Steven P. Sanderson II, MPH - Date: 17 June, 2025
This analysis follows a Nested Modeltime Workflow.
glimpse(downloads_tbl)
## Rows: 142,521
## Columns: 11
## $ date <date> 2020-11-23, 2020-11-23, 2020-11-23, 2020-11-23, 2020-11-23,…
## $ time <Period> 15H 36M 55S, 11H 26M 39S, 23H 34M 44S, 18H 39M 32S, 9H 0M…
## $ date_time <dttm> 2020-11-23 15:36:55, 2020-11-23 11:26:39, 2020-11-23 23:34:…
## $ size <int> 4858294, 4858294, 4858301, 4858295, 361, 4863722, 4864794, 4…
## $ r_version <chr> NA, "4.0.3", "3.5.3", "3.5.2", NA, NA, NA, NA, NA, NA, NA, N…
## $ r_arch <chr> NA, "x86_64", "x86_64", "x86_64", NA, NA, NA, NA, NA, NA, NA…
## $ r_os <chr> NA, "mingw32", "mingw32", "linux-gnu", NA, NA, NA, NA, NA, N…
## $ package <chr> "healthyR.data", "healthyR.data", "healthyR.data", "healthyR…
## $ version <chr> "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0…
## $ country <chr> "US", "US", "US", "GB", "US", "US", "DE", "HK", "JP", "US", …
## $ ip_id <int> 2069, 2804, 78827, 27595, 90474, 90474, 42435, 74, 7655, 638…
The last day in the data set is 2025-06-15 22:20:21, the file was birthed on: 2024-08-07 07:35:44.428716, and at report knit time is -7498.74 hours old. Happy analyzing!
Now that we have our data lets take a look at it using the skimr
package.
skim(downloads_tbl)
Name | downloads_tbl |
Number of rows | 142521 |
Number of columns | 11 |
_______________________ | |
Column type frequency: | |
character | 6 |
Date | 1 |
numeric | 2 |
POSIXct | 1 |
Timespan | 1 |
________________________ | |
Group variables | None |
Data summary
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
r_version | 102847 | 0.28 | 5 | 5 | 0 | 47 | 0 |
r_arch | 102847 | 0.28 | 3 | 7 | 0 | 5 | 0 |
r_os | 102847 | 0.28 | 7 | 15 | 0 | 22 | 0 |
package | 0 | 1.00 | 7 | 13 | 0 | 8 | 0 |
version | 0 | 1.00 | 5 | 17 | 0 | 60 | 0 |
country | 12085 | 0.92 | 2 | 2 | 0 | 163 | 0 |
Variable type: Date
skim_variable | n_missing | complete_rate | min | max | median | n_unique |
---|---|---|---|---|---|---|
date | 0 | 1 | 2020-11-23 | 2025-06-15 | 2023-07-05 | 1666 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
size | 0 | 1 | 1134346.81 | 1516556.82 | 355 | 14701 | 289918 | 2367728 | 5677952 | ▇▁▂▁▁ |
ip_id | 0 | 1 | 10431.98 | 18577.53 | 1 | 287 | 3032 | 11700 | 209747 | ▇▁▁▁▁ |
Variable type: POSIXct
skim_variable | n_missing | complete_rate | min | max | median | n_unique |
---|---|---|---|---|---|---|
date_time | 0 | 1 | 2020-11-23 09:00:41 | 2025-06-15 22:20:21 | 2023-07-05 07:21:17 | 87409 |
Variable type: Timespan
skim_variable | n_missing | complete_rate | min | max | median | n_unique |
---|---|---|---|---|---|---|
time | 0 | 1 | 0 | 59 | 12H 6M 22S | 60 |
We can see that the following columns are missing a lot of data and for
us are most likely not useful anyways, so we will drop them
c(r_version, r_arch, r_os)
Now lets take a look at a time-series plot of the total daily downloads by package. We will use a log scale and place a vertical line at each version release for each package.
