data1d
data1d: Simulated univariate one-dimensional datasets for demonstrating continuum-level statistical analysis.
Overview
These three datasets were generated to illustrate the basic concepts of random field theory-based statistical inference. Each dataset contains ten scalar 1D trajectories, each with 101 nodes.
- Datasets A and B represent one-sample (or paired) designs.
- Dataset C represents a regression design, with the following independent variable values: [50, 53.75, 57.5, 61.25, 65, 75, 78.75, 82.5, 86.25, 90]
Data
simscalar01.h5.zip (HDF5 format) simscalar01.csv.zip (CSV format)
Reference
Pataky TC, Vanrenterghem J, Robinson MA (2015). Zero- vs. one-dimensional, parametric vs. non-parametric, and confidence interval vs. hypothesis testing procedures in one-dimensional biomechanical trajectory analysis. Journal of Biomechanics 48(7): 1277-1285.
Loading and viewing the data (MATLAB)
file_name = 'datasetA.h5';
y = hdf5read(file_name, '/y');
plot(y)
Loading and viewing the data (Python)
import tables
from matplotlib import pyplot
file_name = 'datasetA.h5'
file_id = tables.openFile(file_name, mode='r')
y = file_id.getNode('/y').read()
file_id.close()
pyplot.plot(y.T)
pyplot.show()
Data format
Please find more information about the HDF5 format at: www.hdfgroup.org/HDF5 (for Matlab, Python, C, etc.)
Copyright
Copyright (c) 2014 Todd Colin Pataky, Jos Vanrenterghem, and Mark Robinson