-
-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathfetch_node_level_k.py
311 lines (266 loc) · 11.4 KB
/
fetch_node_level_k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
"""
fetch_node_level_k module
"""
from typing import List, Optional
from urllib.parse import urljoin
from bs4 import BeautifulSoup
from langchain_core.documents import Document
from ..docloaders import ChromiumLoader
from .base_node import BaseNode
class FetchNodeLevelK(BaseNode):
"""
A node responsible for fetching the HTML content of a specified URL and all its sub-links
recursively up to a certain level of hyperlink the graph. This content is then used to update
the graph's state. It uses ChromiumLoader to fetch the content from a web page asynchronously
(with proxy protection).
Attributes:
embedder_model: An optional model for embedding the fetched content.
verbose (bool): A flag indicating whether to show print statements during execution.
cache_path (str): Path to cache fetched content.
headless (bool): Whether to run the Chromium browser in headless mode.
loader_kwargs (dict): Additional arguments for the content loader.
browser_base (dict): Optional configuration for the browser base API.
depth (int): Maximum depth of hyperlink graph traversal.
only_inside_links (bool): Whether to fetch only internal links.
min_input_len (int): Minimum required length of input data.
Args:
input (str): Boolean expression defining the input keys needed from the state.
output (List[str]): List of output keys to be updated in the state.
node_config (dict): Additional configuration for the node.
node_name (str): The unique identifier name for the node, defaulting to "FetchLevelK".
"""
def __init__(
self,
input: str,
output: List[str],
node_config: Optional[dict] = None,
node_name: str = "FetchLevelK",
):
"""
Initializes the FetchNodeLevelK instance.
Args:
input (str): Boolean expression defining the input keys needed from the state.
output (List[str]): List of output keys to be updated in the state.
node_config (Optional[dict]): Additional configuration for the node.
node_name (str): The name of the node (default is "FetchLevelK").
"""
super().__init__(node_name, "node", input, output, 2, node_config)
self.embedder_model = node_config.get("embedder_model", None)
self.verbose = node_config.get("verbose", False) if node_config else False
self.cache_path = node_config.get("cache_path", False)
self.headless = node_config.get("headless", True) if node_config else True
self.loader_kwargs = node_config.get("loader_kwargs", {}) if node_config else {}
self.browser_base = node_config.get("browser_base", None)
self.scrape_do = node_config.get("scrape_do", None)
self.storage_state = node_config.get("storage_state", None)
self.depth = node_config.get("depth", 1) if node_config else 1
self.only_inside_links = (
node_config.get("only_inside_links", False) if node_config else False
)
self.min_input_len = 1
def execute(self, state: dict) -> dict:
"""
Executes the node's logic to fetch the HTML content of a specified URL and its sub-links
recursively, then updates the graph's state with the fetched content.
Args:
state (dict): The current state of the graph.
Returns:
dict: The updated state with a new output key containing the fetched HTML content.
Raises:
KeyError: If the input key is not found in the state.
"""
self.logger.info(f"--- Executing {self.node_name} Node ---")
input_keys = self.get_input_keys(state)
input_data = [state[key] for key in input_keys]
source = input_data[0]
documents = [{"source": source}]
loader_kwargs = (
self.node_config.get("loader_kwargs", {}) if self.node_config else {}
)
for _ in range(self.depth):
documents = self.obtain_content(documents, loader_kwargs)
filtered_documents = [doc for doc in documents if "document" in doc]
state.update({self.output[0]: filtered_documents})
return state
def fetch_content(self, source: str, loader_kwargs) -> Optional[str]:
"""
Fetches the HTML content of a given source URL.
Args:
source (str): The URL to fetch content from.
loader_kwargs (dict): Additional arguments for the content loader.
Returns:
Optional[str]: The fetched HTML content or None if fetching failed.
"""
self.logger.info(f"--- (Fetching HTML from: {source}) ---")
if self.browser_base is not None:
try:
from ..docloaders.browser_base import browser_base_fetch
except ImportError:
raise ImportError(
"""The browserbase module is not installed.
Please install it using `pip install browserbase`."""
