-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy path70-climbing-stairs.py
57 lines (42 loc) · 1.32 KB
/
70-climbing-stairs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
"""
Problem Link: https://leetcode.com/problems/climbing-stairs/description/
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Note: Given n will be a positive integer.
Example 1:
Input: 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps
Example 2:
Input: 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step
"""
class Solution:
def climbStairs(self, n: int) -> int:
if n <= 2:
return n
second_last_stair, last_stair = 1, 2
for _ in range(3, n+1):
second_last_stair, last_stair = last_stair, last_stair + second_last_stair
return last_stair
class Solution1:
def climbStairs(self, n: int) -> int:
return self.helper(n, {})
def helper(self, n, memo):
if n <= 2:
return n
if n not in memo:
memo[n] = self.helper(n-1, memo) + self.helper(n-2, memo)
return memo[n]
# TLE
class Solution2:
def climbStairs(self, n: int) -> int:
if n <= 2:
return n
return self.climbStairs(n-1) + self.climbStairs(n-2)