-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathmmult.go
527 lines (481 loc) · 13.5 KB
/
mmult.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
// Copyright (c) Harri Rautila, 2012,2013
// This file is part of github.com/hrautila/matops package. It is free software,
// distributed under the terms of GNU Lesser General Public License Version 3, or
// any later version. See the COPYING tile included in this archive.
package matops
import (
"errors"
"github.com/henrylee2cn/algorithm/matops/calgo"
"github.com/henrylee2cn/algorithm/matrix"
"math"
//"fmt"
)
type Flags int
const (
TRANSA = calgo.TRANSA
TRANSB = calgo.TRANSB
LOWER = calgo.LOWER
UPPER = calgo.UPPER
LEFT = calgo.LEFT
RIGHT = calgo.RIGHT
UNIT = calgo.UNIT
TRANS = calgo.TRANS
NOTRANS = calgo.NOTRANS
NONE = calgo.NOTRANS
)
// blocking parameter size for DOT based algorithms
var vpLen int = 196
var nB int = 68
var mB int = 68
// Number of parallel workers to use.
var nWorker int = 1
// problems small than this do not benefit from parallelism
var limitOne int64 = 200 * 200 * 200
// flag indicating what to do on error
var panicOnError bool = false
func onError(msg string) error {
if panicOnError {
panic(msg)
}
return errors.New(msg)
}
// Set panic-on-error flag to newval. If set to true errors cause call
// to panic(). If set to false errors are propagated to caller.
func SetPanicOnError(newval bool) {
panicOnError = newval
}
// Set blocking parameters for blocked algorithms. Hard limits are set
// by actual C-implementation in matops.calgo package.
// Parameter nb defines column direction block size, mb defines row direction
// block size and kb defines inner block size for matrix-matrix multiplication.
func BlockingParams(mb, nb, kb int) {
vpLen = kb
nB = nb
mB = mb
}
func NumWorkers(newWorkers int) int {
oldWorkers := nWorker
nWorker = newWorkers
return oldWorkers
}
func row(A *matrix.FloatMatrix, inds ...int) *matrix.FloatMatrix {
var r matrix.FloatMatrix
switch len(inds) {
case 0:
A.SubMatrix(&r, 0, 0, 1, A.Cols())
case 1:
A.SubMatrix(&r, inds[0], 0, 1, A.Cols())
case 2:
A.SubMatrix(&r, inds[0], 0, 1, inds[1])
default:
A.SubMatrix(&r, inds[0], inds[1], 1, inds[2])
}
return &r
}
func col(A *matrix.FloatMatrix, inds ...int) *matrix.FloatMatrix {
var c matrix.FloatMatrix
switch len(inds) {
case 0:
A.SubMatrix(&c, 0, 0, A.Rows(), 1)
case 1:
A.SubMatrix(&c, inds[0], 0, A.Rows(), 1)
case 2:
A.SubMatrix(&c, inds[0], 0, inds[1], 1)
default:
A.SubMatrix(&c, inds[0], inds[1], inds[2], 1)
}
return &c
}
func blockIndex4(i, r, sz int) int {
if i == r {
return sz
}
return i*sz/r - ((i * sz / r) & 0x3)
}
func blockIndex2(i, r, sz int) int {
if i == r {
return sz
}
return i*sz/r - ((i * sz / r) & 0x1)
}
func isSquared(num int) (int, bool) {
nsqrt := int(math.Sqrt(float64(num)))
issquared := nsqrt*nsqrt == num
return nsqrt, issquared
}
func isVector(X *matrix.FloatMatrix) bool {
return X.Rows() == 1 || X.Cols() == 1
}
func isRowVector(X *matrix.FloatMatrix) bool {
return X.Rows() == 1
}
func isColumnVector(X *matrix.FloatMatrix) bool {
return X.Cols() == 1
}
func divideWork(rows, cols, workers int) (colWorkers int, rowWorkers int) {
colWorkers = 0
rowWorkers = 0
