Skip to content

onnxruntime outputs different results for different opset versions #25050

Open
@coffezhou

Description

@coffezhou

Describe the issue

For the following onnx model,

Image
the default opset version is 11 and the outputs are as follows:

ONNXRuntime:
 [array([[[[1., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.]],

        [[0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.]],

        [[1., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.]],

        [[0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.]]]], dtype=float32)]

However, if I change the opset version to 13 , a different results are produced:

ONNXRuntime:
 [array([[[[1., 1., 1., 1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1., 1., 1., 1.]],

        [[0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.]],

        [[1., 1., 1., 1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1., 1., 1., 1.]],

        [[0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 0., 0., 0., 0.]]]], dtype=float32)]

To reproduce

Environment

OS: Ubuntu 20.04
onnxruntime: 1.23.0.dev20250515001
CUDA: cuda-12.2.2::cuda-toolkit
CUDNN: 9.1.1.17
NVIDIA GPU: GeForce RTX 3080
NVIDIA Driver Version: 535.183.01
Python Version: 3.12.9

Steps to reproduce

This bug can be reproduced by the following code with the model in the attachment.

from typing import Dict, List, Literal, Optional
import sys
import os

import numpy as np
import onnx
import onnxruntime
from onnx import ModelProto, TensorProto, helper, mapping

import pickle

def test():
    
    onnx_model = onnx.load("11.onnx")
    print(onnx_model.opset_import[0].version)

    with open("inputs.pkl", "rb") as fp:
        inputs = pickle.load(fp)

    ort_session = onnxruntime.InferenceSession(
            onnx_model.SerializeToString(), providers=["CPUExecutionProvider"]
        )
    ort_output = ort_session.run([], inputs)
    
    print("ONNXRuntime:\n", ort_output)
    
    #--------------------------------------------
    onnx_model.opset_import[0].version = 13
    
    ort_session = onnxruntime.InferenceSession(
            onnx_model.SerializeToString(), providers=["CPUExecutionProvider"]
        )
    ort_output = ort_session.run([], inputs)
    
    print("ONNXRuntime:\n", ort_output)
    
if __name__ == "__main__":
    test()

testcase.zip

Urgency

No response

Platform

Linux

OS Version

Ubuntu 20.04

ONNX Runtime Installation

Released Package

ONNX Runtime Version or Commit ID

1.23.0.dev20250515001

ONNX Runtime API

Python

Architecture

X64

Execution Provider

Default CPU

Execution Provider Library Version

No response

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions