forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 334
/
Copy pathcheck-cuda.cpp
677 lines (648 loc) · 24.1 KB
/
check-cuda.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
//===-- lib/Semantics/check-cuda.cpp ----------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "check-cuda.h"
#include "flang/Common/template.h"
#include "flang/Evaluate/fold.h"
#include "flang/Evaluate/tools.h"
#include "flang/Evaluate/traverse.h"
#include "flang/Parser/parse-tree-visitor.h"
#include "flang/Parser/parse-tree.h"
#include "flang/Parser/tools.h"
#include "flang/Semantics/expression.h"
#include "flang/Semantics/symbol.h"
#include "flang/Semantics/tools.h"
// Once labeled DO constructs have been canonicalized and their parse subtrees
// transformed into parser::DoConstructs, scan the parser::Blocks of the program
// and merge adjacent CUFKernelDoConstructs and DoConstructs whenever the
// CUFKernelDoConstruct doesn't already have an embedded DoConstruct. Also
// emit errors about improper or missing DoConstructs.
namespace Fortran::parser {
struct Mutator {
template <typename A> bool Pre(A &) { return true; }
template <typename A> void Post(A &) {}
bool Pre(Block &);
};
bool Mutator::Pre(Block &block) {
for (auto iter{block.begin()}; iter != block.end(); ++iter) {
if (auto *kernel{Unwrap<CUFKernelDoConstruct>(*iter)}) {
auto &nested{std::get<std::optional<DoConstruct>>(kernel->t)};
if (!nested) {
if (auto next{iter}; ++next != block.end()) {
if (auto *doConstruct{Unwrap<DoConstruct>(*next)}) {
nested = std::move(*doConstruct);
block.erase(next);
}
}
}
} else {
Walk(*iter, *this);
}
}
return false;
}
} // namespace Fortran::parser
namespace Fortran::semantics {
bool CanonicalizeCUDA(parser::Program &program) {
parser::Mutator mutator;
parser::Walk(program, mutator);
return true;
}
using MaybeMsg = std::optional<parser::MessageFormattedText>;
// Traverses an evaluate::Expr<> in search of unsupported operations
// on the device.
struct DeviceExprChecker
: public evaluate::AnyTraverse<DeviceExprChecker, MaybeMsg> {
using Result = MaybeMsg;
using Base = evaluate::AnyTraverse<DeviceExprChecker, Result>;
DeviceExprChecker() : Base(*this) {}
using Base::operator();
Result operator()(const evaluate::ProcedureDesignator &x) const {
if (const Symbol * sym{x.GetInterfaceSymbol()}) {
const auto *subp{
sym->GetUltimate().detailsIf<semantics::SubprogramDetails>()};
if (subp) {
if (auto attrs{subp->cudaSubprogramAttrs()}) {
if (*attrs == common::CUDASubprogramAttrs::HostDevice ||
*attrs == common::CUDASubprogramAttrs::Device) {
return {};
}
}
}
const Symbol &ultimate{sym->GetUltimate()};
const Scope &scope{ultimate.owner()};
const Symbol *mod{scope.IsModule() ? scope.symbol() : nullptr};
// Allow ieee_arithmetic module functions to be called on the device.
// TODO: Check for unsupported ieee_arithmetic on the device.
