forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 339
/
Copy pathintrinsics-library.cpp
1062 lines (1007 loc) · 41.9 KB
/
intrinsics-library.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===-- lib/Evaluate/intrinsics-library.cpp -------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file defines host runtime functions that can be used for folding
// intrinsic functions.
// The default host runtime folders are built with <cmath> and
// <complex> functions that are guaranteed to exist from the C++ standard.
#include "flang/Evaluate/intrinsics-library.h"
#include "fold-implementation.h"
#include "host.h"
#include "flang/Common/erfc-scaled.h"
#include "flang/Common/idioms.h"
#include "flang/Common/static-multimap-view.h"
#include "flang/Evaluate/expression.h"
#include <cfloat>
#include <cmath>
#include <complex>
#include <functional>
#if HAS_QUADMATHLIB
#include "quadmath_wrapper.h"
#endif
#include "flang/Common/float128.h"
#include "flang/Common/float80.h"
#include <type_traits>
namespace Fortran::evaluate {
// Define a vector like class that can hold an arbitrary number of
// Dynamic type and be built at compile time. This is like a
// std::vector<DynamicType>, but constexpr only.
template <typename... FortranType> struct TypeVectorStorage {
static constexpr DynamicType values[]{FortranType{}.GetType()...};
static constexpr const DynamicType *start{&values[0]};
static constexpr const DynamicType *end{start + sizeof...(FortranType)};
};
template <> struct TypeVectorStorage<> {
static constexpr const DynamicType *start{nullptr}, *end{nullptr};
};
struct TypeVector {
template <typename... FortranType> static constexpr TypeVector Create() {
using storage = TypeVectorStorage<FortranType...>;
return TypeVector{storage::start, storage::end, sizeof...(FortranType)};
}
constexpr size_t size() const { return size_; };
using const_iterator = const DynamicType *;
constexpr const_iterator begin() const { return startPtr; }
constexpr const_iterator end() const { return endPtr; }
const DynamicType &operator[](size_t i) const { return *(startPtr + i); }
const DynamicType *startPtr{nullptr};
const DynamicType *endPtr{nullptr};
const size_t size_;
};
inline bool operator==(
const TypeVector &lhs, const std::vector<DynamicType> &rhs) {
if (lhs.size() != rhs.size()) {
return false;
}
for (size_t i{0}; i < lhs.size(); ++i) {
if (lhs[i] != rhs[i]) {
return false;
}
}
return true;
}
// HostRuntimeFunction holds a pointer to a Folder function that can fold
// a Fortran scalar intrinsic using host runtime functions (e.g libm).
// The folder take care of all conversions between Fortran types and the related
// host types as well as setting and cleaning-up the floating point environment.
// HostRuntimeFunction are intended to be built at compile time (members are all
// constexpr constructible) so that they can be stored in a compile time static
// map.
struct HostRuntimeFunction {
using Folder = Expr<SomeType> (*)(
FoldingContext &, std::vector<Expr<SomeType>> &&);
using Key = std::string_view;
// Needed for implicit compare with keys.
constexpr operator Key() const { return key; }
// Name of the related Fortran intrinsic.
Key key;
// DynamicType of the Expr<SomeType> returns by folder.
DynamicType resultType;
// DynamicTypes expected for the Expr<SomeType> arguments of the folder.
// The folder will crash if provided arguments of different types.
TypeVector argumentTypes;
// Folder to be called to fold the intrinsic with host runtime. The provided
// Expr<SomeType> arguments must wrap scalar constants of the type described
// in argumentTypes, otherwise folder will crash. Any floating point issue
// raised while executing the host runtime will be reported in FoldingContext
// messages.
Folder folder;
};
// Translate a host function type signature (template arguments) into a
// constexpr data representation based on Fortran DynamicType that can be
// stored.
template <typename TR, typename... TA> using FuncPointer = TR (*)(TA...);
template <typename T> struct FuncTypeAnalyzer {};
template <typename HostTR, typename... HostTA>
struct FuncTypeAnalyzer<FuncPointer<HostTR, HostTA...>> {
static constexpr DynamicType result{host::FortranType<HostTR>{}.GetType()};
static constexpr TypeVector arguments{
TypeVector::Create<host::FortranType<HostTA>...>()};
};
// Define helpers to deal with host floating environment.
template <typename TR>
static void CheckFloatingPointIssues(
host::HostFloatingPointEnvironment &hostFPE, const Scalar<TR> &x) {
if constexpr (TR::category == TypeCategory::Complex ||
TR::category == TypeCategory::Real) {
if (x.IsNotANumber()) {
hostFPE.SetFlag(RealFlag::InvalidArgument);
} else if (x.IsInfinite()) {
hostFPE.SetFlag(RealFlag::Overflow);
}
}
}
// Software Subnormal Flushing helper.
// Only flush floating-points. Forward other scalars untouched.
// Software flushing is only performed if hardware flushing is not available
// because it may not result in the same behavior as hardware flushing.
// Some runtime implementations are "working around" subnormal flushing to
// return results that they deem better than returning the result they would
// with a null argument. An example is logf that should return -inf if arguments
// are flushed to zero, but some implementations return -1.03972076416015625e2_4
// for all subnormal values instead. It is impossible to reproduce this with the
// simple software flushing below.
template <typename T>
static constexpr inline const Scalar<T> FlushSubnormals(Scalar<T> &&x) {
if constexpr (T::category == TypeCategory::Real ||
T::category == TypeCategory::Complex) {
return x.FlushSubnormalToZero();
}
return x;
}
// This is the kernel called by all HostRuntimeFunction folders, it convert the
// Fortran Expr<SomeType> to the host runtime function argument types, calls
// the runtime function, and wrap back the result into an Expr<SomeType>.
