-
-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathgenerate_code_node.py
329 lines (271 loc) · 13.7 KB
/
generate_code_node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
"""
GenerateCodeNode Module
"""
from typing import Any, Dict, List, Optional
from langchain.prompts import PromptTemplate
from langchain.output_parsers import ResponseSchema, StructuredOutputParser
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableParallel
from langchain_core.utils.pydantic import is_basemodel_subclass
from langchain_community.chat_models import ChatOllama
import ast
import sys
from io import StringIO
from bs4 import BeautifulSoup
import re
from tqdm import tqdm
from .base_node import BaseNode
from pydantic import ValidationError
from ..utils import (transform_schema,
extract_code,
syntax_focused_analysis, syntax_focused_code_generation,
execution_focused_analysis, execution_focused_code_generation,
validation_focused_analysis, validation_focused_code_generation,
semantic_focused_analysis, semantic_focused_code_generation,
are_content_equal)
from jsonschema import validate, ValidationError
import json
from ..prompts import (
TEMPLATE_INIT_CODE_GENERATION, TEMPLATE_SEMANTIC_COMPARISON
)
class GenerateCodeNode(BaseNode):
"""
A node that generates Python code for a function that extracts data from HTML based on a output schema.
Attributes:
llm_model: An instance of a language model client, configured for generating answers.
verbose (bool): A flag indicating whether to show print statements during execution.
Args:
input (str): Boolean expression defining the input keys needed from the state.
output (List[str]): List of output keys to be updated in the state.
node_config (dict): Additional configuration for the node.
node_name (str): The unique identifier name for the node, defaulting to "GenerateAnswer".
"""
def __init__(
self,
input: str,
output: List[str],
node_config: Optional[dict] = None,
node_name: str = "GenerateCode",
):
super().__init__(node_name, "node", input, output, 2, node_config)
self.llm_model = node_config["llm_model"]
if isinstance(node_config["llm_model"], ChatOllama):
self.llm_model.format="json"
self.verbose = (
True if node_config is None else node_config.get("verbose", False)
)
self.force = (
False if node_config is None else node_config.get("force", False)
)
self.script_creator = (
False if node_config is None else node_config.get("script_creator", False)
)
self.is_md_scraper = (
False if node_config is None else node_config.get("is_md_scraper", False)
)
self.additional_info = node_config.get("additional_info")
self.max_iterations = node_config.get("max_iterations", {
"overall": 10,
"syntax": 3,
"execution": 3,
"validation": 3,
"semantic": 3
})
self.output_schema = node_config.get("schema")
def execute(self, state: dict) -> dict:
"""
Generates Python code for a function that extracts data from HTML based on a output schema.
Args:
state (dict): The current state of the graph. The input keys will be used
to fetch the correct data from the state.
Returns:
dict: The updated state with the output key containing the generated answer.
Raises:
KeyError: If the input keys are not found in the state, indicating
that the necessary information for generating an answer is missing.
RuntimeError: If the maximum number of iterations is reached without obtaining the desired code.
"""
self.logger.info(f"--- Executing {self.node_name} Node ---")
input_keys = self.get_input_keys(state)
input_data = [state[key] for key in input_keys]
user_prompt = input_data[0]
refined_prompt = input_data[1]
html_info = input_data[2]
reduced_html = input_data[3]
answer = input_data[4]
self.raw_html = state['original_html'][0].page_content
simplefied_schema = str(transform_schema(self.output_schema.schema()))
reasoning_state = {
"user_input": user_prompt,
"json_schema": simplefied_schema,
"initial_analysis": refined_prompt,
"html_code": reduced_html,
"html_analysis": html_info,
"generated_code": "",
"execution_result": None,
"reference_answer": answer,
"errors": {
"syntax": [],
"execution": [],
"validation": [],
"semantic": []
},
"iteration": 0
}
final_state = self.overall_reasoning_loop(reasoning_state)
state.update({self.output[0]: final_state["generated_code"]})
return state
def overall_reasoning_loop(self, state: dict) -> dict:
self.logger.info(f"--- (Generating Code) ---")
state["generated_code"] = self.generate_initial_code(state)
state["generated_code"] = extract_code(state["generated_code"])
while state["iteration"] < self.max_iterations["overall"]:
state["iteration"] += 1
if self.verbose:
self.logger.info(f"--- Iteration {state['iteration']} ---")
self.logger.info(f"--- (Checking Code Syntax) ---")
state = self.syntax_reasoning_loop(state)
if state["errors"]["syntax"]:
continue
self.logger.info(f"--- (Executing the Generated Code) ---")
state = self.execution_reasoning_loop(state)
if state["errors"]["execution"]:
continue
self.logger.info(f"--- (Validate the Code Output Schema) ---")
state = self.validation_reasoning_loop(state)
if state["errors"]["validation"]:
continue
self.logger.info(f"--- (Checking if the informations exctrcated are the ones Requested) ---")
state = self.semantic_comparison_loop(state)
if state["errors"]["semantic"]:
continue
break
if state["iteration"] == self.max_iterations["overall"] and (state["errors"]["syntax"] or state["errors"]["execution"] or state["errors"]["validation"] or state["errors"]["semantic"]):
raise RuntimeError("Max iterations reached without obtaining the desired code.")
