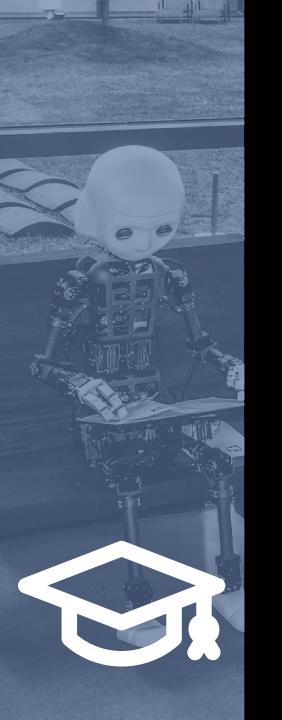
Aerial Object Detection PHD DEFENSE

Tanguy Ophoff 26 June 2023

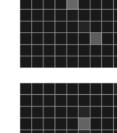
How can we adapt detection algorithms to work on remote sensing data?

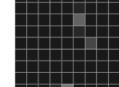
How to combine color and depth data to improve detection models?

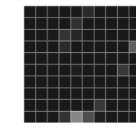
How much can we speed up our models whilst maintaining the accuracy?

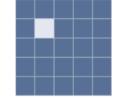


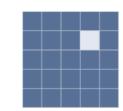
CONVOLUTION

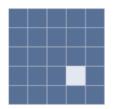




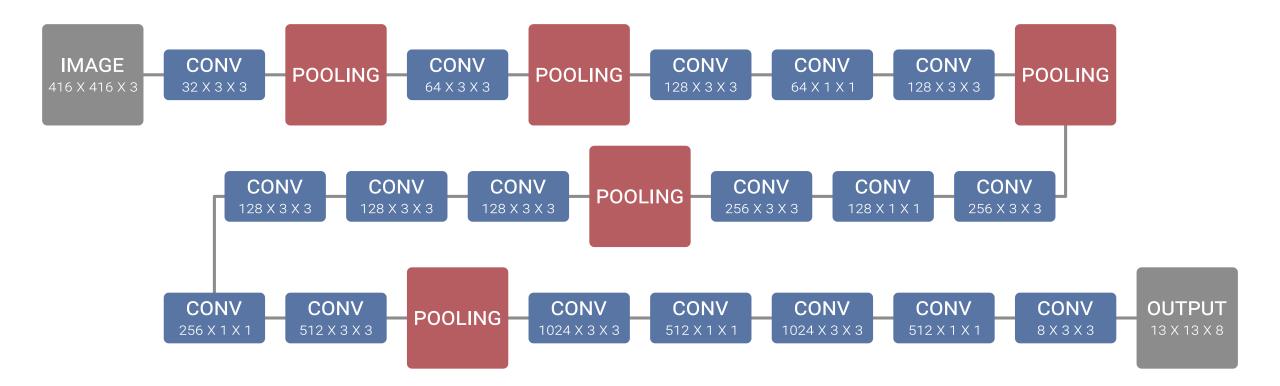








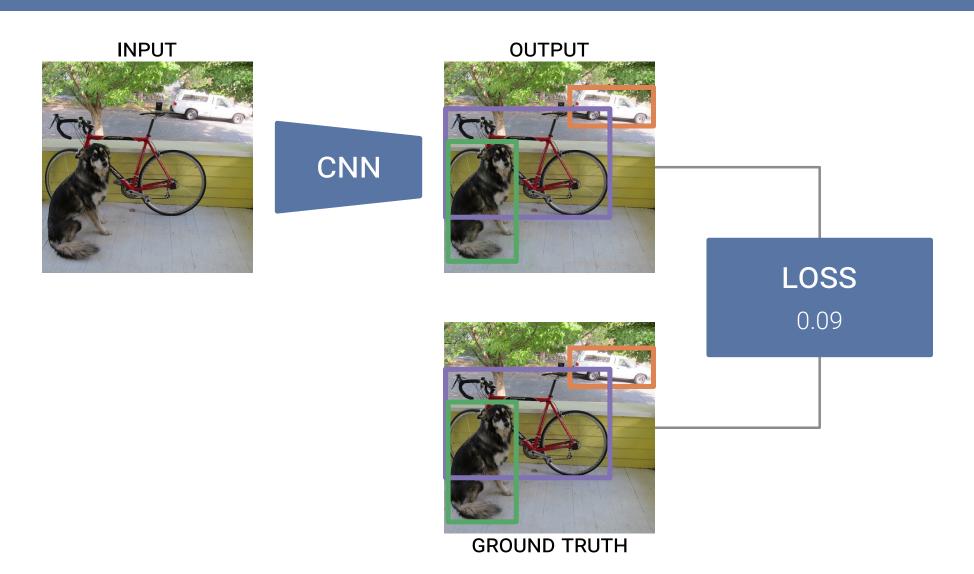
NEURAL NETWORK



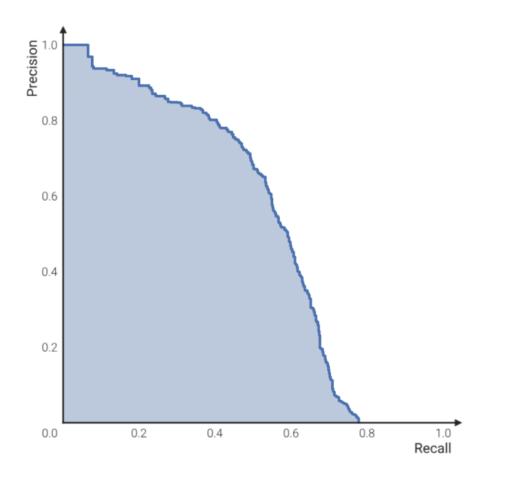
OBJECT DETECTION



TRAINING



STATISTICS



Precision How many of the detected objects are correct?

