CONTENTS

Teach Yourself

Java in 21 Days

Professional Reference Edition

by Laura Lemay, Charles L. Perkins and Michael Morrison

CONTENTS

Introduction

Day 1 An Introduction to Java Programming

o What |sJava?

» Javas Past, Present, and Future

« Why Learn Java?
o Javals Platform |ndependent
o Javals Object Oriented
0 JavalsEasytoLearn

o Getting Started Programming in Java

o Getting a Java Development Environment
Installing the JDK and Sample Files

o Configuring the JDK

o Creating a Java Application

0 Creating a Java Applet
« Troubleshooting

o« SUMMary
e O&A

O

Day 2 Object-Oriented Programming and Java

« Thinking in Objects: An Analogy

o Objects and Classes
« Behavior and Attributes

file:///G|/ebooks/1575211831/index.htm (1 of 37) [11/06/2000 7:44:37 PM]

CONTENTS
o Attributes
o Behavior
o Creating a Class

« Inheritance, Interfaces, and Packages

o Inheritance
o Creating a Class Hierarchy

o How Inheritance Works

o Single and Multiple Inheritance

o Interfaces and Packages
o Creating a Subclass

e SUMmMary

o Q&A

Day 3 Java Basics

Statements and Expressions
Variables and Data Types
o Declaring Variables

o Noteson Variable Names

o Variable Types

o Assigning Valuesto Variables

Comments
o Literas
o Number Literals

0 Boolean Literals

0o Character Literals

o String Literals

Expressions and Operators
o Arithmetic
o More About Assignment

o Incrementing and Decrementing

o Comparisons
o0 Logical Operators

0 Bitwise Operators

o Operator Precedence
e String Arithmetic

file:///G|/ebooks/1575211831/index.htm (2 of 37) [11/06/2000 7:44:37 PM]

CONTENTS

Summary
Q&A

Day 4 Working with Objects

Creating New Objects
o Using new
o What new Does

o A Note on Memory Management

Accessing and Setting Class and Instance Variables
o Getting Values
o Changing Vaues

o Class Variables
Calling Methods

0 Class Methods
References to Objects

Casting and Converting Objects and Primitive Types

o Casting Primitive Types

o Casting Objects

o Converting Primitive Typesto Objects and Vice Versa
Odds and Ends

o Comparing Objects

0 Determining the Class of an Object
Class and Object Reflection (Java 1.1)
The Java Class Library
Summary
Q&A

Day 5 Arrays, Conditionals, and Loops

Arrays
o Declaring Array Variables
o Creating Array Objects
o Accessing Array Elements

o Changing Array Elements

o Multidimensiona Arrays

file://IG|/ebooks/1575211831/index.htm (3 of 37) [11/06/2000 7:44:37 PM]

CONTENTS
» Block Statements
o i f Conditionals
o The Conditional Operator
o swi t ch Conditionals
« for Loops
o Whil e anddo Loops
o whi | e Loops
o do...whil e Loops
« Breaking Out of Loops
0 Labeled Loops

e SUMMary
e Q&A

Day 6 Creating Classes and Applications in Java

Defining Classes
Creating Instance and Class Variables
o Defining Instance Variables

o Constants
o ClassVariables
Creating Methods
o Defining Methods
o Thet hi s Keyword
o Variable Scope and Method Definitions
o Passing Arguments to Methods
0 Class Methods
Creating Java Applications

o Helper Classes
Java Applications and Command-Line Arguments
0 Passing Arguments to Java Programs

o Handling Argumentsin Y our Java Program

e SUMMary
e Q&A

file:///G|/ebooks/1575211831/index.htm (4 of 37) [11/06/2000 7:44:37 PM]

CONTENTS

Day 7 More About Methods

Creating M ethods with the Same Name, Different Arguments
Constructor M ethods
o Basic Constructors

o Calling Another Constructor

o Overloading Constructors
Overriding Methods
o Creating Methods That Override Existing M ethods
o Calling the Original Method
o Overriding Constructors
Finalizer Methods

o« SUMMary
e O&A

Day 8 Java Applet Basics

« How Applets and Applications Are Different
o Creating Applets

o Major Applet Activities

o A Simple Applet
« Including an Applet on aWeb Page

0 The<APPLET> Tag

0 Testing the Result

o Making Java Applets Available to the Web
o More About the <APPLET> Tag

o ALI GN

o HSPACE and VSPACE

o CODE and CODEBASE
« JavaArchives
o Passing Parametersto Applets

o« SUMMary
e O&A

file://IG|/ebooks/1575211831/index.htm (5 of 37) [11/06/2000 7:44:37 PM]

CONTENTS

Day 9 Graphics, Fonts, and Color

« TheG aphi cs Class
o The Graphics Coordinate System
o Drawing and Filling

o Lines
0 Rectangles

o Polygons
o QOvals

o Arcs
o A Simple Graphics Example

o Copying and Clearing

Text and Fonts
o Creating Font Objects
o Drawing Characters and Strings

o Finding Out Information About a Font

« Color
o Using Color Objects
o Testing and Setting the Current Colors
o A Simple Color Example

o SUMMary
e Q&A

Day 10 Simple Animation and Threads

o Creating Animation in Java
o Painting and Repainting
o Starting and Stopping an Applet's Execution
o TheMissing Link: Threads
o Putting It Together

o Threads. What They Are and Why Y ou Need Them
o Writing Applets with Threads
o Another Look at the Digital Clock

» Reducing Animation Flicker

o Flicker and How to Avoid It
o0 How to Override updat e()

file://IG|/ebooks/1575211831/index.htm (6 of 37) [11/06/2000 7:44:37 PM]

CONTENTS
o Solution One: Don't Clear the Screen
o Solution Two: Redraw Only What Y ou Have To

e SUMMary
e Q&A

Day 11 More Animation, Images, and Sound

e Retrieving and Using Images
0o Getting Images
o Drawing Images

o A Note About |mage Observers

o Modifying lmages

o Creating Animation Using Images
o An Example: Neko
e Retrieving and Using Sounds

« Using Animation Packages
o Sun's Animator Applet
o Dimension X's Liquid Motion

o More About Flicker: Double-Buffering
o Creating Applets with Double-Buffering
o A Note on Disposing Graphics Contexts

o An Example: Checkers Revisited

o« SUMMary
e O&A

Day 12 Managing Simple Events and Interactivity

o Mouse Clicks

o Mouse Down and Mouse Up Events
o An Example: Spots
o Double-Clicks

o Mouse Movements

o Mouse Drag and Mouse Move Events

o Mouse Enter and Mouse Exit Events

o An Example: Drawing Lines

o Keyboard Events

file:///G|/ebooks/1575211831/index.htm (7 of 37) [11/06/2000 7:44:37 PM]

CONTENTS

o ThekeyDown() and keyUp() Methods

o Default Keys
o An Example: Entering, Displaying, and Moving Characters

o Testing for Modifier Keys and Multiple Mouse Buttons

o Theawt Event Handler

o« SUMMary
e Q&A

Day 13 Creating User Interfaces with the awt

« An awt Overview

o TheBasic User Interface Components
o Labels
o Buttons

o Check Boxes
0 Radio Buttons
o Choice Menus
o Text Fields

» Panelsand Layout

o Layout Managers: An Overview

o TheFl owlLayout Class

o Grid Layouts
0 Border Layouts

o Card Layouts
o Grid Bag Layouts
o Insets

Handling Ul Actions and Events

Nesting Panels and Components
0 Nested Panels
o Events and Nested Panels
More Ul Components

o Text Areas
o Scrolling Lists
o Scrollbars and Sliders

o Canvases
More Ul Events

file://IG|/ebooks/1575211831/index.htm (8 of 37) [11/06/2000 7:44:37 PM]

CONTENTS

o Fun with Components

« A Complete Example: RGB-to-HSB Converter
o Designing and Creating the Applet Layout
o Defining the Subpanels
o Handling the Actions
o Updating the Result
o The Complete Source Code

Up and CominginJaval.l

o SUMMary
e Q&A

Day 14 Windows, Networking, and Other Tidbits

o Windows, Menus, and Dialog Boxes

o The awt Window Classes

o Frames
o Closing Windows

o Menus
o Dialog Boxes

o Cursors
o Window Events

o Standalone awt Applications
Networking in Java

o Creating Links Inside Applets

o Opening Web Connections

0 openStream))

o Sockets

o Changesto Socketsfor Java 1.1
Other Applet Hints

o TheshowSt at us() Method

o Applet Information

o Communicating Between Applets

e SUMMary
e Q&A

file:/lIG|/ebooks/1575211831/index.htm (9 of 37) [11/06/2000 7:44:37 PM]

CONTENTS

Day 15 Modifiers, Access Control, and Class Design

o Modifiers
Controlling Access to Methods and Variables
o Why Access Control I's Important
o The Four Ps of Protection
o Method Protection and Inheritance
0 Instance Variable Protection and Accessor Methods
Class Variables and Methods
Finalizing Classes, Methods, and Variables
o Finalizing Classes

o Finalizing Variables
o Finalizing Methods
o Abstract Classes and Methods

o« SUMMary
e Q&A

Day 16 Packages and Interfaces

« Programming in the Large and Programming in the Small
o What Are Packages?
o Using Packages

0o Full Package and Class Names

o Thei nport Command

o Name Conflicts

o A Note About CL ASSPATH and Where Classes Are L ocated
o Creating Y our Own Packages

o Pick aPackage Name

0o Create the Directory Structure

o Usepackage to Add Your Classto a Package
o Packages and Class Protection

o What Are Interfaces?
o The Problem of Single Inheritance

o Abstract Design and Concrete | mplementation

o Interfaces and Classes

I mplementing and Using | nterfaces

file:/lIG|/ebooks/1575211831/index.htm (10 of 37) [11/06/2000 7:44:37 PM]

CONTENTS

o Thei npl enent s Keyword
o Implementing Multiple Interfaces

o Other Uses of Interfaces

o Creating and Extending I nterfaces

o New Interfaces

0 Methods Inside Interfaces

o Extending Interfaces

o An Example: Enumerating Linked Lists

o« SUMMary
e Q&A

Day 17 Exceptions

o Exceptions, the Old and Confusing Way
o Java Exceptions

« Managing Exceptions

o Exception Consistency Checking

o Protecting Code and Catching Exceptions

o Thefinal |y Clause
« Declaring Methods That Might Throw Exceptions
o Thet hr ows Clause
o Which Exceptions Should Y ou Throw?
0 Passing On Exceptions
o t hr ows and Inheritance

o Creating and Throwing Y our Own Exceptions

o Throwing Exceptions

o Creating Your Own Exceptions

o Doing It All: Combiningt hr ows,try,andt hr ow
« When and When Not to Use Exceptions

o When to Use Exceptions

o When Not to Use Exceptions
o Bad Style Using Exceptions
o« SUMMary
o Q&A

file:/lIG|/ebooks/1575211831/index.htm (11 of 37) [11/06/2000 7:44:38 PM]

CONTENTS

Day 18 Multithreading

o Thread Fundamentals
o The Problem with Parallelism
o Thinking Multithreaded
o Points About Points
o Protecting a Class Variable
« Creating and Using Threads
o TheRunnabl e Interface

o ThreadTest er
o NanedThr eadTest er
« Knowing When a Thread Has Stopped
« Thread Scheduling
0 Preemptive Versus Nonpreemptive
o Testing Your Scheduler
e« SUMMary
o Q&A

Day 19 Streams and I/O

« What Are Streams?

« Thej ava. i o Package
o |nput Streams

o TheAbstract Class| nput St r eam

o ByteArrayl nput Stream

o FilelnputStream

o FilterlnputStream

o Pi pedl nput St ream
0 Sequencel nput St ream

o StringBufferlnputStream

o Output Streams
0 The Abstract Class Qut put St r eam
0 Byt eArrayQut put Stream
o Fil eQut put Stream
o FilterQutputStream
0 Pi pedQut put St ream

file:/lIG|/ebooks/1575211831/index.htm (12 of 37) [11/06/2000 7:44:38 PM]

CONTENTS

o Related Classes
o Object Seridization (Java 1.1)

o« SUMMary
e O&A

Day 20 Using Native Methods and Libraries

o Why Use Native Methods?

o Advantages of Using Native Methods
« Disadvantages of Native Methods
« Thelllusion of Required Efficiency

o Design First, Efficiency Later

o Just-in-Time Compilers

o Simple Optimization Tricks
Writing Native M ethods

o Write Your Java Code

o Generate Header and Stub Files

o Implementing the Native Library

o Using Your Library

Tools and Techniques for Writing Native | mplementations

0 Names
0 Accessing Java Objects
o Calling Methods
o Creating New Java Objects
o Handling Exceptions
o Dealing with Strings
o« SUMMary
« Q&A

Day 21 Under the Hood

« -TheBiqg Picture

o Why It'saPowerful Vision
o TheJavaVirtua Machine

o AnOverview

o The Fundamental Parts

file:/lIG|/ebooks/1575211831/index.htm (13 of 37) [11/06/2000 7:44:38 PM]

CONTENTS
o The Constant Pool
o Limitations

o The Bytecode Interpreter

o Just-in-Time Compilers
« TheClass File Format

« Method Signatures

« The Garbage Collector

o The Problem

o The Solution

o Javas Paralel Garbage Collector
« The Security Story

o Why You Should Worry

o Why You Might Not Have To

o JavasApplet Security Model

o Signed Applets

o ComingUpinJaval.l

e SUMMary
e Q&A

Day 22 Java Programming Tools

o Overview of the Standard JDK Tools
o The Runtime Interpreter

o Usage

o TheQpt i onsArgument

o The Non-Optimized Interpreter

o The Compiler

o Usage

o TheQpt i onsArgument

0 The Non-Optimizing Compiler
o TheApplet Viewer

0 Usage

o The Opt i onsArgument

o Commands

o Profiling Java Applets
« The Debugger

file:/lIG|/ebooks/1575211831/index.htm (14 of 37) [11/06/2000 7:44:38 PM]

CONTENTS

0 Usage
o TheQpt i onsArgument
o Commands
The Class File Disassembl er
0 Usage
o The Opt i onsArgument
The Header and Stub File Generator
0 Usage
o TheQpt i onsArgument
The Documentation Generator
o Usage
o TheQpt i onsArgument
o Documentation Tags

« Visua Development Tools
o Sun's Java WorkShop
o Symantec Café
o Microsoft Visual JH+
o Natural Intelligence's Roaster
o Rogue Wave Software's JFactory

0 Penumbra Software's Mojo

o Aimtech's Jamba

0 Kinetix's Hyperwire
o SUMMary
e Q&A

Day 23 Working with Data Structures in Java

« Data Structure Fundamentals

« The Standard Java Data Structures
0 Enumerations
o Bit Sets
0 Vectors

o Stacks
o Dictionaries
o Hash Tables

file:/lIG|/ebooks/1575211831/index.htm (15 of 37) [11/06/2000 7:44:38 PM]

