Skip to content

0todd0000/data1d

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 

data1d

data1d: Simulated univariate one-dimensional datasets for demonstrating continuum-level statistical analysis.

Overview

These three datasets were generated to illustrate the basic concepts of random field theory-based statistical inference. Each dataset contains ten scalar 1D trajectories, each with 101 nodes.

  • Datasets A and B represent one-sample (or paired) designs.
  • Dataset C represents a regression design, with the following independent variable values: [50, 53.75, 57.5, 61.25, 65, 75, 78.75, 82.5, 86.25, 90]

Data

simscalar01.h5.zip (HDF5 format) simscalar01.csv.zip (CSV format)

Reference

Pataky TC, Vanrenterghem J, Robinson MA (2015). Zero- vs. one-dimensional, parametric vs. non-parametric, and confidence interval vs. hypothesis testing procedures in one-dimensional biomechanical trajectory analysis. Journal of Biomechanics 48(7): 1277-1285.

Loading and viewing the data (MATLAB)

file_name = 'datasetA.h5'; 
y = hdf5read(file_name, '/y'); 
plot(y)

Loading and viewing the data (Python)

import tables 
from matplotlib import pyplot 

file_name = 'datasetA.h5' 
file_id = tables.openFile(file_name, mode='r') 
y = file_id.getNode('/y').read() 
file_id.close() 

pyplot.plot(y.T) 
pyplot.show()

Data format

Please find more information about the HDF5 format at: www.hdfgroup.org/HDF5 (for Matlab, Python, C, etc.)

Copyright

Copyright (c) 2014 Todd Colin Pataky, Jos Vanrenterghem, and Mark Robinson

About

Simulated univariate one-dimensional datasets

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published