Recall How many correct objects are detected?

Average Precision Area under the curve

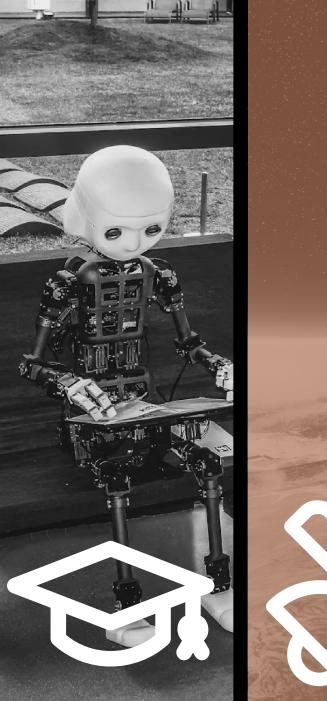
SUMMARY

How do neural networks detect objects?

- Convolution filters find features
- Stack many convolutions to create a network
- Regress detection coordinates and confidences
- Train the model with many examples

How can we evaluate the detection performance?

- Precision tells how many of the detections are correct
- Recall tells how many objects have been successfully detected
- Sweep the confidence to find an optimal precision-recall trade-off
- AP provides a single value to easily compare models



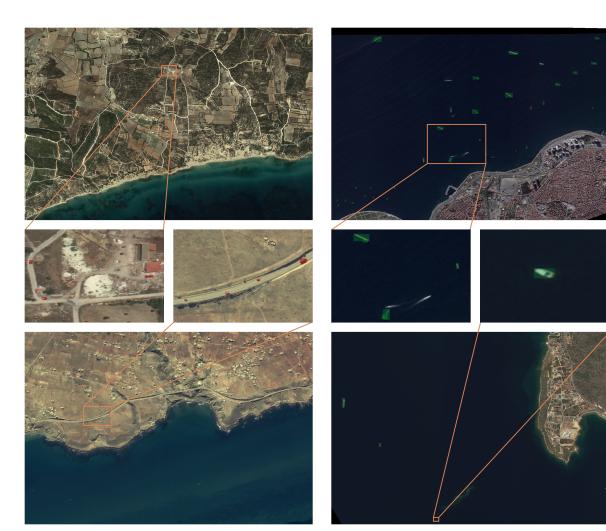
PROJECT

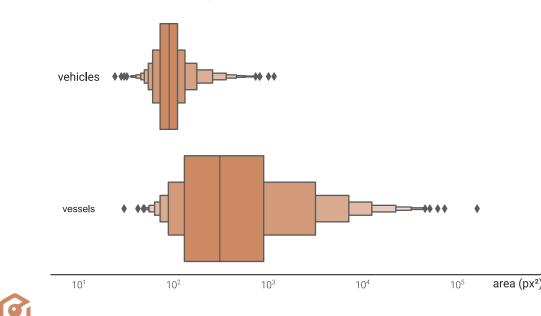
OBJECTIVE

Provide a tool to automatically detect and classify objects in satellite imagery

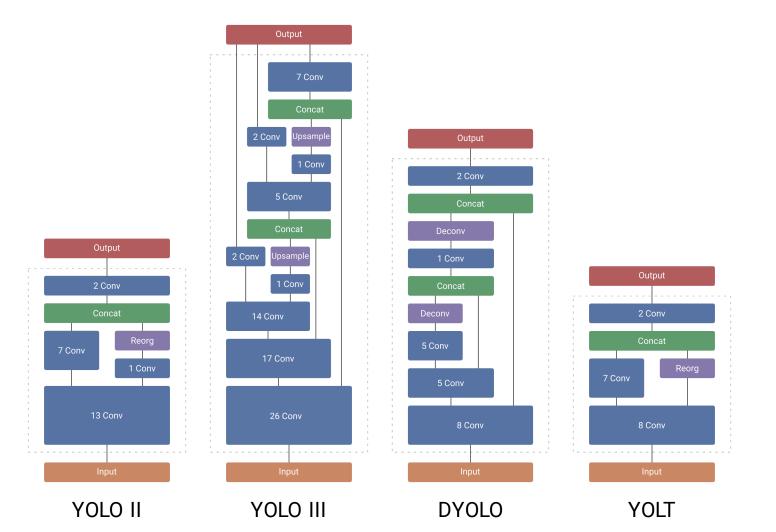
SATELLITE DETECTION

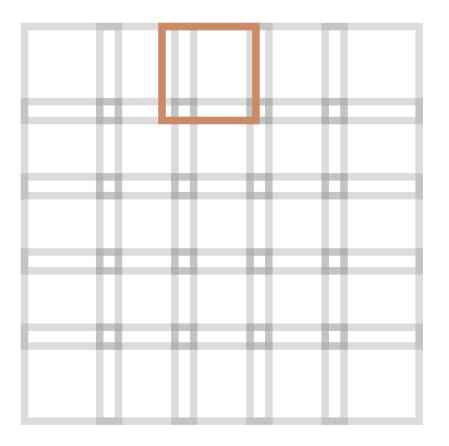
	Vehicles	Vessels
Region	641 km²	676 km²
Resolution	0.3m - 0.5m	0.3m - 0.5m
Objects	4075	1096



