|
| 1 | +/** |
| 2 | + * The Mandelbrot set is the set of complex numbers "c" for which the series "z_(n+1) = z_n * z_n + |
| 3 | + * c" does not diverge, i.e. remains bounded. Thus, a complex number "c" is a member of the |
| 4 | + * Mandelbrot set if, when starting with "z_0 = 0" and applying the iteration repeatedly, the |
| 5 | + * absolute value of "z_n" remains bounded for all "n > 0". Complex numbers can be written as "a + |
| 6 | + * b*i": "a" is the real component, usually drawn on the x-axis, and "b*i" is the imaginary |
| 7 | + * component, usually drawn on the y-axis. Most visualizations of the Mandelbrot set use a |
| 8 | + * color-coding to indicate after how many steps in the series the numbers outside the set cross the |
| 9 | + * divergence threshold. Images of the Mandelbrot set exhibit an elaborate and infinitely |
| 10 | + * complicated boundary that reveals progressively ever-finer recursive detail at increasing |
| 11 | + * magnifications, making the boundary of the Mandelbrot set a fractal curve. (description adapted |
| 12 | + * from https://en.wikipedia.org/wiki/Mandelbrot_set ) (see also |
| 13 | + * https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set ) |
| 14 | + */ |
| 15 | + |
| 16 | +/* |
| 17 | +Doctests |
| 18 | +Test black and white |
| 19 | +Pixel outside the Mandelbrot set should be white. |
| 20 | +Pixel inside the Mandelbrot set should be black. |
| 21 | +> getRGBData(800, 600, -0.6, 0, 3.2, 50, false)[0][0] |
| 22 | +[255, 255, 255] |
| 23 | +> getRGBData(800, 600, -0.6, 0, 3.2, 50, false)[400][300] |
| 24 | +[0, 0, 0] |
| 25 | +
|
| 26 | +Test color-coding |
| 27 | +Pixel distant to the Mandelbrot set should be red. |
| 28 | +Pixel inside the Mandelbrot set should be black. |
| 29 | +> getRGBData(800, 600, -0.6, 0, 3.2, 50, true)[0][0] |
| 30 | +[255, 0, 0] |
| 31 | +> getRGBData(800, 600, -0.6, 0, 3.2, 50, true)[400][300] |
| 32 | +[0, 0, 0] |
| 33 | +*/ |
| 34 | + |
| 35 | +/** |
| 36 | + * Method to generate the image of the Mandelbrot set. Two types of coordinates are used: |
| 37 | + * image-coordinates that refer to the pixels and figure-coordinates that refer to the complex |
| 38 | + * numbers inside and outside the Mandelbrot set. The figure-coordinates in the arguments of this |
| 39 | + * method determine which section of the Mandelbrot set is viewed. The main area of the Mandelbrot |
| 40 | + * set is roughly between "-1.5 < x < 0.5" and "-1 < y < 1" in the figure-coordinates. |
| 41 | + * |
| 42 | + * @param {number} imageWidth The width of the rendered image. |
| 43 | + * @param {number} imageHeight The height of the rendered image. |
| 44 | + * @param {number} figureCenterX The x-coordinate of the center of the figure. |
| 45 | + * @param {number} figureCenterY The y-coordinate of the center of the figure. |
| 46 | + * @param {number} figureWidth The width of the figure. |
| 47 | + * @param {number} maxStep Maximum number of steps to check for divergent behavior. |
| 48 | + * @param {number} useDistanceColorCoding Render in color or black and white. |
| 49 | + * @return {object} The RGB-data of the rendered Mandelbrot set. |
| 50 | + */ |
| 51 | +function getRGBData ( |
| 52 | + imageWidth = 800, |
| 53 | + imageHeight = 600, |
| 54 | + figureCenterX = -0.6, |
| 55 | + figureCenterY = 0, |
| 56 | + figureWidth = 3.2, |
| 57 | + maxStep = 50, |
| 58 | + useDistanceColorCoding = true) { |
| 59 | + if (imageWidth <= 0) { |
| 60 | + throw new Error('imageWidth should be greater than zero') |
| 61 | + } |
| 62 | + |
| 63 | + if (imageHeight <= 0) { |
| 64 | + throw new Error('imageHeight should be greater than zero') |
| 65 | + } |
| 66 | + |
| 67 | + if (maxStep <= 0) { |
| 68 | + throw new Error('maxStep should be greater than zero') |
| 69 | + } |
| 70 | + |
| 71 | + const rgbData = [] |
| 72 | + const figureHeight = figureWidth / imageWidth * imageHeight |
| 73 | + |
| 74 | + // loop through the image-coordinates |
| 75 | + for (let imageX = 0; imageX < imageWidth; imageX++) { |
| 76 | + rgbData[imageX] = [] |
| 77 | + for (let imageY = 0; imageY < imageHeight; imageY++) { |
| 78 | + // determine the figure-coordinates based on the image-coordinates |
| 79 | + const figureX = figureCenterX + (imageX / imageWidth - 0.5) * figureWidth |
