forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatmul-transpose.cpp
380 lines (362 loc) · 14.8 KB
/
matmul-transpose.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
//===-- runtime/matmul-transpose.cpp --------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Implements a fused matmul-transpose operation
//
// There are two main entry points; one establishes a descriptor for the
// result and allocates it, and the other expects a result descriptor that
// points to existing storage.
//
// This implementation must handle all combinations of numeric types and
// kinds (100 - 165 cases depending on the target), plus all combinations
// of logical kinds (16). A single template undergoes many instantiations
// to cover all of the valid possibilities.
//
// The usefulness of this optimization should be reviewed once Matmul is swapped
// to use the faster BLAS routines.
#include "flang/Runtime/matmul-transpose.h"
#include "terminator.h"
#include "tools.h"
#include "flang/Common/optional.h"
#include "flang/Runtime/c-or-cpp.h"
#include "flang/Runtime/cpp-type.h"
#include "flang/Runtime/descriptor.h"
#include <cstring>
namespace {
using namespace Fortran::runtime;
// Contiguous numeric TRANSPOSE(matrix)*matrix multiplication
// TRANSPOSE(matrix(n, rows)) * matrix(n,cols) ->
// matrix(rows, n) * matrix(n,cols) -> matrix(rows,cols)
// The transpose is implemented by swapping the indices of accesses into the LHS
//
// Straightforward algorithm:
// DO 1 I = 1, NROWS
// DO 1 J = 1, NCOLS
// RES(I,J) = 0
// DO 1 K = 1, N
// 1 RES(I,J) = RES(I,J) + X(K,I)*Y(K,J)
//
// With loop distribution and transposition to avoid the inner sum
// reduction and to avoid non-unit strides:
// DO 1 I = 1, NROWS
// DO 1 J = 1, NCOLS
// 1 RES(I,J) = 0
// DO 2 J = 1, NCOLS
// DO 2 I = 1, NROWS
// DO 2 K = 1, N
// 2 RES(I,J) = RES(I,J) + X(K,I)*Y(K,J) ! loop-invariant last term
template <TypeCategory RCAT, int RKIND, typename XT, typename YT,
bool X_HAS_STRIDED_COLUMNS, bool Y_HAS_STRIDED_COLUMNS>
inline static RT_API_ATTRS void MatrixTransposedTimesMatrix(
CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue rows,
SubscriptValue cols, const XT *RESTRICT x, const YT *RESTRICT y,
SubscriptValue n, std::size_t xColumnByteStride = 0,
std::size_t yColumnByteStride = 0) {
using ResultType = CppTypeFor<RCAT, RKIND>;
std::memset(product, 0, rows * cols * sizeof *product);
for (SubscriptValue j{0}; j < cols; ++j) {
for (SubscriptValue i{0}; i < rows; ++i) {
for (SubscriptValue k{0}; k < n; ++k) {
ResultType x_ki;
if constexpr (!X_HAS_STRIDED_COLUMNS) {
x_ki = static_cast<ResultType>(x[i * n + k]);
} else {
x_ki = static_cast<ResultType>(reinterpret_cast<const XT *>(
reinterpret_cast<const char *>(x) + i * xColumnByteStride)[k]);
}
ResultType y_kj;
if constexpr (!Y_HAS_STRIDED_COLUMNS) {
y_kj = static_cast<ResultType>(y[j * n + k]);
} else {
y_kj = static_cast<ResultType>(reinterpret_cast<const YT *>(
reinterpret_cast<const char *>(y) + j * yColumnByteStride)[k]);
}
product[j * rows + i] += x_ki * y_kj;
}
}
}
}
template <TypeCategory RCAT, int RKIND, typename XT, typename YT>
inline static RT_API_ATTRS void MatrixTransposedTimesMatrixHelper(
CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue rows,
SubscriptValue cols, const XT *RESTRICT x, const YT *RESTRICT y,
SubscriptValue n, Fortran::common::optional<std::size_t> xColumnByteStride,
Fortran::common::optional<std::size_t> yColumnByteStride) {
if (!xColumnByteStride) {
if (!yColumnByteStride) {
MatrixTransposedTimesMatrix<RCAT, RKIND, XT, YT, false, false>(
product, rows, cols, x, y, n);
} else {
MatrixTransposedTimesMatrix<RCAT, RKIND, XT, YT, false, true>(
product, rows, cols, x, y, n, 0, *yColumnByteStride);
}
} else {
if (!yColumnByteStride) {
MatrixTransposedTimesMatrix<RCAT, RKIND, XT, YT, true, false>(
product, rows, cols, x, y, n, *xColumnByteStride);
} else {
MatrixTransposedTimesMatrix<RCAT, RKIND, XT, YT, true, true>(