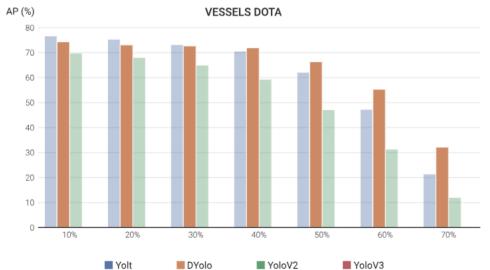


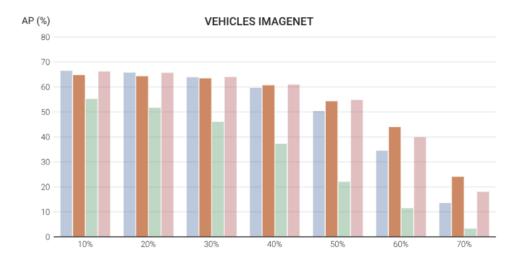
METHODOLOGY

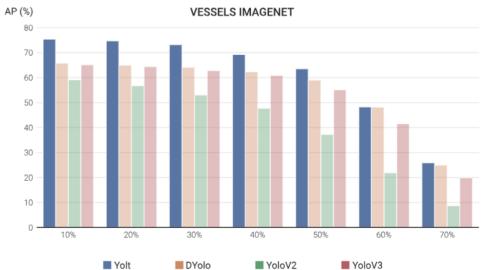




RESULTS







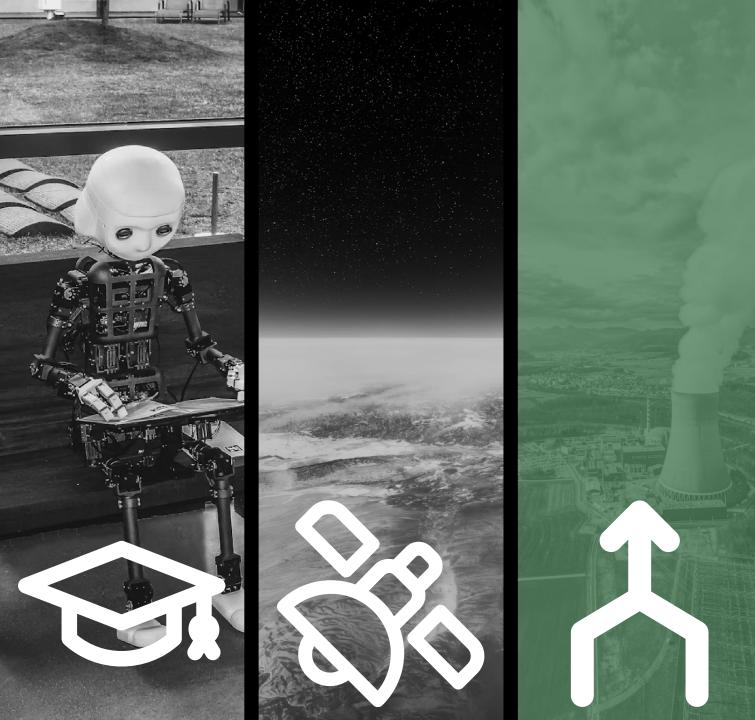
CONTRIBUTIONS

How can we adapt detection algorithms to work on remote sensing data?

- We developed a sliding window technique
- Pretrained weights from similar data improves the results
- D-Yolo works the best on this data

0

1. T. Ophoff, S. Puttemans, V. Kalogirou, J.-P. Robin, and T. Goedemé. "Vehicle and Vessel Detection on Satellite Imagery: A Comparative Study on Single-Shot Detectors". In: *Remote Sensing* 12.7 (2020).



PROJECT

OBJECTIVE

Improve the accuracy of object detection networks by combining color and depth images

