forked from mozilla/gecko-dev
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPHC.cpp
1848 lines (1569 loc) · 65 KB
/
PHC.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// PHC is a probabilistic heap checker. A tiny fraction of randomly chosen heap
// allocations are subject to some expensive checking via the use of OS page
// access protection. A failed check triggers a crash, whereupon useful
// information about the failure is put into the crash report. The cost and
// coverage for each user is minimal, but spread over the entire user base the
// coverage becomes significant.
//
// The idea comes from Chromium, where it is called GWP-ASAN. (Firefox uses PHC
// as the name because GWP-ASAN is long, awkward, and doesn't have any
// particular meaning.)
//
// In the current implementation up to 64 allocations per process can become
// PHC allocations. These allocations must be page-sized or smaller. Each PHC
// allocation gets its own page, and when the allocation is freed its page is
// marked inaccessible until the page is reused for another allocation. This
// means that a use-after-free defect (which includes double-frees) will be
// caught if the use occurs before the page is reused for another allocation.
// The crash report will contain stack traces for the allocation site, the free
// site, and the use-after-free site, which is often enough to diagnose the
// defect.
//
// Also, each PHC allocation is followed by a guard page. The PHC allocation is
// positioned so that its end abuts the guard page (or as close as possible,
// given alignment constraints). This means that a bounds violation at the end
// of the allocation (overflow) will be caught. The crash report will contain
// stack traces for the allocation site and the bounds violation use site,
// which is often enough to diagnose the defect.
//
// (A bounds violation at the start of the allocation (underflow) will not be
// caught, unless it is sufficiently large to hit the preceding allocation's
// guard page, which is not that likely. It would be possible to look more
// assiduously for underflow by randomly placing some allocations at the end of
// the page and some at the start of the page, and GWP-ASAN does this. PHC does
// not, however, because overflow is likely to be much more common than
// underflow in practice.)
//
// We use a simple heuristic to categorize a guard page access as overflow or
// underflow: if the address falls in the lower half of the guard page, we
// assume it is overflow, otherwise we assume it is underflow. More
// sophisticated heuristics are possible, but this one is very simple, and it is
// likely that most overflows/underflows in practice are very close to the page
// boundary.
//
// The design space for the randomization strategy is large. The current
// implementation has a large random delay before it starts operating, and a
// small random delay between each PHC allocation attempt. Each freed PHC
// allocation is quarantined for a medium random delay before being reused, in
// order to increase the chance of catching UAFs.
//
// The basic cost of PHC's operation is as follows.
//
// - The physical memory cost is 64 pages plus some metadata (including stack
// traces) for each page. This amounts to 256 KiB per process on
// architectures with 4 KiB pages and 1024 KiB on macOS/AArch64 which uses
// 16 KiB pages.
//
// - The virtual memory cost is the physical memory cost plus the guard pages:
// another 64 pages. This amounts to another 256 KiB per process on
// architectures with 4 KiB pages and 1024 KiB on macOS/AArch64 which uses
// 16 KiB pages. PHC is currently only enabled on 64-bit platforms so the
// impact of the virtual memory usage is negligible.
//
// - Every allocation requires a size check and a decrement-and-check of an
// atomic counter. When the counter reaches zero a PHC allocation can occur,
// which involves marking a page as accessible and getting a stack trace for
// the allocation site. Otherwise, mozjemalloc performs the allocation.
//
// - Every deallocation requires a range check on the pointer to see if it
// involves a PHC allocation. (The choice to only do PHC allocations that are
// a page or smaller enables this range check, because the 64 pages are
// contiguous. Allowing larger allocations would make this more complicated,
// and we definitely don't want something as slow as a hash table lookup on
// every deallocation.) PHC deallocations involve marking a page as
// inaccessible and getting a stack trace for the deallocation site.
//
// Note that calls to realloc(), free(), and malloc_usable_size() will
// immediately crash if the given pointer falls within a page allocation's
// page, but does not point to the start of the allocation itself.
//
// void* p = malloc(64);
// free(p + 1); // p+1 doesn't point to the allocation start; crash
//
// Such crashes will not have the PHC fields in the crash report.
//
// PHC-specific tests can be run with the following commands:
// - gtests: `./mach gtest '*PHC*'`
// - xpcshell-tests: `./mach test toolkit/crashreporter/test/unit`
// - This runs some non-PHC tests as well.