Now lets take a look at some time series decomposition graphs.
Now that we have our basic data and a shot of what it looks like, let’s
add some features to our data which can be very helpful in modeling.
Lets start by making a tibble
that is aggregated by the day and
package, as we are going to be interested in forecasting the next 4
weeks or 28 days for each package. First lets get our base data.
##
## Call:
## stats::lm(formula = .formula, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -146.81 -35.64 -11.12 26.91 815.18
##
## Coefficients:
## Estimate Std. Error
## (Intercept) -1.580e+02 6.731e+01
## date 9.871e-03 3.565e-03
## lag(value, 1) 1.027e-01 2.427e-02
## lag(value, 7) 9.639e-02 2.516e-02
## lag(value, 14) 8.952e-02 2.514e-02
## lag(value, 21) 6.803e-02 2.522e-02
## lag(value, 28) 7.029e-02 2.511e-02
## lag(value, 35) 6.871e-02 2.516e-02
## lag(value, 42) 4.929e-02 2.530e-02
## lag(value, 49) 6.913e-02 2.518e-02
## month(date, label = TRUE).L -9.595e+00 5.102e+00
## month(date, label = TRUE).Q 4.076e+00 5.093e+00
## month(date, label = TRUE).C -1.349e+01 5.123e+00
## month(date, label = TRUE)^4 -7.362e+00 5.145e+00
## month(date, label = TRUE)^5 -1.099e+01 5.107e+00
## month(date, label = TRUE)^6 -3.303e+00 5.189e+00
## month(date, label = TRUE)^7 -7.634e+00 5.080e+00
## month(date, label = TRUE)^8 -3.528e+00 5.078e+00
## month(date, label = TRUE)^9 6.018e+00 5.082e+00
## month(date, label = TRUE)^10 3.043e+00 5.065e+00
## month(date, label = TRUE)^11 -4.847e+00 5.139e+00
## fourier_vec(date, type = "sin", K = 1, period = 7) -1.146e+01 2.320e+00
## fourier_vec(date, type = "cos", K = 1, period = 7) 8.034e+00 2.439e+00
## t value Pr(>|t|)
## (Intercept) -2.348 0.019019 *
## date 2.769 0.005689 **
## lag(value, 1) 4.231 2.46e-05 ***
## lag(value, 7) 3.831 0.000133 ***
## lag(value, 14) 3.561 0.000381 ***
## lag(value, 21) 2.698 0.007058 **
## lag(value, 28) 2.800 0.005173 **
## lag(value, 35) 2.731 0.006392 **
## lag(value, 42) 1.948 0.051571 .
## lag(value, 49) 2.745 0.006110 **
## month(date, label = TRUE).L -1.880 0.060223 .
## month(date, label = TRUE).Q 0.800 0.423666
## month(date, label = TRUE).C -2.633 0.008553 **
## month(date, label = TRUE)^4 -1.431 0.152674
## month(date, label = TRUE)^5 -2.153 0.031476 *
## month(date, label = TRUE)^6 -0.637 0.524505
## month(date, label = TRUE)^7 -1.503 0.133090
## month(date, label = TRUE)^8 -0.695 0.487274
## month(date, label = TRUE)^9 1.184 0.236560
## month(date, label = TRUE)^10 0.601 0.548067
## month(date, label = TRUE)^11 -0.943 0.345762
## fourier_vec(date, type = "sin", K = 1, period = 7) -4.941 8.60e-07 ***
## fourier_vec(date, type = "cos", K = 1, period = 7) 3.294 0.001008 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 58.65 on 1594 degrees of freedom
## (49 observations deleted due to missingness)
## Multiple R-squared: 0.2383, Adjusted R-squared: 0.2278
## F-statistic: 22.66 on 22 and 1594 DF, p-value: < 2.2e-16
This is something I have been wanting to try for a while. The NNS
package is a great package for forecasting time series data.