CONTENTS
 Building Your Own Data Structures
o Linked List Basics
o Implementing aLinked List

o« SUMMary
e Q&A

Day 24 Advanced Animation and Media

o What Is Animation?

o Typesof Animation
o Frame-Based Animation
o Cast-Based Animation

« Tracking Images

« TheMedi aTr acker Class

« Implementing Sprite Animation

o TheSprit e Class
o TheSpriteVect or Class

o The Background Classes
o Sample Applet: Sharks

o« SUMMary
e O&A

Day 25 Fun with Image Filters

o TheBasicsof Color

o Color Imagesin Java
o Color Models
o Direct Color Models
o Index Color Models
o The Color Model Classes

« Image Filters
o Thelmage Filter Classes

o Writing Y our Own Image Filters

o A Color Image Filter

o An Alphalmage Filter

o A Brightness Image Filter

file:/lIG|/ebooks/1575211831/index.htm (16 of 37) [11/06/2000 7:44:38 PM]

CONTENTS
« Using Image Filters
o« SUMMary
« Q&A

Day 26 Client/Server Networking in Java

o Internet Network Basics

o Addresses
o Protocols
o Ports
« The Client/Server Paradigm
« Sockets
o Datagram Sockets
o Stream Sockets
« Fortune: A Datagram Client and Server

o Designing Fortune

o Implementing the Fortune Server

o Implementing the Fortune Client Applet

0 Running Fortune

e Trivia A Stream Client and Server

o Designing Trivia

o Implementing the Trivia Server

o Implementing the Trivia Client Applet

0 Running Trivia

o SUMMary
e Q&A

Day 27 The Standard Extension APIs

Java APl Overview
The Enterprise AP
0 Java Database Connectivity

0 Interface Definition Lanquage
0 Remote Method Invocation
The Commerce API

The Management API

file:/lIG|/ebooks/1575211831/index.htm (17 of 37) [11/06/2000 7:44:38 PM]

CONTENTS
e« The Server API

o TheMediaAPI

« The Security API

o TheJavaBeans API
e The Embedded AP

o SUMMary
e Q&A

Day 28 Emerging Technologies

« JavaBeans
o The Goal of Java Beans
o How Java Beans Relatesto Java
o The JavaBeans API
o JavaOS
o Overhead
0 Industry Support

« Java Microprocessors
0 picoJAVA
0 microJAVA
o UltraJAVA

o SUMMary
e Q&A

appendix A Language Summary

o Reserved Words
o« Comments

e Literals
o Variable Declaration
o Variable Assignment

o Operators

« Objects

o Arrays

» Loopsand Conditionals

o Class Definitions

file:/lIG|/ebooks/1575211831/index.htm (18 of 37) [11/06/2000 7:44:38 PM]

CONTENTS
« Method and Constructor Definitions
o Packages, Interfaces, and |mporting

o EXxceptions and Guarding

appendix B Class Hierarchy Diagrams

« About These Diagrams

appendix C The Java Class Library

e java.l ang
0 Interfaces

o Classes

| ava. uti |
0 Interfaces

o Classes
e java.io

o Interfaces

o0 Classes
e java. net

o Interfaces

0 Classes

| ava. awm
o Interfaces

o Classes

java. awt . i nage
0 Interfaces
o Classes

java. aw . peer

java. appl et

o Interfaces
n Classes

appendix D Bytecodes Reference

« The_qui ck Bytecodes

file:/lIG|/ebooks/1575211831/index.htm (19 of 37) [11/06/2000 7:44:38 PM]

CONTENTS

appendix E Java.applet Package Reference

« Appl et Cont ext
o Appl et St ub

e Audiodip

o Appl et

appendix F Java.awt Package Reference

o Layout Manager

« MenuCont ai ner

« BorderLayout

« Button

« Canvas

o CardLayout

o Checkbox

o CheckboxG oup
o CheckboxMenult em
« Choi ce

« Col or

« Conponent

« Cont ai ner

« D al og

« D nension

¢ Event
« Fil eD al og

« Fl owlLayout

o Font

« Font Metrics

o Frane

« Graphics

« GidBagConstraints
« GidBaglLayout

« GidLayout

e | Mage
| nset s

file:/lIG|/ebooks/1575211831/index.htm (20 of 37) [11/06/2000 7:44:38 PM]

CONTENTS

« Label

o List

o Medi aTr acker
« Menu

« MenuBar

 MenuConponent
« Menultem
« Panel

« Point

« Pol ygon

« Rectangl e

e Scroll bar

o« Text Area

« Text Conponent
« TextField

e Tool kit

« W ndow

0 awt Exception

e aw Error

appendix G java.awt.image Package Reference

| mmageConsuner

| mmgeCbser ver

| magePr oducer

o Col or Model

« Cropl mageFilter

o Direct Col or Mbdel

o Filteredl mageSource

o ImageFilter

« I ndexCol or Model

o Menoryl mageSour ce
« Pi xel G abber

« RGBI mageFilter

file:/lIG|/ebooks/1575211831/index.htm (21 of 37) [11/06/2000 7:44:38 PM]

CONTENTS

appendix H Java.awt.peer Package Reference

o Butt onPeer

« CanvasPeer

o CheckboxMenul t enPeer
« CheckboxPeer

e Choi cePeer

« Conponent Peer

« Cont ai ner Peer

« D al ogPeer

« Fil eDi al ogPeer

o FranePeer

o Label Peer

o ListPeer

« addltem

« MenuBar Peer

 MenuConponent Peer
e Menult enPeer
e MenuPeer

« Panel Peer
e Scroll bar Peer

o Text Ar eaPeer

« Text Conponent Peer
o Text Fi el dPeer
« W ndowPeer

appendix | java.lo Package Reference

« Dat al nput
« Dat aQut put

e FilenaneFilter

o Bufferedl nputstream
o BufferedQut put Stream
o ByteArrayl nput Stream

o ByteArrayQut put Stream

o Dat al nput St ream

file:/lIG|/ebooks/1575211831/index.htm (22 of 37) [11/06/2000 7:44:38 PM]

CONTENTS

« Dat aQut put St r eam
e File

o FileDescriptor

o FilelnputStream

o FileQutputStream

e FilterlnputStream
e FilterQutputStream
e I Nput Stream

o LineNunber | nput Stream
e QutputStream

o Pi pedl nput Stream

o Pi pedQut put Stream

e PrintStream

o Pushbackl nput St ream

« RandomAccessFil e

o Seguencel nput Stream

e« StreanlTokeni zer

e StringBufferlnputStream
« EOFEXxcepti on

o Fil eNot FoundExcepti on

o | OException

e Interruptedl OException

« UTFEDat aFor mat Excepti on

appendix J Java.lang Package Reference

« Cloneabl e

« Runnabl e

« Bool ean

o Character

« Cass

« O assloader
o Conpiler

o Doubl e

o Float

file:/lIG|/ebooks/1575211831/index.htm (23 of 37) [11/06/2000 7:44:38 PM]

CONTENTS

o I nteger

« Long

« Math

o Nunber

« bj ect

e Process

e Runtine

e SecurityManager
e String

o StringBuffer
e System

e Thread

« ThreadG oup
e Throwabl e

« Runti neException
o Cl assNot FoundExcepti on
o Cl oneNot Support edExcepti on

o Exception

e Ill egal AccessException

o Il egal Argunent Excepti on

o Il 1l egal MonitorStateException
e Ill egal ThreadSt at eExcepti on

e I ndexQut O BoundsExcepti on
e« Instantiati onException

e InterruptedException
« NegativeArraySi zeExcepti on

o Nul | Poi nt er Excepti on

o Nunber For mat Excepti on

« Runti neException

o SecurityException

e StringlndexQut O BoundsException
o Abstract Met hodError

o« Cl assFormat Error

e Error
|11 egal AccessError

file:/lIG|/ebooks/1575211831/index.htm (24 of 37) [11/06/2000 7:44:38 PM]

CONTENTS
e I nconpati bl ed assChangeError

e INnstantiati onError

e INnternal Error

o Li nkageError

o NoCd assDef FoundErr or
« NoSuchFi el dError

o NoSuchMet hodErr or

e Qut O Menor yError

o StackOverfl owkrror

o ThreadDeath

o UnknownErr or

e Unsati sfiedLi nkError

e VerifyError
e Virtual Machi neError

appendix K java.net Package Reference

o Cont ent Handl er Fact ory

o Socket | npl Fact ory

« URLSt reanHandl| er Fact ory
« Cont ent Handl er

- Dat agr anPacket

« Dat agr anfSocket

« | net Address

« Server Socket

« Socket

« Socket | npl

« URL

« URLConnecti on

« URLEncoder

« Mal f or mredURLExcepti on
o Protocol Exception

« Socket Excepti on

o UnknownHost Excepti on
o UnknownSer vi ceExcepti on

file:/lIG|/ebooks/1575211831/index.htm (25 of 37) [11/06/2000 7:44:38 PM]

CONTENTS

appendix L Java.util Package Reference

e Enuneration

o« (bserver

o Bit Set

- Date

e Dictionary
« Hasht abl e
« Qbservabl e

e Properties

« Random

o Stack

o StringTokeni zer

» Vector
o EnptySt ackException
o NoSuchEl emrent Excepti on

Credits

Copyright © 1996 by Sams.net Publishing

All rights reserved. No part of this book shall be reproduced, stored in aretrieval system, or transmitted by any
means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the
publisher. No patent liability is assumed with respect to the use of the information contained herein. Although
every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the
information contained herein. For information, address Sams.net Publishing, 201 W. 103rd St., Indianapolis, IN
46290.

I nternational Standard Book Number: 1-57521-183-1

HTML conversion by :
M/s. LeafWriters (India) Pvt. Ltd.
Website : http://leaf .stpn.soft.net

e-mail : leafwriters@leaf .stpn.soft.net

file:/lIG|/ebooks/1575211831/index.htm (26 of 37) [11/06/2000 7:44:38 PM]

http://leaf.stpn.soft.net/
mailto:leafwriters@leaf.stpn.soft.net

CONTENTS

Credits
President, Sams Richard K. Swadley
Publishing
Publishing M anager Mark Taber
Managing Editor Cindy Morrow
Director of Marketing John Pierce
Assistant Marketing Kristina Perry, Rachel Wolfe
Managers
Acquisitions Mark Taber Development Fran Hatton
Editor Editor
Softwar e Bob Correll Senior Editor Kitty Wilson
Development
Specialist
Copy Editors Kimberly K. I ndexer Johnna VanHoose
Hannel, Colleen
Williams
Technical Brad Birnbaum, Editorial Bill Whitmer
Reviewers Pratip Banerji, Jeff Coordinator
Bankston, Jeff
Shockley,
Technical Edit Lorraine Schaffer Editorial Carol Ackerman,
Coordinator Assistants Andi Richter,
Rhonda Tinch-Mize
Cover Designer Tim Amrhein Book Designer Gary Adair
Copy Writer Peter Fuller Production Team Brad Chinn
Super visor
Production Cynthia Davis, Elizabeth Deeter, Sonja Hart, Lousia

Klucznik, Polly Lavrick, Paula Lowell, Andrew Sone

Preface to the Professional Reference Edition

| first saw Javarunning in May of 1995, and was immediately struck by what it offered to the Web. What | saw
seems almost quaint in this day and age of multimedia Web pages-a small animation of a character doing
cartwheels across the screen-but at the time it was arevolution. My friend Jm Graham, a programmer on the
Java team, showed me various aspects of the Javalanguage and the HotJava browser, and | sat with my mouth
agape, unable to say much of anything except for "that is so cool."” At thetime, | was just finishing up a book
about HTML and looking for something else to do. | immediately knew that this had to be it. | had to write a
book on Java.

It took somewhat longer to actually produce the book, between needing to finish a number of other projects,
having to wait for anew version of Javaitself, and coming down with a number of bad cases of the flu, but the
book was written and shipped in early 1996. That book was the original Teach Yourself Javain 21 Days.

file:/lIG|/ebooks/1575211831/index.htm (27 of 37) [11/06/2000 7:44:38 PM]

CONTENTS

While not the first book available on the Java language, it was widely regarded as the first good book and the
first one that wasn't either too vague or that assumed too much knowledge of programming. Written for an
intermediate programmer, Teach Yourself Java continues to be one of the few books available that offers a
basic tutorial in Java, enough to get you started and enough to move beyond the basics. Teach Yourself Java
continues to be popular and continues to be recommended as one of the best books on getting started in Java.

Which brings us to this hefty tome that you're holding in your hands. Since early 1996 Javaitself has not
changed overly much. The current 1.0.2 release has added few features since 1.0; for the new features we'll
have to wait for 1.1 (due out in late 1996). But given the explosion of tools for building Java applications and
the wide variety of things that people are doing with Java out there for the Web and for general-purpose
applications, there is no shortage of things to talk about when it comes to Java.

This book, therefore, is an extension of the original Teach Yourself Java. It has been greatly expanded and
enhanced, with all the original content updated, the weak parts fixed, and more examples added. This book also
contains a bonus week that adds further depth and detail about existing topics such as images, animation, and
networking; it includes information about tools, debugging, and advanced data structures; and it goes into great
detail about upcoming features in Java 1.1 and the extension APIs. With more than 250 pages of reference
material, there's little you won't be able to discover using this book.

If you haven't yet worked with Java, thisisthe book to start with. If you have worked with Java but are looking
for more information, thisis the book to continue with. And even if you've read the original Teach Yourself
Java, you'll find enough new in this edition to merit putting aside the original and adding this one to the stack
of programming books on your desk.

Good luck and enjoy!

LauraLemay
August 1996

Acknowledgments

From Laura Lemay:

To Sun's Javateam, for al their hard work on Java, the language, and on the browser, and
particularly to Jim Graham, who demonstrated Java and HotJava to me on very short notice in
May and planted the idea for this book.

To everyone who bought my previous books and liked them: Buy this one, too.

From Charles L. Perkins:
To Patrick Naughton, who first showed me the power and the promise of Oak (Java) in early 1993.

To Mark Taber, who shepherded this lost sheep through his first book.

From Mike Morrison:

Thanksto Mark Taber for giving me the opportunity to contribute to such a cool project, and to
Fran Hatton for being so enormously positive and helpful.

file:/lIG|/ebooks/1575211831/index.htm (28 of 37) [11/06/2000 7:44:38 PM]

CONTENTS

About the Authors

Laura Lemay

LauraLemay isatechnical writer and anerd. After spending six years writing software documentation for
various computer companiesin Silicon Valley, she decided that writing books would be much more fun (but
has still not yet made up her mind). In her spare time she collects computers, e-mail addresses, interesting hair
colors, and nonrunning motorcycles. Sheis also the perpetrator of Teach Yourself Web Publishing with HTML
in 14 Days.

You can visit her homepageat ht t p: / / ww. | ne. conl | emay/ .