#include "PHC.h"
#include <stdlib.h>
#include <time.h>
#include <algorithm>
#ifdef XP_WIN
# include <process.h>
#else
# include <sys/mman.h>
# include <sys/types.h>
# include <pthread.h>
# include <unistd.h>
#endif
#include "mozjemalloc.h"
#include "mozjemalloc.h"
#include "FdPrintf.h"
#include "Mutex.h"
#include "mozilla/Assertions.h"
#include "mozilla/Atomics.h"
#include "mozilla/Attributes.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/Maybe.h"
#include "mozilla/StackWalk.h"
#include "mozilla/ThreadLocal.h"
#include "mozilla/XorShift128PlusRNG.h"
using namespace mozilla;
//---------------------------------------------------------------------------
// Utilities
//---------------------------------------------------------------------------
#ifdef ANDROID
// Android doesn't have pthread_atfork defined in pthread.h.
extern "C" MOZ_EXPORT int pthread_atfork(void (*)(void), void (*)(void),
void (*)(void));
#endif
#ifndef DISALLOW_COPY_AND_ASSIGN
# define DISALLOW_COPY_AND_ASSIGN(T) \
T(const T&); \
void operator=(const T&)
#endif
// This class provides infallible operations for the small number of heap
// allocations that PHC does for itself. It would be nice if we could use the
// InfallibleAllocPolicy from mozalloc, but PHC cannot use mozalloc.
class InfallibleAllocPolicy {
public:
static void AbortOnFailure(const void* aP) {
if (!aP) {
MOZ_CRASH("PHC failed to allocate");
}
}
template <class T>
static T* new_() {
void* p = MozJemalloc::malloc(sizeof(T));
AbortOnFailure(p);
return new (p) T;
}
};
//---------------------------------------------------------------------------
// Stack traces
//---------------------------------------------------------------------------
// This code is similar to the equivalent code within DMD.
class StackTrace : public phc::StackTrace {
public:
StackTrace() = default;
void Clear() { mLength = 0; }
void Fill();
private:
static void StackWalkCallback(uint32_t aFrameNumber, void* aPc, void* aSp,
void* aClosure) {
StackTrace* st = (StackTrace*)aClosure;
MOZ_ASSERT(st->mLength < kMaxFrames);
st->mPcs[st->mLength] = aPc;
st->mLength++;
MOZ_ASSERT(st->mLength == aFrameNumber);
}
};
// WARNING WARNING WARNING: this function must only be called when GMut::sMutex
// is *not* locked, otherwise we might get deadlocks.
//
// How? On Windows, MozStackWalk() can lock a mutex, M, from the shared library
// loader. Another thread might call malloc() while holding M locked (when
// loading a shared library) and try to lock GMut::sMutex, causing a deadlock.
// So GMut::sMutex can't be locked during the call to MozStackWalk(). (For
// details, see https://bugzilla.mozilla.org/show_bug.cgi?id=374829#c8. On
// Linux, something similar can happen; see bug 824340. So we just disallow it
// on all platforms.)
//
// In DMD, to avoid this problem we temporarily unlock the equivalent mutex for
// the MozStackWalk() call. But that's grotty, and things are a bit different
// here, so we just require that stack traces be obtained before locking
// GMut::sMutex.
//
// Unfortunately, there is no reliable way at compile-time or run-time to ensure
// this pre-condition. Hence this large comment.
//
void StackTrace::Fill() {
mLength = 0;
// These ifdefs should be kept in sync with the conditions in
// phc_implies_frame_pointers in build/moz.configure/memory.configure
#if defined(XP_WIN) && defined(_M_IX86)
// This avoids MozStackWalk(), which causes unusably slow startup on Win32
// when it is called during static initialization (see bug 1241684).
//
// This code is cribbed from the Gecko Profiler, which also uses
// FramePointerStackWalk() on Win32: Registers::SyncPopulate() for the
// frame pointer, and GetStackTop() for the stack end.
CONTEXT context;
RtlCaptureContext(&context);
void** fp = reinterpret_cast<void**>(context.Ebp);
PNT_TIB pTib = reinterpret_cast<PNT_TIB>(NtCurrentTeb());
void* stackEnd = static_cast<void*>(pTib->StackBase);
FramePointerStackWalk(StackWalkCallback, kMaxFrames, this, fp, stackEnd);
#elif defined(XP_DARWIN)
// This avoids MozStackWalk(), which has become unusably slow on Mac due to
// changes in libunwind.
//
// This code is cribbed from the Gecko Profiler, which also uses
// FramePointerStackWalk() on Mac: Registers::SyncPopulate() for the frame
// pointer, and GetStackTop() for the stack end.
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wframe-address"
void** fp = reinterpret_cast<void**>(__builtin_frame_address(1));
# pragma GCC diagnostic pop
void* stackEnd = pthread_get_stackaddr_np(pthread_self());
FramePointerStackWalk(StackWalkCallback, kMaxFrames, this, fp, stackEnd);
#else
MozStackWalk(StackWalkCallback, nullptr, kMaxFrames, this);
#endif
}
//---------------------------------------------------------------------------
// Logging
//---------------------------------------------------------------------------
// Change this to 1 to enable some PHC logging. Useful for debugging.