Start to

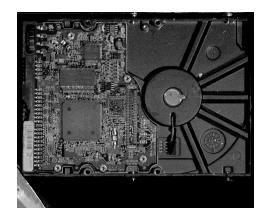
Deep Learn

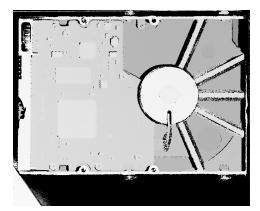
RGBD FUSION

EPFL RELABELED

0

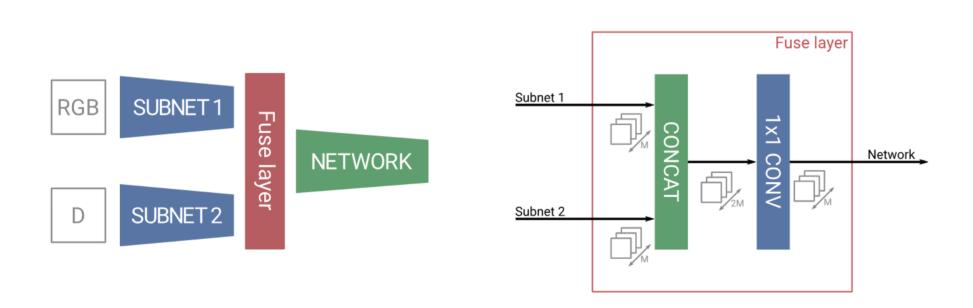
PCB SCREWS

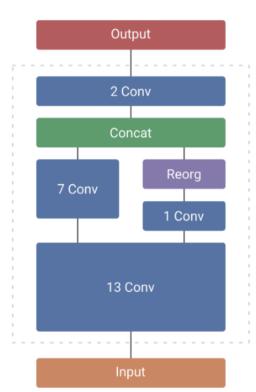




公

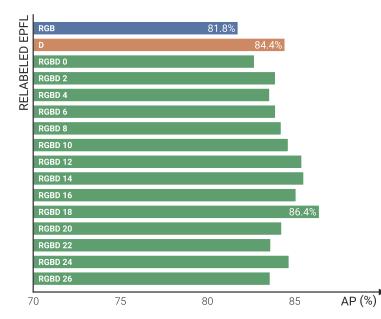
METHODOLOGY

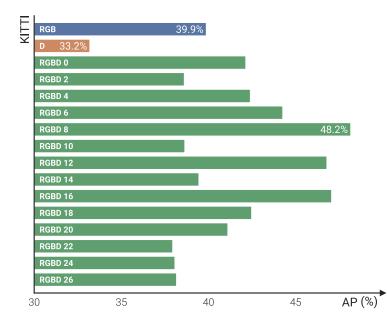


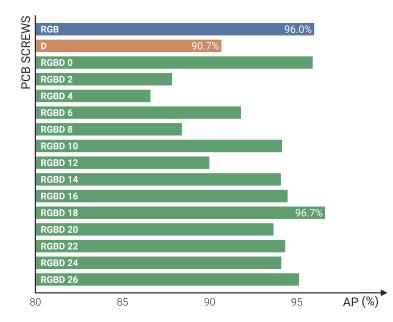


YOLO II

RESULTS







CONTRIBUTIONS

How to combine color and depth data to improve detection models?

- We developed a transparent fuse layer
- RGBD improved the results on 3 different datasets
- Midway to late fusion is optimal

0

T. Ophoff, K. Van Beeck, and T. Goedemé. "Improving Real-Time Pedestrian Detectors with RGB+Depth Fusion". In: 15th AVSS (2018).
T. Ophoff, K. Van Beeck, and T. Goedemé. "Exploring RGB+Depth Fusion for Real-Time Object Detection". In: Sensors 19.4 (2019).

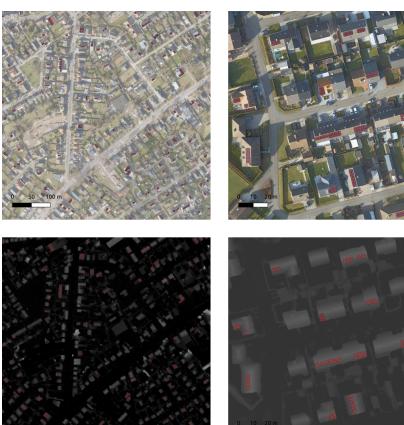
PROJECT

OBJECTIVE

Automatically detect objects in aerial imagery, whilst combining data from multiple sources and sensors