// It deals with host floating point environment set-up and clean-up.
template <typename FuncType, typename TR, typename... TA, size_t... I>
static Expr<SomeType> ApplyHostFunctionHelper(FuncType func,
FoldingContext &context, std::vector<Expr<SomeType>> &&args,
std::index_sequence<I...>) {
host::HostFloatingPointEnvironment hostFPE;
hostFPE.SetUpHostFloatingPointEnvironment(context);
host::HostType<TR> hostResult{};
Scalar<TR> result{};
std::tuple<Scalar<TA>...> scalarArgs{
GetScalarConstantValue<TA>(args[I]).value()...};
if (context.targetCharacteristics().areSubnormalsFlushedToZero() &&
!hostFPE.hasSubnormalFlushingHardwareControl()) {
hostResult = func(host::CastFortranToHost<TA>(
FlushSubnormals<TA>(std::move(std::get<I>(scalarArgs))))...);
result = FlushSubnormals<TR>(host::CastHostToFortran<TR>(hostResult));
} else {
hostResult = func(host::CastFortranToHost<TA>(std::get<I>(scalarArgs))...);
result = host::CastHostToFortran<TR>(hostResult);
}
if (!hostFPE.hardwareFlagsAreReliable()) {
CheckFloatingPointIssues<TR>(hostFPE, result);
}
hostFPE.CheckAndRestoreFloatingPointEnvironment(context);
return AsGenericExpr(Constant<TR>(std::move(result)));
}
template <typename HostTR, typename... HostTA>
Expr<SomeType> ApplyHostFunction(FuncPointer<HostTR, HostTA...> func,
FoldingContext &context, std::vector<Expr<SomeType>> &&args) {
return ApplyHostFunctionHelper<decltype(func), host::FortranType<HostTR>,
host::FortranType<HostTA>...>(
func, context, std::move(args), std::index_sequence_for<HostTA...>{});
}
// FolderFactory builds a HostRuntimeFunction for the host runtime function
// passed as a template argument.
// Its static member function "fold" is the resulting folder. It captures the
// host runtime function pointer and pass it to the host runtime function folder
// kernel.
template <typename HostFuncType, HostFuncType func> class FolderFactory {
public:
static constexpr HostRuntimeFunction Create(const std::string_view &name) {
return HostRuntimeFunction{name, FuncTypeAnalyzer<HostFuncType>::result,
FuncTypeAnalyzer<HostFuncType>::arguments, &Fold};
}
private:
static Expr<SomeType> Fold(
FoldingContext &context, std::vector<Expr<SomeType>> &&args) {
return ApplyHostFunction(func, context, std::move(args));
}
};
// Define host runtime libraries that can be used for folding and
// fill their description if they are available.
enum class LibraryVersion {
Libm,
LibmExtensions,
PgmathFast,
PgmathRelaxed,
PgmathPrecise
};
template <typename HostT, LibraryVersion> struct HostRuntimeLibrary {
// When specialized, this class holds a static constexpr table containing
// all the HostRuntimeLibrary for functions of library LibraryVersion
// that returns a value of type HostT.
};
using HostRuntimeMap = common::StaticMultimapView<HostRuntimeFunction>;
// Map numerical intrinsic to <cmath>/<complex> functions
// (Note: ABS() is folded in fold-real.cpp.)
template <typename HostT>
struct HostRuntimeLibrary<HostT, LibraryVersion::Libm> {
using F = FuncPointer<HostT, HostT>;
using F2 = FuncPointer<HostT, HostT, HostT>;
static constexpr HostRuntimeFunction table[]{
FolderFactory<F, F{std::acos}>::Create("acos"),
FolderFactory<F, F{std::acosh}>::Create("acosh"),
FolderFactory<F, F{std::asin}>::Create("asin"),
FolderFactory<F, F{std::asinh}>::Create("asinh"),
FolderFactory<F, F{std::atan}>::Create("atan"),
FolderFactory<F2, F2{std::atan2}>::Create("atan2"),
FolderFactory<F, F{std::atanh}>::Create("atanh"),
FolderFactory<F, F{std::cos}>::Create("cos"),
FolderFactory<F, F{std::cosh}>::Create("cosh"),
FolderFactory<F, F{std::erf}>::Create("erf"),
FolderFactory<F, F{std::erfc}>::Create("erfc"),
FolderFactory<F, F{common::ErfcScaled}>::Create("erfc_scaled"),
FolderFactory<F, F{std::exp}>::Create("exp"),
FolderFactory<F, F{std::tgamma}>::Create("gamma"),
FolderFactory<F, F{std::log}>::Create("log"),
FolderFactory<F, F{std::log10}>::Create("log10"),
FolderFactory<F, F{std::lgamma}>::Create("log_gamma"),
FolderFactory<F2, F2{std::pow}>::Create("pow"),
FolderFactory<F, F{std::sin}>::Create("sin"),
FolderFactory<F, F{std::sinh}>::Create("sinh"),
FolderFactory<F, F{std::tan}>::Create("tan"),
FolderFactory<F, F{std::tanh}>::Create("tanh"),
};
// Note: cmath does not have modulo and erfc_scaled equivalent
// Note regarding lack of bessel function support:
// C++17 defined standard Bessel math functions std::cyl_bessel_j
// and std::cyl_neumann that can be used for Fortran j and y
// bessel functions. However, they are not yet implemented in
// clang libc++ (ok in GNU libstdc++). C maths functions j0...
