-
-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathgenerate_code_node.py
489 lines (409 loc) · 17.3 KB
/
generate_code_node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
"""
GenerateCodeNode Module
"""
import ast
import json
import re
import sys
from io import StringIO
from typing import Any, Dict, List, Optional
from bs4 import BeautifulSoup
from jsonschema import ValidationError as JSONSchemaValidationError
from jsonschema import validate
from langchain.output_parsers import ResponseSchema, StructuredOutputParser
from langchain.prompts import PromptTemplate
from langchain_community.chat_models import ChatOllama
from langchain_core.output_parsers import StrOutputParser
from ..prompts import TEMPLATE_INIT_CODE_GENERATION, TEMPLATE_SEMANTIC_COMPARISON
from ..utils import (
are_content_equal,
execution_focused_analysis,
execution_focused_code_generation,
extract_code,
semantic_focused_analysis,
semantic_focused_code_generation,
syntax_focused_analysis,
syntax_focused_code_generation,
transform_schema,
validation_focused_analysis,
validation_focused_code_generation,
)
from .base_node import BaseNode
class GenerateCodeNode(BaseNode):
"""
A node that generates Python code for a function that extracts data
from HTML based on a output schema.
Attributes:
llm_model: An instance of a language model client, configured for generating answers.
verbose (bool): A flag indicating whether to show print statements during execution.
Args:
input (str): Boolean expression defining the input keys needed from the state.
output (List[str]): List of output keys to be updated in the state.
node_config (dict): Additional configuration for the node.
node_name (str): The unique identifier name for the node, defaulting to "GenerateAnswer".
"""
def __init__(
self,
input: str,
output: List[str],
node_config: Optional[dict] = None,
node_name: str = "GenerateCode",
):
super().__init__(node_name, "node", input, output, 2, node_config)
self.llm_model = node_config["llm_model"]
if isinstance(node_config["llm_model"], ChatOllama):
self.llm_model.format = "json"
self.verbose = (
True if node_config is None else node_config.get("verbose", False)
)
self.force = False if node_config is None else node_config.get("force", False)
self.script_creator = (
False if node_config is None else node_config.get("script_creator", False)
)
self.is_md_scraper = (
False if node_config is None else node_config.get("is_md_scraper", False)
)
self.additional_info = node_config.get("additional_info")
self.max_iterations = node_config.get(
"max_iterations",
{
"overall": 10,
"syntax": 3,
"execution": 3,
"validation": 3,
"semantic": 3,
},
)
self.output_schema = node_config.get("schema")
def execute(self, state: dict) -> dict:
"""
Generates Python code for a function that extracts data from HTML based on a output schema.
Args:
state (dict): The current state of the graph. The input keys will be used
to fetch the correct data from the state.
Returns:
dict: The updated state with the output key containing the generated answer.
Raises:
KeyError: If the input keys are not found in the state, indicating
that the necessary information for generating an answer is missing.
RuntimeError: If the maximum number of iterations is
reached without obtaining the desired code.
"""
self.logger.info(f"--- Executing {self.node_name} Node ---")
input_keys = self.get_input_keys(state)
input_data = [state[key] for key in input_keys]
user_prompt = input_data[0]
refined_prompt = input_data[1]
html_info = input_data[2]
reduced_html = input_data[3]
answer = input_data[4]
self.raw_html = state["original_html"][0].page_content
simplefied_schema = str(transform_schema(self.output_schema.schema()))
reasoning_state = {
"user_input": user_prompt,
"json_schema": simplefied_schema,
"initial_analysis": refined_prompt,
"html_code": reduced_html,
"html_analysis": html_info,
"generated_code": "",
"execution_result": None,
"reference_answer": answer,
"errors": {"syntax": [], "execution": [], "validation": [], "semantic": []},
"iteration": 0,
}
final_state = self.overall_reasoning_loop(reasoning_state)
state.update({self.output[0]: final_state["generated_code"]})
return state
def overall_reasoning_loop(self, state: dict) -> dict:
"""
Executes the overall reasoning loop to generate and validate the code.
Args:
state (dict): The current state of the reasoning process.
Returns:
dict: The final state after the reasoning loop.
Raises:
RuntimeError: If the maximum number of iterations
is reached without obtaining the desired code.