library(NNS)
data_list <- base_data |>
select(package, value) |>
group_split(package)
data_list |>
imap(
\(x, idx) {
obj <- x
x <- obj |> pull(value) |> tail(7*52)
train_set_size <- length(x) - 56
pkg <- obj |> pluck(1) |> unique()
sf <- NNS.seas(x, modulo = 7, plot = FALSE)$periods
cat(paste0("Package: ", pkg, "\n"))
NNS.ARMA.optim(
variable = x,
h = 28,
training.set = train_set_size,
#seasonal.factor = seq(12, 60, 7),
seasonal.factor = sf,
pred.int = 0.95,
plot = TRUE
)
title(
sub = paste0("\n",
"Package: ", pkg, " - NNS Optimization")
)
}
)
## Package: healthyR
## [1] "CURRNET METHOD: lin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 56 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 3.78083293164034"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 56, 63 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 3.09862816223659"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 56, 63, 21 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 3.02317779930191"
## [1] "BEST method = 'lin', seasonal.factor = c( 56, 63, 21 )"
## [1] "BEST lin OBJECTIVE FUNCTION = 3.02317779930191"
## [1] "CURRNET METHOD: nonlin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'nonlin' , seasonal.factor = c( 56, 63, 21 ) ...)"
## [1] "CURRENT nonlin OBJECTIVE FUNCTION = 4.93875862627921"
## [1] "BEST method = 'nonlin' PATH MEMBER = c( 56, 63, 21 )"
## [1] "BEST nonlin OBJECTIVE FUNCTION = 4.93875862627921"
## [1] "CURRNET METHOD: both"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'both' , seasonal.factor = c( 56, 63, 21 ) ...)"
## [1] "CURRENT both OBJECTIVE FUNCTION = 3.52654707244722"
## [1] "BEST method = 'both' PATH MEMBER = c( 56, 63, 21 )"
## [1] "BEST both OBJECTIVE FUNCTION = 3.52654707244722"
## Package: healthyR.ai
## [1] "CURRNET METHOD: lin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 63 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 4.22663053600812"
## [1] "BEST method = 'lin', seasonal.factor = c( 63 )"
## [1] "BEST lin OBJECTIVE FUNCTION = 4.22663053600812"
## [1] "CURRNET METHOD: nonlin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'nonlin' , seasonal.factor = c( 63 ) ...)"
## [1] "CURRENT nonlin OBJECTIVE FUNCTION = 4.37325863949502"
## [1] "BEST method = 'nonlin' PATH MEMBER = c( 63 )"
## [1] "BEST nonlin OBJECTIVE FUNCTION = 4.37325863949502"
## [1] "CURRNET METHOD: both"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'both' , seasonal.factor = c( 63 ) ...)"
## [1] "CURRENT both OBJECTIVE FUNCTION = 4.11436707034228"
## [1] "BEST method = 'both' PATH MEMBER = c( 63 )"
## [1] "BEST both OBJECTIVE FUNCTION = 4.11436707034228"
## Package: healthyR.data
## [1] "CURRNET METHOD: lin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 84 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 3.7057319939123"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 84, 63 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 3.06300423921851"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 84, 63, 56 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 2.87448274289272"
## [1] "BEST method = 'lin', seasonal.factor = c( 84, 63, 56 )"
## [1] "BEST lin OBJECTIVE FUNCTION = 2.87448274289272"
## [1] "CURRNET METHOD: nonlin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'nonlin' , seasonal.factor = c( 84, 63, 56 ) ...)"
## [1] "CURRENT nonlin OBJECTIVE FUNCTION = 4.92408879191941"
## [1] "BEST method = 'nonlin' PATH MEMBER = c( 84, 63, 56 )"
## [1] "BEST nonlin OBJECTIVE FUNCTION = 4.92408879191941"
## [1] "CURRNET METHOD: both"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'both' , seasonal.factor = c( 84, 63, 56 ) ...)"
