forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 334
/
Copy pathresolve-names-utils.cpp
881 lines (830 loc) · 30.5 KB
/
resolve-names-utils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
//===-- lib/Semantics/resolve-names-utils.cpp -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "resolve-names-utils.h"
#include "flang/Common/idioms.h"
#include "flang/Common/indirection.h"
#include "flang/Evaluate/fold.h"
#include "flang/Evaluate/tools.h"
#include "flang/Evaluate/traverse.h"
#include "flang/Evaluate/type.h"
#include "flang/Parser/char-block.h"
#include "flang/Parser/parse-tree.h"
#include "flang/Semantics/expression.h"
#include "flang/Semantics/semantics.h"
#include "flang/Semantics/tools.h"
#include "flang/Support/Fortran-features.h"
#include "flang/Support/Fortran.h"
#include <initializer_list>
#include <variant>
namespace Fortran::semantics {
using common::LanguageFeature;
using common::LogicalOperator;
using common::NumericOperator;
using common::RelationalOperator;
using IntrinsicOperator = parser::DefinedOperator::IntrinsicOperator;
static GenericKind MapIntrinsicOperator(IntrinsicOperator);
Symbol *Resolve(const parser::Name &name, Symbol *symbol) {
if (symbol && !name.symbol) {
name.symbol = symbol;
}
return symbol;
}
Symbol &Resolve(const parser::Name &name, Symbol &symbol) {
return *Resolve(name, &symbol);
}
parser::MessageFixedText WithSeverity(
const parser::MessageFixedText &msg, parser::Severity severity) {
return parser::MessageFixedText{
msg.text().begin(), msg.text().size(), severity};
}
bool IsIntrinsicOperator(
const SemanticsContext &context, const SourceName &name) {
std::string str{name.ToString()};
for (int i{0}; i != common::LogicalOperator_enumSize; ++i) {
auto names{context.languageFeatures().GetNames(LogicalOperator{i})};
if (llvm::is_contained(names, str)) {
return true;
}
}
for (int i{0}; i != common::RelationalOperator_enumSize; ++i) {
auto names{context.languageFeatures().GetNames(RelationalOperator{i})};
if (llvm::is_contained(names, str)) {
return true;
}
}
return false;
}
bool IsLogicalConstant(
const SemanticsContext &context, const SourceName &name) {
std::string str{name.ToString()};
return str == ".true." || str == ".false." ||
(context.IsEnabled(LanguageFeature::LogicalAbbreviations) &&
(str == ".t" || str == ".f."));
}
void GenericSpecInfo::Resolve(Symbol *symbol) const {
if (symbol) {
if (auto *details{symbol->detailsIf<GenericDetails>()}) {
details->set_kind(kind_);
}
if (parseName_) {
semantics::Resolve(*parseName_, symbol);
}
}
}
void GenericSpecInfo::Analyze(const parser::DefinedOpName &name) {
kind_ = GenericKind::OtherKind::DefinedOp;
parseName_ = &name.v;
symbolName_ = name.v.source;
}
void GenericSpecInfo::Analyze(const parser::GenericSpec &x) {
symbolName_ = x.source;
kind_ = common::visit(
common::visitors{
[&](const parser::Name &y) -> GenericKind {
parseName_ = &y;
symbolName_ = y.source;
return GenericKind::OtherKind::Name;
},
[&](const parser::DefinedOperator &y) {
return common::visit(
common::visitors{
[&](const parser::DefinedOpName &z) -> GenericKind {
Analyze(z);
return GenericKind::OtherKind::DefinedOp;
},
[&](const IntrinsicOperator &z) {
return MapIntrinsicOperator(z);
},
},
y.u);
},
[&](const parser::GenericSpec::Assignment &) -> GenericKind {
return GenericKind::OtherKind::Assignment;
