forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdescriptor.cpp
353 lines (319 loc) · 11.6 KB
/
descriptor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
//===-- runtime/descriptor.cpp --------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Runtime/descriptor.h"
#include "ISO_Fortran_util.h"
#include "derived.h"
#include "memory.h"
#include "stat.h"
#include "terminator.h"
#include "tools.h"
#include "type-info.h"
#include "flang/Runtime/allocator-registry.h"
#include <cassert>
#include <cstdlib>
#include <cstring>
namespace Fortran::runtime {
RT_OFFLOAD_API_GROUP_BEGIN
RT_API_ATTRS Descriptor::Descriptor(const Descriptor &that) { *this = that; }
RT_API_ATTRS Descriptor &Descriptor::operator=(const Descriptor &that) {
std::memcpy(this, &that, that.SizeInBytes());
return *this;
}
RT_API_ATTRS void Descriptor::Establish(TypeCode t, std::size_t elementBytes,
void *p, int rank, const SubscriptValue *extent,
ISO::CFI_attribute_t attribute, bool addendum) {
Terminator terminator{__FILE__, __LINE__};
int cfiStatus{ISO::VerifyEstablishParameters(&raw_, p, attribute, t.raw(),
elementBytes, rank, extent, /*external=*/false)};
if (cfiStatus != CFI_SUCCESS) {
terminator.Crash(
"Descriptor::Establish: CFI_establish returned %d for CFI_type_t(%d)",
cfiStatus, t.raw());
}
ISO::EstablishDescriptor(
&raw_, p, attribute, t.raw(), elementBytes, rank, extent);
if (elementBytes == 0) {
raw_.elem_len = 0;
// Reset byte strides of the dimensions, since EstablishDescriptor()
// only does that when the base address is not nullptr.
for (int j{0}; j < rank; ++j) {
GetDimension(j).SetByteStride(0);
}
}
if (addendum) {
SetHasAddendum();
}
DescriptorAddendum *a{Addendum()};
RUNTIME_CHECK(terminator, addendum == (a != nullptr));
if (a) {
new (a) DescriptorAddendum{};
}
}
namespace {
template <TypeCategory CAT, int KIND> struct TypeSizeGetter {
constexpr RT_API_ATTRS std::size_t operator()() const {
CppTypeFor<CAT, KIND> arr[2];
return sizeof arr / 2;
}
};
} // namespace
RT_API_ATTRS std::size_t Descriptor::BytesFor(TypeCategory category, int kind) {
Terminator terminator{__FILE__, __LINE__};
return ApplyType<TypeSizeGetter, std::size_t>(category, kind, terminator);
}
RT_API_ATTRS void Descriptor::Establish(TypeCategory c, int kind, void *p,
int rank, const SubscriptValue *extent, ISO::CFI_attribute_t attribute,
bool addendum) {
Establish(TypeCode(c, kind), BytesFor(c, kind), p, rank, extent, attribute,
addendum);
}
RT_API_ATTRS void Descriptor::Establish(int characterKind,
std::size_t characters, void *p, int rank, const SubscriptValue *extent,
ISO::CFI_attribute_t attribute, bool addendum) {
Establish(TypeCode{TypeCategory::Character, characterKind},
characterKind * characters, p, rank, extent, attribute, addendum);
}
RT_API_ATTRS void Descriptor::Establish(const typeInfo::DerivedType &dt,
void *p, int rank, const SubscriptValue *extent,
ISO::CFI_attribute_t attribute) {
Establish(TypeCode{TypeCategory::Derived, 0}, dt.sizeInBytes(), p, rank,
extent, attribute, true);
DescriptorAddendum *a{Addendum()};
Terminator terminator{__FILE__, __LINE__};
RUNTIME_CHECK(terminator, a != nullptr);
new (a) DescriptorAddendum{&dt};
}
RT_API_ATTRS OwningPtr<Descriptor> Descriptor::Create(TypeCode t,
std::size_t elementBytes, void *p, int rank, const SubscriptValue *extent,
ISO::CFI_attribute_t attribute, bool addendum,
const typeInfo::DerivedType *dt) {
Terminator terminator{__FILE__, __LINE__};
RUNTIME_CHECK(terminator, t.IsDerived() == (dt != nullptr));
int derivedTypeLenParameters = dt ? dt->LenParameters() : 0;
std::size_t bytes{SizeInBytes(rank, addendum, derivedTypeLenParameters)};