## [1] "CURRENT both OBJECTIVE FUNCTION = 3.52881168692518"
## [1] "BEST method = 'both' PATH MEMBER = c( 84, 63, 56 )"
## [1] "BEST both OBJECTIVE FUNCTION = 3.52881168692518"
## Package: healthyR.ts
## [1] "CURRNET METHOD: lin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 63 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 2.69327999126206"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 63, 42 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 2.32182480760956"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 63, 42, 56 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 2.28243357396167"
## [1] "BEST method = 'lin', seasonal.factor = c( 63, 42, 56 )"
## [1] "BEST lin OBJECTIVE FUNCTION = 2.28243357396167"
## [1] "CURRNET METHOD: nonlin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'nonlin' , seasonal.factor = c( 63, 42, 56 ) ...)"
## [1] "CURRENT nonlin OBJECTIVE FUNCTION = 12.3974517078415"
## [1] "BEST method = 'nonlin' PATH MEMBER = c( 63, 42, 56 )"
## [1] "BEST nonlin OBJECTIVE FUNCTION = 12.3974517078415"
## [1] "CURRNET METHOD: both"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'both' , seasonal.factor = c( 63, 42, 56 ) ...)"
## [1] "CURRENT both OBJECTIVE FUNCTION = 4.48083243929011"
## [1] "BEST method = 'both' PATH MEMBER = c( 63, 42, 56 )"
## [1] "BEST both OBJECTIVE FUNCTION = 4.48083243929011"
## Package: healthyverse
## [1] "CURRNET METHOD: lin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 35 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 3.62295455021836"
## [1] "BEST method = 'lin', seasonal.factor = c( 35 )"
## [1] "BEST lin OBJECTIVE FUNCTION = 3.62295455021836"
## [1] "CURRNET METHOD: nonlin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'nonlin' , seasonal.factor = c( 35 ) ...)"
## [1] "CURRENT nonlin OBJECTIVE FUNCTION = 4.03731632785323"
## [1] "BEST method = 'nonlin' PATH MEMBER = c( 35 )"
## [1] "BEST nonlin OBJECTIVE FUNCTION = 4.03731632785323"
## [1] "CURRNET METHOD: both"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'both' , seasonal.factor = c( 35 ) ...)"
## [1] "CURRENT both OBJECTIVE FUNCTION = 2.89982731207304"
## [1] "BEST method = 'both' PATH MEMBER = c( 35 )"
## [1] "BEST both OBJECTIVE FUNCTION = 2.89982731207304"
## Package: RandomWalker
## [1] "CURRNET METHOD: lin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 70 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 3.84799106593199"
## [1] "BEST method = 'lin', seasonal.factor = c( 70 )"
## [1] "BEST lin OBJECTIVE FUNCTION = 3.84799106593199"
## [1] "CURRNET METHOD: nonlin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'nonlin' , seasonal.factor = c( 70 ) ...)"
## [1] "CURRENT nonlin OBJECTIVE FUNCTION = 4.69095417721736"
## [1] "BEST method = 'nonlin' PATH MEMBER = c( 70 )"
## [1] "BEST nonlin OBJECTIVE FUNCTION = 4.69095417721736"
## [1] "CURRNET METHOD: both"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'both' , seasonal.factor = c( 70 ) ...)"
## [1] "CURRENT both OBJECTIVE FUNCTION = 4.11226775030595"
## [1] "BEST method = 'both' PATH MEMBER = c( 70 )"
## [1] "BEST both OBJECTIVE FUNCTION = 4.11226775030595"
## Package: tidyAML
## [1] "CURRNET METHOD: lin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 84 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 5.62576685609099"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 84, 91 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 5.4966434856712"
## [1] "BEST method = 'lin', seasonal.factor = c( 84, 91 )"
## [1] "BEST lin OBJECTIVE FUNCTION = 5.4966434856712"
## [1] "CURRNET METHOD: nonlin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'nonlin' , seasonal.factor = c( 84, 91 ) ...)"