if (mod && mod->name() == "ieee_arithmetic") {
return {};
}
} else if (x.GetSpecificIntrinsic()) {
// TODO(CUDA): Check for unsupported intrinsics here
return {};
}
return parser::MessageFormattedText(
"'%s' may not be called in device code"_err_en_US, x.GetName());
}
};
struct FindHostArray
: public evaluate::AnyTraverse<FindHostArray, const Symbol *> {
using Result = const Symbol *;
using Base = evaluate::AnyTraverse<FindHostArray, Result>;
FindHostArray() : Base(*this) {}
using Base::operator();
Result operator()(const evaluate::Component &x) const {
const Symbol &symbol{x.GetLastSymbol()};
if (IsAllocatableOrPointer(symbol)) {
if (Result hostArray{(*this)(symbol)}) {
return hostArray;
}
}
return (*this)(x.base());
}
Result operator()(const Symbol &symbol) const {
if (const auto *details{
symbol.GetUltimate().detailsIf<semantics::ObjectEntityDetails>()}) {
if (details->IsArray() &&
!symbol.attrs().test(Fortran::semantics::Attr::PARAMETER) &&
(!details->cudaDataAttr() ||
(details->cudaDataAttr() &&
*details->cudaDataAttr() != common::CUDADataAttr::Device &&
*details->cudaDataAttr() != common::CUDADataAttr::Constant &&
*details->cudaDataAttr() != common::CUDADataAttr::Managed &&
*details->cudaDataAttr() != common::CUDADataAttr::Shared &&
*details->cudaDataAttr() != common::CUDADataAttr::Unified))) {
return &symbol;
}
}
return nullptr;
}
};
template <typename A> static MaybeMsg CheckUnwrappedExpr(const A &x) {
if (const auto *expr{parser::Unwrap<parser::Expr>(x)}) {
return DeviceExprChecker{}(expr->typedExpr);
}
return {};
}
template <typename A>
static void CheckUnwrappedExpr(
SemanticsContext &context, SourceName at, const A &x) {
if (const auto *expr{parser::Unwrap<parser::Expr>(x)}) {
if (auto msg{DeviceExprChecker{}(expr->typedExpr)}) {
context.Say(at, std::move(*msg));
}
}
}
template <bool CUF_KERNEL> struct ActionStmtChecker {
template <typename A> static MaybeMsg WhyNotOk(const A &x) {
if constexpr (ConstraintTrait<A>) {
return WhyNotOk(x.thing);
} else if constexpr (WrapperTrait<A>) {
return WhyNotOk(x.v);
} else if constexpr (UnionTrait<A>) {
return WhyNotOk(x.u);
} else if constexpr (TupleTrait<A>) {
return WhyNotOk(x.t);
} else {
return parser::MessageFormattedText{
"Statement may not appear in device code"_err_en_US};
}
}
template <typename A>
static MaybeMsg WhyNotOk(const common::Indirection<A> &x) {
return WhyNotOk(x.value());
}
template <typename... As>
static MaybeMsg WhyNotOk(const std::variant<As...> &x) {
return common::visit([](const auto &x) { return WhyNotOk(x); }, x);
}
template <std::size_t J = 0, typename... As>
static MaybeMsg WhyNotOk(const std::tuple<As...> &x) {
if constexpr (J == sizeof...(As)) {
return {};
} else if (auto msg{WhyNotOk(std::get<J>(x))}) {
return msg;
} else {
return WhyNotOk<(J + 1)>(x);
}
}
template <typename A> static MaybeMsg WhyNotOk(const std::list<A> &x) {
for (const auto &y : x) {
if (MaybeMsg result{WhyNotOk(y)}) {
return result;
}
}
return {};
}
template <typename A> static MaybeMsg WhyNotOk(const std::optional<A> &x) {
if (x) {
return WhyNotOk(*x);
} else {
return {};
}
}
template <typename A>
static MaybeMsg WhyNotOk(const parser::UnlabeledStatement<A> &x) {
return WhyNotOk(x.statement);
}
template <typename A>
static MaybeMsg WhyNotOk(const parser::Statement<A> &x) {
return WhyNotOk(x.statement);
}
static MaybeMsg WhyNotOk(const parser::AllocateStmt &) {
return {}; // AllocateObjects are checked elsewhere
}
static MaybeMsg WhyNotOk(const parser::AllocateCoarraySpec &) {
return parser::MessageFormattedText(