},
[&](const parser::GenericSpec::ReadFormatted &) -> GenericKind {
return common::DefinedIo::ReadFormatted;
},
[&](const parser::GenericSpec::ReadUnformatted &) -> GenericKind {
return common::DefinedIo::ReadUnformatted;
},
[&](const parser::GenericSpec::WriteFormatted &) -> GenericKind {
return common::DefinedIo::WriteFormatted;
},
[&](const parser::GenericSpec::WriteUnformatted &) -> GenericKind {
return common::DefinedIo::WriteUnformatted;
},
},
x.u);
}
llvm::raw_ostream &operator<<(
llvm::raw_ostream &os, const GenericSpecInfo &info) {
os << "GenericSpecInfo: kind=" << info.kind_.ToString();
os << " parseName="
<< (info.parseName_ ? info.parseName_->ToString() : "null");
os << " symbolName="
<< (info.symbolName_ ? info.symbolName_->ToString() : "null");
return os;
}
// parser::DefinedOperator::IntrinsicOperator -> GenericKind
static GenericKind MapIntrinsicOperator(IntrinsicOperator op) {
switch (op) {
SWITCH_COVERS_ALL_CASES
case IntrinsicOperator::Concat:
return GenericKind::OtherKind::Concat;
case IntrinsicOperator::Power:
return NumericOperator::Power;
case IntrinsicOperator::Multiply:
return NumericOperator::Multiply;
case IntrinsicOperator::Divide:
return NumericOperator::Divide;
case IntrinsicOperator::Add:
return NumericOperator::Add;
case IntrinsicOperator::Subtract:
return NumericOperator::Subtract;
case IntrinsicOperator::AND:
return LogicalOperator::And;
case IntrinsicOperator::OR:
return LogicalOperator::Or;
case IntrinsicOperator::EQV:
return LogicalOperator::Eqv;
case IntrinsicOperator::NEQV:
return LogicalOperator::Neqv;
case IntrinsicOperator::NOT:
return LogicalOperator::Not;
case IntrinsicOperator::LT:
return RelationalOperator::LT;
case IntrinsicOperator::LE:
return RelationalOperator::LE;
case IntrinsicOperator::EQ:
return RelationalOperator::EQ;
case IntrinsicOperator::NE:
return RelationalOperator::NE;
case IntrinsicOperator::GE:
return RelationalOperator::GE;
case IntrinsicOperator::GT:
return RelationalOperator::GT;
}
}
class ArraySpecAnalyzer {
public:
ArraySpecAnalyzer(SemanticsContext &context) : context_{context} {}
ArraySpec Analyze(const parser::ArraySpec &);
ArraySpec AnalyzeDeferredShapeSpecList(const parser::DeferredShapeSpecList &);
ArraySpec Analyze(const parser::ComponentArraySpec &);
ArraySpec Analyze(const parser::CoarraySpec &);
private:
SemanticsContext &context_;
ArraySpec arraySpec_;
template <typename T> void Analyze(const std::list<T> &list) {
for (const auto &elem : list) {
Analyze(elem);
}
}
void Analyze(const parser::AssumedShapeSpec &);
void Analyze(const parser::ExplicitShapeSpec &);
void Analyze(const parser::AssumedImpliedSpec &);
void Analyze(const parser::DeferredShapeSpecList &);
void Analyze(const parser::AssumedRankSpec &);
void MakeExplicit(const std::optional<parser::SpecificationExpr> &,
const parser::SpecificationExpr &);
void MakeImplied(const std::optional<parser::SpecificationExpr> &);
void MakeDeferred(int);
Bound GetBound(const std::optional<parser::SpecificationExpr> &);
Bound GetBound(const parser::SpecificationExpr &);
};
ArraySpec AnalyzeArraySpec(
SemanticsContext &context, const parser::ArraySpec &arraySpec) {
return ArraySpecAnalyzer{context}.Analyze(arraySpec);
}
ArraySpec AnalyzeArraySpec(
SemanticsContext &context, const parser::ComponentArraySpec &arraySpec) {