// are not C standard but a GNU extension so they are not used
// to avoid introducing incompatibilities.
// Use libpgmath to get bessel function folding support.
// TODO: Add Bessel functions when possible.
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
#define COMPLEX_SIGNATURES(HOST_T) \
using F = FuncPointer<std::complex<HOST_T>, const std::complex<HOST_T> &>; \
using F2 = FuncPointer<std::complex<HOST_T>, const std::complex<HOST_T> &, \
const std::complex<HOST_T> &>; \
using F2A = FuncPointer<std::complex<HOST_T>, const HOST_T &, \
const std::complex<HOST_T> &>; \
using F2B = FuncPointer<std::complex<HOST_T>, const std::complex<HOST_T> &, \
const HOST_T &>;
#ifndef _AIX
// Helpers to map complex std::pow whose resolution in F2{std::pow} is
// ambiguous as of clang++ 20.
template <typename HostT>
static std::complex<HostT> StdPowF2(
const std::complex<HostT> &x, const std::complex<HostT> &y) {
return std::pow(x, y);
}
template <typename HostT>
static std::complex<HostT> StdPowF2A(
const HostT &x, const std::complex<HostT> &y) {
return std::pow(x, y);
}
template <typename HostT>
static std::complex<HostT> StdPowF2B(
const std::complex<HostT> &x, const HostT &y) {
return std::pow(x, y);
}
template <typename HostT>
struct HostRuntimeLibrary<std::complex<HostT>, LibraryVersion::Libm> {
COMPLEX_SIGNATURES(HostT)
static constexpr HostRuntimeFunction table[]{
FolderFactory<F, F{std::acos}>::Create("acos"),
FolderFactory<F, F{std::acosh}>::Create("acosh"),
FolderFactory<F, F{std::asin}>::Create("asin"),
FolderFactory<F, F{std::asinh}>::Create("asinh"),
FolderFactory<F, F{std::atan}>::Create("atan"),
FolderFactory<F, F{std::atanh}>::Create("atanh"),
FolderFactory<F, F{std::cos}>::Create("cos"),
FolderFactory<F, F{std::cosh}>::Create("cosh"),
FolderFactory<F, F{std::exp}>::Create("exp"),
FolderFactory<F, F{std::log}>::Create("log"),
FolderFactory<F2, F2{StdPowF2}>::Create("pow"),
FolderFactory<F2A, F2A{StdPowF2A}>::Create("pow"),
FolderFactory<F2B, F2B{StdPowF2B}>::Create("pow"),
FolderFactory<F, F{std::sin}>::Create("sin"),
FolderFactory<F, F{std::sinh}>::Create("sinh"),
FolderFactory<F, F{std::sqrt}>::Create("sqrt"),
FolderFactory<F, F{std::tan}>::Create("tan"),
FolderFactory<F, F{std::tanh}>::Create("tanh"),
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
#else
// On AIX, call libm routines to preserve consistent value between
// runtime and compile time evaluation.
#ifdef __clang_major__
#pragma clang diagnostic ignored "-Wc99-extensions"
#endif
extern "C" {
float _Complex cacosf(float _Complex);
double _Complex cacos(double _Complex);
float _Complex cacoshf(float _Complex);
double _Complex cacosh(double _Complex);
float _Complex casinf(float _Complex);
double _Complex casin(double _Complex);
float _Complex casinhf(float _Complex);
double _Complex casinh(double _Complex);
float _Complex catanf(float _Complex);
double _Complex catan(double _Complex);
float _Complex catanhf(float _Complex);
double _Complex catanh(double _Complex);
float _Complex ccosf(float _Complex);
double _Complex ccos(double _Complex);
float _Complex ccoshf(float _Complex);
double _Complex ccosh(double _Complex);
float _Complex cexpf(float _Complex);
double _Complex cexp(double _Complex);
float _Complex clogf(float _Complex);
double _Complex __clog(double _Complex);
float _Complex cpowf(float _Complex, float _Complex);
double _Complex cpow(double _Complex, double _Complex);
float _Complex csinf(float _Complex);
double _Complex csin(double _Complex);
float _Complex csinhf(float _Complex);
double _Complex csinh(double _Complex);
float _Complex csqrtf(float _Complex);
double _Complex csqrt(double _Complex);
float _Complex ctanf(float _Complex);