nwsqrt := int(math.Sqrt(float64(workers)))
issquare := nwsqrt*nwsqrt == workers
if workers == 2 || (workers&0x1) != 0 {
// odd number of workers
if cols > rows {
colWorkers = workers
rowWorkers = 1
} else {
rowWorkers = workers
colWorkers = 1
}
} else if issquare {
// square number
colWorkers = nwsqrt
rowWorkers = nwsqrt
} else {
// even number of workers
if cols > rows {
rowWorkers = 2
colWorkers = workers / 2
} else {
colWorkers = 2
rowWorkers = workers / 2
}
}
//fmt.Printf("divideWork: c=%d, r=%d\n", colWorkers, rowWorkers)
return
}
type task func(int, int, int, int, chan int)
func scheduleWork(colworks, rowworks, cols, rows int, worker task) {
ntask := colworks * rowworks
ch := make(chan int, ntask)
for k := 0; k < colworks; k++ {
colstart := blockIndex4(k, colworks, cols)
colend := blockIndex4(k+1, colworks, cols)
for l := 0; l < rowworks; l++ {
rowstart := blockIndex4(l, rowworks, rows)
rowend := blockIndex4(l+1, rowworks, rows)
//fmt.Printf("schedule: S=%d, L=%d, R=%d, E=%d\n", colstart, colend, rowstart, rowend)
go worker(colstart, colend, rowstart, rowend, ch)
}
}
nready := 0
for nready < ntask {
nready += <-ch
}
}
// Generic matrix-matrix multpily. (blas.GEMM). Calculates
// C = beta*C + alpha*A*B (default)
// C = beta*C + alpha*A.T*B flags&TRANSA
// C = beta*C + alpha*A*B.T flags&TRANSB
// C = beta*C + alpha*A.T*B.T flags&(TRANSA|TRANSB)
//
// C is M*N, A is M*P or P*M if flags&TRANSA. B is P*N or N*P if flags&TRANSB.
//
func Mult(C, A, B *matrix.FloatMatrix, alpha, beta float64, flags Flags) error {
var ok, empty bool
// error checking must take in account flag values!
ar, ac := A.Size()
br, bc := B.Size()
cr, cc := C.Size()
switch flags & (TRANSA | TRANSB) {
case TRANSA | TRANSB:
empty = ac == 0 || br == 0
ok = cr == ac && cc == br && ar == bc
case TRANSA:
empty = ac == 0 || bc == 0
ok = cr == ac && cc == bc && ar == br
case TRANSB:
empty = ar == 0 || br == 0
ok = cr == ar && cc == br && ac == bc
default:
empty = ar == 0 || bc == 0
ok = cr == ar && cc == bc && ac == br
}
if empty {
return nil
}
if !ok {
return errors.New("Mult: size mismatch")
}
psize := int64(C.NumElements()) * int64(A.Cols())
Ar := A.FloatArray()
ldA := A.LeadingIndex()
Br := B.FloatArray()
ldB := B.LeadingIndex()
Cr := C.FloatArray()
ldC := C.LeadingIndex()
// matrix A, B common dimension
P := A.Cols()
if flags&TRANSA != 0 {
P = A.Rows()
}
if nWorker <= 1 || psize <= limitOne {
calgo.DMult(Cr, Ar, Br, alpha, beta, calgo.Flags(flags), ldC, ldA, ldB, P,
0, C.Cols(), 0, C.Rows(),
vpLen, nB, mB)
return nil
}
// here we have more than one worker available
worker := func(cstart, cend, rstart, rend int, ready chan int) {
calgo.DMult(Cr, Ar, Br, alpha, beta, calgo.Flags(flags), ldC, ldA, ldB, P,
cstart, cend, rstart, rend, vpLen, nB, mB)
ready <- 1
}
colworks, rowworks := divideWork(C.Rows(), C.Cols(), nWorker)
scheduleWork(colworks, rowworks, C.Cols(), C.Rows(), worker)
return nil
}
// Symmetric matrix multiply. (blas.SYMM)
// C = beta*C + alpha*A*B (default)
// C = beta*C + alpha*A.T*B flags&TRANSA
// C = beta*C + alpha*A*B.T flags&TRANSB
// C = beta*C + alpha*A.T*B.T flags&(TRANSA|TRANSB)
//
// C is N*P, A is N*N symmetric matrix. B is N*P or P*N if flags&TRANSB.
