

Quality Assurance Surveillance Plan
A tool to help you know you’re getting high-quality software from your vendor.

High-quality software is:
1. Tested
2. Properly styled code
3. Accessible
4. Deployed
5. Well-documented
6. Secure
7. Based on user research

The QASP is a tool that allows for good oversight of a software development project without affecting the
development team’s velocity. The aim is to create a smooth working process that’s more informative than a
simple written report or traditional IV&V reviews. It’s also valuable to provide vendors your expectations and
how you’ll be measuring their performance, so they can maintain high-quality work throughout the project.

The elements of the QASP increase confidence that you’re getting the software you need, and that it’s
high-quality software that you’ll be able to extend and maintain over time. It’s also a communication tool that
helps you identify exactly what things you need to discuss with your vendor. One of the QASP metrics is
coming up a bit low? That’s something you can talk about.

What does that mean?

TESTED CODE
“Tested code” refers to automated tests, not the kinds of manual tests you might be used to with
user-acceptance testing. Automated tests are pieces of code that run your application and make sure it
works as expected. These tests can range from small tests that check one small piece of internal
functionality (“unit tests”) all the way to tests that verify a page changes correctly when a person
interacts with it (“integration tests”). A good set of tests can completely replace user-acceptance testing.

Why it matters
Tests give you confidence that the code works as expected, not just today, but for the future as well. If
the code’s behavior changes in unexpected ways, good tests can catch that change early and prevent
a bug from ever reaching end users. Even though writing tests can slow down development, it’s a good
investment because good tests reduce the risks associated with making changes in the future. Building
automated tests right into your development process also removes user-acceptance testing as a hurdle
to releasing your app because at every step, every day, you have confidence that your tests are
passing — and if they’re not, you know exactly what to discuss with your vendor.

How to do it

Your vendor will write the automated tests alongside the app code. The government product team’s job
is to look at the results of the tests and make sure they’re satisfactory. Many test-runners will show you
an easy-to-read summary with green checkmarks for tests that pass and red exes for any that fail. If
you also adopt a continuous integration platform, you can have it run the tests for you automatically on
every change to the code, and you can just periodically look at a website to see the current state of
your tests.

PROPERLY STYLED CODE
Code style refers to how the code itself is written. Does it conform to best-practices? Does it use
common patterns? Is it consistent throughout? Individual developers have their own, such as preferring
to use 2 spaces for indentation versus 4 spaces or a tab character. This requirement is about
standardizing on all those kinds of things so the code is the same everywhere.

Why it matters
Properly styled code is easier for a team to work on because it consistent. Developers can more easily move
around the code to work on different parts because it’s all very similar. New developers on the project can
also more easily pick it up because it’s consistent, and because it’s using common patterns and best
practices, it will probably look similar to other code they’ve seen before.

How to do it
Code style is checked with an automated code scanning tool called a linter, usually combined with a
manual code review to find any higher-level logic issues that linters don’t catch. There are other tools –
static analysis scanners – that can identify other code style and quality issues, such as sections that
are overly complex or too long. These issues indicate code that is likely to be hard to maintain over
time, so when they show up, it’s good to bring it up with the vendor and make a plan to fix it.

ACCESSIBLE
Accessibility is about making sure people with varying levels of ability are able to use it. For example,
can a non-sighted person use your website? Can a colorblind person understand the information in
your application? The Americans with Disabilities Act requires that federal, state, and local
governments be accessible to people with disabilities, and the Department of Justice has repeatedly
said that includes websites. So it’s not just the right thing to do, it’s also a legal requirement. Section
508 of the ADA was recently updated to point to the Web Content Accessibility Guidelines (WCAG)
version 2.1 as the federal standard for accessibility compliance, so that’s what we use.

