-
Notifications
You must be signed in to change notification settings - Fork 704
/
Copy pathconversions.js
518 lines (428 loc) · 14.9 KB
/
conversions.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
// Sample code for color conversions
// Conversion can also be done using ICC profiles and a Color Management System
// For clarity, a library is used for matrix multiplication (multiply-matrices.js)
// standard white points, defined by 4-figure CIE x,y chromaticities
const D50 = [0.3457 / 0.3585, 1.00000, (1.0 - 0.3457 - 0.3585) / 0.3585];
const D65 = [0.3127 / 0.3290, 1.00000, (1.0 - 0.3127 - 0.3290) / 0.3290];
// sRGB-related functions
function lin_sRGB(RGB) {
// convert an array of sRGB values
// where in-gamut values are in the range [0 - 1]
// to linear light (un-companded) form.
// https://en.wikipedia.org/wiki/SRGB
// Extended transfer function:
// for negative values, linear portion is extended on reflection of axis,
// then reflected power function is used.
return RGB.map(function (val) {
let sign = val < 0? -1 : 1;
let abs = Math.abs(val);
if (abs <= 0.04045) {
return val / 12.92;
}
return sign * (Math.pow((abs + 0.055) / 1.055, 2.4));
});
}
function gam_sRGB(RGB) {
// convert an array of linear-light sRGB values in the range 0.0-1.0
// to gamma corrected form
// https://en.wikipedia.org/wiki/SRGB
// Extended transfer function:
// For negative values, linear portion extends on reflection
// of axis, then uses reflected pow below that
return RGB.map(function (val) {
let sign = val < 0? -1 : 1;
let abs = Math.abs(val);
if (abs > 0.0031308) {
return sign * (1.055 * Math.pow(abs, 1/2.4) - 0.055);
}
return 12.92 * val;
});
}
function lin_sRGB_to_XYZ(rgb) {
// convert an array of linear-light sRGB values to CIE XYZ
// using sRGB's own white, D65 (no chromatic adaptation)
var M = [
[ 506752 / 1228815, 87881 / 245763, 12673 / 70218 ],
[ 87098 / 409605, 175762 / 245763, 12673 / 175545 ],
[ 7918 / 409605, 87881 / 737289, 1001167 / 1053270 ],
];
return multiplyMatrices(M, rgb);
}
function XYZ_to_lin_sRGB(XYZ) {
// convert XYZ to linear-light sRGB
var M = [
[ 12831 / 3959, -329 / 214, -1974 / 3959 ],
[ -851781 / 878810, 1648619 / 878810, 36519 / 878810 ],
[ 705 / 12673, -2585 / 12673, 705 / 667 ],
];
return multiplyMatrices(M, XYZ);
}
// display-p3-related functions
function lin_P3(RGB) {
// convert an array of display-p3 RGB values in the range 0.0 - 1.0
// to linear light (un-companded) form.
return lin_sRGB(RGB); // same as sRGB
}
function gam_P3(RGB) {
// convert an array of linear-light display-p3 RGB in the range 0.0-1.0
// to gamma corrected form
return gam_sRGB(RGB); // same as sRGB
}
function lin_P3_to_XYZ(rgb) {
// convert an array of linear-light display-p3 values to CIE XYZ
// using D65 (no chromatic adaptation)
// http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html
var M = [
[ 608311 / 1250200, 189793 / 714400, 198249 / 1000160 ],
[ 35783 / 156275, 247089 / 357200, 198249 / 2500400 ],
[ 0 / 1, 32229 / 714400, 5220557 / 5000800 ],
];
return multiplyMatrices(M, rgb);
}
function XYZ_to_lin_P3(XYZ) {
// convert XYZ to linear-light P3
var M = [
[ 446124 / 178915, -333277 / 357830, -72051 / 178915 ],
[ -14852 / 17905, 63121 / 35810, 423 / 17905 ],
[ 11844 / 330415, -50337 / 660830, 316169 / 330415 ],
];
return multiplyMatrices(M, XYZ);
}
// prophoto-rgb functions
function lin_ProPhoto(RGB) {
// convert an array of prophoto-rgb values
// where in-gamut colors are in the range [0.0 - 1.0]
// to linear light (un-companded) form.