return ArraySpecAnalyzer{context}.Analyze(arraySpec);
}
ArraySpec AnalyzeDeferredShapeSpecList(SemanticsContext &context,
const parser::DeferredShapeSpecList &deferredShapeSpecs) {
return ArraySpecAnalyzer{context}.AnalyzeDeferredShapeSpecList(
deferredShapeSpecs);
}
ArraySpec AnalyzeCoarraySpec(
SemanticsContext &context, const parser::CoarraySpec &coarraySpec) {
return ArraySpecAnalyzer{context}.Analyze(coarraySpec);
}
ArraySpec ArraySpecAnalyzer::Analyze(const parser::ComponentArraySpec &x) {
common::visit([this](const auto &y) { Analyze(y); }, x.u);
CHECK(!arraySpec_.empty());
return arraySpec_;
}
ArraySpec ArraySpecAnalyzer::Analyze(const parser::ArraySpec &x) {
common::visit(common::visitors{
[&](const parser::AssumedSizeSpec &y) {
Analyze(
std::get<std::list<parser::ExplicitShapeSpec>>(y.t));
Analyze(std::get<parser::AssumedImpliedSpec>(y.t));
},
[&](const parser::ImpliedShapeSpec &y) { Analyze(y.v); },
[&](const auto &y) { Analyze(y); },
},
x.u);
CHECK(!arraySpec_.empty());
return arraySpec_;
}
ArraySpec ArraySpecAnalyzer::AnalyzeDeferredShapeSpecList(
const parser::DeferredShapeSpecList &x) {
Analyze(x);
CHECK(!arraySpec_.empty());
return arraySpec_;
}
ArraySpec ArraySpecAnalyzer::Analyze(const parser::CoarraySpec &x) {
common::visit(
common::visitors{
[&](const parser::DeferredCoshapeSpecList &y) { MakeDeferred(y.v); },
[&](const parser::ExplicitCoshapeSpec &y) {
Analyze(std::get<std::list<parser::ExplicitShapeSpec>>(y.t));
MakeImplied(
std::get<std::optional<parser::SpecificationExpr>>(y.t));
},
},
x.u);
CHECK(!arraySpec_.empty());
return arraySpec_;
}
void ArraySpecAnalyzer::Analyze(const parser::AssumedShapeSpec &x) {
arraySpec_.push_back(ShapeSpec::MakeAssumedShape(GetBound(x.v)));
}
void ArraySpecAnalyzer::Analyze(const parser::ExplicitShapeSpec &x) {
MakeExplicit(std::get<std::optional<parser::SpecificationExpr>>(x.t),
std::get<parser::SpecificationExpr>(x.t));
}
void ArraySpecAnalyzer::Analyze(const parser::AssumedImpliedSpec &x) {
MakeImplied(x.v);
}
void ArraySpecAnalyzer::Analyze(const parser::DeferredShapeSpecList &x) {
MakeDeferred(x.v);
}
void ArraySpecAnalyzer::Analyze(const parser::AssumedRankSpec &) {
arraySpec_.push_back(ShapeSpec::MakeAssumedRank());
}
void ArraySpecAnalyzer::MakeExplicit(
const std::optional<parser::SpecificationExpr> &lb,
const parser::SpecificationExpr &ub) {
arraySpec_.push_back(ShapeSpec::MakeExplicit(GetBound(lb), GetBound(ub)));
}
void ArraySpecAnalyzer::MakeImplied(
const std::optional<parser::SpecificationExpr> &lb) {
arraySpec_.push_back(ShapeSpec::MakeImplied(GetBound(lb)));
}
void ArraySpecAnalyzer::MakeDeferred(int n) {
for (int i = 0; i < n; ++i) {
arraySpec_.push_back(ShapeSpec::MakeDeferred());
}
}
Bound ArraySpecAnalyzer::GetBound(
const std::optional<parser::SpecificationExpr> &x) {
return x ? GetBound(*x) : Bound{1};
}
Bound ArraySpecAnalyzer::GetBound(const parser::SpecificationExpr &x) {
MaybeSubscriptIntExpr expr;
if (MaybeExpr maybeExpr{AnalyzeExpr(context_, x.v)}) {
if (auto *intExpr{evaluate::UnwrapExpr<SomeIntExpr>(*maybeExpr)}) {
expr = evaluate::Fold(context_.foldingContext(),
evaluate::ConvertToType<evaluate::SubscriptInteger>(
std::move(*intExpr)));
}
}
return Bound{std::move(expr)};
}
// If src is SAVE (explicitly or implicitly),
// set SAVE attribute on all members of dst.