"A coarray may not be allocated on the device"_err_en_US);
}
static MaybeMsg WhyNotOk(const parser::DeallocateStmt &) {
return {}; // AllocateObjects are checked elsewhere
}
static MaybeMsg WhyNotOk(const parser::AssignmentStmt &x) {
return DeviceExprChecker{}(x.typedAssignment);
}
static MaybeMsg WhyNotOk(const parser::CallStmt &x) {
return DeviceExprChecker{}(x.typedCall);
}
static MaybeMsg WhyNotOk(const parser::ContinueStmt &) { return {}; }
static MaybeMsg WhyNotOk(const parser::IfStmt &x) {
if (auto result{
CheckUnwrappedExpr(std::get<parser::ScalarLogicalExpr>(x.t))}) {
return result;
}
return WhyNotOk(
std::get<parser::UnlabeledStatement<parser::ActionStmt>>(x.t)
.statement);
}
static MaybeMsg WhyNotOk(const parser::NullifyStmt &x) {
for (const auto &y : x.v) {
if (MaybeMsg result{DeviceExprChecker{}(y.typedExpr)}) {
return result;
}
}
return {};
}
static MaybeMsg WhyNotOk(const parser::PointerAssignmentStmt &x) {
return DeviceExprChecker{}(x.typedAssignment);
}
};
template <bool IsCUFKernelDo> class DeviceContextChecker {
public:
explicit DeviceContextChecker(SemanticsContext &c) : context_{c} {}
void CheckSubprogram(const parser::Name &name, const parser::Block &body) {
if (name.symbol) {
const auto *subp{
name.symbol->GetUltimate().detailsIf<SubprogramDetails>()};
if (subp && subp->moduleInterface()) {
subp = subp->moduleInterface()
->GetUltimate()
.detailsIf<SubprogramDetails>();
}
if (subp &&
subp->cudaSubprogramAttrs().value_or(
common::CUDASubprogramAttrs::Host) !=
common::CUDASubprogramAttrs::Host) {
isHostDevice = subp->cudaSubprogramAttrs() &&
subp->cudaSubprogramAttrs() ==
common::CUDASubprogramAttrs::HostDevice;
Check(body);
}
}
}
void Check(const parser::Block &block) {
for (const auto &epc : block) {
Check(epc);
}
}
private:
void Check(const parser::ExecutionPartConstruct &epc) {
common::visit(
common::visitors{
[&](const parser::ExecutableConstruct &x) { Check(x); },
[&](const parser::Statement<common::Indirection<parser::EntryStmt>>
&x) {
context_.Say(x.source,
"Device code may not contain an ENTRY statement"_err_en_US);
},
[](const parser::Statement<common::Indirection<parser::FormatStmt>>
&) {},
[](const parser::Statement<common::Indirection<parser::DataStmt>>
&) {},
[](const parser::Statement<
common::Indirection<parser::NamelistStmt>> &) {},
[](const parser::ErrorRecovery &) {},
},
epc.u);
}
void Check(const parser::ExecutableConstruct &ec) {
common::visit(
common::visitors{
[&](const parser::Statement<parser::ActionStmt> &stmt) {
Check(stmt.statement, stmt.source);
},
[&](const common::Indirection<parser::DoConstruct> &x) {
if (const std::optional<parser::LoopControl> &control{
x.value().GetLoopControl()}) {
common::visit([&](const auto &y) { Check(y); }, control->u);
}
Check(std::get<parser::Block>(x.value().t));
},
[&](const common::Indirection<parser::BlockConstruct> &x) {
Check(std::get<parser::Block>(x.value().t));
},
[&](const common::Indirection<parser::IfConstruct> &x) {
Check(x.value());
},
[&](const common::Indirection<parser::CaseConstruct> &x) {
const auto &caseList{
std::get<std::list<parser::CaseConstruct::Case>>(
x.value().t)};
for (const parser::CaseConstruct::Case &c : caseList) {
Check(std::get<parser::Block>(c.t));
}
},
[&](const auto &x) {
if (auto source{parser::GetSource(x)}) {
context_.Say(*source,
"Statement may not appear in device code"_err_en_US);
}
},
},
ec.u);
}
template <typename SEEK, typename A>
static const SEEK *GetIOControl(const A &stmt) {
for (const auto &spec : stmt.controls) {