"""
self.logger.info("--- (Generating Code) ---")
state["generated_code"] = self.generate_initial_code(state)
state["generated_code"] = extract_code(state["generated_code"])
while state["iteration"] < self.max_iterations["overall"]:
state["iteration"] += 1
if self.verbose:
self.logger.info(f"--- Iteration {state['iteration']} ---")
self.logger.info("--- (Checking Code Syntax) ---")
state = self.syntax_reasoning_loop(state)
if state["errors"]["syntax"]:
continue
self.logger.info("--- (Executing the Generated Code) ---")
state = self.execution_reasoning_loop(state)
if state["errors"]["execution"]:
continue
self.logger.info("--- (Validate the Code Output Schema) ---")
state = self.validation_reasoning_loop(state)
if state["errors"]["validation"]:
continue
self.logger.info(
"""--- (Checking if the informations
exctrcated are the ones Requested) ---"""
)
state = self.semantic_comparison_loop(state)
if state["errors"]["semantic"]:
continue
break
if state["iteration"] == self.max_iterations["overall"] and (
state["errors"]["syntax"]
or state["errors"]["execution"]
or state["errors"]["validation"]
or state["errors"]["semantic"]
):
raise RuntimeError(
"Max iterations reached without obtaining the desired code."
)
self.logger.info("--- (Code Generated Correctly) ---")
return state
def syntax_reasoning_loop(self, state: dict) -> dict:
"""
Executes the syntax reasoning loop to ensure the generated code has correct syntax.
Args:
state (dict): The current state of the reasoning process.
Returns:
dict: The updated state after the syntax reasoning loop.
"""
for _ in range(self.max_iterations["syntax"]):
syntax_valid, syntax_message = self.syntax_check(state["generated_code"])
if syntax_valid:
state["errors"]["syntax"] = []
return state
state["errors"]["syntax"] = [syntax_message]
self.logger.info(f"--- (Synax Error Found: {syntax_message}) ---")
analysis = syntax_focused_analysis(state, self.llm_model)
self.logger.info(
"""--- (Regenerating Code
to fix the Error) ---"""
)
state["generated_code"] = syntax_focused_code_generation(
state, analysis, self.llm_model
)
state["generated_code"] = extract_code(state["generated_code"])
return state
def execution_reasoning_loop(self, state: dict) -> dict:
"""
Executes the execution reasoning loop to ensure the generated code runs without errors.
Args:
state (dict): The current state of the reasoning process.
Returns:
dict: The updated state after the execution reasoning loop.
"""
for _ in range(self.max_iterations["execution"]):
execution_success, execution_result = self.create_sandbox_and_execute(
state["generated_code"]
)
if execution_success:
state["execution_result"] = execution_result
state["errors"]["execution"] = []
return state
state["errors"]["execution"] = [execution_result]
self.logger.info(f"--- (Code Execution Error: {execution_result}) ---")
analysis = execution_focused_analysis(state, self.llm_model)
self.logger.info("--- (Regenerating Code to fix the Error) ---")
state["generated_code"] = execution_focused_code_generation(
state, analysis, self.llm_model
)
state["generated_code"] = extract_code(state["generated_code"])
return state
def validation_reasoning_loop(self, state: dict) -> dict:
"""
Executes the validation reasoning loop to ensure the
generated code's output matches the desired schema.
Args:
state (dict): The current state of the reasoning process.
Returns:
dict: The updated state after the validation reasoning loop.
"""
for _ in range(self.max_iterations["validation"]):
validation, errors = self.validate_dict(
state["execution_result"], self.output_schema.schema()
)
if validation:
state["errors"]["validation"] = []
return state
state["errors"]["validation"] = errors
self.logger.info(
"--- (Code Output not compliant to the deisred Output Schema) ---"
)
analysis = validation_focused_analysis(state, self.llm_model)
self.logger.info(
"""--- (Regenerating Code to make the
Output compliant to the deisred Output Schema) ---"""
)
state["generated_code"] = validation_focused_code_generation(
state, analysis, self.llm_model
)
state["generated_code"] = extract_code(state["generated_code"])
return state
def semantic_comparison_loop(self, state: dict) -> dict:
"""
Executes the semantic comparison loop to ensure the generated code's
output is semantically equivalent to the reference answer.
Args:
state (dict): The current state of the reasoning process.
Returns:
dict: The updated state after the semantic comparison loop.