Why it matters
Accessible applications strive to ensure that all of your users can use your apps. For example, an
accessible eligibility and enrollment website would allow a non-sighted user to sign up for benefits
directly rather than having to call and speak to someone in the office. It empowers all of your users, not
just your sighted, hearing, and able-bodied users. “Situational disabilities” — such as a carpal tunnel
flare-up that inhibits the use of a mouse, or misplacing your glasses requiring you to increase the font
size of a website — will affect almost all of us at some point in time. Building accessible applications
means that even during temporary setbacks, users will be able to accomplish their goals with your app.

It’s also the law.

How to do it
Testing for accessibility requires specialized knowledge, but it’s worth the investment. There are
automated tools that can check some aspects of your app, but some of it has to be tested manually by
putting your hands on it and verifying that it behaves as expected. For example, there’s no automated
tool that can listen to a screen reader and confirm that it says the right things, so someone will have to
do it manually. There are vendors that can do the accessibility testing for you, or your own staff can get
trained on it. The Department of Homeland Security offers a free training program called “Trusted
Tester,” for example.

DEPLOYED
Code is just a bunch of text. Until it’s deployed, there’s no way to interact with it and make sure it’s
going to meet your needs. And in 2019, there’s also no reason deployment needs to be a complicated,
days-long process. Typical one-step deployments today average around 7 minutes and don’t require
any human intervention once kicked off. Most modern product teams will have several deployment
environments for various needs.

Why it matters
A deployed app is an app you can test, demo, and give to users. If you can’t deploy, you don’t really
have an app - you just have a pile of code. Multiple environments are important too. For example, a
staging environment gives you a chance to see how your app is evolving before it goes out to users,
and being identical to production gives you confidence that it’ll deploy successfully into the production
environment in the future. With modern computing platforms like Infrastructure as a Service (IaaS) or
Platform as a Service (PaaS), it’s possible to quickly and easily create an arbitrary number of
environments to meet your needs.

Automated deployments are accomplished with the use of scripts. These scripts make the deployment
perfectly repeatable. When a person has to manually perform each step of a deployment, they will
invariably forget steps or do them incorrectly from time to time. It’s human nature - even with checklists,
we make mistakes. A scripted, automated deployment, however, will work the same, every time, and
will stop itself if it encounters errors. That will increase your confidence that future deployments will go
smoothly and that you can release bug fixes and new features quickly and easily.

How to do it
Your vendor should take care of most of the work of setting up the deployment. You and your IT staff
will need to help the vendor get access to your infrastructure so they can deploy. You can verify that the
deployments are working by using the app - it should be the most recently-deployed version. You can
also lean on your internal IT staff to take a look at the deployment script or process to verify that it’s
simple to start.

WELL-DOCUMENTED
Good documentation helps developers understand the code, whether they’re the same developers that
originally wrote it or a new team picking it up later. Explaining assumptions, logic flows, and
expectations can save developers a lot of time later. Documentation can refer to “comments” directly in
the code indicating what it does and system diagrams showing how various pieces connect to each
other and to other systems.

Why it matters
Solid documentation will help future developers pick up the code and continue working on it, which
makes it easier for the government to change vendors if necessary, or shift to in-house maintenance
and new development.

How to do it
Ensure that documentation is updated as major features are added or updated, and look out for too
much technical jargon. You might not understand what all of it means, but you should be able to read it
and make some sense of what it means at a higher level. If you get completely lost, that’s a great time
to talk with your vendor to have them explain, and maybe even revise the documentation.

SECURITY
Security is a broad topic, and it’s largely about protecting the data that your system contains. The
fundamental goal of security is to make it difficult enough for someone to access your data that it’s not
worth the effort. That means for systems with low-value data, the security does not need to be as
strong: an attacker might be willing to spend 6 months getting access to credit card numbers, but
probably wouldn’t spend more than a few minutes trying to access your grocery list.

Why it matters
Good security matters because it means your data is more likely to remain safe, and by extension, your
users are likely to be safer too. A system being breached by an attacker doesn’t just result in bad
headlines. It can also make critical services unavailable to the people who need them, and it can result
in people’s personal information being used in ways that harm them, such as identity theft.