#define PHC_LOGGING 0
#if PHC_LOGGING
static size_t GetPid() { return size_t(getpid()); }
static size_t GetTid() {
# if defined(XP_WIN)
return size_t(GetCurrentThreadId());
# else
return size_t(pthread_self());
# endif
}
# if defined(XP_WIN)
# define LOG_STDERR \
reinterpret_cast<intptr_t>(GetStdHandle(STD_ERROR_HANDLE))
# else
# define LOG_STDERR 2
# endif
# define LOG(fmt, ...) \
FdPrintf(LOG_STDERR, "PHC[%zu,%zu,~%zu] " fmt, GetPid(), GetTid(), \
size_t(GAtomic::Now()), ##__VA_ARGS__)
#else
# define LOG(fmt, ...)
#endif // PHC_LOGGING
//---------------------------------------------------------------------------
// Global state
//---------------------------------------------------------------------------
// Throughout this entire file time is measured as the number of sub-page
// allocations performed (by PHC and mozjemalloc combined). `Time` is 64-bit
// because we could have more than 2**32 allocations in a long-running session.
// `Delay` is 32-bit because the delays used within PHC are always much smaller
// than 2**32.
using Time = uint64_t; // A moment in time.
using Delay = uint32_t; // A time duration.
// PHC only runs if the page size is 4 KiB; anything more is uncommon and would
// use too much memory. So we hardwire this size for all platforms but macOS
// on ARM processors. For the latter we make an exception because the minimum
// page size supported is 16KiB so there's no way to go below that.
static const size_t kPageSize =
#if defined(XP_DARWIN) && defined(__aarch64__)
16384
#else
4096
#endif
;
// We align the PHC area to a multiple of the jemalloc and JS GC chunk size
// (both use 1MB aligned chunks) so that their address computations don't lead
// from non-PHC memory into PHC memory causing misleading PHC stacks to be
// attached to a crash report.
static const size_t kPhcAlign = 1024 * 1024;
static_assert(IsPowerOfTwo(kPhcAlign));
static_assert((kPhcAlign % kPageSize) == 0);
// There are two kinds of page.
// - Allocation pages, from which allocations are made.
// - Guard pages, which are never touched by PHC.
//
// These page kinds are interleaved; each allocation page has a guard page on
// either side.
#ifdef EARLY_BETA_OR_EARLIER
static const size_t kNumAllocPages = kPageSize == 4096 ? 4096 : 1024;
#else
// This will use between 82KiB and 1.1MiB per process (depending on how many
// objects are currently allocated). We will tune this in the future.
static const size_t kNumAllocPages = kPageSize == 4096 ? 256 : 64;
#endif
static const size_t kNumAllPages = kNumAllocPages * 2 + 1;
// The total size of the allocation pages and guard pages.
static const size_t kAllPagesSize = kNumAllPages * kPageSize;
// jemalloc adds a guard page to the end of our allocation, see the comment in
// AllocAllPages() for more information.
static const size_t kAllPagesJemallocSize = kAllPagesSize - kPageSize;
// The default state for PHC. Either Enabled or OnlyFree.
#define DEFAULT_STATE mozilla::phc::OnlyFree
// The maximum time.
static const Time kMaxTime = ~(Time(0));
// Truncate aRnd to the range (1 .. aAvgDelay*2). If aRnd is random, this
// results in an average value of aAvgDelay + 0.5, which is close enough to
// aAvgDelay. aAvgDelay must be a power-of-two for speed.
constexpr Delay Rnd64ToDelay(Delay aAvgDelay, uint64_t aRnd) {
MOZ_ASSERT(IsPowerOfTwo(aAvgDelay), "must be a power of two");
return (aRnd & (uint64_t(aAvgDelay) * 2 - 1)) + 1;
}
static Delay CheckProbability(int64_t aProb) {
// Limit delays calculated from prefs to 0x80000000, this is the largest
// power-of-two that fits in a Delay since it is a uint32_t.
// The minimum is 2 that way not every allocation goes straight to PHC.
return RoundUpPow2(
std::min(std::max(aProb, int64_t(2)), int64_t(0x80000000)));
}
// Maps a pointer to a PHC-specific structure:
// - Nothing
// - A guard page (it is unspecified which one)
// - An allocation page (with an index < kNumAllocPages)
//
// The standard way of handling a PtrKind is to check IsNothing(), and if that
// fails, to check IsGuardPage(), and if that fails, to call AllocPage().
class PtrKind {
private:
enum class Tag : uint8_t {
Nothing,
GuardPage,
AllocPage,
};
Tag mTag;
uintptr_t mIndex; // Only used if mTag == Tag::AllocPage.
public:
// Detect what a pointer points to. This constructor must be fast because it
// is called for every call to free(), realloc(), malloc_usable_size(), and
// jemalloc_ptr_info().
