forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 339
/
Copy pathinitial-image.cpp
219 lines (209 loc) · 8.45 KB
/
initial-image.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
//===-- lib/Evaluate/initial-image.cpp ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Evaluate/initial-image.h"
#include "flang/Semantics/scope.h"
#include "flang/Semantics/tools.h"
#include <cstring>
namespace Fortran::evaluate {
auto InitialImage::Add(ConstantSubscript offset, std::size_t bytes,
const Constant<SomeDerived> &x, FoldingContext &context) -> Result {
if (offset < 0 || offset + bytes > data_.size()) {
return OutOfRange;
} else {
auto optElements{TotalElementCount(x.shape())};
if (!optElements) {
return TooManyElems;
}
auto elements{*optElements};
auto elementBytes{bytes > 0 ? bytes / elements : 0};
if (elements * elementBytes != bytes) {
return SizeMismatch;
} else {
auto at{x.lbounds()};
for (; elements-- > 0; x.IncrementSubscripts(at)) {
auto scalar{x.At(at)};
// TODO: length type parameter values?
for (const auto &[symbolRef, indExpr] : scalar) {
const Symbol &component{*symbolRef};
if (component.offset() + component.size() > elementBytes) {
return SizeMismatch;
} else if (IsPointer(component)) {
AddPointer(offset + component.offset(), indExpr.value());
} else if (IsAllocatable(component) || IsAutomatic(component)) {
return NotAConstant;
} else if (auto result{Add(offset + component.offset(),
component.size(), indExpr.value(), context)};
result != Ok) {
return result;
}
}
offset += elementBytes;
}
}
return Ok;
}
}
void InitialImage::AddPointer(
ConstantSubscript offset, const Expr<SomeType> &pointer) {
pointers_.emplace(offset, pointer);
}
void InitialImage::Incorporate(ConstantSubscript toOffset,
const InitialImage &from, ConstantSubscript fromOffset,
ConstantSubscript bytes) {
CHECK(from.pointers_.empty()); // pointers are not allowed in EQUIVALENCE
CHECK(fromOffset >= 0 && bytes >= 0 &&
static_cast<std::size_t>(fromOffset + bytes) <= from.size());
CHECK(static_cast<std::size_t>(toOffset + bytes) <= size());
std::memcpy(&data_[toOffset], &from.data_[fromOffset], bytes);
}
// Classes used with common::SearchTypes() to (re)construct Constant<> values
// of the right type to initialize each symbol from the values that have
// been placed into its initialization image by DATA statements.
class AsConstantHelper {
public:
using Result = std::optional<Expr<SomeType>>;
using Types = AllTypes;
AsConstantHelper(FoldingContext &context, const DynamicType &type,
std::optional<std::int64_t> charLength, const ConstantSubscripts &extents,
const InitialImage &image, bool padWithZero = false,
ConstantSubscript offset = 0)
: context_{context}, type_{type}, charLength_{charLength}, image_{image},
extents_{extents}, padWithZero_{padWithZero}, offset_{offset} {
CHECK(!type.IsPolymorphic());
}
template <typename T> Result Test() {
if (T::category != type_.category()) {
return std::nullopt;
}
if constexpr (T::category != TypeCategory::Derived) {
if (T::kind != type_.kind()) {
return std::nullopt;
}
}
using Const = Constant<T>;
using Scalar = typename Const::Element;
std::optional<uint64_t> optElements{TotalElementCount(extents_)};
CHECK(optElements);
uint64_t elements{*optElements};
std::vector<Scalar> typedValue(elements);
auto elemBytes{ToInt64(type_.MeasureSizeInBytes(
context_, GetRank(extents_) > 0, charLength_))};
CHECK(elemBytes && *elemBytes >= 0);
std::size_t stride{static_cast<std::size_t>(*elemBytes)};
CHECK(offset_ + elements * stride <= image_.data_.size() || padWithZero_);
if constexpr (T::category == TypeCategory::Derived) {