## [1] "CURRENT nonlin OBJECTIVE FUNCTION = 3.55568257057522"
## [1] "BEST method = 'nonlin' PATH MEMBER = c( 84, 91 )"
## [1] "BEST nonlin OBJECTIVE FUNCTION = 3.55568257057522"
## [1] "CURRNET METHOD: both"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'both' , seasonal.factor = c( 84, 91 ) ...)"
## [1] "CURRENT both OBJECTIVE FUNCTION = 4.26479450273704"
## [1] "BEST method = 'both' PATH MEMBER = c( 84, 91 )"
## [1] "BEST both OBJECTIVE FUNCTION = 4.26479450273704"
## Package: TidyDensity
## [1] "CURRNET METHOD: lin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 35 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 5.14569528940359"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 35, 63 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 3.84739427535103"
## [1] "BEST method = 'lin', seasonal.factor = c( 35, 63 )"
## [1] "BEST lin OBJECTIVE FUNCTION = 3.84739427535103"
## [1] "CURRNET METHOD: nonlin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'nonlin' , seasonal.factor = c( 35, 63 ) ...)"
## [1] "CURRENT nonlin OBJECTIVE FUNCTION = 6.71205771933361"
## [1] "BEST method = 'nonlin' PATH MEMBER = c( 35, 63 )"
## [1] "BEST nonlin OBJECTIVE FUNCTION = 6.71205771933361"
## [1] "CURRNET METHOD: both"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'both' , seasonal.factor = c( 35, 63 ) ...)"
## [1] "CURRENT both OBJECTIVE FUNCTION = 4.80656390322323"
## [1] "BEST method = 'both' PATH MEMBER = c( 35, 63 )"
## [1] "BEST both OBJECTIVE FUNCTION = 4.80656390322323"
## [[1]]
## NULL
##
## [[2]]
## NULL
##
## [[3]]
## NULL
##
## [[4]]
## NULL
##
## [[5]]
## NULL
##
## [[6]]
## NULL
##
## [[7]]
## NULL
##
## [[8]]
## NULL
Now we are going to do some basic pre-processing.
data_padded_tbl <- base_data %>%
pad_by_time(
.date_var = date,
.pad_value = 0
)
# Get log interval and standardization parameters
log_params <- liv(data_padded_tbl$value, limit_lower = 0, offset = 1, silent = TRUE)
limit_lower <- log_params$limit_lower
limit_upper <- log_params$limit_upper
offset <- log_params$offset
data_liv_tbl <- data_padded_tbl %>%
# Get log interval transform
mutate(value_trans = liv(value, limit_lower = 0, offset = 1, silent = TRUE)$log_scaled)
# Get Standardization Params
std_params <- standard_vec(data_liv_tbl$value_trans, silent = TRUE)
std_mean <- std_params$mean
std_sd <- std_params$sd
data_transformed_tbl <- data_liv_tbl %>%
# get standardization
mutate(value_trans = standard_vec(value_trans, silent = TRUE)$standard_scaled) %>%
select(-value)
Since this is panel data we can follow one of two different modeling strategies. We can search for a global model in the panel data or we can use nested forecasting finding the best model for each of the time series. Since we only have 5 panels, we will use nested forecasting.
To do this we will use the nest_timeseries
and
split_nested_timeseries
functions to create a nested tibble
.