Charles L. Perkins

Charles L. Perkinsisthe founder of Virtual Rendezvous, a company building a Java-based service that will
foster socially focused, computer-mediated, real-time filtered interactions between people's personasin the
virtual environments of the near future. In previous lives, he has evangelized NeXTSTEP, SmallTalk, and
UNIX, and has degrees in both physics and computer science. Before attempting this book, he was an amateur
columnist and author. He's done research in speech recognition, neural nets, gestural user interfaces, computer
graphics, and language theory, but had the most fun working at Thinking Machines and Xerox PARC's
SmallTalk group. In his spare time, he reads textbooks for fun.

You canreach himviae-mail at vi rt ual @ endezvous. com or visit his Java page at
http://rendezvous. com | ava.

Michael Morrison

Michael Morrison isthe author of Teach Yourself Internet Game Programming with Java in 21 Days, and a
contributing author to Tricks of the Java Programming Gurus, Java Unleashed, and Game Devel oper
magazine. Michael livesin Scottsdale, Arizona, with his (now legally recognized) female cohort, Mahsheed. In
his spare time, Michael enjoys testing his threshold for pain on skateboard ramps. Y ou can reach Michael via
e-mail at nmorri son@ het ri be. com or check out hisWeb siteat ht t p: / / www. t hetri be. com

Tell Us What You Think!

As areader, you are the most important critic and commentator of our books. We value your opinion and want
to know what we're doing right, what we could do better, what areas you'd like to see us publish in, and any
other words of wisdom you're willing to pass our way. Y ou can help us make strong books that meet your
needs and give you the computer guidance you require.

Do you have access to CompuServe or the World Wide Web? Then check out our CompuServe forum by
typing GO SANS at any prompt. If you prefer the World Wide Web, check out our site at http://www.mcp.com.
INote

If you have atechnical question about this book, call the technical
support line at 800-571-5840, ext. 3668.

Asthe team leader of the group that created this book, | welcome your comments. Y ou can fax, e-mail, or write
me directly to let me know what you did or didn't like about this book-as well as what we can do to make our
books stronger. Here's the information:

file:/lIG|/ebooks/1575211831/index.htm (29 of 37) [11/06/2000 7:44:38 PM]

http://www.lne.com/lemay/
mailto:virtual@rendezvous.com
http://rendezvous.com/java
mailto:mmorrison@thetribe.com
http://www.thetribe.com/

CONTENTS

FAX: 317-581-4669
E-mail: newt ech_ngr @ans. ncp. com
Mail: Mark Taber

Publishing Manager

Sams.net Publishing

201 W. 103rd Street

Indianapolis, IN 46290

Introduction

The World Wide Web, for much of its existence, has been a method for distributing passive information to a
widely distributed number of people. The Web has, indeed, been exceptionally good for that purpose. With the
addition of forms and image maps, Web pages began to become interactive-but the interaction was often simply
anew way to get at the same information. The limitations of Web distribution were all too apparent once
designers began to try to stretch the boundaries of what the Web can do. Even other innovations, such as
Netscape's server push to create dynamic animations, were merely clever tricks layered on top of a framework
that wasn't built to support much other than static documents with images and text.

Enter Java, and the capability for Web pages to contain Java applets. Applets are small programs that create
animations, multimedia presentations, real-time (video) games, multiuser networked games, and real
interactivity-in fact, most anything a small program can do, Java applets can. Downloaded over the Net and
executed inside a Web page by a browser that supports Java, applets are an enormous step beyond standard
Web design.

The disadvantage of Javaisthat to create Java applets right now, you need to write them in the Java language.
Javais a programming language, and therefore, creating Java applets is more difficult than creating a Web page
or aform using HTML. Soon there will be tools and programs that will make creating Java appl ets easier-they
may be available by the time you read this. For now, however, the only way to delve into Javaisto learn the
language and start playing with the raw Java code. Even when the tools come out, you may want to do more
with Java than the tools can provide, and you're back to learning the language.

That's whereTeach Yourself Java in 21 Days comesin. This book teaches you all about the Javalanguage and
how to use it to create not only applets, but also applications, which are more general Java programs that don't
need to run inside a Web browser. By the time you get through with this book, you'll know enough about Java
to do just about anything, inside an applet or out.

How This Book Is Organized

Teach Yourself Java in 21 Days covers the Java language and its class libraries in 21 days, organized as three
separate weeks. In addition, this edition contains a bonus week that's chock full of new and advanced
information. Each week covers adifferent broad area of developing Java applets and applications.

In the first week you'll learn about the Java language itself:

« Day 1 isthe basic introduction: what Javais, why it's cool, and how to get the software. You'll also
create your first Java applications and applets.

« On Day 2 you'll explore basic object-oriented programming concepts as they apply to Java.
« OnDay 3you'll start getting down to details with the basic Java building blocks: data types, variables,

file:///G|/ebooks/1575211831/index.htm (30 of 37) [11/06/2000 7:44:38 PM]

mailto:newtech_mgr@sams.mcp.com

CONTENTS

and expressions, such as arithmetic and comparisons.

Day 4 goes into detail about how to deal with objectsin Java: how to create them, how to access their
variables and call their methods, and how to compare and copy them. You'll also get your first glance at
the Javaclasslibraries.

On Day 5 you'll learn more about Java, with arrays, conditional statements, and |oops.

Day 6 isthe best one yet. You'll learn how to create classes, the basic building blocks of any Java
program, and how to put together a Java application (a Java program that can run on its own without a
Web browser).

Day 7 builds on what you learned on Day 6. Y ou'll learn more about how to create and use methods,
including overriding and overloading methods and creating constructors.

Week 2 is dedicated to applets and the Java class libraries:

Day 8 provides the basics of applets-how they're different from applications, how to create them, and

about the most important parts of an applet'slife cycle. You'll aso learn how to create HTML pages that
contain Java applets.

On Day 9 you'll learn about the Java classes for drawing shapes and characters to the screen-in black,
white, or any other color.

On Day 10 you'll start animating those shapes you learned about on Day 9, including learning about
threads and their uses.

Day 11 covers more detail about animation, adding bitmap images and audio to the soup.

Day 12 delves into interactivity-handling mouse and keyboard clicks from the user in your Java applets.
Day 13 isambitious; you'll learn about using Java's Abstract Windowing Toolkit to create a user
interface in your applet, including menus, buttons, check boxes, and other elements.

On Day 14 you'll explore the last of the main Java classlibraries for creating applets: windows and
dialogs, networking, and afew other tidbits.

Week 3 includes advanced topics for when you start doing larger and more complex Java programs or when
you want to learn more:

On Day 15 you'll learn more about the Java language's modifiers-for abstract and final methods and
classes aswell asfor protecting a class's private information from the prying eyes of other classes.

Day 16 covers interfaces and packages, useful for abstracting protocols of methods to aid reuse and for
the grouping and categorization of classes.

Day 17 covers exceptions. errors and warnings and other abnormal conditions, generated either by the
system or by you in your programs.

Day 18 builds on the thread basics you learned on Day 10 to give a broad overview of multithreading and
how to use it to allow different parts of your Java programsto run in parallel.

On Day 19 you'll learn all about the input and output streamsin Java's 1/O library.

Day 20 teaches you about native code-how to link C code into your Java programs to provide missing
functionality or to gain performance.
On Day 21 you'll get an overview of some of the behind-the-scenes technical details of how Java works:

the bytecode compiler and interpreter, the techniques Java uses to ensure the integrity and security of
your programs, and the Java garbage collector.

file:///G|/ebooks/1575211831/index.htm (31 of 37) [11/06/2000 7:44:38 PM]

CONTENTS

This Professional Reference Edition also includes a bonus week that contains more depth about some of the
topics previously mentioned in the book, lots more sample programs, and coverage of the various tools and
utilities currently available for writing with Java. It also gives you a preview of the features coming up in Java
1.1
« Day 22 describestools and utilities for programming in Java, including debugging techniques, Java
devel opment environments such as Symantec Café and Visual J++, thej avadoc documentation
system, and other tips and tricks.
« OnDay 23 you'll learn about creating structures for modeling various forms of data, both with the classes
inthej ava. uti | package and by creating new classes.

« Day 24 goesinto even more detail about animation in Java, building on the simple techniques covered in
Week 2. On thisday you'll learn about creating sprite-based animation and coordinating image and
medialoading with your programs.

o Sun'sj ava. awm . i mage package provides a set of classes for working with images. Day 25 covers

these classes in detail, explaining the image filter architecture and how you can use it in your own Java
programs.

« Day 14 gives avery basic introduction to networking in Java. Day 26 takesit further, with extensive

examples of networking applets and applications, working with "live" data sent from a server, and
connecting to databases from Java applets.

« On Day 27 we move into the future and describe what are known as the standard extension APIs. Sunis

developing these APIsin conjunction with other interested parties, and many of the features you'll learn
about in this chapter will be part of the 1.1 Java API.

« Day 28 finishes up with more future topics, including Sun's Java Beans API, Java chips, and the JavaOS.

How will these technologies affect how you work in Java and how Java will affect you? Learn about it
here as you finish up the book.

Preparing for the Future: The Upcoming Java 1.1 Release

At the time this book is being written, the current version of Javais known asthe 1.0 API (or, more exactly, the
1.0.2 version of the JDK). A new version of Javais on the horizon, one that will add a significant number of
new features to Java while still being backward compatible with the original version. This new version of Java,
called Java 1.1, is expected to be available in a prerelease form in late 1996.

This book coversthe Java 1.0 API in intimate detail. Where information about an upcoming feature of 1.1is
available, we have attempted to explain that new feature, how it will affect what you have aready learned
about the 1.0 API, and where to look for further information. In addition, the last two chapters of this book
cover the more advanced features of 1.1 and how they will be used. These notes and comments will help you
prepare for when 1.1 is released and help you migrate the code you may have already written quickly and easily
to the new API.

Features expected to be in the 1.1 JDK include

« JDBC (the Java Database Connectivity interface) provides a mechanism for connecting Java applications
and applets to SQL databases such as Oracle and Sybase. The JDBC, available in a prerelease form at
thistimefromhtt p: // spl ash. j avasoft. conij dbc/,iscovered on Day 27.

« RMI (Remote Method Invocation) isthe ability to call a Java method from an object running elsewhere
(for example, in a different Java environment running on the same machine or on any machine on the
network). RMI is closely related to object serialization, which allows objects to be encoded into a stream

file:///G|/ebooks/1575211831/index.htm (32 of 37) [11/06/2000 7:44:38 PM]

http://splash.javasoft.com/jdbc/

CONTENTS

of bytes, which can then be sent over a network or saved to afile. The result can then also be decoded
back into a Java object at the other end. Object seridization is an extension of the stream classes
discussed on Day 19. RMI isdiscussed in greater detail on Day 27. Information about both of these

topicscan befoundat htt p: / / chat subo. j avasoft. com current/.

« The Java native methods interface is the ability for Javato call system-specific libraries such as DLLsor
loadable libraries written in C. Writing native methods is described on Day 20; enhancement in Java 1.1
will include a better API for making sure native method libraries are compatible with every
implementation of the Java runtime across platforms.

« JIT compilers are tools that convert Java bytecode to native machine code. You'll learn about JI T
compilers throughout this book, but particularly on Days 21 and 22. In Java 1.1 there will be better

specifications for writing your own JI'T or other tool that generates native code from Java bytecodes.

« Changesto the awt. Probably some of the more significant changes to Java will be in the area of the
Abstract Windowing Toolkit, or awt, the portion of Javathat controls drawing to the screen, creating user
interface elements such as buttons and windows, and handling painting and user input between al those
elements. This book covers the awt primarily in Week 2. Enhancements to the awt in Java 1.1 include
printing, pop-up menus, supports for clipboards (copy and paste), internationalization for fonts, better
scrolling capabilities, and del egation-based events. You'll learn more about these changes throughout
Week 2.

« Security enhancements. JDK 1.1 will provide many features for implementing security in Java
applications, including signatures, access control, key management, and message digests (MD5 hashes,
for example). These additions won't affect much of 1.0 because they are new enhancements. You'll learn
all about 1.1's security features on Day 27.

« Networking enhancements. Java 1.0 providesthe | ava. net classes, which provide simple network
connections, URL management, and simple client and server sockets. Java 1.1 provides more flexibility
for the existing socket classes, anew Mul t i cast Socket class, and BSD-style socket options. Learn
about all these new features on Day 14 or from the URL

http://java. sun. coni products/JDK/ 1. 1/ desi gnspecs/ net/index. html .

« Adapter classes allow you to implement an API defined by an interface or a class and have the flow of
control move from the adapter class back to an enclosing object. Java 1.1 provides Java syntax for
nesting class definitions inside other class definitions to more easily create adapter classes. You'll learn
more on Day 6.

« Object reflection isthe ability for Javato inspect an object and find out its methods and variables (and
call and change them). Object reflection is useful for class browsers or other tools that need to find out
information about an object on-the-fly, as well as component object systems that need defined ways of
referring to other objects contents. Java 1.1 provides many features for handling object reflection,
including a number of new classes. You'll find out more on Day 4 or from

http://java. sun. coni products/JDK/ 1. 1/ desi gnspecs/refl ection/index.htm .

« Javal.l provides anumber of new features for internationalization, particularly language-specific
features such as strings, character set conversions, Unicode character display, and support for definable
"locales."

« Javaarchives (JAR files) provide a mechanism for combining several classesinto asinglefile for faster
downloading over the Net. Netscape provides a single archive file mechanism for applets, but JAR files
provide a more cross-platform file format, compression, and the ability to include mediafilesin the
archive. The capability to store Java classes in JAR files, and to use them with Java-enabled browsers,
will bein Java 1.1. The current JAR file format specification is available from

file:///G|/ebooks/1575211831/index.htm (33 of 37) [11/06/2000 7:44:38 PM]

http://chatsubo.javasoft.com/current/
http://java.sun.com/products/JDK/1.1/designspecs/net/index.html
http://java.sun.com/products/JDK/1.1/designspecs/reflection/index.html

CONTENTS
http://java.sun. coni security/codesign/jar-format.htmn.

Y ou can learn more about all these features viainformation throughout this book or from the Java 1.1 preview
pageathttp: //wwv. | ava. sun. coml product s/ JDK/ 1. 1/ desi gnspecs/.

Conventions Used in This Book

Text that you type and text that should appear on your screen is presented in nonospace type:
It will look |ike this.

It mimics the way text looks on your screen. Placeholders for variables and expressions appear in nbnospace
italic.

The end of each chapter offers common questions asked about that day's subject matter, with answers from the
authors.

Sources for Further Information

Before, while, and after you read this book, there are several Web sites that may be of interest to you as a Java
developer.

The official JavaWeb siteisatht t p: / /j ava. sun. conm . At thissite, you'll find the Java devel opment
software and online documentation for all aspects of the Java language, including the previously mentioned
Java 1.1 preview page. It has several mirror sitesthat it lists online, and you should probably use the site
"closest” to you on the Internet for your downloading and Java Web browsing.

Thereis aso an excellent site for devel oper resources, called Gamelan, at ht t p: / / www. ganel an. cont

which contains an enormous number of applets and applications, with sample code, help, and plenty of
information about Java and Java devel opment.

