-
Notifications
You must be signed in to change notification settings - Fork 923
/
Copy pathsegment-map.c
142 lines (127 loc) · 6.18 KB
/
segment-map.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
/* ----------------------------------------------------------------------------
Copyright (c) 2019-2023, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
/* -----------------------------------------------------------
The following functions are to reliably find the segment or
block that encompasses any pointer p (or NULL if it is not
in any of our segments).
We maintain a bitmap of all memory with 1 bit per MI_SEGMENT_SIZE (64MiB)
set to 1 if it contains the segment meta data.
----------------------------------------------------------- */
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/atomic.h"
// Reduce total address space to reduce .bss (due to the `mi_segment_map`)
#if (MI_INTPTR_SIZE > 4) && MI_TRACK_ASAN
#define MI_SEGMENT_MAP_MAX_ADDRESS (128*1024ULL*MI_GiB) // 128 TiB (see issue #881)
#elif (MI_INTPTR_SIZE > 4)
#define MI_SEGMENT_MAP_MAX_ADDRESS (48*1024ULL*MI_GiB) // 48 TiB
#else
#define MI_SEGMENT_MAP_MAX_ADDRESS (UINT32_MAX)
#endif
#define MI_SEGMENT_MAP_PART_SIZE (MI_INTPTR_SIZE*MI_KiB - 128) // 128 > sizeof(mi_memid_t) !
#define MI_SEGMENT_MAP_PART_BITS (8*MI_SEGMENT_MAP_PART_SIZE)
#define MI_SEGMENT_MAP_PART_ENTRIES (MI_SEGMENT_MAP_PART_SIZE / MI_INTPTR_SIZE)
#define MI_SEGMENT_MAP_PART_BIT_SPAN (MI_SEGMENT_ALIGN) // memory area covered by 1 bit
#if (MI_SEGMENT_MAP_PART_BITS < (MI_SEGMENT_MAP_MAX_ADDRESS / MI_SEGMENT_MAP_PART_BIT_SPAN)) // prevent overflow on 32-bit (issue #1017)
#define MI_SEGMENT_MAP_PART_SPAN (MI_SEGMENT_MAP_PART_BITS * MI_SEGMENT_MAP_PART_BIT_SPAN)
#else
#define MI_SEGMENT_MAP_PART_SPAN MI_SEGMENT_MAP_MAX_ADDRESS
#endif
#define MI_SEGMENT_MAP_MAX_PARTS ((MI_SEGMENT_MAP_MAX_ADDRESS / MI_SEGMENT_MAP_PART_SPAN) + 1)
// A part of the segment map.
typedef struct mi_segmap_part_s {
mi_memid_t memid;
_Atomic(uintptr_t) map[MI_SEGMENT_MAP_PART_ENTRIES];
} mi_segmap_part_t;
// Allocate parts on-demand to reduce .bss footprint
static _Atomic(mi_segmap_part_t*) mi_segment_map[MI_SEGMENT_MAP_MAX_PARTS]; // = { NULL, .. }
static mi_segmap_part_t* mi_segment_map_index_of(const mi_segment_t* segment, bool create_on_demand, size_t* idx, size_t* bitidx) {
// note: segment can be invalid or NULL.
mi_assert_internal(_mi_ptr_segment(segment + 1) == segment); // is it aligned on MI_SEGMENT_SIZE?
