该语料库包含从网站Insurance Library 收集的问题和答案。
据我们所知,本数据集发布之时,2017 年,这是保险领域首个开放的QA语料库:
-
该语料库的内容由现实世界的用户提出,高质量的答案由具有深度领域知识的专业人士提供。 所以这是一个具有真正价值的语料,而不是玩具。
-
在上述论文中,语料库用于答复选择任务。 另一方面,这种语料库的其他用法也是可能的。 例如,通过阅读理解答案,观察学习等自主学习,使系统能够最终拿出自己的看不见的问题的答案。
-
数据集分为两个部分“问答语料”和“问答对语料”。问答语料是从原始英文数据翻译过来,未经其他处理的。问答对语料是基于问答语料,又做了分词和去标去停,添加label。所以,"问答对语料"可以直接对接机器学习任务。如果对于数据格式不满意或者对分词效果不满意,可以直接对"问答语料"使用其他方法进行处理,获得可以用于训练模型的数据。
- Python: 2.x, 3.x
- Pip
pip install -U insuranceqa_data
进入证书商店,购买证书,购买后进入【证书-详情】,点击【复制证书标识】。
然后,通过以下两种形式完成下载。
- 方式1:Python 源代码
import os
# 设置证书标识,购买自 https://store.chatopera.com/product/insqa001
os.environ["INSQA_DL_LICENSE"] = "YOUR_LICENSE" #
_licenseid = os.environ.get("INSQA_DL_LICENSE", None)
print("INSQA_DL_LICENSE=%s" % _licenseid)
# 初次下载数据
import insuranceqa_data
insuranceqa_data.download_corpus()
将上面 YOUR_LICENSE
修改为您的 证书标识!!!然后执行这段 Python 脚本,比如将上述脚本保存为 download.py
,然后执行:
python download.py
- 方式2:设置环境变量
设置环境变量 INSQA_DL_LICENSE
,比如使用命令行终端:
# Linux / macOS
export INSQA_DL_LICENSE=YOUR_LICENSE
## e.g. if your license id is `FOOBAR`, run `export INSQA_DL_LICENSE=FOOBAR`
# Windows
## 1/2 Command Prompt
set INSQA_DL_LICENSE=YOUR_LICENSE
## 2/2 PowerShell
$env:INSQA_DL_LICENSE='YOUR_LICENSE'
最后,执行以下命令,完成数据的下载。
python -c "import insuranceqa_data; insuranceqa_data.download_corpus()"
# 读取数据测试
train_data = insuranceqa_data.load_pool_train() # 训练集
test_data = insuranceqa_data.load_pool_test() # 测试集
valid_data = insuranceqa_data.load_pool_valid() # 验证集
answers_data = insuranceqa_data.load_pool_answers()
# 打印 训练集 数据;测试集和验证集与 训练集 数据结构一致
for x in train_data: # 打印数据
print('\n\nIndex %s \n question: %s' % \
(x, train_data[x]['zh']))
print(" answer: ")
idx = 0
for y in train_data[x]['answers']:
idx += 1
print(" %d. %s" % (idx, answers_data[y]["zh"]))
数据格式的详细介绍见下。
- | 问题 | 答案 | 词汇(英语) |
---|---|---|---|
训练 | 12,889 | 21,325 | 107,889 |
验证 | 2,000 | 3354 | 16,931 |
测试 | 2,000 | 3308 | 16,815 |
每条数据包括问题的中文,英文,答案的正例,答案的负例。案的正例至少1项,基本上在1-5条,都是正确答案。答案的负例有200条,负例根据问题使用检索的方式建立,所以和问题是相关的,但却不是正确答案。
{
"INDEX": {
"zh": "中文",
"en": "英文",
"domain": "保险种类",
"answers": [""] # 答案正例列表
"negatives": [""] # 答案负例列表
},
more ...
}
-
训练:
corpus/pool/train.json.gz
-
验证:
corpus/pool/valid.json.gz
-
测试:
corpus/pool/test.json.gz
-
答案:
corpus/pool/answers.json
一共有 27,413 个回答,数据格式为json
:
{
"INDEX": {
"zh": "中文",
"en": "英文"
},
more ...
}
可将本语料库和以下开源码配合使用
deep-qa-1: Baseline model
InsuranceQA TensorFlow: CNN with TensorFlow
n-grams-get-started: N元模型
word2vec-get-started: 词向量模型
声明1 : insuranceqa-corpus-zh
本数据集使用翻译 insuranceQA而生成,代码发布证书Chunsong Public License, version 1.0。数据仅限于研究用途,如果在发布的任何媒体、期刊、杂志或博客等内容时,必须注明引用和地址。
InsuranceQA Corpus, Chatopera Inc., https://github.com/chatopera/insuranceqa-corpus-zh, 07 27, 2017
任何基于insuranceqa-corpus衍生的数据也需要开放并需要声明和“声明1”和“声明2”一致的内容。
声明2 : insuranceQA
此数据集仅作为研究目的提供。如果您使用这些数据发表任何内容,请引用我们的论文:Applying Deep Learning to Answer Selection: A Study and An Open Task。Minwei Feng, Bing Xiang, Michael R. Glass, Lidan Wang, Bowen Zhou @ 2015