This book also has a companion Web siteat ht t p: / / www. | ne. coml Web/ JavaPr of / . Information at

that site includes examples, more information, and background for this book, corrections to this book, and other
tidbits that are not included here.

For discussion about the Java language and the tools to develop in it, check out the Usenet newsgroups for
conp. | ang. j ava. This set of newsgroups-which includesconp. | ang. j ava. pr ogr anm ng,

conp. | ang. j ava. api,conp. | ang. j ava. m sc,conp. | ang. j ava. security,and

conp. | ang. j ava. t ech-isaterrific source for getting questions answered and for keeping up on new Java
developments.

Praise for Teach Yourself Java

"If you get only one Java book, it should be Teach Yourself Java in 21 Days. Authors LauraLemay and Charles
L. Perkins cover all aspects of Java programming in an easy-to-read guide organized around daily lesson
plans.”

-Jay Munro, pc Magazine
"...thisiswhereto begin. Javain all its gory details: classes to applets, methods to multithreading.”
-Thom Gillespie, Library Journal

file:/lIG|/ebooks/1575211831/index.htm (34 of 37) [11/06/2000 7:44:38 PM]

http://java.sun.com/security/codesign/jar-format.html
http://www.java.sun.com/products/JDK/1.1/designspecs/
http://java.sun.com/
http://www.gamelan.com/
http://www.lne.com/Web/JavaProf/

CONTENTS

"Teach Yourself Java gives a thoughtful treatment to under-the-hood issues of Java's implementation."”
-Peter Coffee, pc Week

"If you buy one book on Java, thisis the oneto buy. Teach Yourself Java is one of the best introductions to
hands-on Java programming. The setup of the book is extremely well thought out."

-Scott Sidel, Independent Web Review

"Thisisthe best introduction to object-oriented programming ever written. This book does not assume that you
know C or C++, but it offers tips for those who do. Laura Lemay is my favorite tech author....If you can afford
only one Java book, then thisis the one to get."

-David Geary
What's New in This Edition

Given the explosion of tools for building Java applications and the wide variety of things that people are doing
with Java, for the Web and for general-purpose applications, there is no shortage of new thingsto talk about
when it comesto Java.

This edition, therefore, isafully revised and extended edition of the original Teach Yourself Javain 21 Days. It
has been greatly expanded and enhanced, with all the original content updated, the weak parts fixed, and more
examples added. This edition also contains a bonus week that adds further depth and detail about existing
topics such as images, animation, and networking, as well as information about tools, debugging, and advanced
data structures. In the bonus week you'll also learn about the following:

« Day 22 describestools and utilities for programming in Java, including debugging techniques, Java
devel opment environments such as Symantec Café and Visual J++, thej avadoc documentation
system, and other tips and tricks.

« Day 23 covers creating structures for modeling various forms of data, both with the classesin the
j ava. uti | package and by creating new classes.

« Day 24 goesinto even more detail about animation in Java, building on the simple techniques covered in
Week 2.

o Sun'sj ava. awm . i mage package provides a set of classes for working with images. Day 25 covers
these classes in detail, explaining the image filter architecture and how you can use it in your own Java
programs.

« Day 26 takesafurther look at client/server networking, with extensive examples of networking applets
and applications and working with live data sent from a server, aswell as connecting to databases from
Java appl ets.

« Days 27 and 28 move into the future and describe what are known as the standard extension APIs. Many
of the features you'll learn about on Day 27 will be part of Java 1.1. Day 28 finishes up with more future
topics, including Sun's Java Beans API, Java chips, and the JavaOS.

The bonus week goesinto great detail about upcoming featuresin Java 1.1 and the extension APIs. And with
more than 250 pages of reference material in the appendixes, there's little you won't be able to discover using
this book.

file:///G|/ebooks/1575211831/index.htm (35 of 37) [11/06/2000 7:44:38 PM]

CONTENTS

About This Book

This book teaches you all about the Java language and how to use it to create applets for the World Wide Web,
as well as standalone applications. By the time you get through with this book, you'll know enough about Java
and about the Java class libraries to do just about anything, inside an applet or out.

Who Should Read This Book

This book is intended for people with at least some basic programming background, which includes people
with years of programming experience and people with only a small amount of experience. If you understand
what variables, loops, and functions are, you'll be just fine for this book. The sorts of people who might want to
read this book include you, if

« Yourearea whiz at HTML, understand CGI programming (in Perl, AppleScript, Visua Basic, or some
other popular CGI language) pretty well, and want to move on to the next level in Web page design.

« You had some BASIC or Pascal in school and you have abasic grasp of what programming is, but
you've heard Javais easy to learn, really powerful, and very cooal.

« You've programmed C and C++ for many years, you've heard this Javathing is becoming really popular,
and you're wondering what all the fussis about.

« You've heard that Javaisreally good for Web-based applets, and you're curious about how good it isfor
creating more general applications.

What if you know programming, but you don't know object-oriented programming? Fear not. This book
assumes no background in object-oriented design. If you know object-oriented programming, in fact, the first
couple days will be easy for you.

What if you're arank beginner? This book might move alittle fast for you. Javais a good language to start
with, though, and if you take it slow and work through all the examples, you may still be able to pick up Java
and start creating your own applets.

How This Book Is Structured

This book is intended to be read and absorbed over the course of four weeks. During each week, you'll read
seven chapters that present concepts related to the Java language and the creation of applets and applications.

Conventions

]Note

A note box presents interesting pieces of information related to the
surrounding discussion.
ITechnical Note

A technical note presents specific technical information related to the
surrounding discussion.

Tip
| A tip box offers advice or teaches an easier way to do something.

\Warning

file:/lIG|/ebooks/1575211831/index.htm (36 of 37) [11/06/2000 7:44:38 PM]

CONTENTS

A warning box advises you about potential problems and helps you
steer clear of disaster.

|New terms

New terms are introduced in new term boxes, with the new termin
italics.

IType

A type icon identifies some new Java code that you can typein. You
can a'so get the code from the CD-ROM that accompanies this book.

|Output

| An output icon shows the output from a Java program.

|Analysis

An analysisicon aerts you to the author's line-by-line analysis.

file:/lIG|/ebooks/1575211831/index.htm (37 of 37) [11/06/2000 7:44:38 PM]

Day 1 -- An Introduction to Java Programming

Day 1

An Introduction to Java Programming

by Laura Lemay

CONTENTS

o What Is Java?

« JavasPast, Present, and Future

o Why Learn Java?
o Javals Platform Independent
0 Javals Object Oriented
0 JavalsEasy to Learn

o Getting Started Programming in Java

0 Getting a Java Devel opment Environment
o Installing the JDK and Sample Files
o Configuring the JDK

o Creating a Java Application

0 Creating a Java Applet
« Troubleshooting
o Summary
o Q&A

Hello and welcome to Teach Yourself Java in 21 Days! Starting today and for the next few weeks you'll
learn al about the Java language and how to use it to create programs that run inside Web pages (called
applets) and programs that can run on their own (called applications).

That's the overall goal for the next couple weeks. Today, the goals are somewhat more modest, and you'll
learn about the following:

« What exactly Javais, and its current status

« Why you should learn Java-its various features and advantages over other programming languages

« Getting started programming in Java-what you'll need in terms of software and background, as
well as some basic terminology

« How to create your first Java programs-to close this day, you'll create both asimple Java
application and a simple Java appl et!

file:///G|/ebooks/1575211831/ch1.htm (1 of 21) [11/06/2000 7:44:43 PM]

Day 1 -- An Introduction to Java Programming

What Is Java?

Based on the enormous amount of press Javais getting and the amount of excitement it has generated,
you may get the impression that Java will save the world-or at least solve al the problems of the Internet.
Not so. Java's hype has run far ahead of its capabilities, and while Javaisindeed new and interesting, it
really is another programming language with which you write programs that run on the Internet. In this
respect, Javais closer to popular programming languages such as C, C++, Visual Basic, or Pascal, than it
IS to a page description language such as HTML, or avery simple scripting language such as JavaScript.

More specifically, Javais an object-oriented programming language developed by Sun Microsystems, a
company best known for its high-end UNIX workstations. Modeled after C++, the Java language was
designed to be small, simple, and portable across platforms and operating systems, both at the source and
at the binary level, which means that Java programs (applets and applications) can run on any machine
that has the Java virtua machine installed (you'll learn more about this | ater).

Javais usually mentioned in the context of the World Wide Web, where browsers such as Netscape's
Navigator and Microsoft's Internet Explorer claim to be "Java enabled." Java enabled means that the
browser in question can download and play Java programs, called applets, on the reader's system.
Applets appear in a Web page much the same way as images do, but unlike images, applets are dynamic
and interactive. Applets can be used to create animation, figures, forms that immediately respond to input
from the reader, games, or other interactive effects on the same Web pages among the text and graphics.
Figure 1.1 shows an applet running in Netscape 3.0. (This applet, at

http://prom nence. conijaval/ poetry/ ,isan electronic version of the refrigerator magnets

that you can move around to create poetry or messages.)

Figure 1.1 : Netscape running a Java applet.

INew Term
Applets are programs that are downloaded from the World Wide Web
by aWeb browser and run inside an HTML Web page. You'll need a
Java-enabled browser such as Netscape Navigator or Microsoft's
Internet Explorer to run applets.

To create an applet, you write it in the Java language, compile it using a Java compiler, and refer to that
applet in your HTML Web pages. Y ou put the resulting HTML and Javafiles on aWeb site in the same
way that you make ordinary HTML and image files available. Then, when someone using a Java-enabled
browser views your page with the embedded applet, that browser downloads the applet to the local
system and executes it, allowing your reader to view and interact with your applet in all itsglory.
(Readers using other browsers may see text, a static graphic, or nothing.) Y ou'll learn more about how
applets, browsers, and the World Wide Web work together later in this book.

While applets are probably the most popular use of Java, the important thing to understand about Javais
that you can do so much more with it than create and use applets. Java was written as a full-fledged
genera-purpose programming language in which you can accomplish the same sorts of tasks and solve
the same sorts of problems that you can in other programming languages, such as C or C++.

file:///G|/ebooks/1575211831/ch1.htm (2 of 21) [11/06/2000 7:44:43 PM]

http://prominence.com/java/poetry/

Day 1 -- An Introduction to Java Programming

Java's Past, Present, and Future

The Javalanguage was developed at Sun Microsystemsin 1991 as part of aresearch project to develop
software for consumer electronics devices-television sets, VCRS, toasters, and the other sorts of machines
you can buy at any department store. Java's goals at that time were to be small, fast, efficient, and easily
portable to a wide range of hardware devices. Those same goals made Java an ideal language for
distributing executable programs via the World Wide Web and also a general-purpose programming
language for developing programs that are easily usable and portable across different platforms.

The Java language was used in severa projects within Sun (under the name Oak), but did not get very
much commercial attention until it was paired with HotJava. HotJava, an experimental World Wide Web
browser, was written in 1994 in a matter of months, both as a vehicle for downloading and running
applets and also as an example of the sort of complex application that can be written in Java. Although
HotJava got alot of attention in the Web community, it wasn't until Netscape incorporated HotJava's
ability to play appletsinto its own browser that Javareally took off and started to generate the excitement
that it has both on and off the World Wide Web. Java has generated so much excitement, in fact, that
inside Sun the Java group spun off into its own subsidiary called JavaSoft.

Versions of Javaitsdf, or, asit's most commonly called, the Java API, correspond to versions of Sun's
Java Developer's Kit, or JDK. As of thiswriting, the current version of the JDK is 1.0.2. Previoudly
released versions of the JDK (alphas and betas) did not have all the features or had a number of
security-related bugs. Most Java tools and browsers conform to the featuresin the 1.0.2 JDK, and all the
examplesin this book run on that version as well.

The next major release of the JDK and therefore of the Java API will be 1.1, with a prerelease version
available sometime in the later part of 1996. This release will have few changes to the language, but a
number of additional capabilities and features added to the class library. Throughout this book, if a
feature will change or will be enhanced in 1.1, we'll let you know, and in the last two days of this book
you'll find out more about new Java features for 1.1 and for the future.

Currently, to program in Java, you'll need a Java development environment of some sort for your
platform. Sun's JDK works just fine for this purpose and includes tools for compiling and testing Java
applets and applications. In addition, awide variety of excellent Java development environments have
been devel oped, including Sun's own Java Workshop, Symantec's Cafe, Microsoft's Visual J++ (whichis
indeed a Javatool, despite its name), and Natural Intelligence's Roaster, with more devel opment tools
appearing all thetime.

To run and view Java applets, you'll need a Java-enabled browser or other tool. As mentioned before,
recent versions of Netscape Navigator (2.0 and higher) and Internet Explorer (3.0) can both run Java
applets. (Note that for Windows you'll need the 32-bit version of Netscape, and for Macintosh you'll need
Netscape 3.0.) Y ou can also use Sun's own HotJava browser to view applets, as long as you have the 1.0
prebeta version (older versions are not compatible with newer applets, and vice versa). Even if you don't
have a Java-enabled browser, many development tools provide simple viewers with which you can run
your applets. The JDK comes with one of theseg; it's called theappl et vi ewer .

INote

file:///G|lebooks/1575211831/ch1.htm (3 of 21) [11/06/2000 7:44:43 PM]

Day 1 -- An Introduction to Java Programming

If you're running Windows 3.x as your main system, very few tools
exist for you to be able to work with Java. As| write this, the only
Javatool available for writing and running Java appletsis a version of
the JDK from IBM called the ADK. Y ou can write applets using this
tool, and view them using the applet viewer that comes with that
package (neither Netscape nor Internet Explorer will run Java applets
on Windows 3.1). Seeht t p: / / www. al phaWor ks. i bm cont

for more information.

What'sin store for Javain the future? A number of new developments have been brewing (pardon the

pun):

Sun is developing a number of new features for the Java environment, including a number of new
class libraries for database integration, multimedia, electronic commerce, and other uses. Sun also
has a Java-based Web server, a Java-based hardware chip (with which you can write Java-specific
systems), and a Java-based operating system. You'll learn about all these things later in this book.
The 1.1 release of the IDK will include many of these features; others will be released as separate
packages.

Sun is aso developing aframework called Java Beans, which will allow the development of
component objects in Java, similarly to Microsoft's ActiveX (OLE) tech-nology. These different
components can then be easily combined and interact with each other using standard component
assembly tools. Y ou'll learn more about Java Beans later in this book.

Java capabilities will be incorporated into awide variety of operating systems, including Solaris,
Windows 95, and MacOS. This means that Java applications (as opposed to applets) can run nearly
anywhere without needing additional software to be installed.

Many companies are working on performance enhancements for Java programs, including the
aforementioned Java chip and what are called just-in-time compilers.

Why Learn Java?

At the moment, probably the most compelling reason to learn Java-and probably the reason you bought
this book-is that applets are written in Java. Even if that were not the case, Java as a programming
language has significant advantages over other languages and other environments that make it suitable
for just about any programming task. This section describes some of those advantages.