static void PropagateSaveAttr(
const EquivalenceObject &src, EquivalenceSet &dst) {
if (IsSaved(src.symbol)) {
for (auto &obj : dst) {
if (!obj.symbol.attrs().test(Attr::SAVE)) {
obj.symbol.attrs().set(Attr::SAVE);
// If the other equivalenced symbol itself is not SAVE,
// then adding SAVE here implies that it has to be implicit.
obj.symbol.implicitAttrs().set(Attr::SAVE);
}
}
}
}
static void PropagateSaveAttr(const EquivalenceSet &src, EquivalenceSet &dst) {
if (!src.empty()) {
PropagateSaveAttr(src.front(), dst);
}
}
void EquivalenceSets::AddToSet(const parser::Designator &designator) {
if (CheckDesignator(designator)) {
if (Symbol * symbol{currObject_.symbol}) {
if (!currSet_.empty()) {
// check this symbol against first of set for compatibility
Symbol &first{currSet_.front().symbol};
CheckCanEquivalence(designator.source, first, *symbol) &&
CheckCanEquivalence(designator.source, *symbol, first);
}
auto subscripts{currObject_.subscripts};
if (subscripts.empty()) {
if (const ArraySpec * shape{symbol->GetShape()};
shape && shape->IsExplicitShape()) {
// record a whole array as its first element
for (const ShapeSpec &spec : *shape) {
if (auto lbound{spec.lbound().GetExplicit()}) {
if (auto lbValue{evaluate::ToInt64(*lbound)}) {
subscripts.push_back(*lbValue);
continue;
}
}
subscripts.clear(); // error recovery
break;
}
}
}
auto substringStart{currObject_.substringStart};
currSet_.emplace_back(
*symbol, subscripts, substringStart, designator.source);
PropagateSaveAttr(currSet_.back(), currSet_);
}
}
currObject_ = {};
}
void EquivalenceSets::FinishSet(const parser::CharBlock &source) {
std::set<std::size_t> existing; // indices of sets intersecting this one
for (auto &obj : currSet_) {
auto it{objectToSet_.find(obj)};
if (it != objectToSet_.end()) {
existing.insert(it->second); // symbol already in this set
}
}
if (existing.empty()) {
sets_.push_back({}); // create a new equivalence set
MergeInto(source, currSet_, sets_.size() - 1);
} else {
auto it{existing.begin()};
std::size_t dstIndex{*it};
MergeInto(source, currSet_, dstIndex);
while (++it != existing.end()) {
MergeInto(source, sets_[*it], dstIndex);
}
}
currSet_.clear();
}
// Report an error or warning if sym1 and sym2 cannot be in the same equivalence
// set.
bool EquivalenceSets::CheckCanEquivalence(
const parser::CharBlock &source, const Symbol &sym1, const Symbol &sym2) {
std::optional<common::LanguageFeature> feature;
std::optional<parser::MessageFixedText> msg;
const DeclTypeSpec *type1{sym1.GetType()};
const DeclTypeSpec *type2{sym2.GetType()};
bool isDefaultNum1{IsDefaultNumericSequenceType(type1)};
bool isAnyNum1{IsAnyNumericSequenceType(type1)};
bool isDefaultNum2{IsDefaultNumericSequenceType(type2)};
bool isAnyNum2{IsAnyNumericSequenceType(type2)};
bool isChar1{IsCharacterSequenceType(type1)};
bool isChar2{IsCharacterSequenceType(type2)};
if (sym1.attrs().test(Attr::PROTECTED) &&
!sym2.attrs().test(Attr::PROTECTED)) { // C8114
msg = "Equivalence set cannot contain '%s'"
" with PROTECTED attribute and '%s' without"_err_en_US;
} else if ((isDefaultNum1 && isDefaultNum2) || (isChar1 && isChar2)) {
// ok & standard conforming
} else if (!(isAnyNum1 || isChar1) &&
!(isAnyNum2 || isChar2)) { // C8110 - C8113
if (AreTkCompatibleTypes(type1, type2)) {
msg =
"nonstandard: Equivalence set contains '%s' and '%s' with same type that is neither numeric nor character sequence type"_port_en_US;
feature = LanguageFeature::EquivalenceSameNonSequence;
} else {
msg = "Equivalence set cannot contain '%s' and '%s' with distinct types "