// Transfer curve is gamma 1.8 with a small linear portion
// Extended transfer function
const Et2 = 16/512;
return RGB.map(function (val) {
let sign = val < 0? -1 : 1;
let abs = Math.abs(val);
if (abs <= Et2) {
return val / 16;
}
return sign * Math.pow(abs, 1.8);
});
}
function gam_ProPhoto(RGB) {
// convert an array of linear-light prophoto-rgb in the range 0.0-1.0
// to gamma corrected form
// Transfer curve is gamma 1.8 with a small linear portion
// TODO for negative values, extend linear portion on reflection of axis, then add pow below that
const Et = 1/512;
return RGB.map(function (val) {
let sign = val < 0? -1 : 1;
let abs = Math.abs(val);
if (abs >= Et) {
return sign * Math.pow(abs, 1/1.8);
}
return 16 * val;
});
}
function lin_ProPhoto_to_XYZ(rgb) {
// convert an array of linear-light prophoto-rgb values to CIE D50 XYZ
// matrix cannot be expressed in rational form, but is calculated to 64 bit accuracy
// see https://github.com/w3c/csswg-drafts/issues/7675
var M = [
[ 0.79776664490064230, 0.13518129740053308, 0.03134773412839220 ],
[ 0.28807482881940130, 0.71183523424187300, 0.00008993693872564 ],
[ 0.00000000000000000, 0.00000000000000000, 0.82510460251046020 ]
];
return multiplyMatrices(M, rgb);
}
function XYZ_to_lin_ProPhoto(XYZ) {
// convert D50 XYZ to linear-light prophoto-rgb
var M = [
[ 1.34578688164715830, -0.25557208737979464, -0.05110186497554526 ],
[ -0.54463070512490190, 1.50824774284514680, 0.02052744743642139 ],
[ 0.00000000000000000, 0.00000000000000000, 1.21196754563894520 ]
];
return multiplyMatrices(M, XYZ);
}
// a98-rgb functions
function lin_a98rgb(RGB) {
// convert an array of a98-rgb values in the range 0.0 - 1.0
// to linear light (un-companded) form.
// negative values are also now accepted
return RGB.map(function (val) {
let sign = val < 0? -1 : 1;
let abs = Math.abs(val);
return sign * Math.pow(abs, 563/256);
});
}
function gam_a98rgb(RGB) {
// convert an array of linear-light a98-rgb in the range 0.0-1.0
// to gamma corrected form
// negative values are also now accepted
return RGB.map(function (val) {
let sign = val < 0? -1 : 1;
let abs = Math.abs(val);
return sign * Math.pow(abs, 256/563);
});
}
function lin_a98rgb_to_XYZ(rgb) {
// convert an array of linear-light a98-rgb values to CIE XYZ
// http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html
// has greater numerical precision than section 4.3.5.3 of
// https://www.adobe.com/digitalimag/pdfs/AdobeRGB1998.pdf
// but the values below were calculated from first principles
// from the chromaticity coordinates of R G B W
// see matrixmaker.html
var M = [
[ 573536 / 994567, 263643 / 1420810, 187206 / 994567 ],
[ 591459 / 1989134, 6239551 / 9945670, 374412 / 4972835 ],
[ 53769 / 1989134, 351524 / 4972835, 4929758 / 4972835 ],
];
return multiplyMatrices(M, rgb);
}
function XYZ_to_lin_a98rgb(XYZ) {
// convert XYZ to linear-light a98-rgb
var M = [
[ 1829569 / 896150, -506331 / 896150, -308931 / 896150 ],
[ -851781 / 878810, 1648619 / 878810, 36519 / 878810 ],
[ 16779 / 1248040, -147721 / 1248040, 1266979 / 1248040 ],
];
return multiplyMatrices(M, XYZ);
}
//Rec. 2020-related functions
function lin_2020(RGB) {
// convert an array of rec2020 RGB values in the range 0.0 - 1.0
// to linear light (un-companded) form.
