forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtime-intrinsic.cpp
525 lines (477 loc) · 18.2 KB
/
time-intrinsic.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
//===-- runtime/time-intrinsic.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Implements time-related intrinsic subroutines.
#include "flang/Runtime/time-intrinsic.h"
#include "terminator.h"
#include "tools.h"
#include "flang/Runtime/cpp-type.h"
#include "flang/Runtime/descriptor.h"
#include <algorithm>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#ifdef _WIN32
#include "flang/Common/windows-include.h"
#else
#include <sys/time.h> // gettimeofday
#include <sys/times.h>
#include <unistd.h>
#endif
// CPU_TIME (Fortran 2018 16.9.57)
// SYSTEM_CLOCK (Fortran 2018 16.9.168)
//
// We can use std::clock() from the <ctime> header as a fallback implementation
// that should be available everywhere. This may not provide the best resolution
// and is particularly troublesome on (some?) POSIX systems where CLOCKS_PER_SEC
// is defined as 10^6 regardless of the actual precision of std::clock().
// Therefore, we will usually prefer platform-specific alternatives when they
// are available.
//
// We can use SFINAE to choose a platform-specific alternative. To do so, we
// introduce a helper function template, whose overload set will contain only
// implementations relying on interfaces which are actually available. Each
// overload will have a dummy parameter whose type indicates whether or not it
// should be preferred. Any other parameters required for SFINAE should have
// default values provided.
namespace {
// Types for the dummy parameter indicating the priority of a given overload.
// We will invoke our helper with an integer literal argument, so the overload
// with the highest priority should have the type int.
using fallback_implementation = double;
using preferred_implementation = int;
// This is the fallback implementation, which should work everywhere.
template <typename Unused = void> double GetCpuTime(fallback_implementation) {
std::clock_t timestamp{std::clock()};
if (timestamp != static_cast<std::clock_t>(-1)) {
return static_cast<double>(timestamp) / CLOCKS_PER_SEC;
}
// Return some negative value to represent failure.
return -1.0;
}
#if defined __MINGW32__
// clock_gettime is implemented in the pthread library for MinGW.
// Using it here would mean that all programs that link libFortranRuntime are
// required to also link to pthread. Instead, don't use the function.
#undef CLOCKID_CPU_TIME
#undef CLOCKID_ELAPSED_TIME
#else
// Determine what clock to use for CPU time.
#if defined CLOCK_PROCESS_CPUTIME_ID
#define CLOCKID_CPU_TIME CLOCK_PROCESS_CPUTIME_ID
#elif defined CLOCK_THREAD_CPUTIME_ID
#define CLOCKID_CPU_TIME CLOCK_THREAD_CPUTIME_ID
#else
#undef CLOCKID_CPU_TIME
#endif
// Determine what clock to use for elapsed time.
#if defined CLOCK_MONOTONIC
#define CLOCKID_ELAPSED_TIME CLOCK_MONOTONIC
#elif defined CLOCK_REALTIME
#define CLOCKID_ELAPSED_TIME CLOCK_REALTIME
#else
#undef CLOCKID_ELAPSED_TIME
#endif
#endif
#ifdef CLOCKID_CPU_TIME
// POSIX implementation using clock_gettime. This is only enabled where
// clock_gettime is available.
template <typename T = int, typename U = struct timespec>
double GetCpuTime(preferred_implementation,
// We need some dummy parameters to pass to decltype(clock_gettime).
T ClockId = 0, U *Timespec = nullptr,
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
struct timespec tspec;
if (clock_gettime(CLOCKID_CPU_TIME, &tspec) == 0) {
return tspec.tv_nsec * 1.0e-9 + tspec.tv_sec;
}
// Return some negative value to represent failure.
