title | titleSuffix | description | services | ms.service | ms.subservice | ms.topic | author | ms.author | ms.reviewer | ms.date | ms.custom |
---|---|---|---|---|---|---|---|---|---|---|---|
CLI (v2) feature store YAML schema |
Azure Machine Learning |
Reference documentation for the CLI (v2) feature store YAML schema. |
machine-learning |
machine-learning |
mldata |
reference |
fbsolo-ms1 |
franksolomon |
qiax |
05/23/2023 |
cliv2, build-2023 |
[!INCLUDE cli v2]
[!INCLUDE schema note]
Key | Type | Description | Allowed values | Default value |
---|---|---|---|---|
$schema | string | The YAML schema. If you use the Azure Machine Learning VS Code extension to author the YAML file, including $schema at the top of your file enables you to invoke schema and resource completions. | ||
name | string | Required. Name of the feature store. | ||
compute_runtime | object | The compute runtime configuration used for materialization job. | ||
compute_runtime.spark_runtime_version | string | The Azure Machine Learning Spark runtime version. | 3.2 | 3.2 |
offline_store | object | |||
offline_store.type | string | Required if offline_store is provided. The type of offline store. Only data lake gen2 type of storage is supported. | azure_data_lake_gen2 | |
offline_store.target | string | Required if offline_store is provided. The datalake Gen2 storage URI in the format of /subscriptions/<subscription_id>/resourceGroups/<resource_group>/providers/Microsoft.Storage/storageAccounts/<account>/blobServices/default/containers/<container> . |
||
materialization_identity | object | The user-assigned managed identity that used for the materialization job. This identity needs to be granted necessary roles to access Feature Store service, the data source and the offline storage. | ||
materialization_identity.client_id | string | The client ID for your user-assigned managed identity. | ||
materialization_identity.resource_id | string | The resource ID for your user-assigned managed identity. | ||
materialization_identity.principal_id | string | the principal ID for your user-assigned managed identity. | ||
description | string | Description of the feature store. | ||
tags | object | Dictionary of tags for the feature store. | ||
display_name | string | Display name of the feature store in the studio UI. Can be nonunique within the resource group. | ||
location | string | The location of the feature store. | The resource group location. | |
resource_group | string | The resource group containing the feature store. If the resource group doesn't exist, a new one is created. |
You can include other workspace properties.
The az ml feature-store
command can be used for managing Azure Machine Learning feature store workspaces.
Examples are available in the examples GitHub repository. Some common examples are shown in below.
$schema: http://azureml/sdk-2-0/FeatureStore.json
name: mktg-feature-store
location: eastus
$schema: http://azureml/sdk-2-0/FeatureStore.json
name: mktg-feature-store
compute_runtime:
spark_runtime_version: 3.2
offline_store:
type: azure_data_lake_gen2
target: /subscriptions/<sub-id>/resourceGroups/<rg>/providers/Microsoft.Storage/storageAccounts/<account_name>/blobServices/default/containers/<container_name>
materialization_identity:
client_id: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
resource_id: /subscriptions/<sub-id>/resourceGroups/<rg>/providers/Microsoft.ManagedIdentity/userAssignedIdentities/<uai-name>
# Many of workspace parameters will also be supported:
location: eastus
display_name: marketing feature store
tags:
foo: bar