// ITU-R BT.2020-2 p.4
const α = 1.09929682680944 ;
const β = 0.018053968510807;
return RGB.map(function (val) {
let sign = val < 0? -1 : 1;
let abs = Math.abs(val);
if (abs < β * 4.5 ) {
return val / 4.5;
}
return sign * (Math.pow((abs + α -1 ) / α, 1/0.45));
});
}
function gam_2020(RGB) {
// convert an array of linear-light rec2020 RGB in the range 0.0-1.0
// to gamma corrected form
// ITU-R BT.2020-2 p.4
const α = 1.09929682680944 ;
const β = 0.018053968510807;
return RGB.map(function (val) {
let sign = val < 0? -1 : 1;
let abs = Math.abs(val);
if (abs > β ) {
return sign * (α * Math.pow(abs, 0.45) - (α - 1));
}
return 4.5 * val;
});
}
function lin_2020_to_XYZ(rgb) {
// convert an array of linear-light rec2020 values to CIE XYZ
// using D65 (no chromatic adaptation)
// http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html
var M = [
[ 63426534 / 99577255, 20160776 / 139408157, 47086771 / 278816314 ],
[ 26158966 / 99577255, 472592308 / 697040785, 8267143 / 139408157 ],
[ 0 / 1, 19567812 / 697040785, 295819943 / 278816314 ],
];
// 0 is actually calculated as 4.994106574466076e-17
return multiplyMatrices(M, rgb);
}
function XYZ_to_lin_2020(XYZ) {
// convert XYZ to linear-light rec2020
var M = [
[ 30757411 / 17917100, -6372589 / 17917100, -4539589 / 17917100 ],
[ -19765991 / 29648200, 47925759 / 29648200, 467509 / 29648200 ],
[ 792561 / 44930125, -1921689 / 44930125, 42328811 / 44930125 ],
];
return multiplyMatrices(M, XYZ);
}
// Chromatic adaptation
function D65_to_D50(XYZ) {
// Bradford chromatic adaptation from D65 to D50
// The matrix below is the result of three operations:
// - convert from XYZ to retinal cone domain
// - scale components from one reference white to another
// - convert back to XYZ
// see https://github.com/LeaVerou/color.js/pull/354/files
var M = [
[ 1.0479297925449969, 0.022946870601609652, -0.05019226628920524 ],
[ 0.02962780877005599, 0.9904344267538799, -0.017073799063418826 ],
[ -0.009243040646204504, 0.015055191490298152, 0.7518742814281371 ]
];
return multiplyMatrices(M, XYZ);
}
function D50_to_D65(XYZ) {
// Bradford chromatic adaptation from D50 to D65
// See https://github.com/LeaVerou/color.js/pull/360/files
var M = [
[ 0.955473421488075, -0.02309845494876471, 0.06325924320057072 ],
[ -0.0283697093338637, 1.0099953980813041, 0.021041441191917323 ],
[ 0.012314014864481998, -0.020507649298898964, 1.330365926242124 ]
];
return multiplyMatrices(M, XYZ);
}
// CIE Lab and LCH
function XYZ_to_Lab(XYZ) {
// Assuming XYZ is relative to D50, convert to CIE Lab
// from CIE standard, which now defines these as a rational fraction
var ε = 216/24389; // 6^3/29^3
var κ = 24389/27; // 29^3/3^3
// compute xyz, which is XYZ scaled relative to reference white
var xyz = XYZ.map((value, i) => value / D50[i]);
// now compute f
var f = xyz.map(value => value > ε ? Math.cbrt(value) : (κ * value + 16)/116);
return [
(116 * f[1]) - 16, // L
500 * (f[0] - f[1]), // a
200 * (f[1] - f[2]) // b
];
// L in range [0,100]. For use in CSS, add a percent
}
function Lab_to_XYZ(Lab) {
// Convert Lab to D50-adapted XYZ
// http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html
var κ = 24389/27; // 29^3/3^3
var ε = 216/24389; // 6^3/29^3
var f = [];
// compute f, starting with the luminance-related term
f[1] = (Lab[0] + 16)/116;
f[0] = Lab[1]/500 + f[1];
f[2] = f[1] - Lab[2]/200;
// compute xyz
var xyz = [
Math.pow(f[0],3) > ε ? Math.pow(f[0],3) : (116*f[0]-16)/κ,
Lab[0] > κ * ε ? Math.pow((Lab[0]+16)/116,3) : Lab[0]/κ,
Math.pow(f[2],3) > ε ? Math.pow(f[2],3) : (116*f[2]-16)/κ
];
// Compute XYZ by scaling xyz by reference white
return xyz.map((value, i) => value * D50[i]);
}
function Lab_to_LCH(Lab) {
var epsilon = 0.0015;
var chroma = Math.sqrt(Math.pow(Lab[1], 2) + Math.pow(Lab[2], 2)); // Chroma
var hue = Math.atan2(Lab[2], Lab[1]) * 180 / Math.PI;
if (hue < 0) {
hue = hue + 360;
}
if (chroma <= epsilon) {
hue = NaN;
}
return [