return -1.0;
}
#endif // CLOCKID_CPU_TIME
using count_t = std::int64_t;
using unsigned_count_t = std::uint64_t;
// POSIX implementation using clock_gettime where available. The clock_gettime
// result is in nanoseconds, which is converted as necessary to
// - deciseconds for kind 1
// - milliseconds for kinds 2, 4
// - nanoseconds for kinds 8, 16
constexpr unsigned_count_t DS_PER_SEC{10u};
constexpr unsigned_count_t MS_PER_SEC{1'000u};
constexpr unsigned_count_t NS_PER_SEC{1'000'000'000u};
// Computes HUGE(INT(0,kind)) as an unsigned integer value.
static constexpr inline unsigned_count_t GetHUGE(int kind) {
if (kind > 8) {
kind = 8;
}
return (unsigned_count_t{1} << ((8 * kind) - 1)) - 1;
}
// Function converts a std::timespec_t into the desired count to
// be returned by the timing functions in accordance with the requested
// kind at the call site.
count_t ConvertTimeSpecToCount(int kind, const struct timespec &tspec) {
const unsigned_count_t huge{GetHUGE(kind)};
unsigned_count_t sec{static_cast<unsigned_count_t>(tspec.tv_sec)};
unsigned_count_t nsec{static_cast<unsigned_count_t>(tspec.tv_nsec)};
if (kind >= 8) {
return (sec * NS_PER_SEC + nsec) % (huge + 1);
} else if (kind >= 2) {
return (sec * MS_PER_SEC + (nsec / (NS_PER_SEC / MS_PER_SEC))) % (huge + 1);
} else { // kind == 1
return (sec * DS_PER_SEC + (nsec / (NS_PER_SEC / DS_PER_SEC))) % (huge + 1);
}
}
#ifndef _AIX
// This is the fallback implementation, which should work everywhere.
template <typename Unused = void>
count_t GetSystemClockCount(int kind, fallback_implementation) {
struct timespec tspec;
if (timespec_get(&tspec, TIME_UTC) < 0) {
// Return -HUGE(COUNT) to represent failure.
return -static_cast<count_t>(GetHUGE(kind));
}
// Compute the timestamp as seconds plus nanoseconds in accordance
// with the requested kind at the call site.
return ConvertTimeSpecToCount(kind, tspec);
}
#endif
template <typename Unused = void>
count_t GetSystemClockCountRate(int kind, fallback_implementation) {
return kind >= 8 ? NS_PER_SEC : kind >= 2 ? MS_PER_SEC : DS_PER_SEC;
}
template <typename Unused = void>
count_t GetSystemClockCountMax(int kind, fallback_implementation) {
unsigned_count_t maxCount{GetHUGE(kind)};
return maxCount;
}
#ifdef CLOCKID_ELAPSED_TIME
template <typename T = int, typename U = struct timespec>
count_t GetSystemClockCount(int kind, preferred_implementation,
// We need some dummy parameters to pass to decltype(clock_gettime).
T ClockId = 0, U *Timespec = nullptr,
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
struct timespec tspec;
const unsigned_count_t huge{GetHUGE(kind)};
if (clock_gettime(CLOCKID_ELAPSED_TIME, &tspec) != 0) {
return -huge; // failure
}
// Compute the timestamp as seconds plus nanoseconds in accordance
// with the requested kind at the call site.
return ConvertTimeSpecToCount(kind, tspec);
}
#endif // CLOCKID_ELAPSED_TIME
template <typename T = int, typename U = struct timespec>
count_t GetSystemClockCountRate(int kind, preferred_implementation,
// We need some dummy parameters to pass to decltype(clock_gettime).
T ClockId = 0, U *Timespec = nullptr,
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
return kind >= 8 ? NS_PER_SEC : kind >= 2 ? MS_PER_SEC : DS_PER_SEC;
}
template <typename T = int, typename U = struct timespec>
count_t GetSystemClockCountMax(int kind, preferred_implementation,
// We need some dummy parameters to pass to decltype(clock_gettime).