if (const auto *result{std::get_if<SEEK>(&spec.u)}) {
return result;
}
}
return nullptr;
}
template <typename A> static bool IsInternalIO(const A &stmt) {
if (stmt.iounit.has_value()) {
return std::holds_alternative<Fortran::parser::Variable>(stmt.iounit->u);
}
if (auto *unit{GetIOControl<Fortran::parser::IoUnit>(stmt)}) {
return std::holds_alternative<Fortran::parser::Variable>(unit->u);
}
return false;
}
void WarnOnIoStmt(const parser::CharBlock &source) {
context_.Warn(common::UsageWarning::CUDAUsage, source,
"I/O statement might not be supported on device"_warn_en_US);
}
template <typename A>
void WarnIfNotInternal(const A &stmt, const parser::CharBlock &source) {
if (!IsInternalIO(stmt)) {
WarnOnIoStmt(source);
}
}
template <typename A>
void ErrorIfHostSymbol(const A &expr, parser::CharBlock source) {
if (isHostDevice)
return;
if (const Symbol * hostArray{FindHostArray{}(expr)}) {
context_.Say(source,
"Host array '%s' cannot be present in device context"_err_en_US,
hostArray->name());
}
}
void ErrorInCUFKernel(parser::CharBlock source) {
if (IsCUFKernelDo) {
context_.Say(
source, "Statement may not appear in cuf kernel code"_err_en_US);
}
}
void Check(const parser::ActionStmt &stmt, const parser::CharBlock &source) {
common::visit(
common::visitors{
[&](const common::Indirection<parser::CycleStmt> &) {
ErrorInCUFKernel(source);
},
[&](const common::Indirection<parser::ExitStmt> &) {
ErrorInCUFKernel(source);
},
[&](const common::Indirection<parser::GotoStmt> &) {
ErrorInCUFKernel(source);
},
[&](const common::Indirection<parser::StopStmt> &) { return; },
[&](const common::Indirection<parser::PrintStmt> &) {},
[&](const common::Indirection<parser::WriteStmt> &x) {
if (x.value().format) { // Formatted write to '*' or '6'
if (std::holds_alternative<Fortran::parser::Star>(
x.value().format->u)) {
if (x.value().iounit) {
if (std::holds_alternative<Fortran::parser::Star>(
x.value().iounit->u)) {
return;
}
}
}
}
WarnIfNotInternal(x.value(), source);
},
[&](const common::Indirection<parser::CloseStmt> &x) {
WarnOnIoStmt(source);
},
[&](const common::Indirection<parser::EndfileStmt> &x) {
WarnOnIoStmt(source);
},
[&](const common::Indirection<parser::OpenStmt> &x) {
WarnOnIoStmt(source);
},
[&](const common::Indirection<parser::ReadStmt> &x) {
WarnIfNotInternal(x.value(), source);
},
[&](const common::Indirection<parser::InquireStmt> &x) {
WarnOnIoStmt(source);
},
[&](const common::Indirection<parser::RewindStmt> &x) {
WarnOnIoStmt(source);
},
[&](const common::Indirection<parser::BackspaceStmt> &x) {
WarnOnIoStmt(source);
},
[&](const common::Indirection<parser::IfStmt> &x) {
Check(x.value());
},
[&](const common::Indirection<parser::AssignmentStmt> &x) {
if (const evaluate::Assignment *
assign{semantics::GetAssignment(x.value())}) {
ErrorIfHostSymbol(assign->lhs, source);
ErrorIfHostSymbol(assign->rhs, source);
}
if (auto msg{ActionStmtChecker<IsCUFKernelDo>::WhyNotOk(x)}) {
context_.Say(source, std::move(*msg));
}
},
[&](const auto &x) {
if (auto msg{ActionStmtChecker<IsCUFKernelDo>::WhyNotOk(x)}) {
context_.Say(source, std::move(*msg));
}
},
},
stmt.u);
}
void Check(const parser::IfConstruct &ic) {
const auto &ifS{std::get<parser::Statement<parser::IfThenStmt>>(ic.t)};
CheckUnwrappedExpr(context_, ifS.source,
std::get<parser::ScalarLogicalExpr>(ifS.statement.t));
Check(std::get<parser::Block>(ic.t));
for (const auto &eib :
std::get<std::list<parser::IfConstruct::ElseIfBlock>>(ic.t)) {
const auto &eIfS{std::get<parser::Statement<parser::ElseIfStmt>>(eib.t)};
CheckUnwrappedExpr(context_, eIfS.source,