Lab[0], // L is still L
chroma, // Chroma
hue // Hue, in degrees [0 to 360)
];
}
function LCH_to_Lab(LCH) {
// Convert from polar form
return [
LCH[0], // L is still L
LCH[1] * Math.cos(LCH[2] * Math.PI / 180), // a
LCH[1] * Math.sin(LCH[2] * Math.PI / 180) // b
];
}
// OKLab and OKLCH
// https://bottosson.github.io/posts/oklab/
// XYZ <-> LMS matrices recalculated for consistent reference white
// see https://github.com/w3c/csswg-drafts/issues/6642#issuecomment-943521484
// recalculated for 64bit precision
// see https://github.com/color-js/color.js/pull/357
function XYZ_to_OKLab(XYZ) {
// Given XYZ relative to D65, convert to OKLab
var XYZtoLMS = [
[ 0.8190224379967030, 0.3619062600528904, -0.1288737815209879 ],
[ 0.0329836539323885, 0.9292868615863434, 0.0361446663506424 ],
[ 0.0481771893596242, 0.2642395317527308, 0.6335478284694309 ]
];
var LMStoOKLab = [
[ 0.2104542683093140, 0.7936177747023054, -0.0040720430116193 ],
[ 1.9779985324311684, -2.4285922420485799, 0.4505937096174110 ],
[ 0.0259040424655478, 0.7827717124575296, -0.8086757549230774 ]
];
var LMS = multiplyMatrices(XYZtoLMS, XYZ);
// JavaScript Math.cbrt returns a sign-matched cube root
// beware if porting to other languages
// especially if tempted to use a general power function
return multiplyMatrices(LMStoOKLab, LMS.map(c => Math.cbrt(c)));
// L in range [0,1]. For use in CSS, multiply by 100 and add a percent
}
function OKLab_to_XYZ(OKLab) {
// Given OKLab, convert to XYZ relative to D65
var LMStoXYZ = [
[ 1.2268798758459243, -0.5578149944602171, 0.2813910456659647 ],
[ -0.0405757452148008, 1.1122868032803170, -0.0717110580655164 ],
[ -0.0763729366746601, -0.4214933324022432, 1.5869240198367816 ]
];
var OKLabtoLMS = [
[ 1.0000000000000000, 0.3963377773761749, 0.2158037573099136 ],
[ 1.0000000000000000, -0.1055613458156586, -0.0638541728258133 ],
[ 1.0000000000000000, -0.0894841775298119, -1.2914855480194092 ]
];
var LMSnl = multiplyMatrices(OKLabtoLMS, OKLab);
return multiplyMatrices(LMStoXYZ, LMSnl.map(c => c ** 3));
}
function OKLab_to_OKLCH(OKLab) {
var epsilon = 0.000004;
var hue = Math.atan2(OKLab[2], OKLab[1]) * 180 / Math.PI;
var chroma = Math.sqrt(OKLab[1] ** 2 + OKLab[2] ** 2);
if (hue < 0) {
hue = hue + 360;
}
if (chroma <= epsilon) {
hue = NaN;
}
return [
OKLab[0], // L is still L
chroma,
hue
];
}
function OKLCH_to_OKLab(OKLCH) {
return [
OKLCH[0], // L is still L
OKLCH[1] * Math.cos(OKLCH[2] * Math.PI / 180), // a
OKLCH[1] * Math.sin(OKLCH[2] * Math.PI / 180) // b
];
}
// Premultiplied alpha conversions
function rectangular_premultiply(color, alpha) {
// given a color in a rectangular orthogonal colorspace
// and an alpha value
// return the premultiplied form
return color.map((c) => c * alpha)
}
function rectangular_un_premultiply(color, alpha) {
// given a premultiplied color in a rectangular orthogonal colorspace
// and an alpha value
// return the actual color
if (alpha === 0) {
return color; // avoid divide by zero
}
return color.map((c) => c / alpha)
}
function polar_premultiply(color, alpha, hueIndex) {
// given a color in a cylindicalpolar colorspace
// and an alpha value
// return the premultiplied form.
// the index says which entry in the color array corresponds to hue angle
// for example, in OKLCH it would be 2
// while in HSL it would be 0
return color.map((c, i) => c * (hueIndex === i? 1 : alpha))
}
function polar_un_premultiply(color, alpha, hueIndex) {
// given a color in a cylindicalpolar colorspace
// and an alpha value
// return the actual color.
// the hueIndex says which entry in the color array corresponds to hue angle
// for example, in OKLCH it would be 2
// while in HSL it would be 0
if (alpha === 0) {
return color; // avoid divide by zero
}
return color.map((c, i) => c / (hueIndex === i? 1 : alpha))
}
// Convenience functions can easily be defined, such as
function hsl_premultiply(color, alpha) {
return polar_premultiply(color, alpha, 0);
}