This repository was archived by the owner on Jan 13, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 283
/
Copy pathlayers_c.py
419 lines (368 loc) · 15.7 KB
/
layers_c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tensorflow as tf
from tensorflow.keras import Sequential, Model, Input
from tensorflow.keras import layers
from tensorflow.keras.layers import ReLU, Dense, Conv2D, Conv2DTranspose
from tensorflow.keras.layers import DepthwiseConv2D, SeparableConv2D, Dropout
from tensorflow.keras.layers import GlobalAveragePooling2D, Activation, BatchNormalization
from tensorflow.keras.regularizers import l2
from tensorflow.keras.optimizers import Adam, SGD
from tensorflow.compat.v1.keras.initializers import glorot_uniform, he_normal
from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.utils import to_categorical
import tensorflow_datasets as tfds
import tensorflow.keras.backend as K
import numpy as np
from sklearn.model_selection import train_test_split
import random
import math
import sys
class Layers(object):
''' Layers class for Composable Models '''
# hyperparameters
initializer = 'he_normal' # weight initialization
regularizer = None # kernel regularizer
relu_clip = None # ReLU max value
bn_epsilon = 0 # batch norm epsilon
use_bias = True # whether to use bias in dense/conv layers
# layers
_conv = Conv2D
def __init__(self, **hyperparameters):
""" Constructor
"""
if 'initializer' in hyperparameters:
self.initializer = hyperparameters['initializer']
del hyperparameters['initializer']
if 'regularizer' in hyperparameters:
self.regularizer = hyperparameters['regularizer']
del hyperparameters['regularizer']
if 'relu_clip' in hyperparameters:
self.relu_clip = hyperparameters['relu_clip']
del hyperparameters['relu_clip']
if 'bn_epsilon' in hyperparameters:
if hyperparameters['bn_epsilon'] != None:
self.bn_epsilon = hyperparameters['bn_epsilon']
del hyperparameters['bn_epsilon']
if 'use_bias' in hyperparameters:
self.use_bias = hyperparameters['use_bias']
del hyperparameters['use_bias']
# retain unprocessed hyperparameters
self.hyperparameters = hyperparameters
def prestem(self, inputs, **metaparameters):
""" Construct a Pre-stem for Stem Group
inputs : input to the pre-stem
norm : include normalization layer
"""
x = inputs
if 'norm' in metaparameters:
norm = metaparameters['norm']
if norm:
x = self.Normalize(inputs)
return x
def stem(self, inputs, kernel_size=(7, 7), **metaparameters):
""" Construct the Stem Group
inputs : input to the stem
kernel_size: kernel (filter) size
pooling : pooling option
"""
if 'pooling' in metaparameters:
pooling = metaparameters['pooling']
else:
pooling = None
x = self.Conv2D(inputs, kernel_size, strides=(1, 1), padding='same')
x = self.BatchNormalization(x)
x = self.ReLU(x)
if pooling == 'max':
x = MaxPooling2D((2, 2), strides=2)(x)
elif pooling == 'feature':
# feature pooling
x = self.Conv2D(x, kernel_size, strides=(2, 2), padding='same')
x = self.BatchNormalization(x)
x = self.ReLU(x)
return x
def classifier(self, x, n_classes, **metaparameters):
""" Construct the Classifier Group
x : input to the classifier
n_classes : number of output classes
pooling : type of feature map pooling
dropout : hidden dropout unit
"""
if 'pooling' in metaparameters:
pooling = metaparameters['pooling']
else:
pooling = GlobalAveragePooling2D
if 'dropout' in metaparameters:
dropout = metaparameters['dropout']
else:
dropout = None
if pooling is not None:
# Save the encoding layer (high dimensionality)
self.encoding = x
# Pooling at the end of all the convolutional groups
x = pooling()(x)
# Save the embedding layer (low dimensionality)
self.embedding = x
if dropout is not None:
x = Dropout(dropout)(x)
# Final Dense Outputting Layer for the outputs
x = self.Dense(x, n_classes, use_bias=True, **metaparameters)
# Save the pre-activation probabilities layer
self.probabilities = x
outputs = Activation('softmax')(x)
# Save the post-activation probabilities layer
self.softmax = outputs
return outputs
def top(self, layer):
""" Add layer to the top of the neural network