//
func MultSym(C, A, B *matrix.FloatMatrix, alpha, beta float64, flags Flags) error {
var ok, empty bool
ar, ac := A.Size()
br, bc := B.Size()
cr, cc := C.Size()
switch flags & (TRANSA | TRANSB) {
case TRANSA | TRANSB:
empty = ac == 0 || br == 0
ok = ar == ac && cr == ac && cc == br && ar == bc
case TRANSA:
empty = ac == 0 || bc == 0
ok = ar == ac && cr == ac && cc == bc && ar == br
case TRANSB:
empty = ar == 0 || br == 0
ok = ar == ac && cr == ar && cc == br && ac == bc
default:
empty = ar == 0 || bc == 0
ok = ar == ac && cr == ar && cc == bc && ac == br
}
if empty {
return nil
}
if !ok {
return errors.New("MultSym: size mismatch")
}
/*
if A.Rows() != A.Cols() {
return errors.New("A matrix not square matrix.");
}
if A.Cols() != B.Rows() {
return errors.New("A.cols != B.rows: size mismatch")
}
*/
psize := int64(C.NumElements()) * int64(A.Cols())
Ar := A.FloatArray()
ldA := A.LeadingIndex()
Br := B.FloatArray()
ldB := B.LeadingIndex()
Cr := C.FloatArray()
ldC := C.LeadingIndex()
if nWorker <= 1 || psize <= limitOne {
calgo.DMultSymm(Cr, Ar, Br, alpha, beta, calgo.Flags(flags), ldC, ldA, ldB,
A.Cols(), 0, C.Cols(), 0, C.Rows(), vpLen, nB, mB)
return nil
}
// here we have more than one worker available
worker := func(cstart, cend, rstart, rend int, ready chan int) {
calgo.DMultSymm(Cr, Ar, Br, alpha, beta, calgo.Flags(flags), ldC, ldA, ldB,
A.Cols(), cstart, cend, rstart, rend, vpLen, nB, mB)
ready <- 1
}
colworks, rowworks := divideWork(C.Rows(), C.Cols(), nWorker)
scheduleWork(colworks, rowworks, C.Cols(), C.Rows(), worker)
return nil
}
// Triangular matrix multiply. (blas.TRMM)
// B = alpha*A*B if flags&LEFT
// B = alpha*A.T*B if flags&(LEFT|TRANSA)
// B = alpha*B*A if flags&RIGHT
// B = alpha*B*A.T if flags&(RIGHT|TRANSA)
//
// Matrix A is N*N triangular defined with flags bits as follow
// LOWER non-unit lower triangular
// LOWER|UNIT unit lower triangular, A diagonal not used
// UPPER non-unit upper triangular
// UPPER|UNIT unit upper triangular, A diagonal not used
//
// Matrix B is N*P if flags&LEFT or P*N if flags&RIGHT.
//
func MultTrm(B, A *matrix.FloatMatrix, alpha float64, flags Flags) error {
ok := true
empty := false
br, bc := B.Size()
ar, ac := A.Size()
switch flags & (LEFT | RIGHT) {
case LEFT:
empty = br == 0 || bc == 0
ok = br == ac && ac == ar
case RIGHT:
empty = bc == 0 || br == 0
ok = bc == ar && ac == ar
}
if empty {
return nil
}
if !ok {
return onError("A, B size mismatch")
}
Ar := A.FloatArray()
ldA := A.LeadingIndex()
Br := B.FloatArray()
ldB := B.LeadingIndex()
E := bc
if flags&RIGHT != 0 {
E = br
}
// if more workers available can divide to tasks by B columns if flags&LEFT or by
// B rows if flags&RIGHT.
calgo.DTrmmBlk(Br, Ar, alpha, calgo.Flags(flags), ldB, ldA, ac, 0, E, nB)
return nil
}
// Solve multiple right sides. If flags&UNIT then A diagonal is assumed to
// to unit and is not referenced. (blas.TRSM)
// alpha*B = A.-1*B if flags&LEFT
// alpha*B = A.-T*B if flags&(LEFT|TRANS)
// alpha*B = B*A.-1 if flags&RIGHT
// alpha*B = B*A.-T if flags&(RIGHT|TRANS)
//
// Matrix A is N*N triangular matrix defined with flags bits as follow
// LOWER non-unit lower triangular
// LOWER|UNIT unit lower triangular
// UPPER non-unit upper triangular
// UPPER|UNIT unit upper triangular
//
// Matrix B is N*P if flags&LEFT or P*N if flags&RIGHT.