"that are not both numeric or character sequence types"_err_en_US;
}
} else if (isAnyNum1) {
if (isChar2) {
msg =
"nonstandard: Equivalence set contains '%s' that is numeric sequence type and '%s' that is character"_port_en_US;
feature = LanguageFeature::EquivalenceNumericWithCharacter;
} else if (isAnyNum2) {
if (isDefaultNum1) {
msg =
"nonstandard: Equivalence set contains '%s' that is a default "
"numeric sequence type and '%s' that is numeric with non-default kind"_port_en_US;
} else if (!isDefaultNum2) {
msg = "nonstandard: Equivalence set contains '%s' and '%s' that are "
"numeric sequence types with non-default kinds"_port_en_US;
}
feature = LanguageFeature::EquivalenceNonDefaultNumeric;
}
}
if (msg) {
if (feature) {
context_.Warn(
*feature, source, std::move(*msg), sym1.name(), sym2.name());
} else {
context_.Say(source, std::move(*msg), sym1.name(), sym2.name());
}
return false;
}
return true;
}
// Move objects from src to sets_[dstIndex]
void EquivalenceSets::MergeInto(const parser::CharBlock &source,
EquivalenceSet &src, std::size_t dstIndex) {
EquivalenceSet &dst{sets_[dstIndex]};
PropagateSaveAttr(dst, src);
for (const auto &obj : src) {
dst.push_back(obj);
objectToSet_[obj] = dstIndex;
}
PropagateSaveAttr(src, dst);
src.clear();
}
// If set has an object with this symbol, return it.
const EquivalenceObject *EquivalenceSets::Find(
const EquivalenceSet &set, const Symbol &symbol) {
for (const auto &obj : set) {
if (obj.symbol == symbol) {
return &obj;
}
}
return nullptr;
}
bool EquivalenceSets::CheckDesignator(const parser::Designator &designator) {
return common::visit(
common::visitors{
[&](const parser::DataRef &x) {
return CheckDataRef(designator.source, x);
},
[&](const parser::Substring &x) {
const auto &dataRef{std::get<parser::DataRef>(x.t)};
const auto &range{std::get<parser::SubstringRange>(x.t)};
bool ok{CheckDataRef(designator.source, dataRef)};
if (const auto &lb{std::get<0>(range.t)}) {
ok &= CheckSubstringBound(lb->thing.thing.value(), true);
} else {
currObject_.substringStart = 1;
}
if (const auto &ub{std::get<1>(range.t)}) {
ok &= CheckSubstringBound(ub->thing.thing.value(), false);
}
return ok;
},
},
designator.u);
}
bool EquivalenceSets::CheckDataRef(
const parser::CharBlock &source, const parser::DataRef &x) {
return common::visit(
common::visitors{
[&](const parser::Name &name) { return CheckObject(name); },
[&](const common::Indirection<parser::StructureComponent> &) {
context_.Say(source, // C8107
"Derived type component '%s' is not allowed in an equivalence set"_err_en_US,
source);
return false;
},
[&](const common::Indirection<parser::ArrayElement> &elem) {
bool ok{CheckDataRef(source, elem.value().base)};
for (const auto &subscript : elem.value().subscripts) {
ok &= common::visit(
common::visitors{
[&](const parser::SubscriptTriplet &) {
context_.Say(source, // C924, R872
"Array section '%s' is not allowed in an equivalence set"_err_en_US,
source);
return false;
},
[&](const parser::IntExpr &y) {
return CheckArrayBound(y.thing.value());
},
},
subscript.u);
}
return ok;
},
[&](const common::Indirection<parser::CoindexedNamedObject> &) {
context_.Say(source, // C924 (R872)
"Coindexed object '%s' is not allowed in an equivalence set"_err_en_US,
source);
return false;
},
},
x.u);
}
bool EquivalenceSets::CheckObject(const parser::Name &name) {
currObject_.symbol = name.symbol;
return currObject_.symbol != nullptr;
}
bool EquivalenceSets::CheckArrayBound(const parser::Expr &bound) {