horizon <- 4*7
nested_data_tbl <- data_transformed_tbl %>%
# 1. Extending: We'll predict n days into the future.
extend_timeseries(
.id_var = package,
.date_var = date,
.length_future = horizon
) %>%
# 2. Nesting: We'll group by id, and create a future dataset
# that forecasts n days of extended data and
# an actual dataset that contains n*2 days
nest_timeseries(
.id_var = package,
.length_future = horizon
#.length_actual = horizon*2
) %>%
# 3. Splitting: We'll take the actual data and create splits
# for accuracy and confidence interval estimation of n das (test)
# and the rest is training data
split_nested_timeseries(
.length_test = horizon
)
nested_data_tbl
## # A tibble: 8 × 4
## package .actual_data .future_data .splits
## <fct> <list> <list> <list>
## 1 healthyR.data <tibble [1,658 × 2]> <tibble [28 × 2]> <split [1630|28]>
## 2 healthyR <tibble [1,652 × 2]> <tibble [28 × 2]> <split [1624|28]>
## 3 healthyR.ts <tibble [1,596 × 2]> <tibble [28 × 2]> <split [1568|28]>
## 4 healthyverse <tibble [1,566 × 2]> <tibble [28 × 2]> <split [1538|28]>
## 5 healthyR.ai <tibble [1,391 × 2]> <tibble [28 × 2]> <split [1363|28]>
## 6 TidyDensity <tibble [1,242 × 2]> <tibble [28 × 2]> <split [1214|28]>
## 7 tidyAML <tibble [850 × 2]> <tibble [28 × 2]> <split [822|28]>
## 8 RandomWalker <tibble [272 × 2]> <tibble [28 × 2]> <split [244|28]>
Now it is time to make some recipes and models using the modeltime workflow.
recipe_base <- recipe(
value_trans ~ date
, data = extract_nested_test_split(nested_data_tbl)
)
recipe_base
recipe_date <- recipe_base %>%
step_mutate(date = as.numeric(date))
# Models ------------------------------------------------------------------
# Auto ARIMA --------------------------------------------------------------
model_spec_arima_no_boost <- arima_reg() %>%
set_engine(engine = "auto_arima")
wflw_auto_arima <- workflow() %>%
add_recipe(recipe = recipe_base) %>%
add_model(model_spec_arima_no_boost)
# NNETAR ------------------------------------------------------------------
model_spec_nnetar <- nnetar_reg(
mode = "regression"
, seasonal_period = "auto"
) %>%
set_engine("nnetar")
wflw_nnetar <- workflow() %>%
add_recipe(recipe = recipe_base) %>%
add_model(model_spec_nnetar)
# TSLM --------------------------------------------------------------------
model_spec_lm <- linear_reg() %>%
set_engine("lm")
wflw_lm <- workflow() %>%
add_recipe(recipe = recipe_base) %>%
add_model(model_spec_lm)
# MARS --------------------------------------------------------------------
model_spec_mars <- mars(mode = "regression") %>%
set_engine("earth")
wflw_mars <- workflow() %>%
add_recipe(recipe = recipe_base) %>%
add_model(model_spec_mars)
nested_modeltime_tbl <- modeltime_nested_fit(
# Nested Data
nested_data = nested_data_tbl,
control = control_nested_fit(
verbose = TRUE,
allow_par = FALSE
),
# Add workflows
wflw_auto_arima,
wflw_lm,
wflw_mars,
wflw_nnetar
)
nested_modeltime_tbl <- nested_modeltime_tbl[!is.na(nested_modeltime_tbl$package),]
nested_modeltime_tbl %>%