std::get<parser::ScalarLogicalExpr>(eIfS.statement.t));
Check(std::get<parser::Block>(eib.t));
}
if (const auto &eb{
std::get<std::optional<parser::IfConstruct::ElseBlock>>(ic.t)}) {
Check(std::get<parser::Block>(eb->t));
}
}
void Check(const parser::IfStmt &is) {
const auto &uS{
std::get<parser::UnlabeledStatement<parser::ActionStmt>>(is.t)};
CheckUnwrappedExpr(
context_, uS.source, std::get<parser::ScalarLogicalExpr>(is.t));
Check(uS.statement, uS.source);
}
void Check(const parser::LoopControl::Bounds &bounds) {
Check(bounds.lower);
Check(bounds.upper);
if (bounds.step) {
Check(*bounds.step);
}
}
void Check(const parser::LoopControl::Concurrent &x) {
const auto &header{std::get<parser::ConcurrentHeader>(x.t)};
for (const auto &cc :
std::get<std::list<parser::ConcurrentControl>>(header.t)) {
Check(std::get<1>(cc.t));
Check(std::get<2>(cc.t));
if (const auto &step{
std::get<std::optional<parser::ScalarIntExpr>>(cc.t)}) {
Check(*step);
}
}
if (const auto &mask{
std::get<std::optional<parser::ScalarLogicalExpr>>(header.t)}) {
Check(*mask);
}
}
void Check(const parser::ScalarLogicalExpr &x) {
Check(DEREF(parser::Unwrap<parser::Expr>(x)));
}
void Check(const parser::ScalarIntExpr &x) {
Check(DEREF(parser::Unwrap<parser::Expr>(x)));
}
void Check(const parser::ScalarExpr &x) {
Check(DEREF(parser::Unwrap<parser::Expr>(x)));
}
void Check(const parser::Expr &expr) {
if (MaybeMsg msg{DeviceExprChecker{}(expr.typedExpr)}) {
context_.Say(expr.source, std::move(*msg));
}
}
SemanticsContext &context_;
bool isHostDevice{false};
};
void CUDAChecker::Enter(const parser::SubroutineSubprogram &x) {
DeviceContextChecker<false>{context_}.CheckSubprogram(
std::get<parser::Name>(
std::get<parser::Statement<parser::SubroutineStmt>>(x.t).statement.t),
std::get<parser::ExecutionPart>(x.t).v);
}
void CUDAChecker::Enter(const parser::FunctionSubprogram &x) {
DeviceContextChecker<false>{context_}.CheckSubprogram(
std::get<parser::Name>(
std::get<parser::Statement<parser::FunctionStmt>>(x.t).statement.t),
std::get<parser::ExecutionPart>(x.t).v);
}
void CUDAChecker::Enter(const parser::SeparateModuleSubprogram &x) {
DeviceContextChecker<false>{context_}.CheckSubprogram(
std::get<parser::Statement<parser::MpSubprogramStmt>>(x.t).statement.v,
std::get<parser::ExecutionPart>(x.t).v);
}
// !$CUF KERNEL DO semantic checks
static int DoConstructTightNesting(
const parser::DoConstruct *doConstruct, const parser::Block *&innerBlock) {
if (!doConstruct ||
(!doConstruct->IsDoNormal() && !doConstruct->IsDoConcurrent())) {
return 0;
}
innerBlock = &std::get<parser::Block>(doConstruct->t);
if (doConstruct->IsDoConcurrent()) {
const auto &loopControl = doConstruct->GetLoopControl();
if (loopControl) {
if (const auto *concurrentControl{
std::get_if<parser::LoopControl::Concurrent>(&loopControl->u)}) {
const auto &concurrentHeader =
std::get<Fortran::parser::ConcurrentHeader>(concurrentControl->t);
const auto &controls =
std::get<std::list<Fortran::parser::ConcurrentControl>>(
concurrentHeader.t);
return controls.size();
}
}
return 0;
}
if (innerBlock->size() == 1) {
if (const auto *execConstruct{
std::get_if<parser::ExecutableConstruct>(&innerBlock->front().u)}) {
if (const auto *next{
std::get_if<common::Indirection<parser::DoConstruct>>(
&execConstruct->u)}) {
return 1 + DoConstructTightNesting(&next->value(), innerBlock);
}
}
}
return 1;
}
static void CheckReduce(
SemanticsContext &context, const parser::CUFReduction &reduce) {
auto op{std::get<parser::CUFReduction::Operator>(reduce.t).v};