MaybeExpr expr{
evaluate::Fold(context_.foldingContext(), AnalyzeExpr(context_, bound))};
if (!expr) {
return false;
}
if (expr->Rank() > 0) {
context_.Say(bound.source, // C924, R872
"Array with vector subscript '%s' is not allowed in an equivalence set"_err_en_US,
bound.source);
return false;
}
auto subscript{evaluate::ToInt64(*expr)};
if (!subscript) {
context_.Say(bound.source, // C8109
"Array with nonconstant subscript '%s' is not allowed in an equivalence set"_err_en_US,
bound.source);
return false;
}
currObject_.subscripts.push_back(*subscript);
return true;
}
bool EquivalenceSets::CheckSubstringBound(
const parser::Expr &bound, bool isStart) {
MaybeExpr expr{
evaluate::Fold(context_.foldingContext(), AnalyzeExpr(context_, bound))};
if (!expr) {
return false;
}
auto subscript{evaluate::ToInt64(*expr)};
if (!subscript) {
context_.Say(bound.source, // C8109
"Substring with nonconstant bound '%s' is not allowed in an equivalence set"_err_en_US,
bound.source);
return false;
}
if (!isStart) {
auto start{currObject_.substringStart};
if (*subscript < (start ? *start : 1)) {
context_.Say(bound.source, // C8116
"Substring with zero length is not allowed in an equivalence set"_err_en_US);
return false;
}
} else if (*subscript != 1) {
currObject_.substringStart = *subscript;
}
return true;
}
bool EquivalenceSets::IsCharacterSequenceType(const DeclTypeSpec *type) {
return IsSequenceType(type, [&](const IntrinsicTypeSpec &type) {
auto kind{evaluate::ToInt64(type.kind())};
return type.category() == TypeCategory::Character && kind &&
kind.value() == context_.GetDefaultKind(TypeCategory::Character);
});
}
// Numeric or logical type of default kind or DOUBLE PRECISION or DOUBLE COMPLEX
bool EquivalenceSets::IsDefaultKindNumericType(const IntrinsicTypeSpec &type) {
if (auto kind{evaluate::ToInt64(type.kind())}) {
switch (type.category()) {
case TypeCategory::Integer:
case TypeCategory::Logical:
return *kind == context_.GetDefaultKind(TypeCategory::Integer);
case TypeCategory::Real:
case TypeCategory::Complex:
return *kind == context_.GetDefaultKind(TypeCategory::Real) ||
*kind == context_.doublePrecisionKind();
default:
return false;
}
}
return false;
}
bool EquivalenceSets::IsDefaultNumericSequenceType(const DeclTypeSpec *type) {
return IsSequenceType(type, [&](const IntrinsicTypeSpec &type) {
return IsDefaultKindNumericType(type);
});
}
bool EquivalenceSets::IsAnyNumericSequenceType(const DeclTypeSpec *type) {
return IsSequenceType(type, [&](const IntrinsicTypeSpec &type) {
return type.category() == TypeCategory::Logical ||
common::IsNumericTypeCategory(type.category());
});
}
// Is type an intrinsic type that satisfies predicate or a sequence type
// whose components do.
bool EquivalenceSets::IsSequenceType(const DeclTypeSpec *type,
std::function<bool(const IntrinsicTypeSpec &)> predicate) {
if (!type) {
return false;
} else if (const IntrinsicTypeSpec * intrinsic{type->AsIntrinsic()}) {
return predicate(*intrinsic);
} else if (const DerivedTypeSpec * derived{type->AsDerived()}) {
for (const auto &pair : *derived->typeSymbol().scope()) {
const Symbol &component{*pair.second};
if (IsAllocatableOrPointer(component) ||
!IsSequenceType(component.GetType(), predicate)) {
return false;
}
}
return true;
} else {
return false;
}
}
// MapSubprogramToNewSymbols() relies on the following recursive symbol/scope
// copying infrastructure to duplicate an interface's symbols and map all
// of the symbol references in their contained expressions and interfaces
// to the new symbols.