double _Complex ctan(double _Complex);
float _Complex ctanhf(float _Complex);
double _Complex ctanh(double _Complex);
}
template <typename T> struct ToStdComplex {
using Type = T;
using AType = Type;
};
template <> struct ToStdComplex<float _Complex> {
using Type = std::complex<float>;
using AType = const Type &;
};
template <> struct ToStdComplex<double _Complex> {
using Type = std::complex<double>;
using AType = const Type &;
};
template <typename F, F func> struct CComplexFunc {};
template <typename R, typename... A, FuncPointer<R, A...> func>
struct CComplexFunc<FuncPointer<R, A...>, func> {
static typename ToStdComplex<R>::Type wrapper(
typename ToStdComplex<A>::AType... args) {
R res{func(*reinterpret_cast<const A *>(&args)...)};
return *reinterpret_cast<typename ToStdComplex<R>::Type *>(&res);
}
};
#define C_COMPLEX_FUNC(func) CComplexFunc<decltype(&func), &func>::wrapper
template <>
struct HostRuntimeLibrary<std::complex<float>, LibraryVersion::Libm> {
COMPLEX_SIGNATURES(float)
static constexpr HostRuntimeFunction table[]{
FolderFactory<F, C_COMPLEX_FUNC(cacosf)>::Create("acos"),
FolderFactory<F, C_COMPLEX_FUNC(cacoshf)>::Create("acosh"),
FolderFactory<F, C_COMPLEX_FUNC(casinf)>::Create("asin"),
FolderFactory<F, C_COMPLEX_FUNC(casinhf)>::Create("asinh"),
FolderFactory<F, C_COMPLEX_FUNC(catanf)>::Create("atan"),
FolderFactory<F, C_COMPLEX_FUNC(catanhf)>::Create("atanh"),
FolderFactory<F, C_COMPLEX_FUNC(ccosf)>::Create("cos"),
FolderFactory<F, C_COMPLEX_FUNC(ccoshf)>::Create("cosh"),
FolderFactory<F, C_COMPLEX_FUNC(cexpf)>::Create("exp"),
FolderFactory<F, C_COMPLEX_FUNC(clogf)>::Create("log"),
FolderFactory<F2, C_COMPLEX_FUNC(cpowf)>::Create("pow"),
FolderFactory<F, C_COMPLEX_FUNC(csinf)>::Create("sin"),
FolderFactory<F, C_COMPLEX_FUNC(csinhf)>::Create("sinh"),
FolderFactory<F, C_COMPLEX_FUNC(csqrtf)>::Create("sqrt"),
FolderFactory<F, C_COMPLEX_FUNC(ctanf)>::Create("tan"),
FolderFactory<F, C_COMPLEX_FUNC(ctanhf)>::Create("tanh"),
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
template <>
struct HostRuntimeLibrary<std::complex<double>, LibraryVersion::Libm> {
COMPLEX_SIGNATURES(double)
static constexpr HostRuntimeFunction table[]{
FolderFactory<F, C_COMPLEX_FUNC(cacos)>::Create("acos"),
FolderFactory<F, C_COMPLEX_FUNC(cacosh)>::Create("acosh"),
FolderFactory<F, C_COMPLEX_FUNC(casin)>::Create("asin"),
FolderFactory<F, C_COMPLEX_FUNC(casinh)>::Create("asinh"),
FolderFactory<F, C_COMPLEX_FUNC(catan)>::Create("atan"),
FolderFactory<F, C_COMPLEX_FUNC(catanh)>::Create("atanh"),
FolderFactory<F, C_COMPLEX_FUNC(ccos)>::Create("cos"),
FolderFactory<F, C_COMPLEX_FUNC(ccosh)>::Create("cosh"),
FolderFactory<F, C_COMPLEX_FUNC(cexp)>::Create("exp"),
FolderFactory<F, C_COMPLEX_FUNC(__clog)>::Create("log"),
FolderFactory<F2, C_COMPLEX_FUNC(cpow)>::Create("pow"),
FolderFactory<F, C_COMPLEX_FUNC(csin)>::Create("sin"),
FolderFactory<F, C_COMPLEX_FUNC(csinh)>::Create("sinh"),
FolderFactory<F, C_COMPLEX_FUNC(csqrt)>::Create("sqrt"),
FolderFactory<F, C_COMPLEX_FUNC(ctan)>::Create("tan"),
FolderFactory<F, C_COMPLEX_FUNC(ctanh)>::Create("tanh"),
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
#endif // _AIX
// Note regarding cmath:
// - cmath does not have modulo and erfc_scaled equivalent
// - C++17 defined standard Bessel math functions std::cyl_bessel_j
// and std::cyl_neumann that can be used for Fortran j and y
// bessel functions. However, they are not yet implemented in
// clang libc++ (ok in GNU libstdc++). Instead, the Posix libm
// extensions are used when available below.
#if _POSIX_C_SOURCE >= 200112L || _XOPEN_SOURCE >= 600
/// Define libm extensions
/// Bessel functions are defined in POSIX.1-2001.