PLANE DETECTION

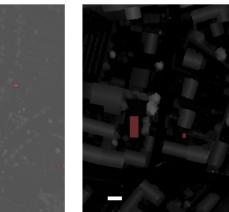
SOLAR PANELS



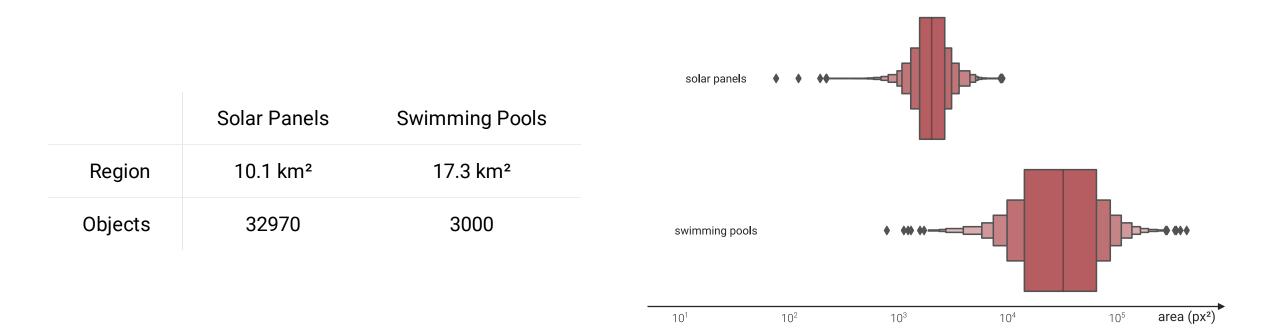
0

RGB 3cm GSD

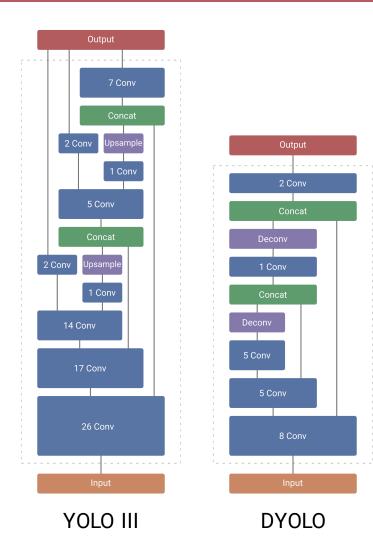
SWIMMING POOLS



DATASET

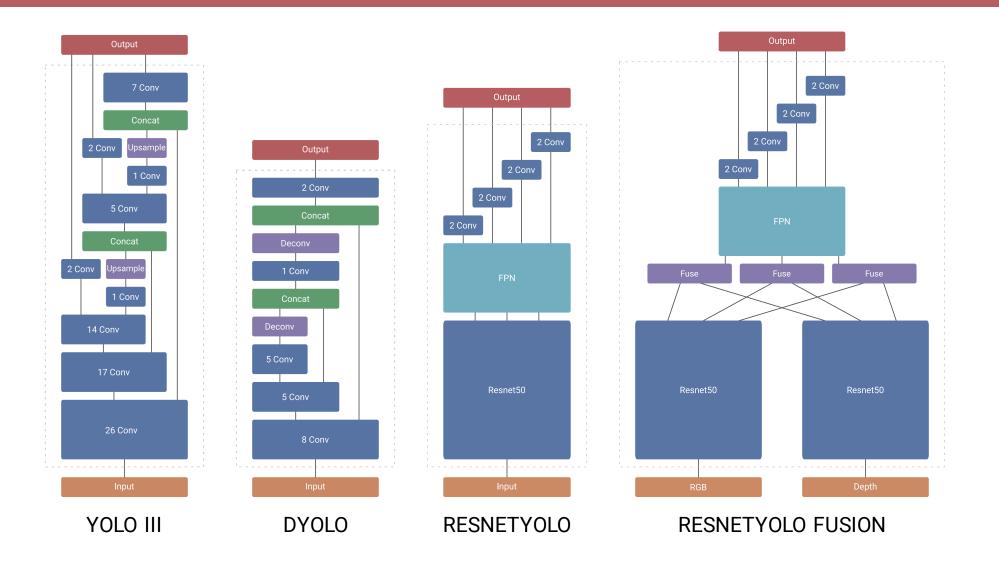


BASELINE

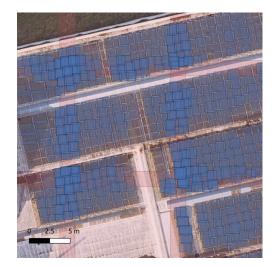


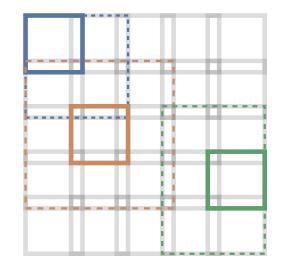
	Solar Panels	Swimming Pools
DYOLO	59.67%	25.08%
YOLO III	62.96%	23.73%

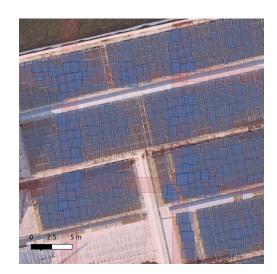
MODELS

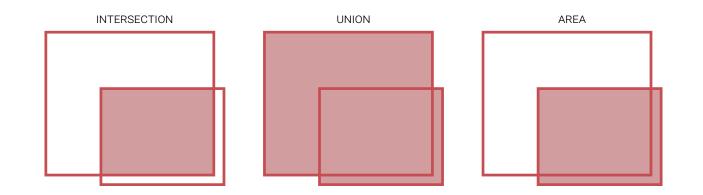


POST PROCESSING

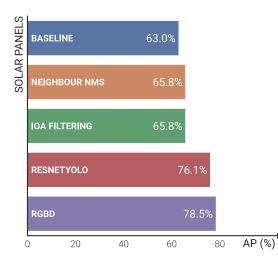


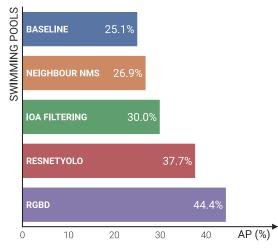


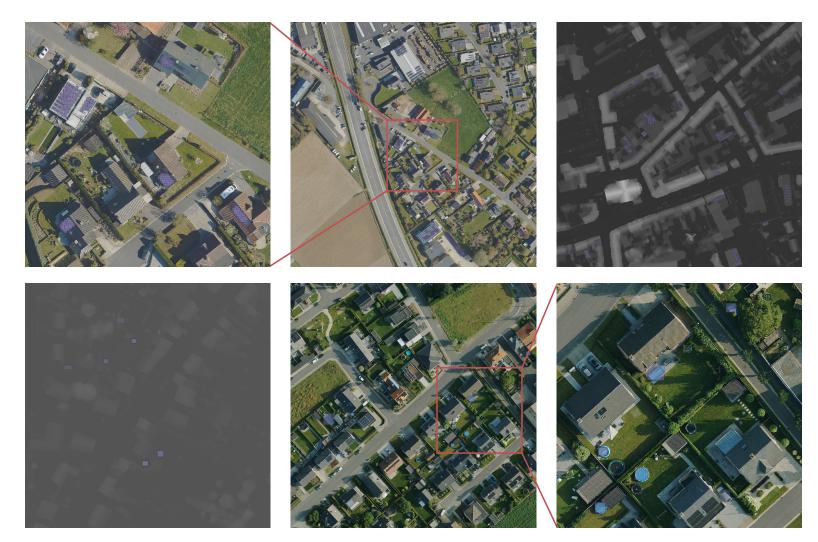




RESULTS







CONTRIBUTIONS

How can we adapt detection algorithms to work on remote sensing data?