)
data = browser_base_fetch(
self.browser_base.get("api_key"),
self.browser_base.get("project_id"),
[source],
)
document = [
Document(page_content=content, metadata={"source": source})
for content in data
]
elif self.scrape_do:
from ..docloaders.scrape_do import scrape_do_fetch
data = scrape_do_fetch(self.scrape_do.get("api_key"), source)
document = [Document(page_content=data, metadata={"source": source})]
else:
loader = ChromiumLoader(
[source],
headless=self.headless,
storage_state=self.storage_state,
**loader_kwargs,
)
document = loader.load()
return document
def extract_links(self, html_content: str) -> list:
"""
Extracts all hyperlinks from the HTML content.
Args:
html_content (str): The HTML content to extract links from.
Returns:
list: A list of extracted hyperlinks.
"""
soup = BeautifulSoup(html_content, "html.parser")
links = [link["href"] for link in soup.find_all("a", href=True)]
self.logger.info(f"Extracted {len(links)} links.")
return links
def get_full_links(self, base_url: str, links: list) -> list:
"""
Converts relative URLs to full URLs based on the base URL.
Filters out non-web links (mailto:, tel:, javascript:, etc.).
Args:
base_url (str): The base URL for resolving relative links.
links (list): A list of links to convert.
Returns:
list: A list of valid full URLs.
"""
# List of invalid URL schemes to filter out
invalid_schemes = {
"mailto:",
"tel:",
"fax:",
"sms:",
"callto:",
"wtai:",
"javascript:",
"data:",
"file:",
"ftp:",
"irc:",
"news:",
"nntp:",
"feed:",
"webcal:",
"skype:",
"im:",
"mtps:",
"spotify:",
"steam:",
"teamspeak:",
"udp:",
"unreal:",
"ut2004:",
"ventrilo:",
"view-source:",
"ws:",
"wss:",
}
full_links = []
for link in links:
# Skip if link starts with any invalid scheme
if any(link.lower().startswith(scheme) for scheme in invalid_schemes):
continue
# Skip if it's an external link and only_inside_links is True
if self.only_inside_links and link.startswith(("http://", "https://")):
continue
# Convert relative URLs to absolute URLs
try:
full_link = (
link
if link.startswith(("http://", "https://"))
else urljoin(base_url, link)
)
# Ensure the final URL starts with http:// or https://
if full_link.startswith(("http://", "https://")):
full_links.append(full_link)
except Exception as e:
self.logger.warning(f"Failed to process link {link}: {str(e)}")
return full_links
def obtain_content(self, documents: List, loader_kwargs) -> List:
"""
Iterates through documents, fetching and updating content recursively.
Args:
documents (List): A list of documents containing the source URLs.
loader_kwargs (dict): Additional arguments for the content loader.
Returns:
List: The updated list of documents with fetched content.
"""
new_documents = []
for doc in documents:
source = doc["source"]
if "document" not in doc:
try:
document = self.fetch_content(source, loader_kwargs)
except Exception as e:
self.logger.warning(
f"Failed to fetch content for {source}: {str(e)}"
)
continue
if not document or not document[0].page_content.strip():
self.logger.warning(f"Failed to fetch content for {source}")
documents.remove(doc)
continue
doc["document"] = document
links = self.extract_links(doc["document"][0].page_content)
full_links = self.get_full_links(source, links)
for link in full_links:
if not any(
d.get("source", "") == link for d in documents
) and not any(d.get("source", "") == link for d in new_documents):
new_documents.append({"source": link})
documents.extend(new_documents)
return documents
def process_links(
self,
base_url: str,
links: list,
loader_kwargs,
depth: int,
current_depth: int = 1,
) -> dict:
"""
Processes a list of links recursively up to a given depth.
Args:
base_url (str): The base URL for resolving relative links.
links (list): A list of links to process.
loader_kwargs (dict): Additional arguments for the content loader.
depth (int): The maximum depth for recursion.
current_depth (int): The current depth of recursion (default is 1).
Returns:
dict: A dictionary containing processed link content.
"""
content_dict = {}
for idx, link in enumerate(links, start=1):
full_link = link if link.startswith("http") else urljoin(base_url, link)
self.logger.info(f"Processing link {idx}: {full_link}")
link_content = self.fetch_content(full_link, loader_kwargs)
if current_depth < depth:
new_links = self.extract_links(link_content)
content_dict.update(
self.process_links(
full_link, new_links, loader_kwargs, depth, current_depth + 1
)
)
else:
self.logger.warning(f"Failed to fetch content for {full_link}")
return content_dict