// Remove float bessel functions for AIX and Darwin as they are not supported
#if !defined(_AIX) && !defined(__APPLE__)
template <> struct HostRuntimeLibrary<float, LibraryVersion::LibmExtensions> {
using F = FuncPointer<float, float>;
using FN = FuncPointer<float, int, float>;
static constexpr HostRuntimeFunction table[]{
FolderFactory<F, F{::j0f}>::Create("bessel_j0"),
FolderFactory<F, F{::j1f}>::Create("bessel_j1"),
FolderFactory<FN, FN{::jnf}>::Create("bessel_jn"),
FolderFactory<F, F{::y0f}>::Create("bessel_y0"),
FolderFactory<F, F{::y1f}>::Create("bessel_y1"),
FolderFactory<FN, FN{::ynf}>::Create("bessel_yn"),
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
#endif
#if HAS_QUADMATHLIB
template <> struct HostRuntimeLibrary<__float128, LibraryVersion::Libm> {
using F = FuncPointer<__float128, __float128>;
using F2 = FuncPointer<__float128, __float128, __float128>;
using FN = FuncPointer<__float128, int, __float128>;
static constexpr HostRuntimeFunction table[]{
FolderFactory<F, F{::acosq}>::Create("acos"),
FolderFactory<F, F{::acoshq}>::Create("acosh"),
FolderFactory<F, F{::asinq}>::Create("asin"),
FolderFactory<F, F{::asinhq}>::Create("asinh"),
FolderFactory<F, F{::atanq}>::Create("atan"),
FolderFactory<F2, F2{::atan2q}>::Create("atan2"),
FolderFactory<F, F{::atanhq}>::Create("atanh"),
FolderFactory<F, F{::j0q}>::Create("bessel_j0"),
FolderFactory<F, F{::j1q}>::Create("bessel_j1"),
FolderFactory<FN, FN{::jnq}>::Create("bessel_jn"),
FolderFactory<F, F{::y0q}>::Create("bessel_y0"),
FolderFactory<F, F{::y1q}>::Create("bessel_y1"),
FolderFactory<FN, FN{::ynq}>::Create("bessel_yn"),
FolderFactory<F, F{::cosq}>::Create("cos"),
FolderFactory<F, F{::coshq}>::Create("cosh"),
FolderFactory<F, F{::erfq}>::Create("erf"),
FolderFactory<F, F{::erfcq}>::Create("erfc"),
FolderFactory<F, F{::expq}>::Create("exp"),
FolderFactory<F, F{::tgammaq}>::Create("gamma"),
FolderFactory<F, F{::logq}>::Create("log"),
FolderFactory<F, F{::log10q}>::Create("log10"),
FolderFactory<F, F{::lgammaq}>::Create("log_gamma"),
FolderFactory<F2, F2{::powq}>::Create("pow"),
FolderFactory<F, F{::sinq}>::Create("sin"),
FolderFactory<F, F{::sinhq}>::Create("sinh"),
FolderFactory<F, F{::tanq}>::Create("tan"),
FolderFactory<F, F{::tanhq}>::Create("tanh"),
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
template <> struct HostRuntimeLibrary<__complex128, LibraryVersion::Libm> {
using F = FuncPointer<__complex128, __complex128>;
using F2 = FuncPointer<__complex128, __complex128, __complex128>;
static constexpr HostRuntimeFunction table[]{
FolderFactory<F, F{::cacosq}>::Create("acos"),
FolderFactory<F, F{::cacoshq}>::Create("acosh"),
FolderFactory<F, F{::casinq}>::Create("asin"),
FolderFactory<F, F{::casinhq}>::Create("asinh"),
FolderFactory<F, F{::catanq}>::Create("atan"),
FolderFactory<F, F{::catanhq}>::Create("atanh"),
FolderFactory<F, F{::ccosq}>::Create("cos"),
FolderFactory<F, F{::ccoshq}>::Create("cosh"),
FolderFactory<F, F{::cexpq}>::Create("exp"),
FolderFactory<F, F{::clogq}>::Create("log"),
FolderFactory<F2, F2{::cpowq}>::Create("pow"),
FolderFactory<F, F{::csinq}>::Create("sin"),
FolderFactory<F, F{::csinhq}>::Create("sinh"),
FolderFactory<F, F{::csqrtq}>::Create("sqrt"),
FolderFactory<F, F{::ctanq}>::Create("tan"),
FolderFactory<F, F{::ctanhq}>::Create("tanh"),
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
#endif
template <> struct HostRuntimeLibrary<double, LibraryVersion::LibmExtensions> {
using F = FuncPointer<double, double>;
using FN = FuncPointer<double, int, double>;
static constexpr HostRuntimeFunction table[]{
FolderFactory<F, F{::j0}>::Create("bessel_j0"),
FolderFactory<F, F{::j1}>::Create("bessel_j1"),
FolderFactory<FN, FN{::jn}>::Create("bessel_jn"),
FolderFactory<F, F{::y0}>::Create("bessel_y0"),
FolderFactory<F, F{::y1}>::Create("bessel_y1"),
FolderFactory<FN, FN{::yn}>::Create("bessel_yn"),
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
#if defined(__GLIBC__) && (HAS_FLOAT80 || HAS_LDBL128)
template <>
struct HostRuntimeLibrary<long double, LibraryVersion::LibmExtensions> {
using F = FuncPointer<long double, long double>;
using FN = FuncPointer<long double, int, long double>;
static constexpr HostRuntimeFunction table[]{
FolderFactory<F, F{::j0l}>::Create("bessel_j0"),
FolderFactory<F, F{::j1l}>::Create("bessel_j1"),
FolderFactory<FN, FN{::jnl}>::Create("bessel_jn"),
FolderFactory<F, F{::y0l}>::Create("bessel_y0"),
FolderFactory<F, F{::y1l}>::Create("bessel_y1"),
FolderFactory<FN, FN{::ynl}>::Create("bessel_yn"),
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
#endif // HAS_FLOAT80 || HAS_LDBL128
#endif //_POSIX_C_SOURCE >= 200112L || _XOPEN_SOURCE >= 600
#ifdef _WIN32
template <> struct HostRuntimeLibrary<double, LibraryVersion::LibmExtensions> {
using F = FuncPointer<double, double>;
using FN = FuncPointer<double, int, double>;
static constexpr HostRuntimeFunction table[]{
FolderFactory<F, F{::_j0}>::Create("bessel_j0"),
FolderFactory<F, F{::_j1}>::Create("bessel_j1"),
FolderFactory<FN, FN{::_jn}>::Create("bessel_jn"),
FolderFactory<F, F{::_y0}>::Create("bessel_y0"),
FolderFactory<F, F{::_y1}>::Create("bessel_y1"),
FolderFactory<FN, FN{::_yn}>::Create("bessel_yn"),
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
#endif
/// Define pgmath description
#if LINK_WITH_LIBPGMATH
// Only use libpgmath for folding if it is available.