layer : layer to add
"""
outputs = layer(self._model.outputs)
self._model = Model(self._model.inputs, outputs)
def summary(self):
""" Call underlying summary method
"""
self._model.summary()
def Dense(self, x, units, activation=None, **hyperparameters):
""" Construct Dense Layer
x : input to layer
activation : activation function
use_bias : whether to use bias
initializer : kernel initializer
regularizer : kernel regularizer
"""
if 'regularizer' in hyperparameters:
reg = hyperparameters['regularizer']
else:
regularizer = self.regularizer
if 'initializer' in hyperparameters:
initializer = hyperparameters['initializer']
else:
initializer = self.initializer
if 'use_bias' in hyperparameters:
use_bias = hyperparameters['use_bias']
del hyperparameters['use_bias']
else:
use_bias = self.use_bias
x = Dense(units, activation, use_bias=use_bias,
kernel_initializer=initializer, kernel_regularizer=regularizer)(x)
return x
def Conv2D(self, x, n_filters, kernel_size, strides=(1, 1), padding='valid',
activation=None, **hyperparameters):
""" Construct a Conv2D layer
x : input to layer
n_filters : number of filters
kernel_size : kernel (filter) size
strides : strides
padding : how to pad when filter overlaps the edge
activation : activation function
use_bias : whether to include the bias
initializer : kernel initializer
regularizer : kernel regularizer
"""
if 'regularizer' in hyperparameters:
regularizer = hyperparameters['regularizer']
del hyperparameters['regularizer']
else:
regularizer = self.regularizer
if 'initializer' in hyperparameters:
initializer = hyperparameters['initializer']
del hyperparameters['initializer']
else:
initializer = self.initializer
if 'use_bias' in hyperparameters:
use_bias = hyperparameters['use_bias']
del hyperparameters['use_bias']
else:
use_bias = self.use_bias
x = self._conv(n_filters, kernel_size, strides=strides, padding=padding,
activation=activation, use_bias=use_bias,
kernel_initializer=initializer, kernel_regularizer=regularizer)(x)
return x
def Conv2DTranspose(self, x, n_filters, kernel_size, strides=(1, 1), padding='valid', activation=None, **hyperparameters):
""" Construct a Conv2DTranspose layer
x : input to layer
n_filters : number of filters
kernel_size : kernel (filter) size
strides : strides
padding : how to pad when filter overlaps the edge
activation : activation function
use_bias : whether to include the bias
initializer : kernel initializer
regularizer : kernel regularizer
"""
if 'regularizer' in hyperparameters:
regularizer = hyperparameters['regularizer']
else:
regularizer = self.regularizer
if 'initializer' in hyperparameters:
initializer = hyperparameters['initializer']
else:
initializer = self.initializer
if 'use_bias' in hyperparameters:
use_bias = hyperparameters['use_bias']
else:
use_bias = self.use_bias
x = Conv2DTranspose(n_filters, kernel_size, strides=strides, padding=padding, activation=activation,
use_bias=use_bias, kernel_initializer=initializer, kernel_regularizer=regularizer)(x)
return x
def DepthwiseConv2D(self, x, kernel_size, strides=(1, 1), padding='valid', activation=None, **hyperparameters):
""" Construct a DepthwiseConv2D layer
x : input to layer
kernel_size : kernel (filter) size
strides : strides
padding : how to pad when filter overlaps the edge
activation : activation function
use_bias : whether to include the bias
initializer : kernel initializer
regularizer : kernel regularizer
"""
if 'regularizer' in hyperparameters:
regularizer = hyperparameters['regularizer']
else:
regularizer = self.regularizer
if 'initializer' in hyperparameters:
initializer = hyperparameters['initializer']
else:
initializer = self.initializer
if 'use_bias' in hyperparameters:
use_bias = hyperparameters['use_bias']
else:
use_bias = self.use_bias
x = DepthwiseConv2D(kernel_size, strides=strides, padding=padding, activation=activation,
use_bias=use_bias, kernel_initializer=initializer, kernel_regularizer=regularizer)(x)
return x
def SeparableConv2D(self, x, n_filters, kernel_size, strides=(1, 1), padding='valid', activation=None, **hyperparameters):