PtrKind(const void* aPtr, const uint8_t* aPagesStart,
const uint8_t* aPagesLimit) {
if (!(aPagesStart <= aPtr && aPtr < aPagesLimit)) {
mTag = Tag::Nothing;
} else {
uintptr_t offset = static_cast<const uint8_t*>(aPtr) - aPagesStart;
uintptr_t allPageIndex = offset / kPageSize;
MOZ_ASSERT(allPageIndex < kNumAllPages);
if (allPageIndex & 1) {
// Odd-indexed pages are allocation pages.
uintptr_t allocPageIndex = allPageIndex / 2;
MOZ_ASSERT(allocPageIndex < kNumAllocPages);
mTag = Tag::AllocPage;
mIndex = allocPageIndex;
} else {
// Even-numbered pages are guard pages.
mTag = Tag::GuardPage;
}
}
}
bool IsNothing() const { return mTag == Tag::Nothing; }
bool IsGuardPage() const { return mTag == Tag::GuardPage; }
// This should only be called after IsNothing() and IsGuardPage() have been
// checked and failed.
uintptr_t AllocPageIndex() const {
MOZ_RELEASE_ASSERT(mTag == Tag::AllocPage);
return mIndex;
}
};
// Shared, atomic, mutable global state.
class GAtomic {
public:
static void Init(Delay aFirstDelay) {
sAllocDelay = aFirstDelay;
LOG("Initial sAllocDelay <- %zu\n", size_t(aFirstDelay));
}
static Time Now() { return sNow; }
static void IncrementNow() { sNow++; }
// Decrements the delay and returns the decremented value.
static int32_t DecrementDelay() { return --sAllocDelay; }
static void SetAllocDelay(Delay aAllocDelay) { sAllocDelay = aAllocDelay; }
static bool AllocDelayHasWrapped(Delay aAvgAllocDelay,
Delay aAvgFirstAllocDelay) {
// Delay is unsigned so we can't test for less that zero. Instead test if
// it has wrapped around by comparing with the maximum value we ever use.
return sAllocDelay > 2 * std::max(aAvgAllocDelay, aAvgFirstAllocDelay);
}
private:
// The current time. Relaxed semantics because it's primarily used for
// determining if an allocation can be recycled yet and therefore it doesn't
// need to be exact.
static Atomic<Time, Relaxed> sNow;
// Delay until the next attempt at a page allocation. See the comment in
// MaybePageAlloc() for an explanation of why it uses ReleaseAcquire
// semantics.
static Atomic<Delay, ReleaseAcquire> sAllocDelay;
};
Atomic<Time, Relaxed> GAtomic::sNow;
Atomic<Delay, ReleaseAcquire> GAtomic::sAllocDelay;
// Shared, immutable global state. Initialized by replace_init() and never
// changed after that. replace_init() runs early enough that no synchronization
// is needed.
class GConst {
private:
// The bounds of the allocated pages.
uint8_t* const mPagesStart;
uint8_t* const mPagesLimit;
// Allocates the allocation pages and the guard pages, contiguously.
uint8_t* AllocAllPages() {
// The memory allocated here is never freed, because it would happen at
// process termination when it would be of little use.
// We can rely on jemalloc's behaviour that when it allocates memory aligned
// with its own chunk size it will over-allocate and guarantee that the
// memory after the end of our allocation, but before the next chunk, is
// decommitted and inaccessible. Elsewhere in PHC we assume that we own
// that page (so that memory errors in it get caught by PHC) but here we
// use kAllPagesJemallocSize which subtracts jemalloc's guard page.
void* pages = MozJemalloc::memalign(kPhcAlign, kAllPagesJemallocSize);
if (!pages) {
MOZ_CRASH();
}
// Make the pages inaccessible.
#ifdef XP_WIN
if (!VirtualFree(pages, kAllPagesJemallocSize, MEM_DECOMMIT)) {
MOZ_CRASH("VirtualFree failed");
}
#else
if (mmap(pages, kAllPagesJemallocSize, PROT_NONE,
MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == MAP_FAILED) {
MOZ_CRASH("mmap failed");
}
#endif
return static_cast<uint8_t*>(pages);
}
public:
GConst()
: mPagesStart(AllocAllPages()), mPagesLimit(mPagesStart + kAllPagesSize) {
LOG("AllocAllPages at %p..%p\n", mPagesStart, mPagesLimit);
}
class PtrKind PtrKind(const void* aPtr) {
class PtrKind pk(aPtr, mPagesStart, mPagesLimit);
return pk;
}
bool IsInFirstGuardPage(const void* aPtr) {
return mPagesStart <= aPtr && aPtr < mPagesStart + kPageSize;
}
// Get the address of the allocation page referred to via an index. Used when
// marking the page as accessible/inaccessible.