struct SymbolAndTypeMappings {
std::map<const Symbol *, const Symbol *> symbolMap;
std::map<const DeclTypeSpec *, const DeclTypeSpec *> typeMap;
};
class SymbolMapper : public evaluate::AnyTraverse<SymbolMapper, bool> {
public:
using Base = evaluate::AnyTraverse<SymbolMapper, bool>;
SymbolMapper(Scope &scope, SymbolAndTypeMappings &map)
: Base{*this}, scope_{scope}, map_{map} {}
using Base::operator();
bool operator()(const SymbolRef &ref) {
if (const Symbol *mapped{MapSymbol(*ref)}) {
const_cast<SymbolRef &>(ref) = *mapped;
} else if (ref->has<UseDetails>()) {
CopySymbol(&*ref);
}
return false;
}
bool operator()(const Symbol &x) {
if (MapSymbol(x)) {
DIE("SymbolMapper hit symbol outside SymbolRef");
}
return false;
}
void MapSymbolExprs(Symbol &);
Symbol *CopySymbol(const Symbol *);
private:
void MapParamValue(ParamValue ¶m) { (*this)(param.GetExplicit()); }
void MapBound(Bound &bound) { (*this)(bound.GetExplicit()); }
void MapShapeSpec(ShapeSpec &spec) {
MapBound(spec.lbound());
MapBound(spec.ubound());
}
const Symbol *MapSymbol(const Symbol &) const;
const Symbol *MapSymbol(const Symbol *) const;
const DeclTypeSpec *MapType(const DeclTypeSpec &);
const DeclTypeSpec *MapType(const DeclTypeSpec *);
const Symbol *MapInterface(const Symbol *);
Scope &scope_;
SymbolAndTypeMappings &map_;
};
Symbol *SymbolMapper::CopySymbol(const Symbol *symbol) {
if (symbol) {
if (auto *subp{symbol->detailsIf<SubprogramDetails>()}) {
if (subp->isInterface()) {
if (auto pair{scope_.try_emplace(symbol->name(), symbol->attrs())};
pair.second) {
Symbol ©{*pair.first->second};
map_.symbolMap[symbol] = ©
copy.set(symbol->test(Symbol::Flag::Subroutine)
? Symbol::Flag::Subroutine
: Symbol::Flag::Function);
Scope &newScope{scope_.MakeScope(Scope::Kind::Subprogram, ©)};
copy.set_scope(&newScope);
copy.set_details(SubprogramDetails{});
auto &newSubp{copy.get<SubprogramDetails>()};
newSubp.set_isInterface(true);
newSubp.set_isDummy(subp->isDummy());
newSubp.set_defaultIgnoreTKR(subp->defaultIgnoreTKR());
MapSubprogramToNewSymbols(*symbol, copy, newScope, &map_);
return ©
}
}
} else if (Symbol * copy{scope_.CopySymbol(*symbol)}) {
map_.symbolMap[symbol] = copy;
return copy;
}
}
return nullptr;
}
void SymbolMapper::MapSymbolExprs(Symbol &symbol) {
common::visit(
common::visitors{[&](ObjectEntityDetails &object) {
if (const DeclTypeSpec * type{object.type()}) {
if (const DeclTypeSpec * newType{MapType(*type)}) {
object.ReplaceType(*newType);
}
}
for (ShapeSpec &spec : object.shape()) {
MapShapeSpec(spec);
}
for (ShapeSpec &spec : object.coshape()) {
MapShapeSpec(spec);
}
},
[&](ProcEntityDetails &proc) {
if (const Symbol *
mappedSymbol{MapInterface(proc.rawProcInterface())}) {
proc.set_procInterfaces(
*mappedSymbol, BypassGeneric(mappedSymbol->GetUltimate()));
} else if (const DeclTypeSpec * mappedType{MapType(proc.type())}) {
if (proc.type()) {
CHECK(*proc.type() == *mappedType);
} else {
proc.set_type(*mappedType);
}
}
if (proc.init()) {
if (const Symbol * mapped{MapSymbol(*proc.init())}) {
proc.set_init(*mapped);
}
}
},
[&](const HostAssocDetails &hostAssoc) {
