-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathKarger.java
185 lines (141 loc) · 5.65 KB
/
Karger.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import java.awt.*;
import java.util.*;
import javax.swing.*;
import org.apache.commons.collections15.Transformer;
//Uses Java Universal Network/Graph (JUNG) Framework for conveniently displaying graphs
import edu.uci.ics.jung.algorithms.layout.*;
import edu.uci.ics.jung.graph.*;
import edu.uci.ics.jung.graph.util.*;
import edu.uci.ics.jung.visualization.*;
import edu.uci.ics.jung.visualization.control.*;
import edu.uci.ics.jung.visualization.decorators.ToStringLabeller;
import edu.uci.ics.jung.visualization.renderers.Renderer.VertexLabel.Position;
public class Karger {
/*Karger's Min-Cut Algorithm
Problem (informal): Given weighted graph, find cut with minimally weighted edges spanning cut
Algorithm: Contract edges randomly until no more possible; remaining cut is probably minimal
Complexity:
* Time - O(|V|^2) = O(|E|)
* Space - O(|V|+|E|) to store lists
Functions Defined:
* edgeContraction() - Contracts a random edge and outputs resulting edge list
* newVertices() - Adjusts list of vertices, collapsing to account for contracted edge
* convertGraph() - converts edge list and vertex list to JUNG Graph type
* display() - Takes adjacency matrix input and displays GUI graph visualization (*Requires JUNG Library*)
Notes:
* Min Cut = Max Flow :)
*/
public static void main(String[] args) {
int num_Vertices;
int[] vertices= {1, 2, 3, 4, 5, 6, 7};
int[][] edges={{5, 1, 2}, {1, 2, 3}, {2, 3, 1}, {3, 1, 4}, {9, 2, 4}, {20, 3, 4}, {11, 1, 7}, {8, 6, 3}, {10, 5, 6}, {13, 1, 5}, {6, 4, 6}, {7, 7, 2}, {12, 5, 3}, {16, 6, 1}, {14, 5, 2}, {19, 4, 7}, {15, 7, 3}};
int mincut=0;;
display(vertices, edges, "red", "Undirected Sparse Graph");
while(vertices.length>2){
edges=edgeContraction(edges);
vertices=newVertices(vertices, edges);
}
display(vertices, edges, "green", "Min-Cut");
for(int[] edge:edges){
//System.out.println(Arrays.toString(edge));
mincut+=edge[0];
}
//System.out.println(Arrays.toString(vertices));
System.out.println(mincut);
}
public static int[][] edgeContraction(int[][] edges){
//choose random edge # to collapse betwen 0 and edges.length-1
//store vertex 1, vertex 2, delete the edge
//all edges from vertex 2 change to vertex 1;
//int[][] newEdges=new int[edges.length-1][3];
ArrayList<int[]> newEdges=new ArrayList<int[]>();
int randEdge=(int)(Math.random()*edges.length);
int v1=edges[randEdge][1], v2=edges[randEdge][2];
//Populate list of vertices + weights that are connected to edge
for(int i=0;i<edges.length;i++){
if(i==randEdge)
continue;
if(edges[i][1]==v2)
edges[i][1]=v1;
if(edges[i][2]==v2)
edges[i][2]=v1;
if(edges[i][1]!=edges[i][2])
newEdges.add(edges[i]);
}
int[][] edgeprime=new int[newEdges.size()][3];
for(int i=0;i<newEdges.size();i++){
edgeprime[i]=newEdges.get(i);
}
return edgeprime;
}
public static int[] newVertices(int[] vertices, int[][] edges){
int[] newVertices=new int[vertices.length-1];
TreeSet<Integer> set=new TreeSet<Integer>();
for(int[] edge:edges){
set.add(edge[1]); set.add(edge[2]);
}
int count=0;
while(!set.isEmpty()){
int num=set.pollFirst();
set.remove(num);
newVertices[count]=num;
count++;
}
return newVertices;
}
public static Graph<Integer, Integer> convertGraph(int[] vertices, int[][] edges){
Graph<Integer,Integer> graph=new SparseMultigraph<Integer,Integer>();
for(int v:vertices){
graph.addVertex(v);
}
for(int[] e:edges){
graph.addEdge(e[0], e[1], e[2], EdgeType.UNDIRECTED);
}
return graph;
}
public static void display(int[] vertices, int[][] edges, String color, String name){
Graph<Integer,Integer> g=convertGraph(vertices, edges);
//VisualizationImageServer vs = new VisualizationImageServer(new CircleLayout(g), new Dimension(650, 650));
//Initialize visualization
Layout<Integer, String> layout = new CircleLayout(g);
layout.setSize(new Dimension(620,620));
VisualizationViewer<Integer,String> vs = new VisualizationViewer<Integer,String>(layout);
vs.setPreferredSize(new Dimension(650,650));
//Creates GraphMouse and adds to visualization
DefaultModalGraphMouse gm = new DefaultModalGraphMouse();
gm.setMode(ModalGraphMouse.Mode.TRANSFORMING);
vs.setGraphMouse(gm);
//Initialize JFrames
JFrame frame = new JFrame(name);
frame.getContentPane().setBackground(Color.RED);
frame.getContentPane().add(vs);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.pack();
frame.setVisible(true);
//Colors Vertices
Transformer<Integer,Paint> vertexPaint = new Transformer<Integer,Paint>() {
public Paint transform(Integer i) {
if(color=="green"){
return Color.GREEN;
}
else{
return Color.RED;
}
}
};
//Labels Edges
float dash[] = {10.0f};
final Stroke edgeStroke = new BasicStroke(1.0f, BasicStroke.CAP_BUTT, BasicStroke.JOIN_MITER, 10.0f, dash, 0.0f);
Transformer<String, Stroke> edgeStrokeTransformer =new Transformer<String, Stroke>(){
public Stroke transform(String s) {
return edgeStroke;
}
};
//Renders Vertex colors/labels
vs.getRenderContext().setVertexFillPaintTransformer(vertexPaint);
vs.getRenderContext().setVertexLabelTransformer(new ToStringLabeller());
vs.getRenderer().getVertexLabelRenderer().setPosition(Position.CNTR);
//Renders Edge labels
vs.getRenderContext().setEdgeLabelTransformer(new ToStringLabeller());
}
}