self.logger.info(f"--- (Code Generated Correctly) ---")
return state
def syntax_reasoning_loop(self, state: dict) -> dict:
for _ in range(self.max_iterations["syntax"]):
syntax_valid, syntax_message = self.syntax_check(state["generated_code"])
if syntax_valid:
state["errors"]["syntax"] = []
return state
state["errors"]["syntax"] = [syntax_message]
self.logger.info(f"--- (Synax Error Found: {syntax_message}) ---")
analysis = syntax_focused_analysis(state, self.llm_model)
self.logger.info(f"--- (Regenerating Code to fix the Error) ---")
state["generated_code"] = syntax_focused_code_generation(state, analysis, self.llm_model)
state["generated_code"] = extract_code(state["generated_code"])
return state
def execution_reasoning_loop(self, state: dict) -> dict:
for _ in range(self.max_iterations["execution"]):
execution_success, execution_result = self.create_sandbox_and_execute(state["generated_code"])
if execution_success:
state["execution_result"] = execution_result
state["errors"]["execution"] = []
return state
state["errors"]["execution"] = [execution_result]
self.logger.info(f"--- (Code Execution Error: {execution_result}) ---")
analysis = execution_focused_analysis(state, self.llm_model)
self.logger.info(f"--- (Regenerating Code to fix the Error) ---")
state["generated_code"] = execution_focused_code_generation(state, analysis, self.llm_model)
state["generated_code"] = extract_code(state["generated_code"])
return state
def validation_reasoning_loop(self, state: dict) -> dict:
for _ in range(self.max_iterations["validation"]):
validation, errors = self.validate_dict(state["execution_result"], self.output_schema.schema())
if validation:
state["errors"]["validation"] = []
return state
state["errors"]["validation"] = errors
self.logger.info(f"--- (Code Output not compliant to the deisred Output Schema) ---")
analysis = validation_focused_analysis(state, self.llm_model)
self.logger.info(f"--- (Regenerating Code to make the Output compliant to the deisred Output Schema) ---")
state["generated_code"] = validation_focused_code_generation(state, analysis, self.llm_model)
state["generated_code"] = extract_code(state["generated_code"])
return state
def semantic_comparison_loop(self, state: dict) -> dict:
for _ in range(self.max_iterations["semantic"]):
comparison_result = self.semantic_comparison(state["execution_result"], state["reference_answer"])
if comparison_result["are_semantically_equivalent"]:
state["errors"]["semantic"] = []
return state
state["errors"]["semantic"] = comparison_result["differences"]
self.logger.info(f"--- (The informations exctrcated are not the all ones requested) ---")
analysis = semantic_focused_analysis(state, comparison_result, self.llm_model)
self.logger.info(f"--- (Regenerating Code to obtain all the infromation requested) ---")
state["generated_code"] = semantic_focused_code_generation(state, analysis, self.llm_model)
state["generated_code"] = extract_code(state["generated_code"])
return state
def generate_initial_code(self, state: dict) -> str:
prompt = PromptTemplate(
template=TEMPLATE_INIT_CODE_GENERATION,
partial_variables={
"user_input": state["user_input"],
"json_schema": state["json_schema"],
"initial_analysis": state["initial_analysis"],
"html_code": state["html_code"],
"html_analysis": state["html_analysis"]
})
output_parser = StrOutputParser()
chain = prompt | self.llm_model | output_parser
generated_code = chain.invoke({})
return generated_code
def semantic_comparison(self, generated_result: Any, reference_result: Any) -> Dict[str, Any]:
reference_result_dict = self.output_schema(**reference_result).dict()
# Check if generated result and reference result are actually equal
if are_content_equal(generated_result, reference_result_dict):
return {
"are_semantically_equivalent": True,
"differences": [],
"explanation": "The generated result and reference result are exactly equal."
}
response_schemas = [
ResponseSchema(name="are_semantically_equivalent", description="Boolean indicating if the results are semantically equivalent"),
ResponseSchema(name="differences", description="List of semantic differences between the results, if any"),
ResponseSchema(name="explanation", description="Detailed explanation of the comparison and reasoning")
]
output_parser = StructuredOutputParser.from_response_schemas(response_schemas)
prompt = PromptTemplate(
template=TEMPLATE_SEMANTIC_COMPARISON,
input_variables=["generated_result", "reference_result"],
partial_variables={"format_instructions": output_parser.get_format_instructions()}
)
chain = prompt | self.llm_model | output_parser
return chain.invoke({
"generated_result": json.dumps(generated_result, indent=2),
"reference_result": json.dumps(reference_result_dict, indent=2)
})
def syntax_check(self, code):
try:
ast.parse(code)
return True, "Syntax is correct."
except SyntaxError as e:
return False, f"Syntax error: {str(e)}"
def create_sandbox_and_execute(self, function_code):
# Create a sandbox environment
sandbox_globals = {
'BeautifulSoup': BeautifulSoup,
're': re,
'__builtins__': __builtins__,
}
old_stdout = sys.stdout
sys.stdout = StringIO()
try:
exec(function_code, sandbox_globals)
extract_data = sandbox_globals.get('extract_data')
if not extract_data:
raise NameError("Function 'extract_data' not found in the generated code.")
result = extract_data(self.raw_html)
return True, result
except Exception as e:
return False, f"Error during execution: {str(e)}"
finally:
sys.stdout = old_stdout
def validate_dict(self, data: dict, schema):
try:
validate(instance=data, schema=schema)
return True, None
except ValidationError as e:
errors = e.errors()
return False, errors