ONNX Runtime provides an easy way to run machine learned models with high performance on CPU or GPU without dependencies on the training framework. Machine learning frameworks are usually optimized for batch training rather than for prediction, which is a more common scenario in applications, sites, and services. At a high level, you can:
- Train a model using your favorite framework.
- Convert or export the model into ONNX format. See ONNX Tutorials for more details.
- Load and run the model using ONNX Runtime.
In this tutorial, we will briefly create a pipeline with scikit-learn, convert it into ONNX format and run the first predictions.
We'll use the famous iris datasets.
.. runpython:: :showcode: :store: :warningout: ImportWarning FutureWarning from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split iris = load_iris() X, y = iris.data, iris.target X_train, X_test, y_train, y_test = train_test_split(X, y) from sklearn.linear_model import LogisticRegression clr = LogisticRegression() clr.fit(X_train, y_train) print(clr)
ONNX is a format to describe the machine learned model. It defines a set of commonly used operators to compose models. There are tools to convert other model formats into ONNX. Here we will use ONNXMLTools.
.. runpython:: :showcode: :restore: :store: :warningout: ImportWarning FutureWarning from skl2onnx import convert_sklearn from skl2onnx.common.data_types import FloatTensorType initial_type = [('float_input', FloatTensorType([None, 4]))] onx = convert_sklearn(clr, initial_types=initial_type) with open("logreg_iris.onnx", "wb") as f: f.write(onx.SerializeToString())
We will use ONNX Runtime to compute the predictions for this machine learning model.
.. runpython:: :showcode: :restore: :store: import numpy import onnxruntime as rt sess = rt.InferenceSession("logreg_iris.onnx", providers=rt.get_available_providers()) input_name = sess.get_inputs()[0].name pred_onx = sess.run(None, {input_name: X_test.astype(numpy.float32)})[0] print(pred_onx)
The code can be changed to get one specific output by specifying its name into a list.
.. runpython:: :showcode: :restore: import numpy import onnxruntime as rt sess = rt.InferenceSession("logreg_iris.onnx", providers=rt.get_available_providers()) input_name = sess.get_inputs()[0].name label_name = sess.get_outputs()[0].name pred_onx = sess.run([label_name], {input_name: X_test.astype(numpy.float32)})[0] print(pred_onx)