_version_counter=False,
filename="best",
dirpath=model_out_dir,
save_weights_only=False,
)
progress_cb = train.SimpleProgressBar(args.batchsize)
callbacks = [train.MetricsGraphing(), checkpoint_cb, progress_cb]
swa_callback = None
if args.swa:
swa_callback = train.SwaCallback(start_epoch=args.epochs * 2 // 3)
callbacks.append(swa_callback)
# TODO: inf norm?
trainer = pl.Trainer(
fast_dev_run=False,
gradient_clip_val=1.0,
gradient_clip_algorithm="norm",
default_root_dir=model_out_dir,
limit_train_batches=((10 * 1024) // args.batchsize),
callbacks=callbacks,
enable_checkpointing=True,
max_epochs=args.epochs,
log_every_n_steps=10,
logger=False,
enable_progress_bar=False,
)
trainer.fit(model=model, train_dataloaders=train_loader, val_dataloaders=test_loader)
if checkpoint_cb is not None:
# Overwrite the lightning checkpoint!
model = LitModel.load_from_checkpoint(checkpoint_cb.last_model_path, args=args).to("cpu")
models.save_model(model.model, checkpoint_cb.last_model_path)
model = LitModel.load_from_checkpoint(checkpoint_cb.best_model_path, args=args).to("cpu")
models.save_model(model.model, checkpoint_cb.best_model_path)
if __name__ == "__main__":
main()