Skip to content

Commit 1cd3b86

Browse files
ggkogkouggkogkougithub-actions
authored
merge: Created midpoint integration numerical method (TheAlgorithms#822)
* Created midpoint integration numerical method * Auto-update DIRECTORY.md * Added resources link * Fixed doxumentation * Fixed spelling error Co-authored-by: ggkogkou <ggkogkou@ggkogkou.gr> Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
1 parent 072523d commit 1cd3b86

File tree

3 files changed

+71
-0
lines changed

3 files changed

+71
-0
lines changed

DIRECTORY.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -174,6 +174,7 @@
174174
* [MatrixExponentiationRecursive](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/MatrixExponentiationRecursive.js)
175175
* [MatrixMultiplication](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/MatrixMultiplication.js)
176176
* [MeanSquareError](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/MeanSquareError.js)
177+
* [MidpointIntegration](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/MidpointIntegration.js)
177178
* [ModularBinaryExponentiationRecursive](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/ModularBinaryExponentiationRecursive.js)
178179
* [NumberOfDigits](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/NumberOfDigits.js)
179180
* [Palindrome](https://github.com/TheAlgorithms/Javascript/blob/master/Maths/Palindrome.js)

Maths/MidpointIntegration.js

Lines changed: 54 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,54 @@
1+
/**
2+
*
3+
* @title Midpoint rule for definite integral evaluation
4+
* @author [ggkogkou](https://github.com/ggkogkou)
5+
* @brief Calculate definite integrals with midpoint method
6+
*
7+
* @details The idea is to split the interval in a number N of intervals and use as interpolation points the xi
8+
* for which it applies that xi = x0 + i*h, where h is a step defined as h = (b-a)/N where a and b are the
9+
* first and last points of the interval of the integration [a, b].
10+
*
11+
* We create a table of the xi and their corresponding f(xi) values and we evaluate the integral by the formula:
12+
* I = h * {f(x0+h/2) + f(x1+h/2) + ... + f(xN-1+h/2)}
13+
*
14+
* N must be > 0 and a<b. By increasing N, we also increase precision
15+
*
16+
* [More info link](https://tutorial.math.lamar.edu/classes/calcii/approximatingdefintegrals.aspx)
17+
*
18+
*/
19+
20+
function integralEvaluation (N, a, b, func) {
21+
// Check if all restrictions are satisfied for the given N, a, b
22+
if (!Number.isInteger(N) || Number.isNaN(a) || Number.isNaN(b)) { throw new TypeError('Expected integer N and finite a, b') }
23+
if (N <= 0) { throw Error('N has to be >= 2') } // check if N > 0
24+
if (a > b) { throw Error('a must be less or equal than b') } // Check if a < b
25+
if (a === b) return 0 // If a === b integral is zero
26+
27+
// Calculate the step h
28+
const h = (b - a) / N
29+
30+
// Find interpolation points
31+
let xi = a // initialize xi = x0
32+
const pointsArray = []
33+
34+
// Find the sum {f(x0+h/2) + f(x1+h/2) + ... + f(xN-1+h/2)}
35+
let temp
36+
for (let i = 0; i < N; i++) {
37+
temp = func(xi + h / 2)
38+
pointsArray.push(temp)
39+
xi += h
40+
}
41+
42+
// Calculate the integral
43+
let result = h
44+
temp = 0
45+
for (let i = 0; i < pointsArray.length; i++) temp += pointsArray[i]
46+
47+
result *= temp
48+
49+
if (Number.isNaN(result)) { throw Error('Result is NaN. The input interval does not belong to the functions domain') }
50+
51+
return result
52+
}
53+
54+
export { integralEvaluation }
Lines changed: 16 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,16 @@
1+
import { integralEvaluation } from '../MidpointIntegration'
2+
3+
test('Should return the integral of f(x) = sqrt(x) in [1, 3] to be equal 2.797434', () => {
4+
const result = integralEvaluation(10000, 1, 3, (x) => { return Math.sqrt(x) })
5+
expect(Number(result.toPrecision(6))).toBe(2.79743)
6+
})
7+
8+
test('Should return the integral of f(x) = sqrt(x) + x^2 in [1, 3] to be equal 11.46410161', () => {
9+
const result = integralEvaluation(10000, 1, 3, (x) => { return Math.sqrt(x) + Math.pow(x, 2) })
10+
expect(Number(result.toPrecision(10))).toBe(11.46410161)
11+
})
12+
13+
test('Should return the integral of f(x) = log(x) + Pi*x^3 in [5, 12] to be equal 15809.9141543', () => {
14+
const result = integralEvaluation(20000, 5, 12, (x) => { return Math.log(x) + Math.PI * Math.pow(x, 3) })
15+
expect(Number(result.toPrecision(10))).toBe(15809.91415)
16+
})

0 commit comments

Comments
 (0)