Java Is Platform Independent

Platform independence-that is, the ability of a program to move easily from one computer system to
another-is one of the most significant advantages that Java has over other programming languages,
particularly if your software needs to run on many different platforms. If you're writing software for the
World Wide Web, being able to run the same program on many different systemsis crucial to that
program'’s success. Java is platform independent at both the source and the binary level.

|New Tarm

file:///G|/ebooks/1575211831/ch1.htm (4 of 21) [11/06/2000 7:44:43 PM]

http://www.alphaworks.ibm.com/

Day 1 -- An Introduction to Java Programming

Platform independence means that a program can run on any
computer system. Java programs can run on any system for which a
Java virtual machine has been installed.

At the source level, Javas primitive data types have consistent sizes across all development platforms.
Java's foundation class libraries make it easy to write code that can be moved from platform to platform
without the need to rewrite it to work with that platform. When you write a program in Java, you don't
need to rely on features of that particular operating system to accomplish basic tasks. Platform
independence at the source level means that you can move Java source files from system to system and
have them compile and run cleanly on any system.

Platform independence in Java doesn't stop at the source level, however. Java compiled binary files are
aso platform independent and can run on multiple platforms (if they have a Java virtual machine
available) without the need to recompile the source.

Normally, when you compile a program written in C or in most other languages, the compiler translates
your program into machine code or processor instructions. Those instructions are specific to the
processor your computer is running-so, for example, if you compile your code on an Intel-based system,
the resulting program will run only on other Intel-based systems. If you want to use the same program on
another system, you have to go back to your original source code, get acompiler for that system, and
recompile your code so that you have a program specific to that system. Figure 1.2 shows the result of
this system: multiple executable programs for multiple systems.

Figure 1.2 : Traditional compiled programs.

Things are different when you write code in Java. The Java development environment actually has two
parts. a Java compiler and a Java interpreter. The Java compiler takes your Java program and, instead of
generating machine codes from your source files, it generates bytecodes. Bytecodes are instructions that
look alot like machine code, but are not specific to any one processor.

To execute a Java program, you run a program called a bytecode interpreter, which in turn reads the
bytecodes and executes your Java program (see Figure 1.3). The Java bytecode interpreter is often also
called the Java virtual machine or the Java runtime.

Figure 1.3 : Java programs.

|New Tarm

Java bytecodes are a special set of machine instructions that are not
specific to any one processor or computer system. A platform-specific
bytecode interpreter executes the Java bytecodes. The bytecode
interpreter is also called the Java virtual machine or the Java runtime
interpreter.

Where do you get the bytecode interpreter? For applets, the bytecode interpreter is built into every
Java-enabled browser, so you don't have to worry about it-Java applets just automatically run. For more
genera Java applications, you'll need to have the interpreter installed on your system in order to run that
Java program. Right now, you can get the Javainterpreter as part of your development environment, or if
you buy a Java program, you'll get it with that package. In the future, however, the Java bytecode

file://IG|/ebooks/1575211831/ch1.htm (5 of 21) [11/06/2000 7:44:43 PM]

Day 1 -- An Introduction to Java Programming

interpreter will most likely come with every new operating system-buy a Windows machine, and you'll
get Javafor free.

Why go through all the trouble of adding this extralayer of the bytecode interpreter? Having your Java
programs in bytecode form means that instead of being specific to any one system, your programs can be
run on any platform and any operating or window system as long as the Java interpreter is available. This
capability of asingle binary file to be executable across platformsis crucial to what makes applets work
because the World Wide Web itself is also platform independent. Just as HTML files can be read on any
platform, so can appl ets be executed on any platform that has a Java-enabled browser.

The disadvantage of using bytecodesis in execution speed. Because system-specific programs run
directly on the hardware for which they are compiled, they run significantly faster than Java bytecodes,
which must be processed by the interpreter. For many basic Java programs, speed may not be an issue. If
you write programs that require more execution speed than the Javainterpreter can provide, you have
several solutions available to you, including being able to link native code into your Java program or
using special tools (called just-in-time compilers) to convert your Java bytecodes into native code and
speed up their execution. Note that by using any of these solutions, you lose the portability that Java
bytecodes provide. You'll learn about each of these mechanisms on Day 20, "Using Native Methods and

Libraries."

Java Is Object Oriented

To some, the object-oriented programming (OOP) technique is merely away of organizing programs,
and it can be accomplished using any language. Working with areal object-oriented language and
programming environment, however, enables you to take full advantage of object-oriented methodology
and its capabilities for creating flexible, modular programs and reusing code.

Many of Java's object-oriented concepts are inherited from C++, the language on which it is based, but it
borrows many concepts from other object-oriented languages as well. Like most object-oriented
programming languages, Javaincludes a set of class libraries that provide basic data types, system input
and output capabilities, and other utility functions. These basic libraries are part of the standard Java
environment, which also includes simple libraries, form networking, common Internet protocols, and
user interface toolkit functions. Because these class libraries are written in Java, they are portable across
platforms as all Java applications are.

You'll learn more about object-oriented programming and Java tomorrow.

Java ls Easy to Learn

In addition to its portability and object orientation, one of Java'sinitial design goals was to be small and
simple, and therefore easier to write, easier to compile, easier to debug, and, best of all, easy to learn.
Keeping the language small also makes it more robust because there are fewer chances for programmers
to make mistakes that are difficult to fix. Despite its size and simple design, however, Java still has a
great deal of power and flexibility.

Javais modeled after C and C++, and much of the syntax and object-oriented structure is borrowed from
the latter. If you are familiar with C++, learning Javawill be particularly easy for you because you have

file:///G|lebooks/1575211831/ch1.htm (6 of 21) [11/06/2000 7:44:43 PM]

Day 1 -- An Introduction to Java Programming

most of the foundation already. (In fact, you may find yourself skipping through the first week of this
book fairly rapidly. Go ahead; | won't mind.)

Although Java looks similar to C and C++, most of the more complex parts of those languages have been
excluded from Java, making the language simpler without sacrificing much of its power. There are no
pointersin Java, nor isthere pointer arithmetic. Strings and arrays are real objectsin Java. Memory
management is automatic. To an experienced programmer, these omissions may be difficult to get used
to, but to beginners or programmers who have worked in other languages, they make the Javalanguage
far easier to learn.

However, while Java's design makesit easier to learn than other programming languages, working with a
programming language is still agreat deal more complicated than, say, working in HTML. If you have
no programming language background at all, you may find Java difficult to understand and to grasp. But
don't be discouraged! Learning programming is avaluable skill for the Web and for computersin
general, and Javais aterrific language to start out with.

Getting Started Programming in Java

Enough background! For the second half of this day let's actually dive into simple Java programming and
create two Java programs:. a standalone Java application and an applet that you can view in a
Java-enabled browser. Although both these programs are extremely simple, they will give you an idea of
what a Java program looks like and how to compile and run it.

Getting a Java Development Environment

In order to write Java programs, you will, of course, need a Java development environment. (Although
browsers such as Netscape allow you to play Java applets, they don't let you write them. For that you'll
need a separate tool.) Sun's JDK, which is available for downloading at the JavaSoft Web site
(http://wwv. | avasoft. com) andincluded on the CD for this book, will do just fine. It runs on
Solaris, Windows 95 and NT, and Macintosh. However, despite the JDK's popularity, it is not the easiest
development tool to use. If you're used to using a graphical user interface-based development tool with
an integrated editor and debugger, you'll most likely find the JDK's command-line interfaces rather
primitive. Fortunately, the JDK is not the only tool in town.

As mentioned earlier, a number of third-party development environments (called integrated devel opment
environments, or IDES) are also available for developing in Java. These include Sun's Java Workshop for
Solaris, Windows NT and Windows 95 (you can get more information about it at

http://ww. sun. com devel oper - product s/ j aval); Symantec's Café for Windows 95,

Windows NT, and Macintosh (ht t p: / / caf e. symant ec. coml); Microsoft's Visual J++ for
Windows 95 and Windows NT (htt p: / / www. m crosoft.com vi sual j /); and Natura

Intelligence's Roaster
(http://ww. nat ural . com pages/ product s/ roaster/index. ht m).All threeare

commercial programs, but you might be able to download trial or limited versions of these programs to
try them out. You'll learn more about the features and capabilities of the various Java IDEs on Day 22,

"Java Programming Tools."

file:///G|/ebooks/1575211831/ch1.htm (7 of 21) [11/06/2000 7:44:43 PM]

http://www.javasoft.com/
http://www.sun.com/developer-products/java/
http://cafe.symantec.com/
http://www.microsoft.com/visualj/
http://www.natural.com/pages/products/roaster/index.html

Day 1 -- An Introduction to Java Programming

INote
| find the graphical development environments far easier to use than
the standard JDK. If you have the money and the time to invest in one
of these tools, | highly recommend you do so. It'll make your Java
devel opment experience much more pleasant.

Installing the JDK and Sample Files

Sun's JDK for Solaris, Windows, and Macintosh isincluded as part of the CD-ROM that comes with this
book. Also on the CD-ROM are all of the code examples from this book-a great help if you don't want to
type them all in again. To install either the JDK or the sample files (or both), use one of the following
procedures:

INote

If you don't have accessto a CD-ROM drive, you can also get access
to these files over the World Wide Web. Y ou can download the JDK
itself fromht tp: //j ava. sun. coml products/JDK/ 1. 0. 2/
and install it per the instructions on those pages. The samplefiles
from this book are available on the Web site for this book:
http://ww. | ne. conmi Wb/ JavaPr of /.

If you download the JDK and source files, as opposed to getting them
off the CD-ROM, make sure you read the section " Configuring the
JDK" to make sure everything is set up right.

\Windows

Sun's JDK runs on Windows 95 and Windows NT. It does not run on
Windows 3.x.

To install the JDK or the sample files on Windows, run the Setup program on the CD-ROM
(double-clicking the CD icon will do this automatically). By default, the package will be installed into

C:. \ Java; you can install it anywhere on your hard disk that you'd like. You'll be given optionsto install
the JDK, the sample files, and various other extrafiles; choose the options you want and those files will
be installed.

If you'veinstaled the JDK, note that in the directory JDK\ | i b thereisafilecalled cl asses. zi p. Do
not unzip thisfile; it needsto remain in zip form for it to work correctly. Thefile JDK\ src. zi p
contains the source code for many of the JDK libraries; you can unzip this one if you like. Make sure if
you do that you have a zip program that supports long filenames, or it will not work correctly!

|M acintosh

Sun's JDK for Macintosh runs on System 7 (MacOS) for 68KB or
Power Mac.

To install the JDK or the sample files on the Macintosh, double-click the installation program on the

file://IG|/ebooks/1575211831/ch1.htm (8 of 21) [11/06/2000 7:44:43 PM]

http://java.sun.com/products/JDK/1.0.2/

Day 1 -- An Introduction to Java Programming

CD-ROM. By default, the package will beinstalled into the folder Java on your hard disk; you can
install it anywhere on your disk that you'd like. You'll be given optionsto install the JDK, the sample
files, and various other extrafiles; choose the options you want and those files will be installed.

Solaris

Sun's IDK for Solarisrunson Solaris 2.3, 2.4, and 2.5, aswell as the
x86 version of Solaris.

The CD-ROM for this book contains the tarred and zipped JDK in the directory

j dk/ sol ari s/jdkl. 02.tgz.Usingtheutilitiesgunzi p andt ar , you can extract the contents of
that file anywhere on the file system you would like. For example, if you copy the. t gz fileto your
home directory and use the following commands to extract it, you'll end up with aj ava directory that
contains the full JDK:

gunzip ./jdkl.02.tgz
tar xvf ./jdkl.02.tar

Notethat inthedirectory j ava\ | i b thereisafilecaledcl asses. zi p. Do not unzip thisfile; it
needsto remainin zip form for it to work correctly. Thefilej ava\ src. zi p contains the source code
for many of the JDK libraries; you can unzip this one if you're interested in the source code.

The samplefiles are also contained on the CD-ROM in aut hor s/ aut hor s. t ar . Create adirectory
where the sample files will live (for example, adirectory calledj avasanpl es in your home directory),
copy theaut hor s. t ar filethere, and then usethet ar command to extract it, like this:

nkdi r ~/javasanpl es
cp /cdrom aut hors/ aut hors. tar
tar xvf authors.tar

Configuring the JDK

If you'veinstalled the JDK using the setup programs from the CD-ROM, chances are good that it has
been correctly configured for you. However, because most common problems with Javaresult from
configuration errors, | recommend that you double-check your configuration to make sure everything is
right. And if you've installed the JDK from a source other than the CD-ROM, you'll definitely want to
read this section to make sure you're all set up.

\Windows

The JDK needs two important modifications to your

aut oexec. bat filein order to work correctly: The JDK\ bi n
directory must be in your execution path, and you must have the
CLASSPATH variable set up.

Edit your aut oexec. bat file using your favorite editor (Notepad will do just fine). Look for aline
that looks something like this:

file://IG|/ebooks/1575211831/ch1.htm (9 of 21) [11/06/2000 7:44:43 PM]

Day 1 -- An Introduction to Java Programming

PATH C.\ W NDOWS5; C. \ W NDOWS\ COMVAND; C: \ DCS;
Somewhere in that line you should see an entry for the JDK;; if you installed the JDK from CD-ROM, it'll
look something like this (the dots are there to indicate that there may be other stuff on thisline):

PATH C.\W NDOW5; ... C \TEAchY~1\JDK\ BI N,

If you cannot find any reference to JDK\ Bl N or JAVA\ Bl Nin your PATH, you'll need to add it. Simply
include the full pathname to your JDK installation to the end of that line, starting with C. and ending
with BI N; for example, C. \ JAVA\ Bl Nor C: \ Java\ JDK\ BI N.

|Note

ThedirectoriesTeach Yourself Java and TEAchY~1 are
actually the same thing; the former is how the directory appearsin
Windows 95, and the latter is how it appearsin DOS. Either one will
work fine; there's no need to change it if one or the other appears.
Note, however, that if the pathname contains spaces, it must bein
quotes.

The second thing you'll need to add to the aut oexec. bat file (if it isn't already there) isa
CLASSPATH variable. Look for aline that |ooks something like this:

SET CLASSPATH=C. \ TEAchY~1\JDK\ I i b\ cl asses. zi p; . ;

The CLASSPATH variable may also have other entriesin it for Netscape or Internet Explorer, but the one
you're most interested in isareferenceto thecl asses. zi p filein the JDK, and to the current
directory (.). If your aut oexec. bat file does not include either of these locations, add a line to the
file that contains both these things (the line shown above will work just fine).

After saving your aut oexec. bat file, you'll need to restart Windows for the changes to take effect.

IMacintosh

The JDK for Macintosh should need no further configuration after
installation.

Solaris

To configure the JDK for Solaris, all you need to do is add the

j aval bi n orj dk/ bi n directory to your execution path. Usually a
line something likethisinyour . cshrc,.login,or.profile
fileswill work:

set path= (~/javal/bin/ $path)

This line assumes that you've installed the JDK (asthe directory j ava) into your home directory; if
you've installed it somewhere else, you'll want to substitute that pathname.