- We further increased our results with scene-specific post-processing
- Deeper networks work well with enough data
- ResnetYolo with selectable heads is a prime candidate for remote sensing detection

How to combine color and depth data to improve detection models?

- Our RGBD fusion technique transfers perfectly to remote sensing
- The technique works with deeper networks as well

PROJECT

OBJECTIVE

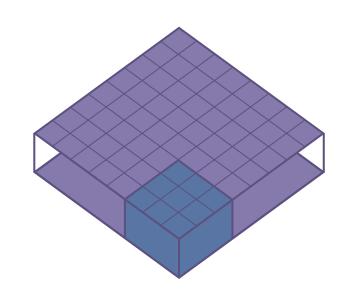
Design faster and smaller object detection networks without deteriorating the accuracy

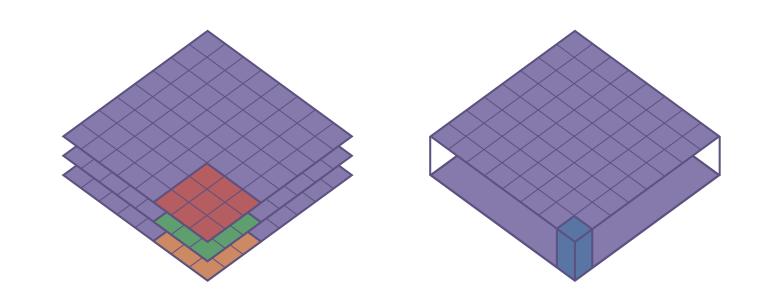
SPEED OPTIMIZATIONS

PASCAL VOC

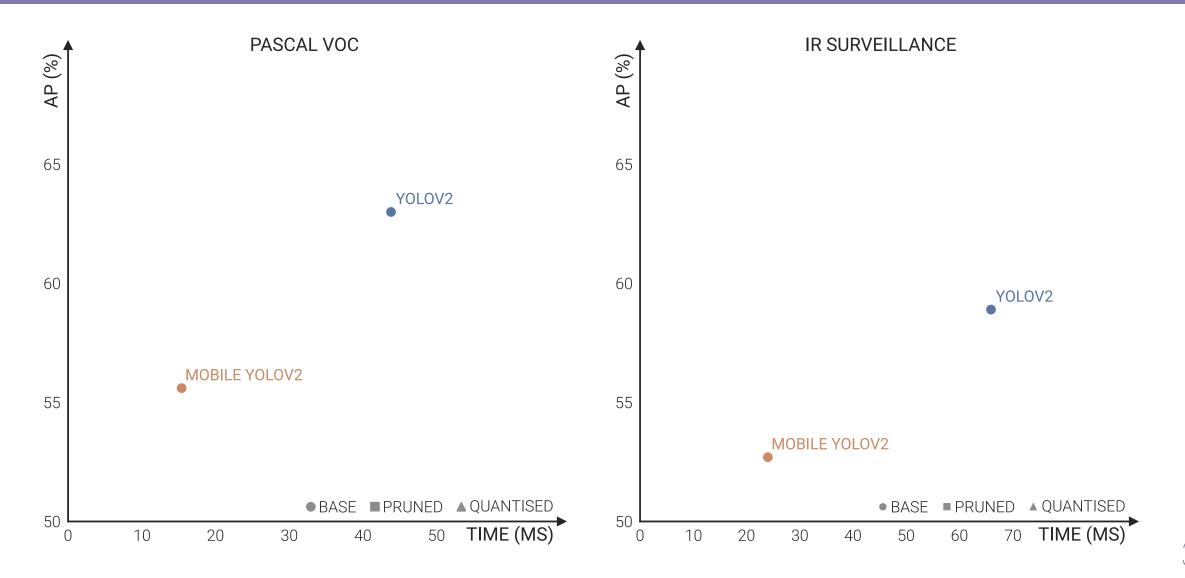
IR SURVEILLANCE

MOBILE CONVOLUTIONS

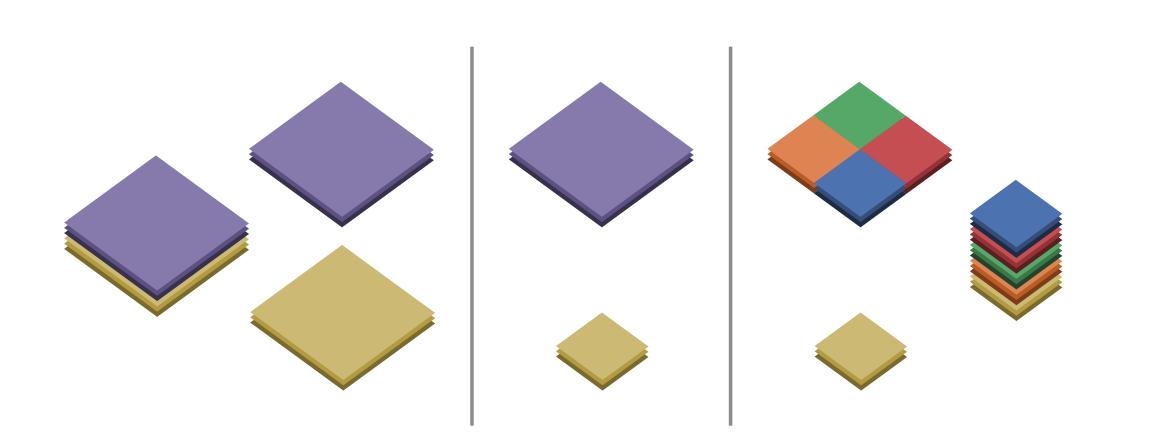




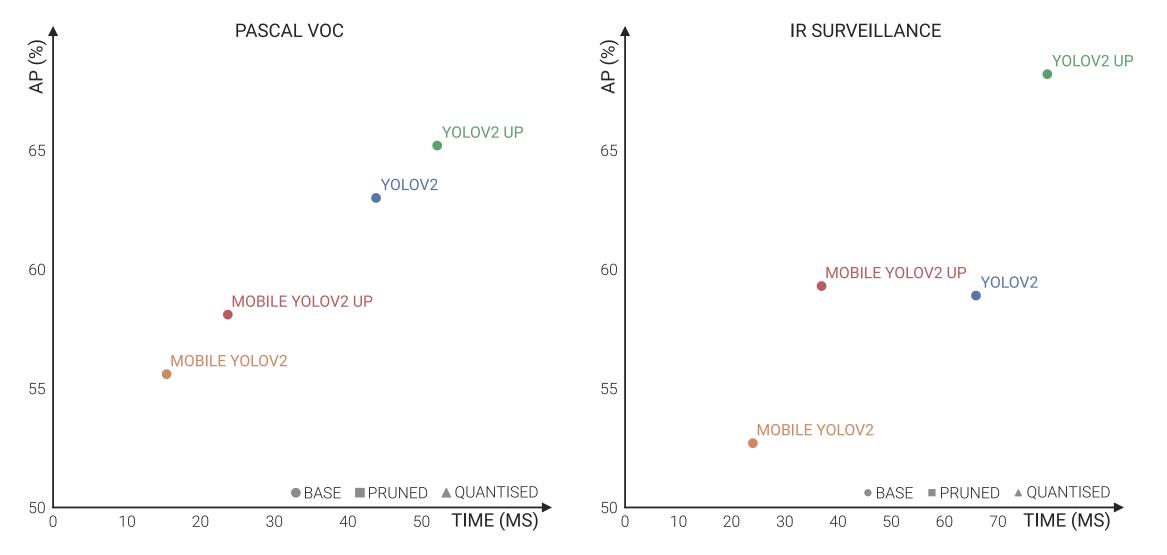
RESULTS



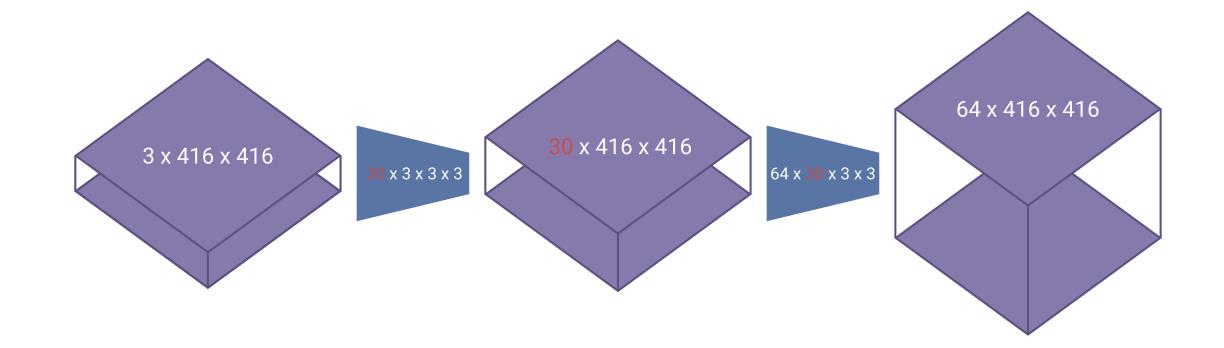
UPSAMPLE



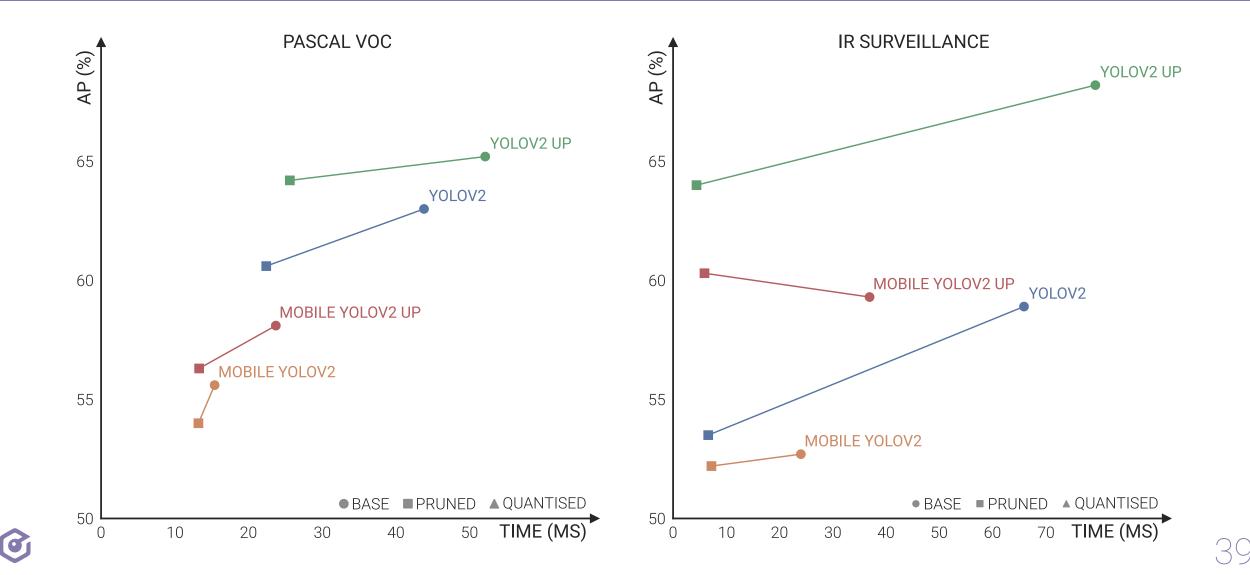
RESULTS



PRUNING

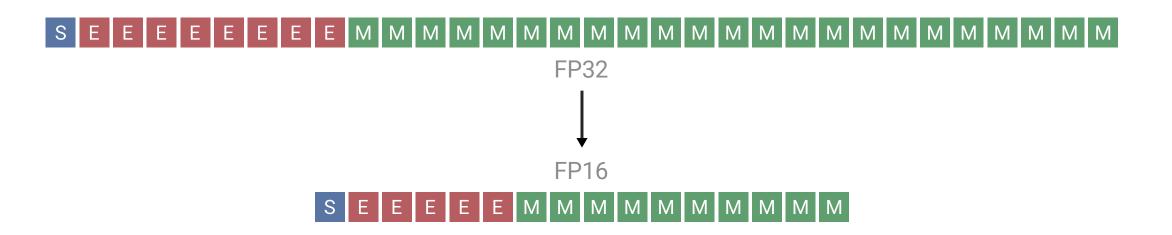


RESULTS

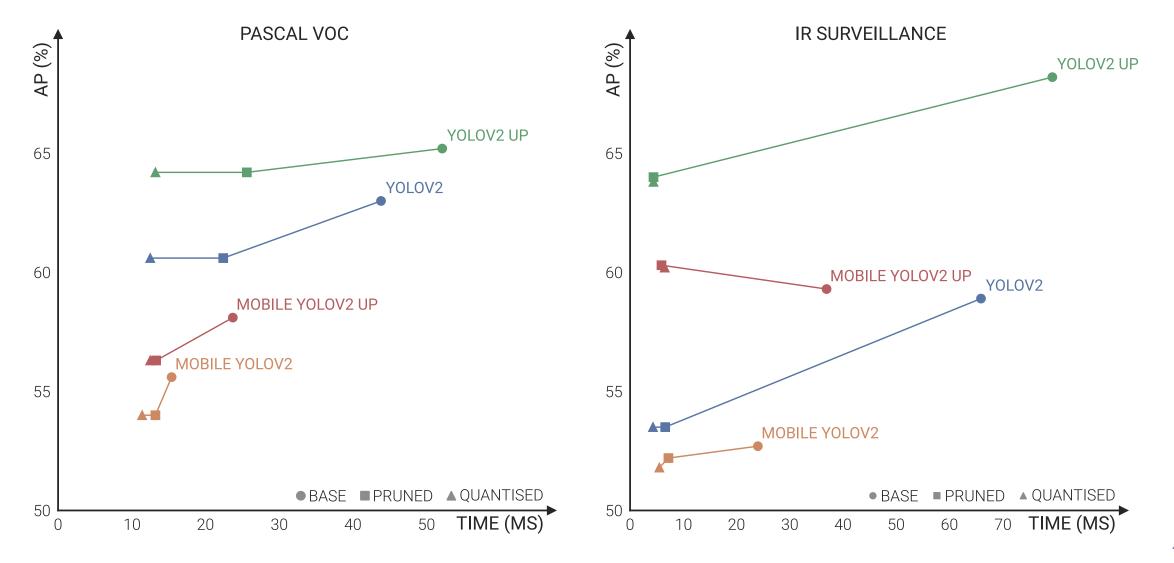


QUANTISATION

3.1415



RESULTS



CONTRIBUTIONS

How much can we speed up our models whilst maintaining the accuracy?

- Blindly applying all optimizations does not yield the best results
- On Pascal VOC, we managed to make our model 4x faster
- On LWIR, we made our model 15x faster

0

More constrained problems allow for more reduction in complexity

SLIDING WINDOW

SCENE-SPECIFIC PROCESSING

RESNETYOLO

TRANSPARENT FUSE LAYER

MID-LATE FUSION

DIFFERENT USE CASES

REMOTE SENSING

CAREFUL SELECTION

CONSTRAINEDNESS

ACADEMIC

INDUSTRIAL