product, rows, cols, x, y, n, *xColumnByteStride, *yColumnByteStride);
}
}
}
// Contiguous numeric matrix*vector multiplication
// matrix(rows,n) * column vector(n) -> column vector(rows)
// Straightforward algorithm:
// DO 1 I = 1, NROWS
// RES(I) = 0
// DO 1 K = 1, N
// 1 RES(I) = RES(I) + X(K,I)*Y(K)
// With loop distribution and transposition to avoid the inner
// sum reduction and to avoid non-unit strides:
// DO 1 I = 1, NROWS
// 1 RES(I) = 0
// DO 2 I = 1, NROWS
// DO 2 K = 1, N
// 2 RES(I) = RES(I) + X(K,I)*Y(K)
template <TypeCategory RCAT, int RKIND, typename XT, typename YT,
bool X_HAS_STRIDED_COLUMNS>
inline static RT_API_ATTRS void MatrixTransposedTimesVector(
CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue rows,
SubscriptValue n, const XT *RESTRICT x, const YT *RESTRICT y,
std::size_t xColumnByteStride = 0) {
using ResultType = CppTypeFor<RCAT, RKIND>;
std::memset(product, 0, rows * sizeof *product);
for (SubscriptValue i{0}; i < rows; ++i) {
for (SubscriptValue k{0}; k < n; ++k) {
ResultType x_ki;
if constexpr (!X_HAS_STRIDED_COLUMNS) {
x_ki = static_cast<ResultType>(x[i * n + k]);
} else {
x_ki = static_cast<ResultType>(reinterpret_cast<const XT *>(
reinterpret_cast<const char *>(x) + i * xColumnByteStride)[k]);
}
ResultType y_k = static_cast<ResultType>(y[k]);
product[i] += x_ki * y_k;
}
}
}
template <TypeCategory RCAT, int RKIND, typename XT, typename YT>
inline static RT_API_ATTRS void MatrixTransposedTimesVectorHelper(
CppTypeFor<RCAT, RKIND> *RESTRICT product, SubscriptValue rows,
SubscriptValue n, const XT *RESTRICT x, const YT *RESTRICT y,
Fortran::common::optional<std::size_t> xColumnByteStride) {
if (!xColumnByteStride) {
MatrixTransposedTimesVector<RCAT, RKIND, XT, YT, false>(
product, rows, n, x, y);
} else {
MatrixTransposedTimesVector<RCAT, RKIND, XT, YT, true>(
product, rows, n, x, y, *xColumnByteStride);
}
}
// Implements an instance of MATMUL for given argument types.
template <bool IS_ALLOCATING, TypeCategory RCAT, int RKIND, typename XT,
typename YT>
inline static RT_API_ATTRS void DoMatmulTranspose(
std::conditional_t<IS_ALLOCATING, Descriptor, const Descriptor> &result,
const Descriptor &x, const Descriptor &y, Terminator &terminator) {
int xRank{x.rank()};
int yRank{y.rank()};
int resRank{xRank + yRank - 2};
if (xRank * yRank != 2 * resRank) {
terminator.Crash(
"MATMUL-TRANSPOSE: bad argument ranks (%d * %d)", xRank, yRank);
}
SubscriptValue extent[2]{x.GetDimension(1).Extent(),
resRank == 2 ? y.GetDimension(1).Extent() : 0};
if constexpr (IS_ALLOCATING) {
result.Establish(
RCAT, RKIND, nullptr, resRank, extent, CFI_attribute_allocatable);
for (int j{0}; j < resRank; ++j) {
result.GetDimension(j).SetBounds(1, extent[j]);
}
if (int stat{result.Allocate()}) {
terminator.Crash(
"MATMUL-TRANSPOSE: could not allocate memory for result; STAT=%d",
stat);
}
} else {
RUNTIME_CHECK(terminator, resRank == result.rank());
RUNTIME_CHECK(
terminator, result.ElementBytes() == static_cast<std::size_t>(RKIND));
RUNTIME_CHECK(terminator, result.GetDimension(0).Extent() == extent[0]);
RUNTIME_CHECK(terminator,
resRank == 1 || result.GetDimension(1).Extent() == extent[1]);
}
SubscriptValue n{x.GetDimension(0).Extent()};
if (n != y.GetDimension(0).Extent()) {
terminator.Crash(
"MATMUL-TRANSPOSE: unacceptable operand shapes (%jdx%jd, %jdx%jd)",
static_cast<std::intmax_t>(x.GetDimension(0).Extent()),
static_cast<std::intmax_t>(x.GetDimension(1).Extent()),
static_cast<std::intmax_t>(y.GetDimension(0).Extent()),
static_cast<std::intmax_t>(y.GetDimension(1).Extent()));
}
using WriteResult =
CppTypeFor<RCAT == TypeCategory::Logical ? TypeCategory::Integer : RCAT,
RKIND>;
const SubscriptValue rows{extent[0]};
const SubscriptValue cols{extent[1]};
if constexpr (RCAT != TypeCategory::Logical) {
if (x.IsContiguous(1) && y.IsContiguous(1) &&
(IS_ALLOCATING || result.IsContiguous())) {
// Contiguous numeric matrices (maybe with columns
// separated by a stride).