T ClockId = 0, U *Timespec = nullptr,
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
return GetHUGE(kind);
}
// DATE_AND_TIME (Fortran 2018 16.9.59)
// Helper to set an integer value to -HUGE
template <int KIND> struct StoreNegativeHugeAt {
void operator()(
const Fortran::runtime::Descriptor &result, std::size_t at) const {
*result.ZeroBasedIndexedElement<Fortran::runtime::CppTypeFor<
Fortran::common::TypeCategory::Integer, KIND>>(at) =
-std::numeric_limits<Fortran::runtime::CppTypeFor<
Fortran::common::TypeCategory::Integer, KIND>>::max();
}
};
// Default implementation when date and time information is not available (set
// strings to blanks and values to -HUGE as defined by the standard).
static void DateAndTimeUnavailable(Fortran::runtime::Terminator &terminator,
char *date, std::size_t dateChars, char *time, std::size_t timeChars,
char *zone, std::size_t zoneChars,
const Fortran::runtime::Descriptor *values) {
if (date) {
std::memset(date, static_cast<int>(' '), dateChars);
}
if (time) {
std::memset(time, static_cast<int>(' '), timeChars);
}
if (zone) {
std::memset(zone, static_cast<int>(' '), zoneChars);
}
if (values) {
auto typeCode{values->type().GetCategoryAndKind()};
RUNTIME_CHECK(terminator,
values->rank() == 1 && values->GetDimension(0).Extent() >= 8 &&
typeCode &&
typeCode->first == Fortran::common::TypeCategory::Integer);
// DATE_AND_TIME values argument must have decimal range > 4. Do not accept
// KIND 1 here.
int kind{typeCode->second};
RUNTIME_CHECK(terminator, kind != 1);
for (std::size_t i = 0; i < 8; ++i) {
Fortran::runtime::ApplyIntegerKind<StoreNegativeHugeAt, void>(
kind, terminator, *values, i);
}
}
}
#ifndef _WIN32
#ifdef _AIX
// Compute the time difference from GMT/UTC to get around the behavior of
// strfname on AIX that requires setting an environment variable for numeric
// value for ZONE.
// The ZONE and the VALUES(4) arguments of the DATE_AND_TIME intrinsic has
// the resolution to the minute.
static int computeUTCDiff(const tm &localTime, bool *err) {
tm utcTime;
const time_t timer{mktime(const_cast<tm *>(&localTime))};
if (timer < 0) {
*err = true;
return 0;
}
// Get the GMT/UTC time
if (gmtime_r(&timer, &utcTime) == nullptr) {
*err = true;
return 0;
}
// Adjust for day difference
auto dayDiff{localTime.tm_mday - utcTime.tm_mday};
auto localHr{localTime.tm_hour};
if (dayDiff > 0) {
if (dayDiff == 1) {
localHr += 24;
} else {
utcTime.tm_hour += 24;
}
} else if (dayDiff < 0) {
if (dayDiff == -1) {
utcTime.tm_hour += 24;
} else {
localHr += 24;
}
}
return (localHr * 60 + localTime.tm_min) -
(utcTime.tm_hour * 60 + utcTime.tm_min);
}
#endif
static std::size_t getUTCOffsetToBuffer(
char *buffer, const std::size_t &buffSize, tm *localTime) {
#ifdef _AIX
// format: +HHMM or -HHMM
bool err{false};
auto utcOffset{computeUTCDiff(*localTime, &err)};
auto hour{utcOffset / 60};
auto hrMin{hour * 100 + (utcOffset - hour * 60)};
auto n{sprintf(buffer, "%+05d", hrMin)};
return err ? 0 : n + 1;
#else
return std::strftime(buffer, buffSize, "%z", localTime);
#endif
}
// SFINAE helper to return the struct tm.tm_gmtoff which is not a POSIX standard
// field.
template <int KIND, typename TM = struct tm>
Fortran::runtime::CppTypeFor<Fortran::common::TypeCategory::Integer, KIND>
GetGmtOffset(const TM &tm, preferred_implementation,
decltype(tm.tm_gmtoff) *Enabled = nullptr) {
// Returns the GMT offset in minutes.