Make sure you use the sour ce command with the name of the appropriate file to make sure the changes
take effect (or log out and log back in again):

file:///G|/ebooks/1575211831/ch1.htm (10 of 21) [11/06/2000 7:44:43 PM]

Day 1 -- An Introduction to Java Programming

source ~/.login

Creating a Java Application

Now let's actually get to work. We'll start by creating a simple Java application: the classic Hello World
example that many programming language books use to begin.

Java applications are different from Java applets. Applets, as you have learned, are Java programs that
are downloaded over the World Wide Web and executed by a Web browser on the reader's machine.
Applets depend on a Java-enabled browser in order to run.

INew Term

Java applications, however, are more general programs written in the
Java language. Java applications don't require a browser to run; in
fact, Java can be used to create al the kinds of applications that you
would normally use a more conventional programming language to
create.

Java applications are standalone Java programs that do not require a Web browser to run. Java
applications are more general -purpose programs such as you'd find on any computer.

A single Java program can be an applet or an application, or both, depending on how you write that
program and the capabilities that program uses. Throughout this first week as you learn the Java
language, you'll be writing mostly applications; then you'll apply what you've learned to write appletsin
Week 2. If you're eager to get started with applets, be patient. Everything that you learn while you're
creating simple Java applications will apply to creating applets, and it's easier to start with the basics
before moving onto the hard stuff. You'll be creating plenty of appletsin Week 2.

Creating the Source File

Aswith all programming languages, your Java source files are created in a plain text editor, or in an
editor that can save filesin plain ASCII without any formatting characters. On UNIX, enmacs, pi co,
and vi will work; on Windows, Notepad or DOS Edit are both text editors that will work (although |
prefer to use the shareware TextPad). On the Macintosh, SimpleText (which came with your Mac) or the
shareware BBedit will work. If you're using a development environment like Café or Roaster, it'll have
its own built-in text editor you can use.

INote

If you're using Windows to do your Java development, you may have
to make sure Windows understandsthe . j ava file extension before
you start; otherwise, your text editor may insist on giving all your
filesa. t xt extension. The easiest way to do thisisto go to any
Windows Explorer window, choose View|Options|File Types, choose
New Type, and add Java Source Fil eand. | avatothe
Description of Type and Associated Extension boxes, respectively.

file:///G|/ebooks/1575211831/ch1.htm (11 of 21) [11/06/2000 7:44:43 PM]

Day 1 -- An Introduction to Java Programming

Fire up your editor of choice and enter the Java program shown in Listing 1.1. Type this program, as
shown, in your text editor. Be careful that all the parentheses, braces, and quotes are there, and that
you've used all the correct upper- and lowercase |etters.

INote

Y ou can also find the code for these examples on the CD-ROM as
part of the sample code. However, it's a good idea to actualy type
these first few short examplesin so that you get afeel for what Java
code actually looks like.

Listing 1.1. Your first Java application.

1: class Hellowrld {
2 public static void main (String args[]) {
3: Systemout.printin("Hello Wrld!");
4: }
5: }

\Warning

The number before each lineis part of the listing and not part of the
program; the numbers are there so | can refer to specific line numbers
when | explain what's going on in the program. Do not include them
in your own file.

After you've finished typing in the program, save the file somewhere on your disk with the name

Hel | oWor | d. j ava. Thisisvery important. Java source files must have the same name as the class
they define (including the same upper- and lowercase letters), and they must have the extension . j ava.
Here, the class definition has the name Hel | oWor | d, so the filename must be Hel | oWor | d. j ava. If
you name your file something else (even something like hel | owor | d. j ava or

Hel | owor | d. j ava), you won't be able to compile it. Make absolutely certain the nameis

Hel | oWorl d. j ava.

Y ou can save your Javafiles anywhere you like on your disk, but | like to have a central directory or
folder to keep them all in. For the examples in this chapter, I've put my filesinto a directory called
TYJt est s (short for Teach Y ourself Java Tests).

Compiling and Running the Source File

Now it's time to compile thefile. If you're using the JDK, you can use the instructions for your computer
system contained in the next few pages. If you're using a graphica development environment, there will
most likely be a button or option to compile the file (check with the documentation that came with your
program).

\Windows

file:///G|/ebooks/1575211831/ch1.htm (12 of 21) [11/06/2000 7:44:43 PM]

Day 1 -- An Introduction to Java Programming

To compile the Java sourcefile, you'll use the command-line Java
compiler that comes with the JDK. To run the compiler, you'll need to
first start up aDOS shell. In Windows 95, the DOS shell is under the
Programs menu (it's called MS-DOS Prompt).

From inside DOS, change directories to the location where you've saved your Hel | oWbr | d. j ava file.
| put mine into the directory TY Jtests, so to change directories I'd use this command:

CD C:\TYJtests

Once you've changed to the right directory, use thej avac command as follows, with the name of the
file asyou saved it in Windows (j avac stands for Java compiler). Note that you have to make sure you
type all the same upper- and lowercase here as well:

javac Hel | oworl d. j ava

INote

The reason that |I've emphasized using the original filename is that
once you're inside the DOS shell, you might notice that your nice
long filenames have been truncated to old-style 8.3 names and that, in
fact, Hel | oWor | d. j ava actually showsup asHELLOW-1. | av.
Don't panic; thisis simply a side effect of Windows 95 and how it
manages long filenames. Ignore the fact that the file appears to be
HELLOW-1. j av and just use the filename you originally used when
you saved thefile.

Figure 1.4 shows what I've done in the DOS shell so you can make sure you're following along.

Figure 1.4 : Compiling Java in the DOS shell.

If all goesweéll, you'll end up with afilecaled Hel | oWwbr | d. cl ass (or at least that'swhat it'll be
called if you look at it outside the DOS shell; from inside DOS its called HELLOW-1. cl a). That's your
Java bytecode file. If you get any errors, go back to your original source file and make sure you typed it
exactly asit appearsin Listing 1.1 with the same upper- and lowercase. Also make sure the filename has
exactly the same upper- and lowercase as the name of the class (that is, both should be Hel | oWor | d).

Once you have aclassfile, you can run that file using the Java bytecode interpreter. The Javainterpreter
iscaled ssimply j ava, and you run it from the DOS shell asyou did j avac. Run your Hello World
program like this from the command line, with all the same upper- and lowercase (and note that the
argument to thej ava program does not havea. cl ass extension):

java Hellowrld

If your program was typed and compiled correctly, you should get the phrase Hel | o Wor | d! printed
to your screen as aresponse. Figure 1.5 shows how | did it.

file:///G|/ebooks/1575211831/ch1.htm (13 of 21) [11/06/2000 7:44:43 PM]

Day 1 -- An Introduction to Java Programming

Figure 1.5 : Running Java applicationsin the DOS shell.

INote

Remember, the Java compiler and the Javainterpreter are different
things. You use the Java compiler (j avac) for your Java source files
to create. cl ass files, and you use the Javainterpreter (j ava) to
actually run your classfiles.

IMacintosh

The JDK for the Mac comes with an application called Java
Compiler. To compile your Java source file, ssimply drag and drop it
on top of the Java Compiler icon. The program will compile your
Javafileand, if there are no errors, create afile called

Hel | oWor | d. cl ass inthe same folder as your original source
file.

Tip

Putting an alias for Java Compiler on the desktop makesit easy to
drag and drop Java sourcefiles.

If you get any errors, go back to your original source file and make sure you typed it exactly asit appears
in Listing 1.1, with the same upper- and lowercase. Also make sure the filename has exactly the same
upper- and lowercase as the name of the class (that is, both should be Hel | oWor | d).

Once you've successfully generated aHel | oWor | d. cl ass file, smply double-click it to runit. The
application Java Runner, part of the Mac JDK, will start, and the program will ask you for command-line
arguments. Leave that screen blank and click OK. A window labeled st dout will appear with the
message Hel | o Wor | d! . Figure 1.6 shows that window.

Figure 1.6 : Running Java applications on the Mac using Java Runner.

That'sit! Keep in mind as you work that you use the Java Compiler application to compileyour . j ava
filesinto. cl ass files, which you can then run using Java Runner.

To compile the Java source file in Solaris, you'll use the command-line Java compiler that comes with the
JDK. From a UNIX command line, cd to the directory that contains your Java sourcefile. | put minein
the directory TYJt est s, so to change directories I'd use this command:

cd ~/TYJtests

Onceyou'rein theright directory, usethej avac command with the name of thefile, like this:

j avac Hel |l oWworl d. java

If all goeswell, you'll end up with afilecalled Hel | oWor | d. cl ass in the same directory as your
source file. That's your Java bytecode file. If you get any errors, go back to your original source file and
make sure you typed it exactly asit appearsin Listing 1.1, with the same upper- and lowercase | etters.
Also make sure the filename has exactly the same upper- and lowercase | etters as the name of the class

file:///G|/ebooks/1575211831/ch1.htm (14 of 21) [11/06/2000 7:44:43 PM]

Day 1 -- An Introduction to Java Programming

(that is, both should be Hel | oWobr | d).

Once you have aclassfile, you can run that file using the Java bytecode interpreter. The Javainterpreter
iscaled ssimply j ava, and you run it from the command line asyou did j avac, like this (and note that
the argument to thej ava program does not havea. cl ass extension):

java Hel |l oWorl d

If your program was typed and compiled correctly, you should get the phraseHel | o Wor | d! printed
to your screen as aresponse. Figure 1.7 shows alisting of all the commands | used to get to this point
(the part with [desi r e] ~[1] ismy system prompt).

Figure 1.7 : Compiling and running a Java application on Solaris.

INote

Remember that the Java compiler and the Java interpreter are
different things. Y ou use the Java compiler (j avac) for your Java
source filesto create . cl ass files, and you use the Javainterpreter
(j ava) to actually run your classfiles.

Creating a Java Applet

Creating appletsis different from creating a simple application. Java applets run and are displayed inside
aWeb page with other page elements, and therefore have special rules for how they behave. Because of
these special rules for applets, creating an applet may in many cases be more complex than creating an
application.

For example, to create a simple Hello World applet, instead of merely being able to print a message as a
set of characters, you have to make space for your message on the Web pages and then use special font
and graphics operations to paint the message to the screen.

INote

Actually, you can run a plain Java application as an applet, but the
Hel | o Wor | d message will print to aspecial window or to alog
file, depending on how the browser hasits output set up. You'll learn
more about this next week.

Creating the Source File

In this example, you'll create asimple Hello World applet, place it inside a Web page, and view the
result. Aswith the Hello World application, you'll first create the source file in a plain text editor. Listing
1.2 shows the code for the example.

Listing 1.2. The Hello World applet.

1: inport java.awt. G aphics;
2:

file:///G|/ebooks/1575211831/ch1.htm (15 of 21) [11/06/2000 7:44:43 PM]

Day 1 -- An Introduction to Java Programming

public class Hell oWorl dAppl et extends java. appl et. Appl et {

public void paint(Gaphics g) {
g.drawString("Hello world!'", 5, 25);

XN RW

Save that file just as you did the Hello World application, with the filename exactly the same as the name
of the class. In this case the classnameis Hel | oWbr | dAppl et , so the filename you save it to would
be Hel | oWbr | dAppl et . j ava. Aswith the application, | put thefilein adirectory called TYJchO1,
but you can save it anywhere you like.

Compiling the Source File

The next step isto compile the Java applet file. Despite the fact that thisis an applet, you compile thefile
exactly the same way you did the Java application, using one of the following procedures:

j avac Hel | oWor | dAppl et . | ava
j avac Hel | oWwor | dAppl et . j ava

\Windows

From inside aDOS shell, cd to the directory containing your appl et
source file, and use thej avac command to compile it (watch those
upper- and lowercase letters):

IMacintosh

Drag and drop the Hel | oWor | dAppl et . j ava file onto the Java
Compiler icon.

Salaris
From a command line, cd to the directory containing your applet
source file and use thej avac command to compileit:

Including the Applet in a Web Page

If you've typed the file correctly, you should end up with afile called Hel | oWor | dAppl et . cl ass in
the same directory as your source file. That's your Java applet file; to have the applet run inside aWeb
page you must refer to that classfile inside the HTML code for that page using the <APPLET> tag.
Listing 1.3 showsasimple HTML file you can use.

Listing 1.3. The HTML with the applet in it.

1: <HTM.>
2. <HEAD>

file:///G|/ebooks/1575211831/ch1.htm (16 of 21) [11/06/2000 7:44:43 PM]

Day 1 -- An Introduction to Java Programming

3: <TITLE>Hell o to Everyone! </ TI TLE>

4: </ HEAD><BODY>

5: <P>My Java appl et says:

6: <APPLET CODE="Hel | oWbr| dAppl et . cl ass" W DTH=150 HElI GHT=25>
7. </ APPLET>

8: </ BODY>

9: </HTM.>

You'll learn more about <APPLET> later in this book, but here are two things to note about it:

« Usethe CODE attribute to indicate the name of the class that contains your applet, here
Hel | oWor | dAppl et . d ass.

o Usethe W DTHand HEI GHT attributes to indicate the size of the applet on the page. The browser
uses these values to know how big a chunk of space to leave for the applet on the page. Here, a
box 150 pixels wide and 25 pixels high is created.

Save the HTML file in the same directory as your classfile, with a descriptive name and an . ht m
extension (for example, you might name your HTML file the same name as your
applet-Hel | oWor | dAppl et . ht m).

INote

As mentioned earlier with the Java source files, your text editor may
insist on naming your HTML fileswith a .txt extension if Windows
does not understand what the .html extension is used for. Select
View|Options|File Types from any Windows Explorer window to add
anew filetypefor HTML files to solve this problem.

Now you're ready for the final test-actually viewing the result of running your applet. To view the applet,
you need one of the following:

« A browser that supports Java applets, such as Netscape 2.0 or Internet Explorer 3.0. If you're
running on the Macintosh, you'll need Netscape 3.0 or later. If you're running on Windows 95 or
NT, you'll need the 32-bit version of Netscape. And if you're using Internet Explorer, you'll need
the 3.0 beta 5 or later (the final version will do just fine).

o Theappl et vi ewer application, which is part of the IDK. The appl et vi ewer isnot aWeb
browser and won't let you to see the entire Web page, but it's acceptable for testing to see how an
applet will ook and behave if thereis nothing else available.

« An applet viewer or runner tool that comes with your development environment.

If you're using a Java-enabled browser such as Netscape to view your applet files, you can use the Open
File... item under the File menu to navigate to the HTML file containing the applet (make sure you open
the HTML file and not the classfile). In Internet Explorer, select File]Open and then Browse to find the
file on your disk. Y ou don't need to install anything on a Web server yet; al this works on your local
system. Note that the Java applet may take a while to start up after the page appears to be done loading;
be patient. Figure 1.8 shows the result of running the applet in Netscape.