Fortran::common::optional<std::size_t> xColumnByteStride;
if (!x.IsContiguous()) {
// X's columns are strided.
SubscriptValue xAt[2]{};
x.GetLowerBounds(xAt);
xAt[1]++;
xColumnByteStride = x.SubscriptsToByteOffset(xAt);
}
Fortran::common::optional<std::size_t> yColumnByteStride;
if (!y.IsContiguous()) {
// Y's columns are strided.
SubscriptValue yAt[2]{};
y.GetLowerBounds(yAt);
yAt[1]++;
yColumnByteStride = y.SubscriptsToByteOffset(yAt);
}
if (resRank == 2) { // M*M -> M
// TODO: use BLAS-3 GEMM for supported types.
MatrixTransposedTimesMatrixHelper<RCAT, RKIND, XT, YT>(
result.template OffsetElement<WriteResult>(), rows, cols,
x.OffsetElement<XT>(), y.OffsetElement<YT>(), n, xColumnByteStride,
yColumnByteStride);
return;
}
if (xRank == 2) { // M*V -> V
// TODO: use BLAS-2 GEMM for supported types.
MatrixTransposedTimesVectorHelper<RCAT, RKIND, XT, YT>(
result.template OffsetElement<WriteResult>(), rows, n,
x.OffsetElement<XT>(), y.OffsetElement<YT>(), xColumnByteStride);
return;
}
// else V*M -> V (not allowed because TRANSPOSE() is only defined for rank
// 1 matrices
terminator.Crash(
"MATMUL-TRANSPOSE: unacceptable operand shapes (%jdx%jd, %jdx%jd)",
static_cast<std::intmax_t>(x.GetDimension(0).Extent()),
static_cast<std::intmax_t>(n),
static_cast<std::intmax_t>(y.GetDimension(0).Extent()),
static_cast<std::intmax_t>(y.GetDimension(1).Extent()));
return;
}
}
// General algorithms for LOGICAL and noncontiguity
SubscriptValue xLB[2], yLB[2], resLB[2];
x.GetLowerBounds(xLB);
y.GetLowerBounds(yLB);
result.GetLowerBounds(resLB);
using ResultType = CppTypeFor<RCAT, RKIND>;
if (resRank == 2) { // M*M -> M
for (SubscriptValue i{0}; i < rows; ++i) {
for (SubscriptValue j{0}; j < cols; ++j) {
ResultType res_ij;
if constexpr (RCAT == TypeCategory::Logical) {
res_ij = false;
} else {
res_ij = 0;
}
for (SubscriptValue k{0}; k < n; ++k) {
SubscriptValue xAt[2]{k + xLB[0], i + xLB[1]};
SubscriptValue yAt[2]{k + yLB[0], j + yLB[1]};
if constexpr (RCAT == TypeCategory::Logical) {
ResultType x_ki = IsLogicalElementTrue(x, xAt);
ResultType y_kj = IsLogicalElementTrue(y, yAt);
res_ij = res_ij || (x_ki && y_kj);
} else {
ResultType x_ki = static_cast<ResultType>(*x.Element<XT>(xAt));
ResultType y_kj = static_cast<ResultType>(*y.Element<YT>(yAt));
res_ij += x_ki * y_kj;
}
}
SubscriptValue resAt[2]{i + resLB[0], j + resLB[1]};
*result.template Element<WriteResult>(resAt) = res_ij;
}
}
} else if (xRank == 2) { // M*V -> V
for (SubscriptValue i{0}; i < rows; ++i) {
ResultType res_i;
if constexpr (RCAT == TypeCategory::Logical) {
res_i = false;
} else {
res_i = 0;
}
for (SubscriptValue k{0}; k < n; ++k) {
SubscriptValue xAt[2]{k + xLB[0], i + xLB[1]};
SubscriptValue yAt[1]{k + yLB[0]};