return tm.tm_gmtoff / 60;
}
template <int KIND, typename TM = struct tm>
Fortran::runtime::CppTypeFor<Fortran::common::TypeCategory::Integer, KIND>
GetGmtOffset(const TM &tm, fallback_implementation) {
// tm.tm_gmtoff is not available, there may be platform dependent alternatives
// (such as using timezone from <time.h> when available), but so far just
// return -HUGE to report that this information is not available.
const auto negHuge{-std::numeric_limits<Fortran::runtime::CppTypeFor<
Fortran::common::TypeCategory::Integer, KIND>>::max()};
#ifdef _AIX
bool err{false};
auto diff{computeUTCDiff(tm, &err)};
if (err) {
return negHuge;
} else {
return diff;
}
#else
return negHuge;
#endif
}
template <typename TM = struct tm> struct GmtOffsetHelper {
template <int KIND> struct StoreGmtOffset {
void operator()(const Fortran::runtime::Descriptor &result, std::size_t at,
TM &tm) const {
*result.ZeroBasedIndexedElement<Fortran::runtime::CppTypeFor<
Fortran::common::TypeCategory::Integer, KIND>>(at) =
GetGmtOffset<KIND>(tm, 0);
}
};
};
// Dispatch to posix implementation where gettimeofday and localtime_r are
// available.
static void GetDateAndTime(Fortran::runtime::Terminator &terminator, char *date,
std::size_t dateChars, char *time, std::size_t timeChars, char *zone,
std::size_t zoneChars, const Fortran::runtime::Descriptor *values) {
timeval t;
if (gettimeofday(&t, nullptr) != 0) {
DateAndTimeUnavailable(
terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
return;
}
time_t timer{t.tv_sec};
tm localTime;
localtime_r(&timer, &localTime);
std::intmax_t ms{t.tv_usec / 1000};
static constexpr std::size_t buffSize{16};
char buffer[buffSize];
auto copyBufferAndPad{
[&](char *dest, std::size_t destChars, std::size_t len) {
auto copyLen{std::min(len, destChars)};
std::memcpy(dest, buffer, copyLen);
for (auto i{copyLen}; i < destChars; ++i) {
dest[i] = ' ';
}
}};
if (date) {
auto len = std::strftime(buffer, buffSize, "%Y%m%d", &localTime);
copyBufferAndPad(date, dateChars, len);
}
if (time) {
auto len{std::snprintf(buffer, buffSize, "%02d%02d%02d.%03jd",
localTime.tm_hour, localTime.tm_min, localTime.tm_sec, ms)};
copyBufferAndPad(time, timeChars, len);
}
if (zone) {
// Note: this may leave the buffer empty on many platforms. Classic flang
// has a much more complex way of doing this (see __io_timezone in classic
// flang).
auto len{getUTCOffsetToBuffer(buffer, buffSize, &localTime)};
copyBufferAndPad(zone, zoneChars, len);
}
if (values) {
auto typeCode{values->type().GetCategoryAndKind()};
RUNTIME_CHECK(terminator,
values->rank() == 1 && values->GetDimension(0).Extent() >= 8 &&
typeCode &&
typeCode->first == Fortran::common::TypeCategory::Integer);
// DATE_AND_TIME values argument must have decimal range > 4. Do not accept
// KIND 1 here.
int kind{typeCode->second};
RUNTIME_CHECK(terminator, kind != 1);
auto storeIntegerAt = [&](std::size_t atIndex, std::int64_t value) {
Fortran::runtime::ApplyIntegerKind<Fortran::runtime::StoreIntegerAt,
void>(kind, terminator, *values, atIndex, value);
};
storeIntegerAt(0, localTime.tm_year + 1900);
storeIntegerAt(1, localTime.tm_mon + 1);
storeIntegerAt(2, localTime.tm_mday);
Fortran::runtime::ApplyIntegerKind<
GmtOffsetHelper<struct tm>::StoreGmtOffset, void>(
kind, terminator, *values, 3, localTime);
storeIntegerAt(4, localTime.tm_hour);
storeIntegerAt(5, localTime.tm_min);
storeIntegerAt(6, localTime.tm_sec);
storeIntegerAt(7, ms);
}
}
#else
// Fallback implementation where gettimeofday or localtime_r are not both
// available (e.g. windows).
static void GetDateAndTime(Fortran::runtime::Terminator &terminator, char *date,
std::size_t dateChars, char *time, std::size_t timeChars, char *zone,
std::size_t zoneChars, const Fortran::runtime::Descriptor *values) {
// TODO: An actual implementation for non Posix system should be added.