//
func SolveTrm(B, A *matrix.FloatMatrix, alpha float64, flags Flags) error {
ok := true
empty := false
br, bc := B.Size()
ar, ac := A.Size()
switch flags & (LEFT | RIGHT) {
case LEFT:
empty = br == 0
ok = br == ac && ac == ar
case RIGHT:
empty = bc == 0
ok = bc == ar && ac == ar
}
if empty {
return nil
}
if !ok {
return onError("A, B size mismatch")
}
Ar := A.FloatArray()
ldA := A.LeadingIndex()
Br := B.FloatArray()
ldB := B.LeadingIndex()
E := bc
if flags&RIGHT != 0 {
E = br
}
// if more workers available can divide to tasks by B columns if flags&LEFT or by
// B rows if flags&RIGHT.
calgo.DSolveBlk(Br, Ar, alpha, calgo.Flags(flags), ldB, ldA, ac, 0, E, nB)
return nil
}
// Rank update for symmetric lower or upper matrix (blas.SYRK)
// C = beta*C + alpha*A*A.T + alpha*A.T*A
func RankUpdateSym(C, A *matrix.FloatMatrix, alpha, beta float64, flags Flags) error {
if C.Rows() != C.Cols() {
return onError("C not a square matrix")
}
Ar := A.FloatArray()
ldA := A.LeadingIndex()
Cr := C.FloatArray()
ldC := C.LeadingIndex()
S := 0
E := C.Rows()
P := A.Cols()
if flags&TRANSA != 0 {
P = A.Rows()
}
// if more workers available C can be divided to blocks [S:E, S:E] along diagonal
// and updated in separate tasks.
calgo.DSymmRankBlk(Cr, Ar, alpha, beta, calgo.Flags(flags), ldC, ldA, P, S, E,
vpLen, nB)
return nil
}
// Rank 2 update for symmetric lower or upper matrix. (blas.SYR2K)
// C = beta*C + alpha*A*B.T + alpha*B*A.T
// C = beta*C + alpha*A.T*B + alpha*B.T*A if flags&TRANS
// matrix C
// lower triangular if flags&LOWER
// upper triangular if flags&UPPER
func RankUpdate2Sym(C, A, B *matrix.FloatMatrix, alpha, beta float64, flags Flags) error {
if C.Rows() != C.Cols() {
return onError("C not a square matrix")
}
Ar := A.FloatArray()
ldA := A.LeadingIndex()
Br := B.FloatArray()
ldB := B.LeadingIndex()
Cr := C.FloatArray()
ldC := C.LeadingIndex()
S := 0
E := C.Rows()
P := A.Cols()
if flags&TRANSA != 0 {
P = A.Rows()
}
// if more workers available C can be divided to blocks [S:E, S:E] along diagonal
// and updated in separate tasks.
calgo.DSymmRank2Blk(Cr, Ar, Br, alpha, beta, calgo.Flags(flags), ldC, ldA, ldB,
P, S, E, vpLen, nB)
return nil
}
// A = alpha*A + beta*B
// A = alpha*A + beta*B.T if flags&TRANSB
func ScalePlus(A, B *matrix.FloatMatrix, alpha, beta float64, flags Flags) error {
Ar := A.FloatArray()
ldA := A.LeadingIndex()
Br := B.FloatArray()
ldB := B.LeadingIndex()
S := 0
L := A.Cols()
R := 0
E := A.Rows()
calgo.DScalePlus(Ar, Br, alpha, beta, calgo.Flags(flags), ldA, ldB, S, L, R, E)
return nil
}
// Generic update for triangular lower or upper matrix.
// C = beta*C + alpha*A*B flags has NOTRANS
// C = beta*C + alpha*A*B.T flags has TRANSB
// C = beta*C + alpha*A.T*B flags has TRANSA
// C = beta*C + alpha*A.T*B.T flags has TRANSA|TRANSB
//
// update of matrix C
// lower triangular if flags has set LOWER
// upper triangular if flags has set UPPER
func UpdateTrm(C, A, B *matrix.FloatMatrix, alpha, beta float64, flags Flags) error {
if C.Rows() != C.Cols() {
return onError("C not a square matrix")
}
Ar := A.FloatArray()
ldA := A.LeadingIndex()
Br := B.FloatArray()
ldB := B.LeadingIndex()
Cr := C.FloatArray()
ldC := C.LeadingIndex()
S := 0
E := C.Rows()
P := A.Cols()
if flags&TRANSA != 0 {
P = A.Rows()
}
// if more workers available C can be divided to blocks [S:E, S:E] along diagonal
// and updated in separate tasks.
calgo.DTrmUpdBlk(Cr, Ar, Br, alpha, beta, calgo.Flags(flags), ldC, ldA, ldB,
P, S, E, vpLen, nB)
return nil
}
// Local Variables:
// tab-width: 4
// indent-tabs-mode: nil
// End: