-
-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathsearch_internet_node.py
117 lines (89 loc) · 4.16 KB
/
search_internet_node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
"""
SearchInternetNode Module
"""
from typing import List, Optional
from langchain.output_parsers import CommaSeparatedListOutputParser
from langchain.prompts import PromptTemplate
from langchain_community.chat_models import ChatOllama
from ..prompts import TEMPLATE_SEARCH_INTERNET
from ..utils.research_web import search_on_web
from .base_node import BaseNode
class SearchInternetNode(BaseNode):
"""
A node that generates a search query based on the user's input and searches the internet
for relevant information. The node constructs a prompt for the language model, submits it,
and processes the output to generate a search query. It then uses the search query to find
relevant information on the internet and updates the state with the generated answer.
Attributes:
llm_model: An instance of the language model client used for generating search queries.
verbose (bool): A flag indicating whether to show print statements during execution.
Args:
input (str): Boolean expression defining the input keys needed from the state.
output (List[str]): List of output keys to be updated in the state.
node_config (dict): Additional configuration for the node.
node_name (str): The unique identifier name for the node, defaulting to "SearchInternet".
"""
def __init__(
self,
input: str,
output: List[str],
node_config: Optional[dict] = None,
node_name: str = "SearchInternet",
):
super().__init__(node_name, "node", input, output, 1, node_config)
self.llm_model = node_config["llm_model"]
self.verbose = (
False if node_config is None else node_config.get("verbose", False)
)
self.proxy = node_config.get("loader_kwargs", {}).get("proxy", None)
self.search_engine = (
node_config["search_engine"]
if node_config.get("search_engine")
else "duckduckgo"
)
self.serper_api_key = (
node_config["serper_api_key"] if node_config.get("serper_api_key") else None
)
self.max_results = node_config.get("max_results", 3)
def execute(self, state: dict) -> dict:
"""
Generates an answer by constructing a prompt from the user's input and the scraped
content, querying the language model, and parsing its response.
The method updates the state with the generated answer.
Args:
state (dict): The current state of the graph. The input keys will be used to fetch the
correct data types from the state.
Returns:
dict: The updated state with the output key containing the generated answer.
Raises:
KeyError: If the input keys are not found in the state, indicating that the
necessary information for generating the answer is missing.
"""
self.logger.info(f"--- Executing {self.node_name} Node ---")
input_keys = self.get_input_keys(state)
input_data = [state[key] for key in input_keys]
user_prompt = input_data[0]
output_parser = CommaSeparatedListOutputParser()
search_prompt = PromptTemplate(
template=TEMPLATE_SEARCH_INTERNET,
input_variables=["user_prompt"],
)
search_answer = search_prompt | self.llm_model | output_parser
if isinstance(self.llm_model, ChatOllama) and self.llm_model.format == "json":
self.llm_model.format = None
search_query = search_answer.invoke({"user_prompt": user_prompt})[0]
self.llm_model.format = "json"
else:
search_query = search_answer.invoke({"user_prompt": user_prompt})[0]
self.logger.info(f"Search Query: {search_query}")
answer = search_on_web(
query=search_query,
max_results=self.max_results,
search_engine=self.search_engine,
proxy=self.proxy,
serper_api_key=self.serper_api_key,
)
if len(answer) == 0:
raise ValueError("Zero results found for the search query.")
state.update({self.output[0]: answer})
return state