uint8_t* AllocPagePtr(uintptr_t aIndex) {
MOZ_ASSERT(aIndex < kNumAllocPages);
// Multiply by two and add one to account for allocation pages *and* guard
// pages.
return mPagesStart + (2 * aIndex + 1) * kPageSize;
}
};
static GConst* gConst;
// This type is used as a proof-of-lock token, to make it clear which functions
// require sMutex to be locked.
using GMutLock = const MutexAutoLock&;
// Shared, mutable global state. Protected by sMutex; all accessing functions
// take a GMutLock as proof that sMutex is held.
class GMut {
enum class AllocPageState {
NeverAllocated = 0,
InUse = 1,
Freed = 2,
};
// Metadata for each allocation page.
class AllocPageInfo {
public:
AllocPageInfo()
: mState(AllocPageState::NeverAllocated),
mBaseAddr(nullptr),
mReuseTime(0) {}
// The current allocation page state.
AllocPageState mState;
// The arena that the allocation is nominally from. This isn't meaningful
// within PHC, which has no arenas. But it is necessary for reallocation of
// page allocations as normal allocations, such as in this code:
//
// p = moz_arena_malloc(arenaId, 4096);
// realloc(p, 8192);
//
// The realloc is more than one page, and thus too large for PHC to handle.
// Therefore, if PHC handles the first allocation, it must ask mozjemalloc
// to allocate the 8192 bytes in the correct arena, and to do that, it must
// call MozJemalloc::moz_arena_malloc with the correct arenaId under the
// covers. Therefore it must record that arenaId.
//
// This field is also needed for jemalloc_ptr_info() to work, because it
// also returns the arena ID (but only in debug builds).
//
// - NeverAllocated: must be 0.
// - InUse | Freed: can be any valid arena ID value.
Maybe<arena_id_t> mArenaId;
// The starting address of the allocation. Will not be the same as the page
// address unless the allocation is a full page.
// - NeverAllocated: must be 0.
// - InUse | Freed: must be within the allocation page.
uint8_t* mBaseAddr;
// Usable size is computed as the number of bytes between the pointer and
// the end of the allocation page. This might be bigger than the requested
// size, especially if an outsized alignment is requested.
size_t UsableSize() const {
return mState == AllocPageState::NeverAllocated
? 0
: kPageSize - (reinterpret_cast<uintptr_t>(mBaseAddr) &
(kPageSize - 1));
}
// The internal fragmentation for this allocation.
size_t FragmentationBytes() const {
MOZ_ASSERT(kPageSize >= UsableSize());
return mState == AllocPageState::InUse ? kPageSize - UsableSize() : 0;
}
// The allocation stack.
// - NeverAllocated: Nothing.
// - InUse | Freed: Some.
Maybe<StackTrace> mAllocStack;
// The free stack.
// - NeverAllocated | InUse: Nothing.
// - Freed: Some.
Maybe<StackTrace> mFreeStack;
// The time at which the page is available for reuse, as measured against
// GAtomic::sNow. When the page is in use this value will be kMaxTime.
// - NeverAllocated: must be 0.
// - InUse: must be kMaxTime.
// - Freed: must be > 0 and < kMaxTime.
Time mReuseTime;
};
public:
// The mutex that protects the other members.
static Mutex sMutex MOZ_UNANNOTATED;
// The RNG seeds here are poor, but non-reentrant since this can be called
// from malloc(). SetState() will reset the RNG later.
GMut() : mRNG(RandomSeed<1>(), RandomSeed<2>()) { sMutex.Init(); }
uint64_t Random64(GMutLock) { return mRNG.next(); }
bool IsPageInUse(GMutLock, uintptr_t aIndex) {
return mAllocPages[aIndex].mState == AllocPageState::InUse;
}
// Is the page free? And if so, has enough time passed that we can use it?
bool IsPageAllocatable(GMutLock, uintptr_t aIndex, Time aNow) {
const AllocPageInfo& page = mAllocPages[aIndex];
return page.mState != AllocPageState::InUse && aNow >= page.mReuseTime;
}
// Get the address of the allocation page referred to via an index. Used
// when checking pointers against page boundaries.