if (const Symbol * mapped{MapSymbol(hostAssoc.symbol())}) {
symbol.set_details(HostAssocDetails{*mapped});
}
},
[](const auto &) {}},
symbol.details());
}
const Symbol *SymbolMapper::MapSymbol(const Symbol &symbol) const {
if (auto iter{map_.symbolMap.find(&symbol)}; iter != map_.symbolMap.end()) {
return iter->second;
}
return nullptr;
}
const Symbol *SymbolMapper::MapSymbol(const Symbol *symbol) const {
return symbol ? MapSymbol(*symbol) : nullptr;
}
const DeclTypeSpec *SymbolMapper::MapType(const DeclTypeSpec &type) {
if (auto iter{map_.typeMap.find(&type)}; iter != map_.typeMap.end()) {
return iter->second;
}
const DeclTypeSpec *newType{nullptr};
if (type.category() == DeclTypeSpec::Category::Character) {
const CharacterTypeSpec &charType{type.characterTypeSpec()};
if (charType.length().GetExplicit()) {
ParamValue newLen{charType.length()};
(*this)(newLen.GetExplicit());
newType = &scope_.MakeCharacterType(
std::move(newLen), KindExpr{charType.kind()});
}
} else if (const DerivedTypeSpec *derived{type.AsDerived()}) {
if (!derived->parameters().empty()) {
DerivedTypeSpec newDerived{derived->name(), derived->typeSymbol()};
newDerived.CookParameters(scope_.context().foldingContext());
for (const auto &[paramName, paramValue] : derived->parameters()) {
ParamValue newParamValue{paramValue};
MapParamValue(newParamValue);
newDerived.AddParamValue(paramName, std::move(newParamValue));
}
// Scope::InstantiateDerivedTypes() instantiates it later.
newType = &scope_.MakeDerivedType(type.category(), std::move(newDerived));
}
}
if (newType) {
map_.typeMap[&type] = newType;
}
return newType;
}
const DeclTypeSpec *SymbolMapper::MapType(const DeclTypeSpec *type) {
return type ? MapType(*type) : nullptr;
}
const Symbol *SymbolMapper::MapInterface(const Symbol *interface) {
if (const Symbol *mapped{MapSymbol(interface)}) {
return mapped;
}
if (interface) {
if (&interface->owner() != &scope_) {
return interface;
} else if (const auto *subp{interface->detailsIf<SubprogramDetails>()};
subp && subp->isInterface()) {
return CopySymbol(interface);
}
}
return nullptr;
}
void MapSubprogramToNewSymbols(const Symbol &oldSymbol, Symbol &newSymbol,
Scope &newScope, SymbolAndTypeMappings *mappings) {
SymbolAndTypeMappings newMappings;
if (!mappings) {
mappings = &newMappings;
}
mappings->symbolMap[&oldSymbol] = &newSymbol;
const auto &oldDetails{oldSymbol.get<SubprogramDetails>()};
auto &newDetails{newSymbol.get<SubprogramDetails>()};
SymbolMapper mapper{newScope, *mappings};
for (const Symbol *dummyArg : oldDetails.dummyArgs()) {
if (!dummyArg) {
newDetails.add_alternateReturn();
} else if (Symbol * copy{mapper.CopySymbol(dummyArg)}) {
copy->set(Symbol::Flag::Implicit, false);
newDetails.add_dummyArg(*copy);
mappings->symbolMap[dummyArg] = copy;
}
}
if (oldDetails.isFunction()) {
newScope.erase(newSymbol.name());
const Symbol &result{oldDetails.result()};
if (Symbol * copy{mapper.CopySymbol(&result)}) {
newDetails.set_result(*copy);
mappings->symbolMap[&result] = copy;
}
}
for (auto &[_, ref] : newScope) {
mapper.MapSymbolExprs(*ref);
}
newScope.InstantiateDerivedTypes();
}
} // namespace Fortran::semantics