How we do it
Software security cannot be perfect, but there are tools to help us identify vulnerabilities before anyone
can exploit them. There are “static” and “dynamic” scanning tools that can run well-known sets of
exploits against your app to see what happens and let you know if you’re vulnerable to them and how.
There are also dependency scanners that can check all of the external libraries your app uses to see if
they have vulnerabilities. All of this can be automated and the results can show up right alongside your
code tests, making it easy to quickly see your security health and identify what you need to talk with
your vendor about.

BASED ON USER RESEARCH
Usability research is the process of interviewing and observing users to understand what problem
they’re trying to solve with your software, their conceptual model of how to solve it, and how they use
your app for their needs. It is the cornerstone of designing good software, guiding what to build, how,
and when.

Why it matters
If you don’t know what your users need, how they think about the problem, or how they interact with
your app, you can’t know what to build for them. In fact, by guessing at what you think they need rather
than learning what they need through observation, you could very well end up building an experience

that is unhelpful, difficult to use, or confusing. To create software that meets user’s needs, you must
base your app on research.

How to do it
Usability research is most effective when it starts at the very beginning of the app’s or feature’s
lifecycle. Ensure you’re testing during new feature development with actual end users of the system;
don’t wait until you think you have something completely finished. Often, what you learn by testing early
will influence how you choose to prioritize and build parts of a feature.

When your vendor conducts usability research, ask to ride along. You don’t need to say anything or be
involved, just be a silent observer. You can also ask for their research synthesis when they’re finished,
and incorporate what you learn into your planning for upcoming work.

List of Deliverables with Quality Assurance Surveillance Plan (QASP)

The following chart sets forth the performance standards and quality levels the code and
documentation provided by the Contractor must meet, and the methods the [agency] will use to
assess the standard and quality levels of that code and documentation.

Deliverable Performance
Standard(s)

Acceptable
Quality Level

Method of
Assessment

Tested Code Code delivered
under the order
must have
substantial test
code coverage.

Version-controlled
[Agency] GitHub
repository of code
that comprises
product that will
remain in the
government
domain.

Minimum of 90%
test coverage of
all code. All
areas of code
are meaningfully
tested.

Combination of
manual review and
automated testing

Properly
Styled Code

GSA 18F Front-
End Guide –
https://frontend.18
f.gov/#js-style

0 linting errors
and 0 warnings

Combination of
manual review and
automated testing

Accessible Web Content
Accessibility
Guidelines 2.1 AA
standards

0 errors reported
using an
automated
scanner and 0
errors reported in
manual testing

https://github.com/pa1
1y/pa11y

https://frontend.18f.gov/#js-style
https://frontend.18f.gov/#js-style
https://frontend.18f.gov/#js-style
https://frontend.18f.gov/#js-style
https://github.com/pa11y/pa11y
https://github.com/pa11y/pa11y

Deployed Code must
successfully build
and deploy into
staging
environment.

Successful build
with a single
command

Combination of
manual review and
automated testing

Documented All dependencies
are listed and the
licenses are
documented.
Major functionality
in the
software/source
code is
documented.
Individual
methods are
documented inline
in a format that
permit the use of
tools such as
JSDoc. System
diagram is
provided.

Combination of
manual review
and automated
testing, if
available

Manual review

Secure OWASP
Application
Security
Verification
Standard 3.0 (or
similar tool)

Code submitted
must be free of
medium- and
high-level static
and dynamic
security
vulnerabilities

Clean tests from a
static testing SaaS
(such as Snyk or npm
audit) and from
OWASP ZAP (or
similar tool), along
with documentation
explaining any false
positives

User research Usability testing
and other user
research methods
must be
conducted at
regular intervals
throughout the
development
process (not just
at the beginning
or end).

Research plans
and artifacts from
usability testing
and/or other
research
methods with
end users are
available at the
end of every
applicable sprint,
in accordance
with the
contractor’s
research plan.

[Agency] will manually
evaluate the artifacts
based on a research
plan provided by the
contractor at the end
of the second sprint
and every applicable
sprint thereafter.