uint8_t* AllocPageBaseAddr(GMutLock, uintptr_t aIndex) {
return mAllocPages[aIndex].mBaseAddr;
}
Maybe<arena_id_t> PageArena(GMutLock aLock, uintptr_t aIndex) {
const AllocPageInfo& page = mAllocPages[aIndex];
AssertAllocPageInUse(aLock, page);
return page.mArenaId;
}
size_t PageUsableSize(GMutLock aLock, uintptr_t aIndex) {
const AllocPageInfo& page = mAllocPages[aIndex];
AssertAllocPageInUse(aLock, page);
return page.UsableSize();
}
// The total fragmentation in PHC
size_t FragmentationBytes() const {
size_t sum = 0;
for (const auto& page : mAllocPages) {
sum += page.FragmentationBytes();
}
return sum;
}
void SetPageInUse(GMutLock aLock, uintptr_t aIndex,
const Maybe<arena_id_t>& aArenaId, uint8_t* aBaseAddr,
const StackTrace& aAllocStack) {
AllocPageInfo& page = mAllocPages[aIndex];
AssertAllocPageNotInUse(aLock, page);
page.mState = AllocPageState::InUse;
page.mArenaId = aArenaId;
page.mBaseAddr = aBaseAddr;
page.mAllocStack = Some(aAllocStack);
page.mFreeStack = Nothing();
page.mReuseTime = kMaxTime;
}
#if PHC_LOGGING
Time GetFreeTime(uintptr_t aIndex) const { return mFreeTime[aIndex]; }
#endif
void ResizePageInUse(GMutLock aLock, uintptr_t aIndex,
const Maybe<arena_id_t>& aArenaId, uint8_t* aNewBaseAddr,
const StackTrace& aAllocStack) {
AllocPageInfo& page = mAllocPages[aIndex];
AssertAllocPageInUse(aLock, page);
// page.mState is not changed.
if (aArenaId.isSome()) {
// Crash if the arenas don't match.
MOZ_RELEASE_ASSERT(page.mArenaId == aArenaId);
}
page.mBaseAddr = aNewBaseAddr;
// We could just keep the original alloc stack, but the realloc stack is
// more recent and therefore seems more useful.
page.mAllocStack = Some(aAllocStack);
// page.mFreeStack is not changed.
// page.mReuseTime is not changed.
};
void SetPageFreed(GMutLock aLock, uintptr_t aIndex,
const Maybe<arena_id_t>& aArenaId,
const StackTrace& aFreeStack, Delay aReuseDelay) {
AllocPageInfo& page = mAllocPages[aIndex];
AssertAllocPageInUse(aLock, page);
page.mState = AllocPageState::Freed;
// page.mArenaId is left unchanged, for jemalloc_ptr_info() calls that
// occur after freeing (e.g. in the PtrInfo test in TestJemalloc.cpp).
if (aArenaId.isSome()) {
// Crash if the arenas don't match.
MOZ_RELEASE_ASSERT(page.mArenaId == aArenaId);
}
// page.musableSize is left unchanged, for reporting on UAF, and for
// jemalloc_ptr_info() calls that occur after freeing (e.g. in the PtrInfo
// test in TestJemalloc.cpp).
// page.mAllocStack is left unchanged, for reporting on UAF.
page.mFreeStack = Some(aFreeStack);
Time now = GAtomic::Now();
#if PHC_LOGGING
mFreeTime[aIndex] = now;
#endif
page.mReuseTime = now + aReuseDelay;
}
static void CrashOnGuardPage(void* aPtr) {
// An operation on a guard page? This is a bounds violation. Deliberately
// touch the page in question to cause a crash that triggers the usual PHC
// machinery.
LOG("CrashOnGuardPage(%p), bounds violation\n", aPtr);
*static_cast<uint8_t*>(aPtr) = 0;
MOZ_CRASH("unreachable");
}
void EnsureValidAndInUse(GMutLock, void* aPtr, uintptr_t aIndex)
MOZ_REQUIRES(sMutex) {
const AllocPageInfo& page = mAllocPages[aIndex];
// The pointer must point to the start of the allocation.
MOZ_RELEASE_ASSERT(page.mBaseAddr == aPtr);
if (page.mState == AllocPageState::Freed) {
LOG("EnsureValidAndInUse(%p), use-after-free\n", aPtr);
// An operation on a freed page? This is a particular kind of
// use-after-free. Deliberately touch the page in question, in order to
// cause a crash that triggers the usual PHC machinery. But unlock sMutex
// first, because that self-same PHC machinery needs to re-lock it, and
// the crash causes non-local control flow so sMutex won't be unlocked
// the normal way in the caller.
sMutex.Unlock();
*static_cast<uint8_t*>(aPtr) = 0;
MOZ_CRASH("unreachable");
}
}
// This expects GMUt::sMutex to be locked but can't check it with a parameter
// since we try-lock it.