Descriptor *result{
reinterpret_cast<Descriptor *>(AllocateMemoryOrCrash(terminator, bytes))};
if (dt) {
result->Establish(*dt, p, rank, extent, attribute);
} else {
result->Establish(t, elementBytes, p, rank, extent, attribute, addendum);
}
return OwningPtr<Descriptor>{result};
}
RT_API_ATTRS OwningPtr<Descriptor> Descriptor::Create(TypeCategory c, int kind,
void *p, int rank, const SubscriptValue *extent,
ISO::CFI_attribute_t attribute) {
return Create(
TypeCode(c, kind), BytesFor(c, kind), p, rank, extent, attribute);
}
RT_API_ATTRS OwningPtr<Descriptor> Descriptor::Create(int characterKind,
SubscriptValue characters, void *p, int rank, const SubscriptValue *extent,
ISO::CFI_attribute_t attribute) {
return Create(TypeCode{TypeCategory::Character, characterKind},
characterKind * characters, p, rank, extent, attribute);
}
RT_API_ATTRS OwningPtr<Descriptor> Descriptor::Create(
const typeInfo::DerivedType &dt, void *p, int rank,
const SubscriptValue *extent, ISO::CFI_attribute_t attribute) {
return Create(TypeCode{TypeCategory::Derived, 0}, dt.sizeInBytes(), p, rank,
extent, attribute, /*addendum=*/true, &dt);
}
RT_API_ATTRS std::size_t Descriptor::SizeInBytes() const {
const DescriptorAddendum *addendum{Addendum()};
return sizeof *this - sizeof(Dimension) + raw_.rank * sizeof(Dimension) +
(addendum ? addendum->SizeInBytes() : 0);
}
RT_API_ATTRS std::size_t Descriptor::Elements() const {
int n{rank()};
std::size_t elements{1};
for (int j{0}; j < n; ++j) {
elements *= GetDimension(j).Extent();
}
return elements;
}
RT_API_ATTRS static inline int MapAllocIdx(const Descriptor &desc) {
#ifdef RT_DEVICE_COMPILATION
// Force default allocator in device code.
return kDefaultAllocator;
#else
return desc.GetAllocIdx();
#endif
}
RT_API_ATTRS int Descriptor::Allocate() {
std::size_t elementBytes{ElementBytes()};
if (static_cast<std::int64_t>(elementBytes) < 0) {
// F'2023 7.4.4.2 p5: "If the character length parameter value evaluates
// to a negative value, the length of character entities declared is zero."
elementBytes = raw_.elem_len = 0;
}
std::size_t byteSize{Elements() * elementBytes};
AllocFct alloc{allocatorRegistry.GetAllocator(MapAllocIdx(*this))};
// Zero size allocation is possible in Fortran and the resulting
// descriptor must be allocated/associated. Since std::malloc(0)
// result is implementation defined, always allocate at least one byte.
void *p{alloc(byteSize ? byteSize : 1)};
if (!p) {
return CFI_ERROR_MEM_ALLOCATION;
}
// TODO: image synchronization
raw_.base_addr = p;
SetByteStrides();
return 0;
}
RT_API_ATTRS void Descriptor::SetByteStrides() {
if (int dims{rank()}) {
std::size_t stride{ElementBytes()};
for (int j{0}; j < dims; ++j) {
auto &dimension{GetDimension(j)};
dimension.SetByteStride(stride);
stride *= dimension.Extent();
}
}
}
RT_API_ATTRS int Descriptor::Destroy(
bool finalize, bool destroyPointers, Terminator *terminator) {
if (!destroyPointers && raw_.attribute == CFI_attribute_pointer) {
return StatOk;
} else {
if (auto *addendum{Addendum()}) {
if (const auto *derived{addendum->derivedType()}) {
if (!derived->noDestructionNeeded()) {
runtime::Destroy(*this, finalize, *derived, terminator);
}
}
}
return Deallocate();
}
}
RT_API_ATTRS int Descriptor::Deallocate() {
ISO::CFI_cdesc_t &descriptor{raw()};
if (!descriptor.base_addr) {
return CFI_ERROR_BASE_ADDR_NULL;
} else {
FreeFct free{allocatorRegistry.GetDeallocator(MapAllocIdx(*this))};
free(descriptor.base_addr);
descriptor.base_addr = nullptr;
return CFI_SUCCESS;
}
}
RT_API_ATTRS bool Descriptor::DecrementSubscripts(
SubscriptValue *subscript, const int *permutation) const {
for (int j{raw_.rank - 1}; j >= 0; --j) {