| 80 | + const figureY = figureCenterY + (imageY / imageHeight - 0.5) * figureHeight |
| 81 | + |
| 82 | + const distance = getDistance(figureX, figureY, maxStep) |
| 83 | + |
| 84 | + // color the corresponding pixel based on the selected coloring-function |
| 85 | + rgbData[imageX][imageY] = |
| 86 | + useDistanceColorCoding |
| 87 | + ? colorCodedColorMap(distance) |
| 88 | + : blackAndWhiteColorMap(distance) |
| 89 | + } |
| 90 | + } |
| 91 | + |
| 92 | + return rgbData |
| 93 | +} |
| 94 | + |
| 95 | +/** |
| 96 | + * Black and white color-coding that ignores the relative distance. The Mandelbrot set is black, |
| 97 | + * everything else is white. |
| 98 | + * |
| 99 | + * @param {number} distance Distance until divergence threshold |
| 100 | + * @return {object} The RGB-value corresponding to the distance. |
| 101 | + */ |
| 102 | +function blackAndWhiteColorMap (distance) { |
| 103 | + return distance >= 1 ? [0, 0, 0] : [255, 255, 255] |
| 104 | +} |
| 105 | + |
| 106 | +/** |
| 107 | + * Color-coding taking the relative distance into account. The Mandelbrot set is black. |
| 108 | + * |
| 109 | + * @param {number} distance Distance until divergence threshold |
| 110 | + * @return {object} The RGB-value corresponding to the distance. |
| 111 | + */ |
| 112 | +function colorCodedColorMap (distance) { |
| 113 | + if (distance >= 1) { |
| 114 | + return [0, 0, 0] |
| 115 | + } else { |
| 116 | + // simplified transformation of HSV to RGB |
| 117 | + // distance determines hue |
| 118 | + const hue = 360 * distance |
| 119 | + const saturation = 1 |
| 120 | + const val = 255 |
| 121 | + const hi = (Math.floor(hue / 60)) % 6 |
| 122 | + const f = hue / 60 - Math.floor(hue / 60) |
| 123 | + |
| 124 | + const v = val |
| 125 | + const p = 0 |
| 126 | + const q = Math.floor(val * (1 - f * saturation)) |
| 127 | + const t = Math.floor(val * (1 - (1 - f) * saturation)) |
| 128 | + |
| 129 | + switch (hi) { |
| 130 | + case 0: |
| 131 | + return [v, t, p] |
| 132 | + case 1: |
| 133 | + return [q, v, p] |
| 134 | + case 2: |
| 135 | + return [p, v, t] |
| 136 | + case 3: |
| 137 | + return [p, q, v] |
| 138 | + case 4: |
| 139 | + return [t, p, v] |
| 140 | + default: |
| 141 | + return [v, p, q] |
| 142 | + } |
| 143 | + } |
| 144 | +} |
| 145 | + |
| 146 | +/** |
| 147 | + * Return the relative distance (ratio of steps taken to maxStep) after which the complex number |
| 148 | + * constituted by this x-y-pair diverges. Members of the Mandelbrot set do not diverge so their |
| 149 | + * distance is 1. |
| 150 | + * |
| 151 | + * @param {number} figureX The x-coordinate within the figure. |
| 152 | + * @param {number} figureX The y-coordinate within the figure. |
| 153 | + * @param {number} maxStep Maximum number of steps to check for divergent behavior. |
| 154 | + * @return {number} The relative distance as the ratio of steps taken to maxStep. |
| 155 | + */ |
| 156 | +function getDistance (figureX, figureY, maxStep) { |
| 157 | + let a = figureX |
| 158 | + let b = figureY |
| 159 | + let currentStep = 0 |
| 160 | + for (let step = 0; step < maxStep; step++) { |
| 161 | + currentStep = step |
| 162 | + const aNew = a * a - b * b + figureX |
| 163 | + b = 2 * a * b + figureY |
| 164 | + a = aNew |
| 165 | + |
| 166 | + // divergence happens for all complex number with an absolute value |
| 167 | + // greater than 4 (= divergence threshold) |
| 168 | + if (a * a + b * b > 4) { |
| 169 | + break |
| 170 | + } |
| 171 | + } |
| 172 | + return currentStep / (maxStep - 1) |
| 173 | +} |
| 174 | + |
| 175 | +// plot the results if the script is executed in a browser with a window-object |
| 176 | +if (typeof window !== 'undefined') { |
| 177 | + const rgbData = getRGBData() |
| 178 | + const width = rgbData.length |
| 179 | + const height = rgbData[0].length |
| 180 | + const canvas = document.createElement('canvas') |
| 181 | + canvas.width = width |
| 182 | + canvas.height = height |
| 183 | + const ctx = canvas.getContext('2d') |
| 184 | + for (let x = 0; x < width; x++) { |
| 185 | + for (let y = 0; y < height; y++) { |
| 186 | + const rgb = rgbData[x][y] |
| 187 | + ctx.fillStyle = 'rgb(' + rgb[0] + ',' + rgb[1] + ',' + rgb[2] + ')' |
| 188 | + ctx.fillRect(x, y, 1, 1) |
| 189 | + } |
| 190 | + } |
| 191 | + document.body.append(canvas) |
| 192 | +} |
0 commit comments