void FillAddrInfo(uintptr_t aIndex, const void* aBaseAddr, bool isGuardPage,
phc::AddrInfo& aOut) {
const AllocPageInfo& page = mAllocPages[aIndex];
if (isGuardPage) {
aOut.mKind = phc::AddrInfo::Kind::GuardPage;
} else {
switch (page.mState) {
case AllocPageState::NeverAllocated:
aOut.mKind = phc::AddrInfo::Kind::NeverAllocatedPage;
break;
case AllocPageState::InUse:
aOut.mKind = phc::AddrInfo::Kind::InUsePage;
break;
case AllocPageState::Freed:
aOut.mKind = phc::AddrInfo::Kind::FreedPage;
break;
default:
MOZ_CRASH();
}
}
aOut.mBaseAddr = page.mBaseAddr;
aOut.mUsableSize = page.UsableSize();
aOut.mAllocStack = page.mAllocStack;
aOut.mFreeStack = page.mFreeStack;
}
void FillJemallocPtrInfo(GMutLock, const void* aPtr, uintptr_t aIndex,
jemalloc_ptr_info_t* aInfo) {
const AllocPageInfo& page = mAllocPages[aIndex];
switch (page.mState) {
case AllocPageState::NeverAllocated:
break;
case AllocPageState::InUse: {
// Only return TagLiveAlloc if the pointer is within the bounds of the
// allocation's usable size.
uint8_t* base = page.mBaseAddr;
uint8_t* limit = base + page.UsableSize();
if (base <= aPtr && aPtr < limit) {
*aInfo = {TagLiveAlloc, page.mBaseAddr, page.UsableSize(),
page.mArenaId.valueOr(0)};
return;
}
break;
}
case AllocPageState::Freed: {
// Only return TagFreedAlloc if the pointer is within the bounds of the
// former allocation's usable size.
uint8_t* base = page.mBaseAddr;
uint8_t* limit = base + page.UsableSize();
if (base <= aPtr && aPtr < limit) {
*aInfo = {TagFreedAlloc, page.mBaseAddr, page.UsableSize(),
page.mArenaId.valueOr(0)};
return;
}
break;
}
default:
MOZ_CRASH();
}
// Pointers into guard pages will end up here, as will pointers into
// allocation pages that aren't within the allocation's bounds.
*aInfo = {TagUnknown, nullptr, 0, 0};
}
#ifndef XP_WIN
static void prefork() MOZ_NO_THREAD_SAFETY_ANALYSIS { sMutex.Lock(); }
static void postfork_parent() MOZ_NO_THREAD_SAFETY_ANALYSIS {
sMutex.Unlock();
}
static void postfork_child() { sMutex.Init(); }
#endif
#if PHC_LOGGING
void IncPageAllocHits(GMutLock) { mPageAllocHits++; }
void IncPageAllocMisses(GMutLock) { mPageAllocMisses++; }
#else
void IncPageAllocHits(GMutLock) {}
void IncPageAllocMisses(GMutLock) {}
#endif
phc::PHCStats GetPageStats(GMutLock) {
phc::PHCStats stats;
for (const auto& page : mAllocPages) {
stats.mSlotsAllocated += page.mState == AllocPageState::InUse ? 1 : 0;
stats.mSlotsFreed += page.mState == AllocPageState::Freed ? 1 : 0;
}
stats.mSlotsUnused =
kNumAllocPages - stats.mSlotsAllocated - stats.mSlotsFreed;
return stats;
}
#if PHC_LOGGING
size_t PageAllocHits(GMutLock) { return mPageAllocHits; }
size_t PageAllocAttempts(GMutLock) {
return mPageAllocHits + mPageAllocMisses;
}
// This is an integer because FdPrintf only supports integer printing.
size_t PageAllocHitRate(GMutLock) {
return mPageAllocHits * 100 / (mPageAllocHits + mPageAllocMisses);
}
#endif
// Should we make new PHC allocations?
bool ShouldMakeNewAllocations() const {
return mPhcState == mozilla::phc::Enabled;
}
using PHCState = mozilla::phc::PHCState;
void SetState(PHCState aState) {
if (mPhcState != PHCState::Enabled && aState == PHCState::Enabled) {
MutexAutoLock lock(GMut::sMutex);
// Reset the RNG at this point with a better seed.
ResetRNG();
GAtomic::Init(Rnd64ToDelay(mAvgFirstAllocDelay, Random64(lock)));
}
mPhcState = aState;
}
void ResetRNG() {
mRNG = non_crypto::XorShift128PlusRNG(RandomSeed<0>(), RandomSeed<1>());
}
void SetProbabilities(int64_t aAvgDelayFirst, int64_t aAvgDelayNormal,
int64_t aAvgDelayPageReuse) {
MutexAutoLock lock(GMut::sMutex);
mAvgFirstAllocDelay = CheckProbability(aAvgDelayFirst);
mAvgAllocDelay = CheckProbability(aAvgDelayNormal);
mAvgPageReuseDelay = CheckProbability(aAvgDelayPageReuse);
}
private:
template <int N>
uint64_t RandomSeed() {
// An older version of this code used RandomUint64() here, but on Mac that
// function uses arc4random(), which can allocate, which would cause
// re-entry, which would be bad. So we just use time(), a local variable
// address and a global variable address. These are mediocre sources of
// entropy, but good enough for PHC.
