-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy path64-minimum-path-sum.py
38 lines (32 loc) · 1.2 KB
/
64-minimum-path-sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
"""
Problem Link: https://leetcode.com/problems/minimum-path-sum/
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right,
which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example 1:
Input: grid = [[1,3,1],[1,5,1],[4,2,1]]
Output: 7
Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.
Example 2:
Input: grid = [[1,2,3],[4,5,6]]
Output: 12
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 200
0 <= grid[i][j] <= 100
"""
class Solution:
def minPathSum(self, grid: List[List[int]]) -> int:
dp = [[0] * len(grid[0]) for _ in range(len(grid))]
for row in range(len(grid)):
for col in range(len(grid[0])):
if row == 0 and col == 0:
dp[row][col] = grid[row][col]
elif row == 0:
dp[row][col] = dp[row][col-1] + grid[row][col]
elif col == 0:
dp[row][col] = dp[row-1][col] + grid[row][col]
else:
dp[row][col] = grid[row][col] + min(dp[row-1][col], dp[row][col-1])
return dp[-1][-1]