-
Notifications
You must be signed in to change notification settings - Fork 3.2k
/
Copy pathplot_train_convert_predict.py
234 lines (166 loc) · 6.78 KB
/
plot_train_convert_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# pylint: disable=C0411,C0412,C0413
"""
.. _l-logreg-example-speed:
Train, convert and predict with ONNX Runtime
============================================
This example demonstrates an end to end scenario
starting with the training of a machine learned model
to its use in its converted from.
Train a logistic regression
+++++++++++++++++++++++++++
The first step consists in retrieving the iris datset.
"""
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
iris = load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y)
####################################
# Then we fit a model.
clr = LogisticRegression()
clr.fit(X_train, y_train)
####################################
# We compute the prediction on the test set
# and we show the confusion matrix.
from sklearn.metrics import confusion_matrix # noqa: E402
pred = clr.predict(X_test)
print(confusion_matrix(y_test, pred))
####################################
# Conversion to ONNX format
# +++++++++++++++++++++++++
#
# We use module
# `sklearn-onnx <https://github.com/onnx/sklearn-onnx>`_
# to convert the model into ONNX format.
from skl2onnx import convert_sklearn # noqa: E402
from skl2onnx.common.data_types import FloatTensorType # noqa: E402
initial_type = [("float_input", FloatTensorType([None, 4]))]
onx = convert_sklearn(clr, initial_types=initial_type)
with open("logreg_iris.onnx", "wb") as f:
f.write(onx.SerializeToString())
##################################
# We load the model with ONNX Runtime and look at
# its input and output.
import onnxruntime as rt # noqa: E402
sess = rt.InferenceSession("logreg_iris.onnx", providers=rt.get_available_providers())
print(f"input name='{sess.get_inputs()[0].name}' and shape={sess.get_inputs()[0].shape}")
print(f"output name='{sess.get_outputs()[0].name}' and shape={sess.get_outputs()[0].shape}")
##################################
# We compute the predictions.
input_name = sess.get_inputs()[0].name
label_name = sess.get_outputs()[0].name
import numpy # noqa: E402
pred_onx = sess.run([label_name], {input_name: X_test.astype(numpy.float32)})[0]
print(confusion_matrix(pred, pred_onx))
###################################
# The prediction are perfectly identical.
#
# Probabilities
# +++++++++++++
#
# Probabilities are needed to compute other
# relevant metrics such as the ROC Curve.
# Let's see how to get them first with
# scikit-learn.
prob_sklearn = clr.predict_proba(X_test)
print(prob_sklearn[:3])
#############################
# And then with ONNX Runtime.
# The probabilies appear to be
prob_name = sess.get_outputs()[1].name
prob_rt = sess.run([prob_name], {input_name: X_test.astype(numpy.float32)})[0]
import pprint # noqa: E402
pprint.pprint(prob_rt[0:3])
###############################
# Let's benchmark.
from timeit import Timer # noqa: E402
def speed(inst, number=5, repeat=10):
timer = Timer(inst, globals=globals())
raw = numpy.array(timer.repeat(repeat, number=number))
ave = raw.sum() / len(raw) / number
mi, ma = raw.min() / number, raw.max() / number
print(f"Average {ave:1.3g} min={mi:1.3g} max={ma:1.3g}")
return ave
print("Execution time for clr.predict")
speed("clr.predict(X_test)")
print("Execution time for ONNX Runtime")
speed("sess.run([label_name], {input_name: X_test.astype(numpy.float32)})[0]")
###############################
# Let's benchmark a scenario similar to what a webservice
# experiences: the model has to do one prediction at a time
# as opposed to a batch of prediction.
def loop(X_test, fct, n=None):
nrow = X_test.shape[0]
if n is None:
n = nrow
for i in range(n):
im = i % nrow
fct(X_test[im : im + 1])
print("Execution time for clr.predict")
speed("loop(X_test, clr.predict, 50)")
def sess_predict(x):
return sess.run([label_name], {input_name: x.astype(numpy.float32)})[0]
print("Execution time for sess_predict")
speed("loop(X_test, sess_predict, 50)")
#####################################
# Let's do the same for the probabilities.
print("Execution time for predict_proba")
speed("loop(X_test, clr.predict_proba, 50)")
def sess_predict_proba(x):
return sess.run([prob_name], {input_name: x.astype(numpy.float32)})[0]
print("Execution time for sess_predict_proba")
speed("loop(X_test, sess_predict_proba, 50)")
#####################################
# This second comparison is better as
# ONNX Runtime, in this experience,
# computes the label and the probabilities
# in every case.
##########################################
# Benchmark with RandomForest
# +++++++++++++++++++++++++++
#
# We first train and save a model in ONNX format.
from sklearn.ensemble import RandomForestClassifier # noqa: E402
rf = RandomForestClassifier(n_estimators=10)
rf.fit(X_train, y_train)
initial_type = [("float_input", FloatTensorType([1, 4]))]
onx = convert_sklearn(rf, initial_types=initial_type)
with open("rf_iris.onnx", "wb") as f:
f.write(onx.SerializeToString())
###################################
# We compare.
sess = rt.InferenceSession("rf_iris.onnx", providers=rt.get_available_providers())
def sess_predict_proba_rf(x):
return sess.run([prob_name], {input_name: x.astype(numpy.float32)})[0]
print("Execution time for predict_proba")
speed("loop(X_test, rf.predict_proba, 50)")
print("Execution time for sess_predict_proba")
speed("loop(X_test, sess_predict_proba_rf, 50)")
##################################
# Let's see with different number of trees.
measures = []
for n_trees in range(5, 51, 5):
print(n_trees)
rf = RandomForestClassifier(n_estimators=n_trees)
rf.fit(X_train, y_train)
initial_type = [("float_input", FloatTensorType([1, 4]))]
onx = convert_sklearn(rf, initial_types=initial_type)
with open(f"rf_iris_{n_trees}.onnx", "wb") as f:
f.write(onx.SerializeToString())
sess = rt.InferenceSession(f"rf_iris_{n_trees}.onnx", providers=rt.get_available_providers())
def sess_predict_proba_loop(x):
return sess.run([prob_name], {input_name: x.astype(numpy.float32)})[0] # noqa: B023
tsk = speed("loop(X_test, rf.predict_proba, 25)", number=5, repeat=4)
trt = speed("loop(X_test, sess_predict_proba_loop, 25)", number=5, repeat=4)
measures.append({"n_trees": n_trees, "sklearn": tsk, "rt": trt})
from pandas import DataFrame # noqa: E402
df = DataFrame(measures)
ax = df.plot(x="n_trees", y="sklearn", label="scikit-learn", c="blue", logy=True)
df.plot(x="n_trees", y="rt", label="onnxruntime", ax=ax, c="green", logy=True)
ax.set_xlabel("Number of trees")
ax.set_ylabel("Prediction time (s)")
ax.set_title("Speed comparison between scikit-learn and ONNX Runtime\nFor a random forest on Iris dataset")
ax.legend()