extract_nested_test_accuracy() %>%
filter(!is.na(package)) %>%
knitr::kable()
package | .model_id | .model_desc | .type | mae | mape | mase | smape | rmse | rsq |
---|---|---|---|---|---|---|---|---|---|
healthyR.data | 1 | ARIMA | Test | 0.5769847 | 124.36143 | 0.6396925 | 123.96472 | 0.7642366 | 0.0832545 |
healthyR.data | 2 | LM | Test | 0.6061236 | 163.32109 | 0.6719984 | 115.23968 | 0.7695681 | 0.0001498 |
healthyR.data | 3 | NULL | NA | NA | NA | NA | NA | NA | NA |
healthyR.data | 4 | NNAR | Test | 0.6714347 | 98.32367 | 0.7444076 | 184.90127 | 0.9036788 | 0.0096728 |
healthyR | 1 | ARIMA | Test | 0.7573535 | 108.88179 | 0.8635908 | 174.23504 | 0.8794500 | 0.0358217 |
healthyR | 2 | LM | Test | 0.7598488 | 97.47604 | 0.8664361 | 176.40347 | 0.9034257 | 0.0020769 |
healthyR | 3 | NULL | NA | NA | NA | NA | NA | NA | NA |
healthyR | 4 | NNAR | Test | 0.7296528 | 97.02221 | 0.8320044 | 158.46589 | 0.8645295 | 0.1008504 |
healthyR.ts | 1 | ARIMA | Test | 0.8112921 | 101.62354 | 0.7162523 | 185.76745 | 1.0666797 | 0.0023942 |
healthyR.ts | 2 | LM | Test | 0.9509663 | 160.14107 | 0.8395642 | 151.79828 | 1.2116293 | 0.0479050 |
healthyR.ts | 3 | NULL | NA | NA | NA | NA | NA | NA | NA |
healthyR.ts | 4 | NNAR | Test | 0.8162980 | 100.41061 | 0.7206717 | 182.60687 | 1.0723619 | 0.0002309 |
healthyverse | 1 | ARIMA | Test | 0.6272108 | 156.19947 | 1.1864329 | 80.80956 | 0.7710406 | 0.0323739 |
healthyverse | 2 | LM | Test | 0.5966446 | 168.36353 | 1.1286139 | 76.28560 | 0.7130334 | 0.0098079 |
healthyverse | 3 | NULL | NA | NA | NA | NA | NA | NA | NA |
healthyverse | 4 | NNAR | Test | 0.6790585 | 111.71195 | 1.2845081 | 93.42693 | 0.8710909 | 0.0212466 |
healthyR.ai | 1 | ARIMA | Test | 0.6525775 | 97.29772 | 0.7357182 | 158.20166 | 0.7903203 | 0.0175863 |
healthyR.ai | 2 | LM | Test | 0.6362037 | 101.95698 | 0.7172583 | 142.65486 | 0.7692139 | 0.0005527 |
healthyR.ai | 3 | NULL | NA | NA | NA | NA | NA | NA | NA |
healthyR.ai | 4 | NNAR | Test | 0.6075822 | 105.72005 | 0.6849902 | 127.88472 | 0.7380746 | 0.0295722 |
TidyDensity | 1 | ARIMA | Test | 0.4820946 | 104.22188 | 0.9710372 | 104.89697 | 0.6358710 | 0.0005904 |
TidyDensity | 2 | LM | Test | 0.6082978 | 161.05586 | 1.2252364 | 107.63689 | 0.7942561 | 0.0492374 |
TidyDensity | 3 | NULL | NA | NA | NA | NA | NA | NA | NA |
TidyDensity | 4 | NNAR | Test | 0.4658467 | 83.79059 | 0.9383106 | 120.14523 | 0.5818016 | 0.0220583 |
tidyAML | 1 | ARIMA | Test | 0.7283439 | 93.16584 | 0.7577400 | 127.21022 | 0.9315918 | 0.0000458 |
tidyAML | 2 | LM | Test | 0.5870505 | 114.43073 | 0.6107439 | 79.80988 | 0.7796806 | 0.1245822 |
tidyAML | 3 | NULL | NA | NA | NA | NA | NA | NA | NA |
tidyAML | 4 | NNAR | Test | 0.6425159 | 102.56781 | 0.6684479 | 106.88044 | 0.8031043 | 0.1680441 |
RandomWalker | 1 | ARIMA | Test | 1.3667432 | 173.64741 | 0.7362712 | 148.87312 | 1.5993081 | 0.0207203 |
RandomWalker | 2 | LM | Test | 1.2898234 | 117.12425 | 0.6948342 | 189.76518 | 1.4220087 | 0.0088204 |