if constexpr (RCAT == TypeCategory::Logical) {
ResultType x_ki = IsLogicalElementTrue(x, xAt);
ResultType y_k = IsLogicalElementTrue(y, yAt);
res_i = res_i || (x_ki && y_k);
} else {
ResultType x_ki = static_cast<ResultType>(*x.Element<XT>(xAt));
ResultType y_k = static_cast<ResultType>(*y.Element<YT>(yAt));
res_i += x_ki * y_k;
}
}
SubscriptValue resAt[1]{i + resLB[0]};
*result.template Element<WriteResult>(resAt) = res_i;
}
} else { // V*M -> V
// TRANSPOSE(V) not allowed by fortran standard
terminator.Crash(
"MATMUL-TRANSPOSE: unacceptable operand shapes (%jdx%jd, %jdx%jd)",
static_cast<std::intmax_t>(x.GetDimension(0).Extent()),
static_cast<std::intmax_t>(n),
static_cast<std::intmax_t>(y.GetDimension(0).Extent()),
static_cast<std::intmax_t>(y.GetDimension(1).Extent()));
}
}
template <bool IS_ALLOCATING, TypeCategory XCAT, int XKIND, TypeCategory YCAT,
int YKIND>
struct MatmulTransposeHelper {
using ResultDescriptor =
std::conditional_t<IS_ALLOCATING, Descriptor, const Descriptor>;
RT_API_ATTRS void operator()(ResultDescriptor &result, const Descriptor &x,
const Descriptor &y, const char *sourceFile, int line) const {
Terminator terminator{sourceFile, line};
auto xCatKind{x.type().GetCategoryAndKind()};
auto yCatKind{y.type().GetCategoryAndKind()};
RUNTIME_CHECK(terminator, xCatKind.has_value() && yCatKind.has_value());
RUNTIME_CHECK(terminator, xCatKind->first == XCAT);
RUNTIME_CHECK(terminator, yCatKind->first == YCAT);
if constexpr (constexpr auto resultType{
GetResultType(XCAT, XKIND, YCAT, YKIND)}) {
return DoMatmulTranspose<IS_ALLOCATING, resultType->first,
resultType->second, CppTypeFor<XCAT, XKIND>, CppTypeFor<YCAT, YKIND>>(
result, x, y, terminator);
}
terminator.Crash("MATMUL-TRANSPOSE: bad operand types (%d(%d), %d(%d))",
static_cast<int>(XCAT), XKIND, static_cast<int>(YCAT), YKIND);
}
};
} // namespace
namespace Fortran::runtime {
extern "C" {
RT_EXT_API_GROUP_BEGIN
#define MATMUL_INSTANCE(XCAT, XKIND, YCAT, YKIND) \
void RTDEF(MatmulTranspose##XCAT##XKIND##YCAT##YKIND)(Descriptor & result, \
const Descriptor &x, const Descriptor &y, const char *sourceFile, \
int line) { \
MatmulTransposeHelper<true, TypeCategory::XCAT, XKIND, TypeCategory::YCAT, \
YKIND>{}(result, x, y, sourceFile, line); \
}
#define MATMUL_DIRECT_INSTANCE(XCAT, XKIND, YCAT, YKIND) \
void RTDEF(MatmulTransposeDirect##XCAT##XKIND##YCAT##YKIND)( \
Descriptor & result, const Descriptor &x, const Descriptor &y, \
const char *sourceFile, int line) { \
MatmulTransposeHelper<false, TypeCategory::XCAT, XKIND, \
TypeCategory::YCAT, YKIND>{}(result, x, y, sourceFile, line); \
}
#define MATMUL_FORCE_ALL_TYPES 0
#include "flang/Runtime/matmul-instances.inc"
RT_EXT_API_GROUP_END
} // extern "C"
} // namespace Fortran::runtime