const semantics::DerivedTypeSpec &derived{type_.GetDerivedTypeSpec()};
for (auto iter : DEREF(derived.scope())) {
const Symbol &component{*iter.second};
bool isProcPtr{IsProcedurePointer(component)};
if (isProcPtr || component.has<semantics::ObjectEntityDetails>()) {
auto at{offset_ + component.offset()};
if (isProcPtr) {
for (std::size_t j{0}; j < elements; ++j, at += stride) {
if (Result value{image_.AsConstantPointer(at)}) {
typedValue[j].emplace(component, std::move(*value));
}
}
} else if (IsPointer(component)) {
for (std::size_t j{0}; j < elements; ++j, at += stride) {
if (Result value{image_.AsConstantPointer(at)}) {
typedValue[j].emplace(component, std::move(*value));
} else {
typedValue[j].emplace(component, Expr<SomeType>{NullPointer{}});
}
}
} else if (IsAllocatable(component)) {
// Lowering needs an explicit NULL() for allocatables
for (std::size_t j{0}; j < elements; ++j, at += stride) {
typedValue[j].emplace(component, Expr<SomeType>{NullPointer{}});
}
} else {
auto componentType{DynamicType::From(component)};
CHECK(componentType.has_value());
auto componentExtents{GetConstantExtents(context_, component)};
CHECK(componentExtents.has_value());
for (std::size_t j{0}; j < elements; ++j, at += stride) {
if (Result value{image_.AsConstant(context_, *componentType,
std::nullopt, *componentExtents, padWithZero_, at)}) {
typedValue[j].emplace(component, std::move(*value));
}
}
}
}
}
return AsGenericExpr(
Const{derived, std::move(typedValue), std::move(extents_)});
} else if constexpr (T::category == TypeCategory::Character) {
auto length{static_cast<ConstantSubscript>(stride) / T::kind};
for (std::size_t j{0}; j < elements; ++j) {
using Char = typename Scalar::value_type;
auto at{static_cast<std::size_t>(offset_ + j * stride)};
auto chunk{length};
if (at + chunk > image_.data_.size()) {
CHECK(padWithZero_);
if (at >= image_.data_.size()) {
chunk = 0;
} else {
chunk = image_.data_.size() - at;
}
}
if (chunk > 0) {
const Char *data{reinterpret_cast<const Char *>(&image_.data_[at])};
typedValue[j].assign(data, chunk);
}
if (chunk < length && padWithZero_) {
typedValue[j].append(length - chunk, Char{});
}
}
return AsGenericExpr(
Const{length, std::move(typedValue), std::move(extents_)});
} else {
// Lengthless intrinsic type
CHECK(sizeof(Scalar) <= stride);
for (std::size_t j{0}; j < elements; ++j) {
auto at{static_cast<std::size_t>(offset_ + j * stride)};
std::size_t chunk{sizeof(Scalar)};
if (at + chunk > image_.data_.size()) {
CHECK(padWithZero_);
if (at >= image_.data_.size()) {
chunk = 0;
} else {
chunk = image_.data_.size() - at;
}
}
// TODO endianness
if (chunk > 0) {
std::memcpy(&typedValue[j], &image_.data_[at], chunk);
}
}
return AsGenericExpr(Const{std::move(typedValue), std::move(extents_)});
}
}
private:
FoldingContext &context_;
const DynamicType &type_;
std::optional<std::int64_t> charLength_;
const InitialImage &image_;
ConstantSubscripts extents_; // a copy
bool padWithZero_;
ConstantSubscript offset_;
};
std::optional<Expr<SomeType>> InitialImage::AsConstant(FoldingContext &context,
const DynamicType &type, std::optional<std::int64_t> charLength,
const ConstantSubscripts &extents, bool padWithZero,
ConstantSubscript offset) const {
return common::SearchTypes(AsConstantHelper{
context, type, charLength, extents, *this, padWithZero, offset});
}
std::optional<Expr<SomeType>> InitialImage::AsConstantPointer(
ConstantSubscript offset) const {
auto iter{pointers_.find(offset)};
return iter == pointers_.end() ? std::optional<Expr<SomeType>>{}
: iter->second;
}
} // namespace Fortran::evaluate