*idx = 0;
*bitidx = 0;
if ((uintptr_t)segment >= MI_SEGMENT_MAP_MAX_ADDRESS) return NULL;
const uintptr_t segindex = ((uintptr_t)segment) / MI_SEGMENT_MAP_PART_SPAN;
if (segindex >= MI_SEGMENT_MAP_MAX_PARTS) return NULL;
mi_segmap_part_t* part = mi_atomic_load_ptr_relaxed(mi_segmap_part_t, &mi_segment_map[segindex]);
// allocate on demand to reduce .bss footprint
if mi_unlikely(part == NULL) {
if (!create_on_demand) return NULL;
mi_memid_t memid;
part = (mi_segmap_part_t*)_mi_os_alloc(sizeof(mi_segmap_part_t), &memid);
if (part == NULL) return NULL;
part->memid = memid;
mi_segmap_part_t* expected = NULL;
if (!mi_atomic_cas_ptr_strong_release(mi_segmap_part_t, &mi_segment_map[segindex], &expected, part)) {
_mi_os_free(part, sizeof(mi_segmap_part_t), memid);
part = expected;
if (part == NULL) return NULL;
}
}
mi_assert(part != NULL);
const uintptr_t offset = ((uintptr_t)segment) % MI_SEGMENT_MAP_PART_SPAN;
const uintptr_t bitofs = offset / MI_SEGMENT_MAP_PART_BIT_SPAN;
*idx = bitofs / MI_INTPTR_BITS;
*bitidx = bitofs % MI_INTPTR_BITS;
return part;
}
void _mi_segment_map_allocated_at(const mi_segment_t* segment) {
if (segment->memid.memkind == MI_MEM_ARENA) return; // we lookup segments first in the arena's and don't need the segment map
size_t index;
size_t bitidx;
mi_segmap_part_t* part = mi_segment_map_index_of(segment, true /* alloc map if needed */, &index, &bitidx);
if (part == NULL) return; // outside our address range..
uintptr_t mask = mi_atomic_load_relaxed(&part->map[index]);
uintptr_t newmask;
do {
newmask = (mask | ((uintptr_t)1 << bitidx));
} while (!mi_atomic_cas_weak_release(&part->map[index], &mask, newmask));
}
void _mi_segment_map_freed_at(const mi_segment_t* segment) {
if (segment->memid.memkind == MI_MEM_ARENA) return;
size_t index;
size_t bitidx;
mi_segmap_part_t* part = mi_segment_map_index_of(segment, false /* don't alloc if not present */, &index, &bitidx);
if (part == NULL) return; // outside our address range..
uintptr_t mask = mi_atomic_load_relaxed(&part->map[index]);
uintptr_t newmask;
do {
newmask = (mask & ~((uintptr_t)1 << bitidx));
} while (!mi_atomic_cas_weak_release(&part->map[index], &mask, newmask));
}
// Determine the segment belonging to a pointer or NULL if it is not in a valid segment.
static mi_segment_t* _mi_segment_of(const void* p) {
if (p == NULL) return NULL;
mi_segment_t* segment = _mi_ptr_segment(p); // segment can be NULL
size_t index;
size_t bitidx;
mi_segmap_part_t* part = mi_segment_map_index_of(segment, false /* dont alloc if not present */, &index, &bitidx);
if (part == NULL) return NULL;
const uintptr_t mask = mi_atomic_load_relaxed(&part->map[index]);
if mi_likely((mask & ((uintptr_t)1 << bitidx)) != 0) {
bool cookie_ok = (_mi_ptr_cookie(segment) == segment->cookie);
mi_assert_internal(cookie_ok); MI_UNUSED(cookie_ok);
return segment; // yes, allocated by us
}
return NULL;
}
// Is this a valid pointer in our heap?
static bool mi_is_valid_pointer(const void* p) {
// first check if it is in an arena, then check if it is OS allocated
return (_mi_arena_contains(p) || _mi_segment_of(p) != NULL);
}
mi_decl_nodiscard mi_decl_export bool mi_is_in_heap_region(const void* p) mi_attr_noexcept {
return mi_is_valid_pointer(p);
}
void _mi_segment_map_unsafe_destroy(void) {
for (size_t i = 0; i < MI_SEGMENT_MAP_MAX_PARTS; i++) {
mi_segmap_part_t* part = mi_atomic_exchange_ptr_relaxed(mi_segmap_part_t, &mi_segment_map[i], NULL);
if (part != NULL) {
_mi_os_free(part, sizeof(mi_segmap_part_t), part->memid);
}
}
}