Figure 1.8 : The applet running in Netscape.

file:///G|/ebooks/1575211831/ch1.htm (17 of 21) [11/06/2000 7:44:43 PM]

Day 1 -- An Introduction to Java Programming

If you don't have a Web browser with Java capabilities built into it, you can use the JDK's
appl et vi ewer program to view your Java applet.

appl etvi ewer HTM./ Hel | oWbr | dAppl et. ht m

|Windows or Solaris

Toruntheappl et vi ewer in Windows or Solaris versions of the
JDK, cd to the directory where your HTML and classfiles are
contained and use the appl et vi ewer command with the name of
the HTML file you just created:

Theappl et vi ewer will show you only the applet itself, not the HTML text around the applet.
Although the appl et vi ewer isagood way to do simple tests of Java applets, it's a better ideato get a
Java-enabled browser so that you can see your applet on its page initsfull glory.

Troubleshooting

If you've run into any problems with the previous examples, this section can help. Here are some of the
most common problems and how to fix them:

« Bad command or fil enane or Command not found
These errors result when you do not have the JDK's bi n directory in your execution path, or the
path to that directory is wrong. On Windows, double-check your aut oexec. bat file; on UNIX,
check the system file with your path commandsinit (. cshrc, .l ogi n,. profil e, or some
similar file).

e« javac: invalid argunent
Make sure the name of the file you're giving to thej avac command is exactly the same name as
thefile. In particular, in the DOS shell you want to use the Windows filename witha. j ava
extension, not the DOS equivalent (HELLOW-1. j av, for example).

« VArning: public class Hell oWr | dAppl et nust be defined in a file
call ed Hel |l oWor| dAppl et .] ava
This error most often happens if there is a mismatch between the name of the class as defined in
the Javafileitself (the name following the word class) and the name of the) ava sourcefile. Both
the filenames must match, including upper- and lowercase letters (this particular error implies that
the filename had lowercase letters). Rename either the filename or the class name, and this error
will go away.

« Insufficient-memory errors
The JDK is not the most efficient user of memory. If you're getting errors about memory, consider
closing larger programs before running Java compiles, turn on virtual memory, or install more
RAM.

« Other code errors
If you're unable to compile the Java source files because of other errors | haven't mentioned here,
be sure that you've typed them in exactly as they appear, including all upper- and lowercase |etters.
Javais case sensitive, meaning that upper- and lowercase |etters are treated differently, so you will
need to make sure that everything is capitalized correctly. If al elsefails, try comparing your

file:///G|/ebooks/1575211831/ch1.htm (18 of 21) [11/06/2000 7:44:43 PM]

Day 1 -- An Introduction to Java Programming

source files to the files on the CD-ROM.

Summary

Today you've gotten a basic introduction to the Java language and its goals and features. Javais a
programming language, similar to C or C++, in which you can develop awide range of programs. The
most common use of Java at the moment is in creating applets for HotJava, an advanced World Wide
Web browser also written in Java. Applets are Java programs that are downloaded and run as part of a
Web page. Applets can create animation, games, interactive programs, and other multimedia effects on
Web pages.

Javas strengthslie in its portability-both at the source and at the binary level, in its object-oriented
design-and in its simplicity. Each of these features helps make applets possible, but they also make Java
an excellent language for writing more general-purpose programs that do not require a Java-enabled
browser to run. These general-purpose Java programs are called applications.

To end this day, you experimented with an example of an applet and an example of an application,
getting afeel for the differences between the two and how to create, compile, and run Java programs-or,
in the case of applets, how to include them in Web pages. From here, you now have the foundation to
create more complex applications and applets. Onward to Day 2, "Object-Oriented Programming and

Java'l

Q&A

Q: | know alot about HTML, but not much about computer programming. Can | still write
Java programs?

A: If you have no programming experience whatsoever, you most likely will find programming

Java significantly more difficult than HTML. However, Javais an excellent language to learn

programming with, and if you patiently work through the examples and the exercisesin this

book, you should be able to learn enough to get started with Java.

What'stherelationship between JavaScript and Java?

They have the same first four |etters.

A common misconception in the Web world today is that Java and JavaScript have more in

common than they actually do. Javais the general-purpose programming language that you'll

learn about in this book; you use it to create applets. JavaScript is a Netscape-invented scripting
language that ooks sort of like Java; with it you can do various nifty thingsin Web pages. They
are independent languages, used for different purposes. If you're interested in JavaScript
programming, you'll want to pick up another book, such as Teach Y ourself JavaScript in a Week
or Laura Lemay's Web Workshop: JavaScript, both also available from Sams.net Publishing.

Q: According totoday's lesson, Java applets are downloaded via a Java-enabled browser such
as Netscape and run on thereader's system. Isn't that an enor mous security hole? What
stops someone from writing an applet that compromises the security of my system-or
wor se, that damages my system?

> O

file:///G|/ebooks/1575211831/ch1.htm (19 of 21) [11/06/2000 7:44:43 PM]

Day 1 -- An Introduction to Java Programming

A:

> O

Sun's Java team has thought a great deal about the security of applets within Java-enabled
browsers and has implemented several checks to make sure applets cannot do nasty things:

« Javaapplets cannot read or write to the disk on the local system.
« Javaapplets cannot execute any programs on the local system.

« Java applets cannot connect to any machines on the Web except for the server from which
they are originally downloaded.

Note that some of these restrictions may be alowed in some browsers or may be turned on in the
browser configuration. However, you cannot expect any of these capabilities to be available.

In addition, the Java compiler and interpreter check both the Java source code and the Java
bytecodes to make sure that the Java programmer has not tried any sneaky tricks (for example,
overrunning buffers or stack frames).

These checks obviously cannot stop every potential security hole (no system can promise that!),
but they can significantly reduce the potential for hostile applets. Y ou'll learn more about
security issues for applets on Day 8, "Java Applet Basics," and in greater detail on Day 21,
"Under the Hood."

| followed all the directionsyou gave for creating a Java applet. | loaded it into HotJava,
but Hello World didn't show up. What did | do wrong?

Don't use HotJavato view applets you've created in this book; get a more up-to-date browser
such as Netscape or Internet Explorer. HotJava was an experimental browser and has not been
updated since soon after its original release. The steps you take to define and write an applet
have changed since then, and the applets you write now will not run on HotJava.

Y ou've mentioned Solaris, Windows, and Macintosh in this chapter. What about other
oper ating systems?

If you use aflavor of UNIX other than Solaris, chances are good that the JDK has been ported to
your system. Here are some examples:

e SGl'sversion of the IDK can be found at
http://www.sgi.com/Products/cosmo/cosmo instructions.html.

« Information about Java for Linux can be found at
http://ww. bl ackdown. org/java-Ili nux/.

« IBM has ported the JDK to OS/2 and Al X. Find out more from
http://ww. ncc. hurley.ibm com javainfol/.

e OSF is porting the JDK to HP/UX, Unixware, Sony NEWS, and Digital UNIX. See
http://ww. osf.org/ mall/web/javaport.htm

(Thanksto Elliote Rusty Harold's Java FAQ at

http://ww. sunsite.unc. edu/ | avafaqg/javafag/ ht m forthisinformation.)
Why doesn't Java run on Windows 3.1?

Technical limitations in Windows 3.1 make porting Javato Windows 3.1 particularly difficult.
Rumor has it that both IBM and Microsoft are working on ports, but no real information is
forthcoming.

file:///G|/ebooks/1575211831/ch1.htm (20 of 21) [11/06/2000 7:44:43 PM]

http://www.sgi.com/Products/cosmo/cosmo_instructions.html
http://www.blackdown.org/java-linux/
http://www.ncc.hurley.ibm.com/javainfo/
http://www.osf.org/mall/web/javaport.htm
http://www.sunsite.unc.edu/javafaq/javafaq/html

Day 1 -- An Introduction to Java Programming

Q: I'musing Notepad on Windowsto edit my Java files. The program insists on adding a
. t xt extension to all my files, regardless of what | namethem (so | alwaysend up with
fileslikeHel | oWor | d. j ava. t xt). Short of renaming them before | compile them, what
elsecan | dotofix this?

A: Although you can rename the files just before you compile them, that can get to be a pain,
particularly when you have alot of files. The problem here is that Windows doesn't understand
the.] ava extension (you may aso have this problem with HTML's. ht ml extension aswell).

To fix this, go into any Windows Explorer window and select View|Options|File Types. From
that panel, select New Type. Enter Java Sour ce Fi | es inthe Description of Type box and
.] ava into the Associated Extension box. Then click OK. Do the same with HTML filesif you
need to, and click OK again. Y ou should now be able to use Notepad (or any other text editor) to
create and save Javaand HTML files.

Wherecan | learn more about Java and find applets and applicationsto play with?

Y ou can read the rest of thisbook! Here are some other placesto look for Javainformation and
Java applets:

« TheJavahomepageathtt p: //wwv. j ava. sun. com isthe official source for Java
information, including information about the JDK, about the upcoming 1.1 release, and
about devel oper tools such as the Java Workshop, as well as extensive documentation.

o« Gamelan,athtt p://ww. ganel an. com , isarepository of applets and Java
information, organized into categories. If you want to play with applets or applications,
thisisthe place to look.

« For Javadiscussion, check out theconp. | ang. j ava newsgroups, including
conp. | ang. j ava. programer,conp. | ang. j ava. t ech,
conp. | ang. j ava. advocacy, and so on. (You'll need a Usenet newsreader to access
these newsgroups.)

> O

file:///G|/ebooks/1575211831/ch1.htm (21 of 21) [11/06/2000 7:44:43 PM]

http://www.java.sun.com/
http://www.gamelan.com/

file:///G|/ebooks/1575211831/f1-1.qif

= Metscape: Electro Magnetic Poetry =

f@%&&*ﬁ

Edit Reload | Images | Print Find

Go n

Back |Forward| Home

Location: | http S Sprominence com S javalpoetry £ |

Electro Magnetic Poetry

* inspired by the tlagnetic Postry Eit & Dave Eapell #

woman| ﬁnger!
er est

Iuscmus T

J — A58
So Yeookam . Sflood
v | 2 hc- n-::} i gard b|tter}

ecd |d| _IL"“‘: Y fast do| lazy pﬂ%@ﬁ
L moon |mean
K:ne—' . delicious smaoth

i er| were| man 25
acheLH;!'J__ lather Ic--n-d| J . >ther clubﬁ

still | ot AL sweal

RS

M essential| ure 1| dream| of| a| cooll applet] _,_rLd"ESS |H

e ji_ﬂru

al’ter|
J o iIsper ml——— gﬂddess

|
an Fwor
ar;nu_ltnt EI leas | ~ beauty| E e | M —qul

I pﬂh&l 1 QIng

2 wat J ~ Rim
ot i beat ; dmc-l Ak

el un blu
Erenulﬁw- breast| = 2";“" bed ind| ¢ry prod- p awa |- eggn take| may |
hit they h|5|e-: b_au if

above

ol bml 24
Uy enotalways | fiddle :'_"CkL'n .Ei,‘lﬂ dellcate uage
tnPY _,J raw ¢ hea | smm

e R «:aur“:'t 5mear|
behind.cn I_please| B boy) gl

Ted o¥er —9
about; geath ana“_‘ E M ﬂ

Code Copyright {c] 1996 Pr-::-rmnence Dr.:-t Com

u']PL
s qo back to th
0r

Tif0d| http:/ Aprominence .com

file:///G|/ebooks/1575211831/f1-1.gif [11/06/2000 7:44:45 PM]

file:/l/G|/ebooks/1575211831/f1-2.qgif

Binary File
[Frentium)

Your Code

C:ompiler { Pentium] Binary Fila
(PowarPC)

- Compilar [PowerPC) Binary File
—_— (SPARC)

Compiler (SPARC)

file:///G|/ebooks/1575211831/f1-2.gif [11/06/2000 7:44:45 PM]

file:/l/G|/ebooks/1575211831/f1-3.qif

dava Cons

Java Brytmoccs
[Platfcimi
Independeni]
i

Java Compier

file:///G|/ebooks/1575211831/f1-3.gif [11/06/2000 7:44:45 PM]

Day 20 -- Using Native Methods and Libraries

Day 20
Using Native Methods and Libraries

by Laura Lemay and CharlesL. Perkins

CONTENTS
o Why Use Native Methods?
o Advantages of Using Native Methods
» Disadvantages of Native Methods
« Thelllusion of Required Efficiency

o Design First, Efficiency Later

o Just-in-Time Compilers

o Simple Optimization Tricks
o Writing Native Methods
o Write Your Java Code
0 Generate Header and Stub Files
o Implementing the Native Library

o Using Your Library

« Tools and Techniques for Writing Native |mplementations
0 Names
0 Accessing Java Objects
o Cdling Methods
0 Creating New Java Objects
o Handling Exceptions
o Dealing with Strings
e SUMMary
o Q&A

Up to this point in the book you've been learning specifically about programming in the Javalanguage and with the Java class
libraries. That's why this book is called Teach Yourself Java, after all. Today I'm going to digress alittle bit and talk about
native methods and libraries.

Native methods and libraries are bits of executable code that are written in the traditional way: They are written in alanguage
such as C or C++ and compiled into a platform-specific library such asaDLL or a shared library. Inside your Java
applications you can gain access to the functions inside those libraries, allowing you to create a sort of hybrid Java and native
code application. Although using native methods can give you some extra benefits Java does not provide (such as faster
execution or access to alarge body of existing code), there are significant disadvantages in using native methods as well.

INew Term

file:///G|/ebooks/1575211831/ch20.htm (1 of 16) [11/06/2000 7:44:48 PM]

Day 20 -- Using Native Methods and Libraries

Native methods and native libraries are bits of platform-specific
executable code (written in languages such as C or C++) contained in
libraries or DLLs. You can create a hybrid Java application that has
access to those native libraries.

Today's lesson covers various topics relating to native methods, including the following:
« The advantages and disadvantages of using native methods
« Why using native methods for speed or efficiency is often unnecessary
« The stepsfor creating native methods, header and stub files, and native implementations, and linking it al together
« Various functions and utilities for mapping between Javaand C and C++

INote

In today's lesson you'll learn the basic techniques for writing native
methods in the current version of Java. For the Java 1.1 release, Sun
will publish further guidelines for writing native methods to help
make sure that native implementations will work between different
versions of the Javaruntime. These guidelines will be in addition to
the technique you will learn in today's lesson, and will build on the
skillsyou learn here.

Why Use Native Methods?

Before | get into the nitty-gritty details of creating native methods, you should first be aware of what native methods give
you-and what they take away. Although native methods provide some advantages, those advantages may not appear too
exciting when viewed in light of native methods' disadvantages. This section describes both.

Advantages of Using Native Methods

There are several reasons that you might want to consider using native methods in your own Java programs. By far the best of
these reasons are

« Gaining access to specia capabilities of your computer or operating system
« Needing the extra speed that native methods provide
« Needing accessto alarge body of existing code

Thefirst, and by far the best, reason to implement native methods is because you need to utilize a special capability of your
computer or operating system that the Java class library does not already provide for you. Such capabilities include
interfacing to new peripheral devices or plug-in cards, accessing a different type of networking, or using a unique, but
valuable feature of your particular operating system. Two more concrete examples are acquiring real-time audio input from a
microphone or using 3D "accelerator” hardwarein a 3D library. Neither of these is provided to you by the current Java
environment, so you must implement them outside Java, in some other language (currently C or any language that can link
with C).