int k{permutation ? permutation[j] : j};
const Dimension &dim{GetDimension(k)};
if (--subscript[k] >= dim.LowerBound()) {
return true;
}
subscript[k] = dim.UpperBound();
}
return false;
}
RT_API_ATTRS std::size_t Descriptor::ZeroBasedElementNumber(
const SubscriptValue *subscript, const int *permutation) const {
std::size_t result{0};
std::size_t coefficient{1};
for (int j{0}; j < raw_.rank; ++j) {
int k{permutation ? permutation[j] : j};
const Dimension &dim{GetDimension(k)};
result += coefficient * (subscript[k] - dim.LowerBound());
coefficient *= dim.Extent();
}
return result;
}
RT_API_ATTRS bool Descriptor::EstablishPointerSection(const Descriptor &source,
const SubscriptValue *lower, const SubscriptValue *upper,
const SubscriptValue *stride) {
*this = source;
raw_.attribute = CFI_attribute_pointer;
int newRank{raw_.rank};
for (int j{0}; j < raw_.rank; ++j) {
if (!stride || stride[j] == 0) {
if (newRank > 0) {
--newRank;
} else {
return false;
}
}
}
raw_.rank = newRank;
if (const auto *sourceAddendum = source.Addendum()) {
if (auto *addendum{Addendum()}) {
*addendum = *sourceAddendum;
} else {
return false;
}
}
return CFI_section(&raw_, &source.raw_, lower, upper, stride) == CFI_SUCCESS;
}
RT_API_ATTRS void Descriptor::ApplyMold(const Descriptor &mold, int rank) {
raw_.elem_len = mold.raw_.elem_len;
raw_.rank = rank;
raw_.type = mold.raw_.type;
for (int j{0}; j < rank && j < mold.raw_.rank; ++j) {
GetDimension(j) = mold.GetDimension(j);
}
if (auto *addendum{Addendum()}) {
if (auto *moldAddendum{mold.Addendum()}) {
*addendum = *moldAddendum;
} else {
INTERNAL_CHECK(!addendum->derivedType());
}
}
}
RT_API_ATTRS void Descriptor::Check() const {
// TODO
}
void Descriptor::Dump(FILE *f) const {
std::fprintf(f, "Descriptor @ %p:\n", reinterpret_cast<const void *>(this));
std::fprintf(f, " base_addr %p\n", raw_.base_addr);
std::fprintf(f, " elem_len %zd\n", static_cast<std::size_t>(raw_.elem_len));
std::fprintf(f, " version %d\n", static_cast<int>(raw_.version));
std::fprintf(f, " rank %d\n", static_cast<int>(raw_.rank));
std::fprintf(f, " type %d\n", static_cast<int>(raw_.type));
std::fprintf(f, " attribute %d\n", static_cast<int>(raw_.attribute));
std::fprintf(f, " extra %d\n", static_cast<int>(raw_.extra));
std::fprintf(f, " addendum %d\n", static_cast<int>(HasAddendum()));
std::fprintf(f, " alloc_idx %d\n", static_cast<int>(GetAllocIdx()));
for (int j{0}; j < raw_.rank; ++j) {
std::fprintf(f, " dim[%d] lower_bound %jd\n", j,
static_cast<std::intmax_t>(raw_.dim[j].lower_bound));
std::fprintf(f, " extent %jd\n",
static_cast<std::intmax_t>(raw_.dim[j].extent));
std::fprintf(f, " sm %jd\n",
static_cast<std::intmax_t>(raw_.dim[j].sm));
}
if (const DescriptorAddendum * addendum{Addendum()}) {
addendum->Dump(f);
}
}
RT_API_ATTRS DescriptorAddendum &DescriptorAddendum::operator=(
const DescriptorAddendum &that) {
derivedType_ = that.derivedType_;
auto lenParms{that.LenParameters()};
for (std::size_t j{0}; j < lenParms; ++j) {
len_[j] = that.len_[j];
}
return *this;
}
RT_API_ATTRS std::size_t DescriptorAddendum::SizeInBytes() const {
return SizeInBytes(LenParameters());
}
RT_API_ATTRS std::size_t DescriptorAddendum::LenParameters() const {
const auto *type{derivedType()};
return type ? type->LenParameters() : 0;
}
void DescriptorAddendum::Dump(FILE *f) const {
std::fprintf(
f, " derivedType @ %p\n", reinterpret_cast<const void *>(derivedType()));
std::size_t lenParms{LenParameters()};
for (std::size_t j{0}; j < lenParms; ++j) {
std::fprintf(f, " len[%zd] %jd\n", j, static_cast<std::intmax_t>(len_[j]));
}
}
RT_OFFLOAD_API_GROUP_END
} // namespace Fortran::runtime