static_assert(N == 0 || N == 1 || N == 2, "must be 0, 1 or 2");
uint64_t seed;
if (N == 0) {
time_t t = time(nullptr);
seed = t ^ (t << 32);
} else if (N == 1) {
seed = uintptr_t(&seed) ^ (uintptr_t(&seed) << 32);
} else {
seed = uintptr_t(&gConst) ^ (uintptr_t(&gConst) << 32);
}
return seed;
}
void AssertAllocPageInUse(GMutLock, const AllocPageInfo& aPage) {
MOZ_ASSERT(aPage.mState == AllocPageState::InUse);
// There is nothing to assert about aPage.mArenaId.
MOZ_ASSERT(aPage.mBaseAddr);
MOZ_ASSERT(aPage.UsableSize() > 0);
MOZ_ASSERT(aPage.mAllocStack.isSome());
MOZ_ASSERT(aPage.mFreeStack.isNothing());
MOZ_ASSERT(aPage.mReuseTime == kMaxTime);
}
void AssertAllocPageNotInUse(GMutLock, const AllocPageInfo& aPage) {
// We can assert a lot about `NeverAllocated` pages, but not much about
// `Freed` pages.
#ifdef DEBUG
bool isFresh = aPage.mState == AllocPageState::NeverAllocated;
MOZ_ASSERT(isFresh || aPage.mState == AllocPageState::Freed);
MOZ_ASSERT_IF(isFresh, aPage.mArenaId == Nothing());
MOZ_ASSERT(isFresh == (aPage.mBaseAddr == nullptr));
MOZ_ASSERT(isFresh == (aPage.mAllocStack.isNothing()));
MOZ_ASSERT(isFresh == (aPage.mFreeStack.isNothing()));
MOZ_ASSERT(aPage.mReuseTime != kMaxTime);
#endif
}
// RNG for deciding which allocations to treat specially. It doesn't need to
// be high quality.
//
// This is a raw pointer for the reason explained in the comment above
// GMut's constructor. Don't change it to UniquePtr or anything like that.
non_crypto::XorShift128PlusRNG mRNG;
AllocPageInfo mAllocPages[kNumAllocPages];
#if PHC_LOGGING
Time mFreeTime[kNumAllocPages];
// How many allocations that could have been page allocs actually were? As
// constrained kNumAllocPages. If the hit ratio isn't close to 100% it's
// likely that the global constants are poorly chosen.
size_t mPageAllocHits = 0;
size_t mPageAllocMisses = 0;
#endif
// This will only ever be updated from one thread. The other threads should
// eventually get the update.
Atomic<PHCState, Relaxed> mPhcState =
Atomic<PHCState, Relaxed>(DEFAULT_STATE);
// The average delay before doing any page allocations at the start of a
// process. Note that roughly 1 million allocations occur in the main process
// while starting the browser. The delay range is 1..gAvgFirstAllocDelay*2.
Delay mAvgFirstAllocDelay = 64 * 1024;
// The average delay until the next attempted page allocation, once we get
// past the first delay. The delay range is 1..kAvgAllocDelay*2.
Delay mAvgAllocDelay = 16 * 1024;
// The average delay before reusing a freed page. Should be significantly
// larger than kAvgAllocDelay, otherwise there's not much point in having it.
// The delay range is (kAvgAllocDelay / 2)..(kAvgAllocDelay / 2 * 3). This is
// different to the other delay ranges in not having a minimum of 1, because
// that's such a short delay that there is a high likelihood of bad stacks in
// any crash report.
Delay mAvgPageReuseDelay = 256 * 1024;
public:
Delay GetAvgAllocDelay(const MutexAutoLock&) { return mAvgAllocDelay; }
Delay GetAvgFirstAllocDelay(const MutexAutoLock&) {
return mAvgFirstAllocDelay;
}
Delay GetAvgPageReuseDelay(const MutexAutoLock&) {
return mAvgPageReuseDelay;
}
};
Mutex GMut::sMutex;
static GMut* gMut;
// When PHC wants to crash we first have to unlock so that the crash reporter
// can call into PHC to lockup its pointer. That also means that before calling
// PHCCrash please ensure that state is consistent. Because this can report an
// arbitrary string, use of it must be reviewed by Firefox data stewards.
static void PHCCrash(GMutLock, const char* aMessage)
MOZ_REQUIRES(GMut::sMutex) {
GMut::sMutex.Unlock();
MOZ_CRASH_UNSAFE(aMessage);
}
// On MacOS, the first __thread/thread_local access calls malloc, which leads