// First declare all libpgmaths functions
#define PGMATH_LINKING
#define PGMATH_DECLARE
#include "flang/Evaluate/pgmath.h.inc"
#define REAL_FOLDER(name, func) \
FolderFactory<decltype(&func), &func>::Create(#name)
template <> struct HostRuntimeLibrary<float, LibraryVersion::PgmathFast> {
static constexpr HostRuntimeFunction table[]{
#define PGMATH_FAST
#define PGMATH_USE_S(name, func) REAL_FOLDER(name, func),
#include "flang/Evaluate/pgmath.h.inc"
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
template <> struct HostRuntimeLibrary<double, LibraryVersion::PgmathFast> {
static constexpr HostRuntimeFunction table[]{
#define PGMATH_FAST
#define PGMATH_USE_D(name, func) REAL_FOLDER(name, func),
#include "flang/Evaluate/pgmath.h.inc"
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
template <> struct HostRuntimeLibrary<float, LibraryVersion::PgmathRelaxed> {
static constexpr HostRuntimeFunction table[]{
#define PGMATH_RELAXED
#define PGMATH_USE_S(name, func) REAL_FOLDER(name, func),
#include "flang/Evaluate/pgmath.h.inc"
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
template <> struct HostRuntimeLibrary<double, LibraryVersion::PgmathRelaxed> {
static constexpr HostRuntimeFunction table[]{
#define PGMATH_RELAXED
#define PGMATH_USE_D(name, func) REAL_FOLDER(name, func),
#include "flang/Evaluate/pgmath.h.inc"
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
template <> struct HostRuntimeLibrary<float, LibraryVersion::PgmathPrecise> {
static constexpr HostRuntimeFunction table[]{
#define PGMATH_PRECISE
#define PGMATH_USE_S(name, func) REAL_FOLDER(name, func),
#include "flang/Evaluate/pgmath.h.inc"
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
template <> struct HostRuntimeLibrary<double, LibraryVersion::PgmathPrecise> {
static constexpr HostRuntimeFunction table[]{
#define PGMATH_PRECISE
#define PGMATH_USE_D(name, func) REAL_FOLDER(name, func),
#include "flang/Evaluate/pgmath.h.inc"
};
static constexpr HostRuntimeMap map{table};
static_assert(map.Verify(), "map must be sorted");
};
// TODO: double _Complex/float _Complex have been removed from llvm flang
// pgmath.h.inc because they caused warnings, they need to be added back
// so that the complex pgmath versions can be used when requested.
#endif /* LINK_WITH_LIBPGMATH */
// Helper to check if a HostRuntimeLibrary specialization exists
template <typename T, typename = void> struct IsAvailable : std::false_type {};
template <typename T>
struct IsAvailable<T, decltype((void)T::table, void())> : std::true_type {};
// Define helpers to find host runtime library map according to desired version
// and type.
template <typename HostT, LibraryVersion version>
static const HostRuntimeMap *GetHostRuntimeMapHelper(
[[maybe_unused]] DynamicType resultType) {
// A library must only be instantiated if LibraryVersion is
// available on the host and if HostT maps to a Fortran type.
// For instance, whenever long double and double are both 64-bits, double
// is mapped to Fortran 64bits real type, and long double will be left
// unmapped.
if constexpr (host::FortranTypeExists<HostT>()) {
using Lib = HostRuntimeLibrary<HostT, version>;
if constexpr (IsAvailable<Lib>::value) {
if (host::FortranType<HostT>{}.GetType() == resultType) {
return &Lib::map;
}
}
}
return nullptr;
}
template <LibraryVersion version>
static const HostRuntimeMap *GetHostRuntimeMapVersion(DynamicType resultType) {
if (resultType.category() == TypeCategory::Real) {
if (const auto *map{GetHostRuntimeMapHelper<float, version>(resultType)}) {
return map;
}
if (const auto *map{GetHostRuntimeMapHelper<double, version>(resultType)}) {
return map;
}
if (const auto *map{
GetHostRuntimeMapHelper<long double, version>(resultType)}) {
return map;
}
#if HAS_QUADMATHLIB
if (const auto *map{
GetHostRuntimeMapHelper<__float128, version>(resultType)}) {
return map;
}
#endif
}
if (resultType.category() == TypeCategory::Complex) {
if (const auto *map{GetHostRuntimeMapHelper<std::complex<float>, version>(
resultType)}) {
return map;
}
if (const auto *map{GetHostRuntimeMapHelper<std::complex<double>, version>(
resultType)}) {
return map;
}
if (const auto *map{
GetHostRuntimeMapHelper<std::complex<long double>, version>(
resultType)}) {
return map;
}
#if HAS_QUADMATHLIB
if (const auto *map{
GetHostRuntimeMapHelper<__complex128, version>(resultType)}) {
return map;
}
#endif
}
return nullptr;
}
static const HostRuntimeMap *GetHostRuntimeMap(
LibraryVersion version, DynamicType resultType) {
switch (version) {
case LibraryVersion::Libm:
return GetHostRuntimeMapVersion<LibraryVersion::Libm>(resultType);
case LibraryVersion::LibmExtensions:
return GetHostRuntimeMapVersion<LibraryVersion::LibmExtensions>(resultType);
case LibraryVersion::PgmathPrecise:
return GetHostRuntimeMapVersion<LibraryVersion::PgmathPrecise>(resultType);
case LibraryVersion::PgmathRelaxed:
return GetHostRuntimeMapVersion<LibraryVersion::PgmathRelaxed>(resultType);
case LibraryVersion::PgmathFast:
return GetHostRuntimeMapVersion<LibraryVersion::PgmathFast>(resultType);
}
return nullptr;
}
static const HostRuntimeFunction *SearchInHostRuntimeMap(
const HostRuntimeMap &map, const std::string &name, DynamicType resultType,
const std::vector<DynamicType> &argTypes) {
auto sameNameRange{map.equal_range(name)};
for (const auto *iter{sameNameRange.first}; iter != sameNameRange.second;
++iter) {
if (iter->resultType == resultType && iter->argumentTypes == argTypes) {
return &*iter;
}
}
return nullptr;
}
// Search host runtime libraries for an exact type match.