RandomWalker | 3 | NULL | NA | NA | NA | NA | NA | NA | NA |
RandomWalker | 4 | NNAR | Test | 1.4106495 | 158.83986 | 0.7599238 | 167.23582 | 1.5882704 | 0.0000310 |
nested_modeltime_tbl %>%
extract_nested_test_forecast() %>%
group_by(package) %>%
plot_modeltime_forecast(
.interactive = FALSE,
.conf_interval_show = FALSE,
.facet_scales = "free"
) +
theme_minimal() +
theme(legend.position = "bottom")
best_nested_modeltime_tbl <- nested_modeltime_tbl %>%
modeltime_nested_select_best(
metric = "rmse",
minimize = TRUE,
filter_test_forecasts = TRUE
)
best_nested_modeltime_tbl %>%
extract_nested_best_model_report()
## # Nested Modeltime Table
##
## # A tibble: 8 × 10
## package .model_id .model_desc .type mae mape mase smape rmse rsq
## <fct> <int> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 healthyR.da… 1 ARIMA Test 0.577 124. 0.640 124. 0.764 0.0833
## 2 healthyR 4 NNAR Test 0.730 97.0 0.832 158. 0.865 0.101
## 3 healthyR.ts 1 ARIMA Test 0.811 102. 0.716 186. 1.07 0.00239
## 4 healthyverse 2 LM Test 0.597 168. 1.13 76.3 0.713 0.00981
## 5 healthyR.ai 4 NNAR Test 0.608 106. 0.685 128. 0.738 0.0296
## 6 TidyDensity 4 NNAR Test 0.466 83.8 0.938 120. 0.582 0.0221
## 7 tidyAML 2 LM Test 0.587 114. 0.611 79.8 0.780 0.125
## 8 RandomWalker 2 LM Test 1.29 117. 0.695 190. 1.42 0.00882
best_nested_modeltime_tbl %>%
extract_nested_test_forecast() %>%
#filter(!is.na(.model_id)) %>%
group_by(package) %>%
plot_modeltime_forecast(
.interactive = FALSE,
.conf_interval_alpha = 0.2,
.facet_scales = "free"
) +
theme_minimal() +
theme(legend.position = "bottom")
Now that we have the best models, we can make our future forecasts.
nested_modeltime_refit_tbl <- best_nested_modeltime_tbl %>%
modeltime_nested_refit(
control = control_nested_refit(verbose = TRUE)
)
nested_modeltime_refit_tbl
## # Nested Modeltime Table
##
## # A tibble: 8 × 5
## package .actual_data .future_data .splits .modeltime_tables
## <fct> <list> <list> <list> <list>
## 1 healthyR.data <tibble> <tibble> <split [1630|28]> <mdl_tm_t [1 × 5]>
## 2 healthyR <tibble> <tibble> <split [1624|28]> <mdl_tm_t [1 × 5]>
## 3 healthyR.ts <tibble> <tibble> <split [1568|28]> <mdl_tm_t [1 × 5]>
## 4 healthyverse <tibble> <tibble> <split [1538|28]> <mdl_tm_t [1 × 5]>
## 5 healthyR.ai <tibble> <tibble> <split [1363|28]> <mdl_tm_t [1 × 5]>
## 6 TidyDensity <tibble> <tibble> <split [1214|28]> <mdl_tm_t [1 × 5]>
## 7 tidyAML <tibble> <tibble> <split [822|28]> <mdl_tm_t [1 × 5]>
## 8 RandomWalker <tibble> <tibble> <split [244|28]> <mdl_tm_t [1 × 5]>
nested_modeltime_refit_tbl %>%
extract_nested_future_forecast() %>%
mutate(across(.value:.conf_hi, .fns = ~ standard_inv_vec(
x = .,
mean = std_mean,
sd = std_sd
)$standard_inverse_value)) %>%
mutate(across(.value:.conf_hi, .fns = ~ liiv(
x = .,
limit_lower = limit_lower,
limit_upper = limit_upper,
offset = offset
)$rescaled_v)) %>%
group_by(package) %>%
plot_modeltime_forecast(
.interactive = FALSE,
.conf_interval_alpha = 0.2,
.facet_scales = "free"
) +
theme_minimal() +
theme(legend.position = "bottom")