// So far, implement as if the date and time is not available on those
// platforms.
DateAndTimeUnavailable(
terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
}
#endif
} // namespace
namespace Fortran::runtime {
extern "C" {
double RTNAME(CpuTime)() { return GetCpuTime(0); }
std::int64_t RTNAME(SystemClockCount)(int kind) {
return GetSystemClockCount(kind, 0);
}
std::int64_t RTNAME(SystemClockCountRate)(int kind) {
return GetSystemClockCountRate(kind, 0);
}
std::int64_t RTNAME(SystemClockCountMax)(int kind) {
return GetSystemClockCountMax(kind, 0);
}
void RTNAME(DateAndTime)(char *date, std::size_t dateChars, char *time,
std::size_t timeChars, char *zone, std::size_t zoneChars,
const char *source, int line, const Descriptor *values) {
Fortran::runtime::Terminator terminator{source, line};
return GetDateAndTime(
terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
}
void RTNAME(Etime)(const Descriptor *values, const Descriptor *time,
const char *sourceFile, int line) {
Fortran::runtime::Terminator terminator{sourceFile, line};
double usrTime = -1.0, sysTime = -1.0, realTime = -1.0;
#ifdef _WIN32
FILETIME creationTime;
FILETIME exitTime;
FILETIME kernelTime;
FILETIME userTime;
if (GetProcessTimes(GetCurrentProcess(), &creationTime, &exitTime,
&kernelTime, &userTime) == 0) {
ULARGE_INTEGER userSystemTime;
ULARGE_INTEGER kernelSystemTime;
memcpy(&userSystemTime, &userTime, sizeof(FILETIME));
memcpy(&kernelSystemTime, &kernelTime, sizeof(FILETIME));
usrTime = ((double)(userSystemTime.QuadPart)) / 10000000.0;
sysTime = ((double)(kernelSystemTime.QuadPart)) / 10000000.0;
realTime = usrTime + sysTime;
}
#else
struct tms tms;
if (times(&tms) != (clock_t)-1) {
usrTime = ((double)(tms.tms_utime)) / sysconf(_SC_CLK_TCK);
sysTime = ((double)(tms.tms_stime)) / sysconf(_SC_CLK_TCK);
realTime = usrTime + sysTime;
}
#endif
if (values) {
auto typeCode{values->type().GetCategoryAndKind()};
// ETIME values argument must have decimal range == 2.
RUNTIME_CHECK(terminator,
values->rank() == 1 && typeCode &&
typeCode->first == Fortran::common::TypeCategory::Real);
// Only accept KIND=4 here.
int kind{typeCode->second};
RUNTIME_CHECK(terminator, kind == 4);
auto extent{values->GetDimension(0).Extent()};
if (extent >= 1) {
ApplyFloatingPointKind<StoreFloatingPointAt, void>(
kind, terminator, *values, /* atIndex = */ 0, usrTime);
}
if (extent >= 2) {
ApplyFloatingPointKind<StoreFloatingPointAt, void>(
kind, terminator, *values, /* atIndex = */ 1, sysTime);
}
}
if (time) {
auto typeCode{time->type().GetCategoryAndKind()};
// ETIME time argument must have decimal range == 0.
RUNTIME_CHECK(terminator,
time->rank() == 0 && typeCode &&
typeCode->first == Fortran::common::TypeCategory::Real);
// Only accept KIND=4 here.
int kind{typeCode->second};
RUNTIME_CHECK(terminator, kind == 4);
ApplyFloatingPointKind<StoreFloatingPointAt, void>(
kind, terminator, *time, /* atIndex = */ 0, realTime);
}
}
} // extern "C"
} // namespace Fortran::runtime