""" Construct a SeparableConv2D layer
x : input to layer
n_filters : number of filters
kernel_size : kernel (filter) size
strides : strides
padding : how to pad when filter overlaps the edge
activation : activation function
use_bias : whether to include the bias
initializer : kernel initializer
regularizer : kernel regularizer
"""
if 'regularizer' in hyperparameters:
regularizer = hyperparameters['regularizer']
else:
regularizer = self.regularizer
if 'initializer' in hyperparameters:
initializer = hyperparameters['initializer']
else:
initializer = self.initializer
if 'use_bias' in hyperparameters:
use_bias = hyperparameters['use_bias']
else:
use_bias = self.use_bias
x = SeparableConv2D(n_filters, kernel_size, strides=strides, padding=padding, activation=activation,
use_bias=use_bias, kernel_initializer=initializer, kernel_regularizer=regularizer)(x)
return x
def ReLU(self, x):
""" Construct ReLU activation function
x : input to activation function
"""
x = ReLU(self.relu_clip)(x)
return x
def HS(self, x):
""" Construct Hard Swish activation function
x : input to activation function
"""
return (x * K.relu(x + 3, max_value=6.0)) / 6.0
def BatchNormalization(self, x, **params):
""" Construct a Batch Normalization function
x : input to function
"""
x = BatchNormalization(epsilon=self.bn_epsilon, **params)(x)
return x
def ConvBNReLU(self, inputs, n_filters, kernel_size, strides=1, padding='same',
**hyperparameters):
''' Construct post-activation batchnorm '''
outputs = inputs
outputs = self.Conv2D(outputs, n_filters, kernel_size, strides=strides,
padding=padding, **hyperparameters)
outputs = self.BatchNormalization(outputs, **hyperparameters)
outputs = self.ReLU(outputs, **hyperparameters)
return outputs
def BNReLUConv(self, inputs, n_filters, kernel_size, strides=1, padding='same',
**hyperparameters):
''' Construct pre-activation batchnorm '''
outputs = inputs
outputs = self.BatchNormalization(outputs, **hyperparameters)
outputs = self.ReLU(outputs, **hyperparameters)
outputs = self.Conv2D(outputs, n_filters, kernel_size, strides=strides,
padding=padding, **hyperparameters)
return outputs
###
# Pre-stem Layers
###
class Normalize(layers.Layer):
""" Custom Layer for Preprocessing Input - Normalization """
def __init__(self, max=255.0, **parameters):
""" Constructor """
super(Composable.Normalize, self).__init__(**parameters)
self.max = max
def build(self, input_shape):
""" Handler for Build (Functional) or Compile (Sequential) operation """
self.kernel = None # no learnable parameters
@tf.function
def call(self, inputs):
""" Handler for run-time invocation of layer """
inputs = inputs / self.max
return inputs
class Standarize(layers.Layer):
""" Custom Layer for Preprocessing Input - Standardization """
def __init__(self, mean, std, **parameters):
""" Constructor """
super(Composable.Standardize, self).__init__(**parameters)
self.mean = mean
self.std = std
def build(self, input_shape):
""" Handler for Build (Functional) or Compile (Sequential) operation """
self.kernel = None # no learnable parameters
@tf.function
def call(self, inputs):
""" Handler for run-time invocation of layer """
inputs = (inputs - self.mean) / self.std
return inputs
###
# Post-task layers
###
def freeze(self):
""" Freeze all the layers in the model """
for layer in self._model.layers:
layer.trainable = False
class Argmax(layers.Layer):
""" Custom Layer for Postprocessing Output - """
def __init__(self, **parameters):
""" Constructor """
super().__init__(**parameters)
def build(self, input_shape=None, **parameters):
""" Handler for Build (Functional) or Compile (Sequential) operation """
self.kernel = None # no learnable parameters
@tf.function
def call(self, inputs, *args, **parameters):
if 'training' in parameters:
training = parameters['training']
del parameters['training']
else:
training = False
if not training:
# inputs should be a 1D vector from softmax
index = tf.math.argmax(inputs, axis=1)
else:
index = tf.constant(-1, dtype=tf.int64)
return index