for (const auto &var :
std::get<std::list<parser::Scalar<parser::Variable>>>(reduce.t)) {
if (const auto &typedExprPtr{var.thing.typedExpr};
typedExprPtr && typedExprPtr->v) {
const auto &expr{*typedExprPtr->v};
if (auto type{expr.GetType()}) {
auto cat{type->category()};
bool isOk{false};
switch (op) {
case parser::ReductionOperator::Operator::Plus:
case parser::ReductionOperator::Operator::Multiply:
case parser::ReductionOperator::Operator::Max:
case parser::ReductionOperator::Operator::Min:
isOk = cat == TypeCategory::Integer || cat == TypeCategory::Real ||
cat == TypeCategory::Complex;
break;
case parser::ReductionOperator::Operator::Iand:
case parser::ReductionOperator::Operator::Ior:
case parser::ReductionOperator::Operator::Ieor:
isOk = cat == TypeCategory::Integer;
break;
case parser::ReductionOperator::Operator::And:
case parser::ReductionOperator::Operator::Or:
case parser::ReductionOperator::Operator::Eqv:
case parser::ReductionOperator::Operator::Neqv:
isOk = cat == TypeCategory::Logical;
break;
}
if (!isOk) {
context.Say(var.thing.GetSource(),
"!$CUF KERNEL DO REDUCE operation is not acceptable for a variable with type %s"_err_en_US,
type->AsFortran());
}
}
}
}
}
void CUDAChecker::Enter(const parser::CUFKernelDoConstruct &x) {
auto source{std::get<parser::CUFKernelDoConstruct::Directive>(x.t).source};
const auto &directive{std::get<parser::CUFKernelDoConstruct::Directive>(x.t)};
std::int64_t depth{1};
if (auto expr{AnalyzeExpr(context_,
std::get<std::optional<parser::ScalarIntConstantExpr>>(
directive.t))}) {
depth = evaluate::ToInt64(expr).value_or(0);
if (depth <= 0) {
context_.Say(source,
"!$CUF KERNEL DO (%jd): loop nesting depth must be positive"_err_en_US,
std::intmax_t{depth});
depth = 1;
}
}
const parser::DoConstruct *doConstruct{common::GetPtrFromOptional(
std::get<std::optional<parser::DoConstruct>>(x.t))};
const parser::Block *innerBlock{nullptr};
if (DoConstructTightNesting(doConstruct, innerBlock) < depth) {
if (doConstruct && doConstruct->IsDoConcurrent())
context_.Say(source,
"!$CUF KERNEL DO (%jd) must be followed by a DO CONCURRENT construct with at least %jd indices"_err_en_US,
std::intmax_t{depth}, std::intmax_t{depth});
else
context_.Say(source,
"!$CUF KERNEL DO (%jd) must be followed by a DO construct with tightly nested outer levels of counted DO loops"_err_en_US,
std::intmax_t{depth});
}
if (innerBlock) {
DeviceContextChecker<true>{context_}.Check(*innerBlock);
}
for (const auto &reduce :
std::get<std::list<parser::CUFReduction>>(directive.t)) {
CheckReduce(context_, reduce);
}
inCUFKernelDoConstruct_ = true;
}
void CUDAChecker::Leave(const parser::CUFKernelDoConstruct &) {
inCUFKernelDoConstruct_ = false;
}
void CUDAChecker::Enter(const parser::AssignmentStmt &x) {
auto lhsLoc{std::get<parser::Variable>(x.t).GetSource()};
const auto &scope{context_.FindScope(lhsLoc)};
const Scope &progUnit{GetProgramUnitContaining(scope)};
if (IsCUDADeviceContext(&progUnit) || inCUFKernelDoConstruct_) {
return; // Data transfer with assignment is only perform on host.
}
const evaluate::Assignment *assign{semantics::GetAssignment(x)};
if (!assign) {
return;
}
int nbLhs{evaluate::GetNbOfCUDADeviceSymbols(assign->lhs)};
int nbRhs{evaluate::GetNbOfCUDADeviceSymbols(assign->rhs)};
// device to host transfer with more than one device object on the rhs is not
// legal.
if (nbLhs == 0 && nbRhs > 1) {
context_.Say(lhsLoc,
"More than one reference to a CUDA object on the right hand side of the assigment"_err_en_US);
}
}
} // namespace Fortran::semantics