"""
for _ in range(self.max_iterations["semantic"]):
comparison_result = self.semantic_comparison(
state["execution_result"], state["reference_answer"]
)
if comparison_result["are_semantically_equivalent"]:
state["errors"]["semantic"] = []
return state
state["errors"]["semantic"] = comparison_result["differences"]
self.logger.info(
"""--- (The informations exctrcated
are not the all ones requested) ---"""
)
analysis = semantic_focused_analysis(
state, comparison_result, self.llm_model
)
self.logger.info(
"""--- (Regenerating Code to
obtain all the infromation requested) ---"""
)
state["generated_code"] = semantic_focused_code_generation(
state, analysis, self.llm_model
)
state["generated_code"] = extract_code(state["generated_code"])
return state
def generate_initial_code(self, state: dict) -> str:
"""
Generates the initial code based on the provided state.
Args:
state (dict): The current state of the reasoning process.
Returns:
str: The initially generated code.
"""
prompt = PromptTemplate(
template=TEMPLATE_INIT_CODE_GENERATION,
partial_variables={
"user_input": state["user_input"],
"json_schema": state["json_schema"],
"initial_analysis": state["initial_analysis"],
"html_code": state["html_code"],
"html_analysis": state["html_analysis"],
},
)
output_parser = StrOutputParser()
chain = prompt | self.llm_model | output_parser
generated_code = chain.invoke({})
return generated_code
def semantic_comparison(
self, generated_result: Any, reference_result: Any
) -> Dict[str, Any]:
"""
Performs a semantic comparison between the generated result and the reference result.
Args:
generated_result (Any): The result generated by the code.
reference_result (Any): The reference result for comparison.
Returns:
Dict[str, Any]: A dictionary containing the comparison result,
differences, and explanation.
"""
reference_result_dict = self.output_schema(**reference_result).dict()
if are_content_equal(generated_result, reference_result_dict):
return {
"are_semantically_equivalent": True,
"differences": [],
"explanation": "The generated result and reference result are exactly equal.",
}
response_schemas = [
ResponseSchema(
name="are_semantically_equivalent",
description="""Boolean indicating if the
results are semantically equivalent""",
),
ResponseSchema(
name="differences",
description="""List of semantic differences
between the results, if any""",
),
ResponseSchema(
name="explanation",
description="""Detailed explanation of the
comparison and reasoning""",
),
]
output_parser = StructuredOutputParser.from_response_schemas(response_schemas)
prompt = PromptTemplate(
template=TEMPLATE_SEMANTIC_COMPARISON,
input_variables=["generated_result", "reference_result"],
partial_variables={
"format_instructions": output_parser.get_format_instructions()
},
)
chain = prompt | self.llm_model | output_parser
return chain.invoke(
{
"generated_result": json.dumps(generated_result, indent=2),
"reference_result": json.dumps(reference_result_dict, indent=2),
}
)
def syntax_check(self, code):
"""
Checks the syntax of the provided code.
Args:
code (str): The code to be checked for syntax errors.
Returns:
tuple: A tuple containing a boolean indicating if the syntax is correct and a message.
"""
try:
ast.parse(code)
return True, "Syntax is correct."
except SyntaxError as e:
return False, f"Syntax error: {str(e)}"
def create_sandbox_and_execute(self, function_code):
"""
Creates a sandbox environment and executes the provided function code.
Args:
function_code (str): The code to be executed in the sandbox.
Returns:
tuple: A tuple containing a boolean indicating if
the execution was successful and the result or error message.
"""
sandbox_globals = {
"BeautifulSoup": BeautifulSoup,
"re": re,
"__builtins__": __builtins__,
}
old_stdout = sys.stdout
sys.stdout = StringIO()
try:
exec(function_code, sandbox_globals)
extract_data = sandbox_globals.get("extract_data")
if not extract_data:
raise NameError(
"Function 'extract_data' not found in the generated code."
)
result = extract_data(self.raw_html)
return True, result
except Exception as e:
return False, f"Error during execution: {str(e)}"
finally:
sys.stdout = old_stdout
def validate_dict(self, data: dict, schema):
"""
Validates the provided data against the given schema.
Args:
data (dict): The data to be validated.
schema (dict): The schema against which the data is validated.
Returns:
tuple: A tuple containing a boolean indicating
if the validation was successful and a list of errors if any.
"""
try:
validate(instance=data, schema=schema)
return True, None
except JSONSchemaValidationError as e:
errors = [e.message]
return False, errors