static const HostRuntimeFunction *SearchHostRuntime(const std::string &name,
DynamicType resultType, const std::vector<DynamicType> &argTypes) {
// TODO: When command line options regarding targeted numerical library is
// available, this needs to be revisited to take it into account. So far,
// default to libpgmath if F18 is built with it.
#if LINK_WITH_LIBPGMATH
if (const auto *map{
GetHostRuntimeMap(LibraryVersion::PgmathPrecise, resultType)}) {
if (const auto *hostFunction{
SearchInHostRuntimeMap(*map, name, resultType, argTypes)}) {
return hostFunction;
}
}
// Default to libm if functions or types are not available in pgmath.
#endif
if (const auto *map{GetHostRuntimeMap(LibraryVersion::Libm, resultType)}) {
if (const auto *hostFunction{
SearchInHostRuntimeMap(*map, name, resultType, argTypes)}) {
return hostFunction;
}
}
if (const auto *map{
GetHostRuntimeMap(LibraryVersion::LibmExtensions, resultType)}) {
if (const auto *hostFunction{
SearchInHostRuntimeMap(*map, name, resultType, argTypes)}) {
return hostFunction;
}
}
return nullptr;
}
// Return a DynamicType that can hold all values of a given type.
// This is used to allow 16bit float to be folded with 32bits and
// x87 float to be folded with IEEE 128bits.
static DynamicType BiggerType(DynamicType type) {
if (type.category() == TypeCategory::Real ||
type.category() == TypeCategory::Complex) {
// 16 bits floats to IEEE 32 bits float
if (type.kind() == common::RealKindForPrecision(11) ||
type.kind() == common::RealKindForPrecision(8)) {
return {type.category(), common::RealKindForPrecision(24)};
}
// x87 float to IEEE 128 bits float
if (type.kind() == common::RealKindForPrecision(64)) {
return {type.category(), common::RealKindForPrecision(113)};
}
}
return type;
}
/// Structure to register intrinsic argument checks that must be performed.
using ArgumentVerifierFunc = bool (*)(
const std::vector<Expr<SomeType>> &, FoldingContext &);
struct ArgumentVerifier {
using Key = std::string_view;
// Needed for implicit compare with keys.
constexpr operator Key() const { return key; }
Key key;
ArgumentVerifierFunc verifier;
};
static constexpr int lastArg{-1};
static constexpr int firstArg{0};
static const Expr<SomeType> &GetArg(
int position, const std::vector<Expr<SomeType>> &args) {
if (position == lastArg) {
CHECK(!args.empty());
return args.back();
}
CHECK(position >= 0 && static_cast<std::size_t>(position) < args.size());
return args[position];
}
template <typename T>
static bool IsInRange(const Expr<T> &expr, int lb, int ub) {
if (auto scalar{GetScalarConstantValue<T>(expr)}) {
auto lbValue{Scalar<T>::FromInteger(value::Integer<8>{lb}).value};
auto ubValue{Scalar<T>::FromInteger(value::Integer<8>{ub}).value};
return Satisfies(RelationalOperator::LE, lbValue.Compare(*scalar)) &&
Satisfies(RelationalOperator::LE, scalar->Compare(ubValue));
}
return true;
}
/// Verify that the argument in an intrinsic call belongs to [lb, ub] if is
/// real.
template <int lb, int ub>
static bool VerifyInRangeIfReal(
const std::vector<Expr<SomeType>> &args, FoldingContext &context) {
if (const auto *someReal{
std::get_if<Expr<SomeReal>>(&GetArg(firstArg, args).u)}) {
bool isInRange{
std::visit([&](const auto &x) -> bool { return IsInRange(x, lb, ub); },
someReal->u)};
if (!isInRange) {
context.messages().Say(
"argument is out of range [%d., %d.]"_warn_en_US, lb, ub);
}
return isInRange;
}
return true;
}
template <int argPosition, const char *argName>
static bool VerifyStrictlyPositiveIfReal(
const std::vector<Expr<SomeType>> &args, FoldingContext &context) {
if (const auto *someReal =
std::get_if<Expr<SomeReal>>(&GetArg(argPosition, args).u)) {
const bool isStrictlyPositive{std::visit(
[&](const auto &x) -> bool {
using T = typename std::decay_t<decltype(x)>::Result;
auto scalar{GetScalarConstantValue<T>(x)};
return Satisfies(
RelationalOperator::LT, Scalar<T>{}.Compare(*scalar));
},
someReal->u)};
if (!isStrictlyPositive) {
context.messages().Say(
"argument '%s' must be strictly positive"_warn_en_US, argName);
}
return isStrictlyPositive;
}
return true;
}
/// Verify that an intrinsic call argument is not zero if it is real.
