Skip to content

feat: Add OASEstimator class with oneDAL support and corresponding tests #2349

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
126 changes: 126 additions & 0 deletions sklearnex/covariance/oas_estimator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
from sklearn.covariance import EmpiricalCovariance
import numpy as np
from sklearn.utils.validation import check_is_fitted

from daal4py.sklearn._n_jobs_support import control_n_jobs
from daal4py.sklearn._utils import sklearn_check_version

from .._device_offload import dispatch, wrap_output_data

if sklearn_check_version("1.6"):
from sklearn.utils.validation import validate_data
else:
validate_data = EmpiricalCovariance._validate_data

@control_n_jobs(decorated_methods=["fit", "score"])
class OASEstimator(EmpiricalCovariance):
__doc__ = EmpiricalCovariance.__doc__

def __init__(self, shrinkage=0.1):
super().__init__()
self.shrinkage = shrinkage

def fit(self, X, y=None):
dispatch(
self,
"fit",
{
"onedal": self._onedal_fit,
"sklearn": self._sklearn_fit,
},
X,
y,
)
return self

def _sklearn_fit(self, X, y=None):
super().fit(X, y)
mean = np.mean(X, axis=0)
n_samples, n_features = X.shape
emp_cov = self.covariance_
shrinkage = self.shrinkage
oas_cov = (1 - shrinkage) * emp_cov + shrinkage * np.mean(np.diag(emp_cov)) * np.eye(n_features)
self.covariance_ = oas_cov

def _onedal_fit(self, X, y=None, queue=None):
from onedal.covariance import OASEstimator as onedal_OASEstimator

use_raw_input = get_config().get("use_raw_input", False) is True
if not use_raw_input:
if sklearn_check_version("1.2"):
self._validate_params()

if sklearn_check_version("1.0"):
X = validate_data(
self,
X,
dtype=[np.float64, np.float32],
copy=self.copy,
force_all_finite=False,
)
else:
X = check_array(
X,
dtype=[np.float64, np.float32],
copy=self.copy,
force_all_finite=False,
)

onedal_params = {
"shrinkage": self.shrinkage,
}

self._onedal_estimator = onedal_OASEstimator(**onedal_params)
self._onedal_estimator.fit(X, queue=queue)

self.covariance_ = self._onedal_estimator.covariance_

@wrap_output_data
def score(self, X, y=None):
check_is_fitted(self)
return dispatch(
self,
"score",
{
"onedal": self._onedal_score,
"sklearn": super().score,
},
X,
y,
)

def _onedal_score(self, X, y=None, queue=None):
from onedal.covariance import OASEstimator as onedal_OASEstimator

use_raw_input = get_config().get("use_raw_input", False) is True
if not use_raw_input:
if sklearn_check_version("1.0"):
X = validate_data(
self,
X,
dtype=[np.float64, np.float32],
copy=self.copy,
force_all_finite=False,
)
else:
X = check_array(
X,
dtype=[np.float64, np.float32],
copy=self.copy,
force_all_finite=False,
)

if not hasattr(self, "_onedal_estimator"):
onedal_params = {
"shrinkage": self.shrinkage,
}
self._onedal_estimator = onedal_OASEstimator(**onedal_params)
self._onedal_estimator.fit(X, queue=queue)

return self._onedal_estimator.score(X, queue=queue)

def _more_tags(self):
return {'allow_nan': False}

fit.__doc__ = EmpiricalCovariance.fit.__doc__
score.__doc__ = EmpiricalCovariance.score.__doc__
15 changes: 15 additions & 0 deletions sklearnex/tests/test_oas_estimator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
import numpy as np
from sklearnex.covariance.oas_estimator import OASEstimator

def test_oas_estimator_fit():
X = np.random.randn(100, 5)
estimator = OASEstimator(shrinkage=0.1)
estimator.fit(X)
assert estimator.covariance_ is not None

def test_oas_estimator_score():
X = np.random.randn(100, 5)
estimator = OASEstimator(shrinkage=0.1)
estimator.fit(X)
score = estimator.score(X)
assert isinstance(score, float)
Loading
Oops, something went wrong.