template <int argPosition, const char *argName>
static bool VerifyNotZeroIfReal(
const std::vector<Expr<SomeType>> &args, FoldingContext &context) {
if (const auto *someReal =
std::get_if<Expr<SomeReal>>(&GetArg(argPosition, args).u)) {
const bool isNotZero{std::visit(
[&](const auto &x) -> bool {
using T = typename std::decay_t<decltype(x)>::Result;
auto scalar{GetScalarConstantValue<T>(x)};
return !scalar || !scalar->IsZero();
},
someReal->u)};
if (!isNotZero) {
context.messages().Say(
"argument '%s' must be different from zero"_warn_en_US, argName);
}
return isNotZero;
}
return true;
}
/// Verify that the argument in an intrinsic call is not zero if is complex.
static bool VerifyNotZeroIfComplex(
const std::vector<Expr<SomeType>> &args, FoldingContext &context) {
if (const auto *someComplex =
std::get_if<Expr<SomeComplex>>(&GetArg(firstArg, args).u)) {
const bool isNotZero{std::visit(
[&](const auto &z) -> bool {
using T = typename std::decay_t<decltype(z)>::Result;
auto scalar{GetScalarConstantValue<T>(z)};
return !scalar || !scalar->IsZero();
},
someComplex->u)};
if (!isNotZero) {
context.messages().Say(
"complex argument must be different from zero"_warn_en_US);
}
return isNotZero;
}
return true;
}
// Verify that the argument in an intrinsic call is not zero and not a negative
// integer.
static bool VerifyGammaLikeArgument(
const std::vector<Expr<SomeType>> &args, FoldingContext &context) {
if (const auto *someReal =
std::get_if<Expr<SomeReal>>(&GetArg(firstArg, args).u)) {
const bool isValid{std::visit(
[&](const auto &x) -> bool {
using T = typename std::decay_t<decltype(x)>::Result;
auto scalar{GetScalarConstantValue<T>(x)};
if (scalar) {
return !scalar->IsZero() &&
!(scalar->IsNegative() &&
scalar->ToWholeNumber().value == scalar);
}
return true;
},
someReal->u)};
if (!isValid) {
context.messages().Say(
"argument must not be a negative integer or zero"_warn_en_US);
}
return isValid;
}
return true;
}
// Verify that two real arguments are not both zero.
static bool VerifyAtan2LikeArguments(
const std::vector<Expr<SomeType>> &args, FoldingContext &context) {
if (const auto *someReal =
std::get_if<Expr<SomeReal>>(&GetArg(firstArg, args).u)) {
const bool isValid{std::visit(
[&](const auto &typedExpr) -> bool {
using T = typename std::decay_t<decltype(typedExpr)>::Result;
auto x{GetScalarConstantValue<T>(typedExpr)};
auto y{GetScalarConstantValue<T>(GetArg(lastArg, args))};
if (x && y) {
return !(x->IsZero() && y->IsZero());
}
return true;
},
someReal->u)};
if (!isValid) {
context.messages().Say(
"'x' and 'y' arguments must not be both zero"_warn_en_US);
}
return isValid;
}
return true;
}
template <ArgumentVerifierFunc... F>
static bool CombineVerifiers(
const std::vector<Expr<SomeType>> &args, FoldingContext &context) {
return (... && F(args, context));
}
/// Define argument names to be used error messages when the intrinsic have
/// several arguments.
static constexpr char xName[]{"x"};
static constexpr char pName[]{"p"};
/// Register argument verifiers for all intrinsics folded with runtime.
static constexpr ArgumentVerifier intrinsicArgumentVerifiers[]{
{"acos", VerifyInRangeIfReal<-1, 1>},
{"asin", VerifyInRangeIfReal<-1, 1>},
{"atan2", VerifyAtan2LikeArguments},
{"bessel_y0", VerifyStrictlyPositiveIfReal<firstArg, xName>},
{"bessel_y1", VerifyStrictlyPositiveIfReal<firstArg, xName>},
{"bessel_yn", VerifyStrictlyPositiveIfReal<lastArg, xName>},
{"gamma", VerifyGammaLikeArgument},
{"log",
CombineVerifiers<VerifyStrictlyPositiveIfReal<firstArg, xName>,
VerifyNotZeroIfComplex>},
{"log10", VerifyStrictlyPositiveIfReal<firstArg, xName>},
{"log_gamma", VerifyGammaLikeArgument},
{"mod", VerifyNotZeroIfReal<lastArg, pName>},
};
const ArgumentVerifierFunc *findVerifier(const std::string &intrinsicName) {
static constexpr Fortran::common::StaticMultimapView<ArgumentVerifier>
verifiers(intrinsicArgumentVerifiers);
static_assert(verifiers.Verify(), "map must be sorted");