The second, and often illusory, reason to use native methods is speed. The argument has been made that because interpreted
bytecode isterribly slow in comparison to how quickly native code runs (and it is far slower, as much as 25 times slower),
Java code is unsuitable for most applications. In many cases this simply isn't true, or you may be able to extract afair amount
of speed out of your Java program without resorting to native methods (as we'll explore in greater detail later in today's
lesson). If, however, your Java application uses very processor-intensive calculations (for example, number crunching or 3D
rendering), using native methods for the speed-critical functions and Java for the more general interfaces creates a system
with more benefits than a system written in either pure native code or pure Java. In fact, the Java class library usesthis
approach for many critical system classes to raise the overall level of efficiency in the system. Asauser of the Java
environment, you don't even know (or see) any side effects of this (except, perhaps, afew classes or methods that aref i nal
that might not be otherwise).

file:///G|/ebooks/1575211831/ch20.htm (2 of 16) [11/06/2000 7:44:48 PM]

Day 20 -- Using Native Methods and Libraries

The third reason to use native classesisif your project has alarge body of existing code (what's called legacy code, which
may be hundreds of lines of code written and maintained by other people over the years). As a good Java programmer and
advocate you would, of course, want to port this large body of code to Java. However, real-life considerations of time and
resources often don't allow this option. Native methods allow you to write a single interface to that code through Java and link
into the existing code as it's needed.

Disadvantages of Native Methods

After reading the advantages of using native methods, you may be all set to jump to the section on how to use them and skip
this section. Don't. For every good thing native methods provide in your Java code, they take away a benefit that Java
providesin thefirst place: the ability for your code to run anywhere and be easily ported from one system to another.

Using pure Java, an application or applet can be run on any Java environment in the world by downloading it viathe Web or
by ssmply loading the class file on that system. Any new architectures created-or new operating systems written-are irrelevant
to your code. All you need is that the (tiny) Java Virtual Machine (or a browser that has one inside it) be available, and it can
run anywhere, anytime-now and in the future.

With a hybrid Java and native method program, however, you've given up that cross-platform capability. First of al, Java
programs that use native methods cannot be applets. Period. For security reasons, applets cannot load native code. So if you
use native methods, you've just removed the enormous number of users on the World Wide Web from your market.

Even if you're just creating a Java application, however, and don't intend your code to be run on the Web, using native
methods also negates the capability of your program to run on any platform. Native code is, by definition, platform specific.
The native code must exist on the platform your Java program is running on for that program to work. For your program to
work on different platforms, you'll have to port your native code to that specific platform-which may not be atrivial task. And
as new systems or new versions of operating systems appear, you may have to update or re-release new versions of that native
code for every system. The write-it-once-run-it-everywhere advantage of Java ceases to exist when you use native methods.

The lllusion of Required Efficiency

Let'sdigress for amoment and talk about the concept of speed and efficiency of Java programs-or the supposed lack thereof,
which may drive you to using native code in your Java programs.

Java bytecode has acquired the reputation of being extraordinarily slow to run in comparison with native executable code.
And, examining the benchmarks, Java bytecode is indeed very much slower-as much as 25 times slower. However, that
doesn't necessarily make a Java program unbearable to use. Simple applets or applications that rely on user interface elements
will appear to run just as fast as their native equivalents. Button clicks are just as fast in Java as they are in native code, and
your users are very slow compared to modern computers. It's only in the case of very processor-intensive operations that Java
starts to come up short in comparison to native code.

At any rate, worrying over the speed of your Java programs before you write them is often arathole that can distract you from
the larger issues. In this section I'll 1ook at both those larger issues and at the solutions that can make your Java programs run
faster.

Design First, Efficiency Later

When you design your program, all your energy and creativity should be directed at the design of atight, concise, minimal set
of classes and methods that are maximally general, abstract, and reusable. (If you think that is easy, look around for afew
years and see how bad most softwareis.) If you spend most of your programming time on thinking and rethinking these
fundamental goals and how to achieve them, you are preparing for the future-a future where software is assembled as needed
from small components swimming in a sea of network facilities, and anyone can write a component seen by millions (and
reused in their programs) in minutes. If, instead, you spend your energy worrying about the speed your software will run right
now on some computer, your work will be irrelevant after the 18 to 36 monthsit will take hardware to be fast enough to hide
that minor inefficiency in your program.

file:///G|/ebooks/1575211831/ch20.htm (3 of 16) [11/06/2000 7:44:48 PM]

Day 20 -- Using Native Methods and Libraries

So you should ignore efficiency altogether? Of course not! Some of the great algorithms of computer science deal with
solving hard or "impossible" problems in reasonable amounts of time-and writing your programs carelessly can lead to
remarkably slow results. Carelessness, however, can as easily lead to incorrect, fragile, or nonreusable results. If you correct
all these latter problemsfirst, the resulting software will be clean, will naturally reflect the structure of the problem you're
trying to solve, and thus will be amenable to "speeding up" later.

INote

There are always cases where you must be fanatical about efficiency
in many parts of a set of classes. The Javaclasslibrary itself issuch a
case, asisanything that must run in real-time for some critical
real-world application (such as flying a plane). Such applications are
rare, however.

When speaking of a new kind of programming that must soon
emerge, Bill Joy likesto invoke the four S's of Java: small, simple,
safe, and secure. The "feel” of the Javalanguage itself encourages the
pursuit of clarity and the reduction of complexity. The intense pursuit
of efficiency, which increases complexity and reduces clarity, is
antithetical to these goals.

Once you build a solid foundation, debug your classes, and your program (or applet) works asyou'd like it to, then it'stime to
begin optimizing it.

Just-in-Time Compilers

The first thing to keep in mind about the execution speed of Javaisthat |ots of people are working on fixing it. And the most
promising of these technical advancementsis the just-in-time (JT) compiler.

Just-in-time compilers trand ate Java bytecode into native machine code on-the-fly as the bytecode is running. Depending on
how good the JIT compiler is, you can often get very close to native execution speeds out of a standard Java program-without
needing to use native code and without needing to make any modifications to your Java program-it just works.

The disadvantage, however, is that to get the speed increase your Java program must be run on a platform that hasa J T
compiler installed. At the time of thiswriting, JIT compilers are still new. Many companies are working on JIT compilers,
however, and most of them have versions working or bundled in with development tools so you can experiment with their
power. Microsoft's Internet Explorer Web browser, for example, hasa JI'T compiler built into it. (You'll learn more about the
available JIT compilers are expected on Day 22, "Java Programming Tools.") JT compilers are expected to become much

more popular and widespread over the next year.
Simple Optimization Tricks

In addition to relying on JIT technology to speed up your Java programs, there are usually simple optimization tricks you can
do to make your programs run more efficiently. Y our development environment may even provide a profiler, which tells you
where the slowest or more frequently run portions of your program are occurring. Even if you don't have a profiler, you can
often use debugging tools to find the bottlenecks in your programs and begin to make targeted changes to your classes.

Whole books have been written for optimizing various bits of code in any language, and they can describe it much better than
we can. But there are afew simpletricks you can try for the first pass.

First, identify the crucial few methods that take most of the time (there are aimost aways just afew, and often just one, that
take up the majority of your program'stime). If those methods contain loops, examine the inner loops to see whether they

« Call methods that can be madef i nal

« Call agroup of methods that can be collapsed into a single method

« Create objects that can be reused rather than created anew for each loop

If you notice that along chain of, for example, four or more method calls is needed to reach a destination method's code, and
this execution path isin one of the critical sections of the program, you can "short-circuit” directly to that destination method

file:///G|/ebooks/1575211831/ch20.htm (4 of 16) [11/06/2000 7:44:48 PM]

Day 20 -- Using Native Methods and Libraries

in the topmost method. This may require adding a new instance variable to reference the object for that method call directly.
This quite often violates layering or encapsulation constraints. This violation, and any added complexity, is the price you pay
for efficiency.

Writing Native Methods

If, after al these tricks, your Java code is till just too slow, it'stime to consider using native methods. In this section you'll
learn the steps you must take to write your Java code so that it uses native methods, how to write the native code to
implement those native methods, and how to compile and link it all together so it works. Thisinvolves four basic steps:

« Write your Java code so that the methods that will be native have specia declarations using the nat i ve modifier.

« Compile your Java code and use thej avah program to generate special header and stub files, which make up the
starting point for your native code.

« Write your native implementations of the native methods.
o Compileall the native filesinto a shared library or DLL and run your Java program.

|Note

This discussion-and, in fact, the JDK itself-assumes that you'll be
writing your native code in C and C++. Other Java devel opment
environments may support other languages.

Write Your Java Code

The first step to implementing native methods is to decide which methods in which classes of your Java program will be
native. The mapping between Java and native libraries is through methods (functions), so designing your Java code and
keeping track of which methods are native is the most important first step.

To declare that amethod will be native inside your Java code, you add the nat i ve modifier to that method signature, like
this:

public native void goNative(int x, int y);

INote
Thenat i ve modifier can be used with many of the modifiers you
learned about on Day 15, "Modifiers, Access Control, and Class
Design,” including publ i c, pri vat e, prot ect ed, fi nal , and
so on. It cannot be used with abst r act because abstract methods
do not have definitions, native or otherwise.

Note also that the native method in your Java code has no method body. Because this is a native method, its implementation
will be provided by the native code, not by Java. Just add a semicolon to the end of the line.

The other change you'll have to make to your Java code isto explicitly load the native library that will contain the native code
for these methods. To do this, you add the following boilerplate code to your Java class:

static {
System | oadLi brary("li bnynativelibrary.so");
}

This bit of code, called a static initializer, is used to run code only once when the classisfirst loaded into the system. In this
case, the static initializer executesthe Syst em | oadLi br ar y() method to load in your native library as the classitself is
being loaded. If the native library fails to load for some reason, the loading of the Java class fails as well, guaranteeing that no
half-set-up version of the class can ever be created.

file:///G|/ebooks/1575211831/ch20.htm (5 of 16) [11/06/2000 7:44:48 PM]

Day 20 -- Using Native Methods and Libraries

Y ou can pick any name you want for your native library-here we've used the UNIX convention that libraries start with the
word | i b and end with the extension . so. For Windows systems, libraries typically end with the extension . DLL.

You can also usethe Syst em | oad() method to load your native libraries. The difference is that the single argument to

| oad() isthe complete pathname to your native library, whereas the argument to | oadLi brary() isjust thelibrary
name, and Java uses the standard way of finding libraries for your system to locate that library (usually environment variables
suchasLD_LI BRARY_PATH). The latter is more flexible and general-purpose, so it's recommended you use it instead.

And that's all you need to do in your Java code to create native methods and libraries. Subclasses of any class containing your
new nat i ve methods can still override them, and these new (Java) methods are called for instances of the new subclasses
(just as you'd expect).

Listing 20.1 shows an example of aJava program called Si npl eFi | e that was written to use native methods. This program
might be used in aversion of the Java environment that does not provide file input or output (1/0). Becausefile1/O is
typically system-dependent, native methods must be used to implement those operations.

|Note

This example combines simplified versions of two actual Javalibrary
classes,j ava.io. Fil eandj ava. i 0. RandomAccessFi | e.

Listing 20.1. Si npl eFi | e, aJava program that uses native methods.

1. public class SinpleFile {
2: public static final char separ at or Char = '>';
3: pr ot ect ed String path;
4: pr ot ect ed i nt fd;
5:
6: public SinpleFile(String s) {
7. path = s;
8: }
9:
10: public String getFileNane() {
11: int index = path.l|astlndexOf(separatorChar);
12:
13: return (index < 0) ? path : path.substring(index + 1);
14: }
15:
16: public String getPath() {
17: return path;
18: }
19:
20: public native bool ean open();
21: public native void cl ose();
22: public native int read(byte[] buffer, int Iength);
23: public native int wite(byte[] buffer, int 1length);
24:
25: static {
26: System | oadLi brary("sinple"); [// runs when class first | oaded
27: }
28: }

The first thing you notice about Si npl eFi | e'simplementation is how unremarkable the first two-thirds of its Java code is!
It looks just like any other class, with a class and an instance variable, a constructor, and two norma method implementations
(get Fi | eNanme() and get Pat h()). Then, in lines 20 through 23, there are four nat i ve method declarations, which are

file:///G|/ebooks/1575211831/ch20.htm (6 of 16) [11/06/2000 7:44:48 PM]

Day 20 -- Using Native Methods and Libraries

just normal method declarations with the code block replaced by a semicolon and the modifier nat i ve added. These are the
methods you have to implement in C code | ater.

Finally, notethe call to Syst em | oadLi brary() inline 26, which loads a native library called si npl e. (Weve
intentionally violated library-naming standards here to make this example ssmpler.)

INote

The unusual separ at or Char (' >') isused ssimply to demonstrate
what an implementation might look like on some strange computer
whose file system didn't use any of the more common path-separator
conventions. Early Xerox computersused' >' as a separator, and
severa existing computer systems still use strange separators today,
so thisisnot al that farfetched.

After you write the native part of your Java program, Si npl eFi | e objects can be created and used in the usual way:
SinmpleFile f = new SinpleFile(">sone>pat h>and>fil eNane");

.open();
.read(...);
wite(...);
.close();

— o o —

Generate Header and Stub Files

The second step to implementing native code is to generate a special set of header and stub files for use by your C or C++
files that implement those native methods. To generate these header and stub files, you use thej avah program, which is part
of the DK (it's called JavaHin the Mac JDK).

First, you'll need to compile your Java program as you would any other Java program, using the Java compiler.
Header Files

To generate the headers you need for your native methods, use thej avah program. For the Si npl eFi | e classlisted in the
previous section, use one of the following:

To generate header filesfor aclass, usethej avah program with the name of the classfile, minusthe. cl ass extension.
For example, to generate the header file for the Si npl eFi | e class, use this command line:
javah SinpleFile
To generate the header file for the Si npl eFi | e class, drag-and-drop the class file onto the JavaH icon.
Thefile Si npl eFi | e. h will be created in the same directory asthe Si npl eFi | e. cl ass file.

Notethat if the classyou've given to] avah isinside a package, j avah prepends the package's full name to the header
filename (and to the structure names it generates inside that file) with all the dots (.) replaced by underscores (). If

Si npl eFi | e had been contained in a hypothetical package called acne. wi dget s. fi | es, | avah would have
generated a header filenamed acne_w dgets_fil es_Si npl eFi | e. h, and the various names within it would have
been renamed in asimilar manner.

Listing 20.2 shows the header file that is generated by | avah.

Listing 20.2. Si npl eFi | e. h (a header file).

1: #include <native. h>
2: |* Header for class SinpleFile */

file:///G|/ebooks/1575211831/ch20.htm (7 of 16) [11/06/2000 7:44:48 PM]

Day 20 -- Using Native Methods and Libraries

3

4: #ifndef _Included_SinpleFile
5: #define _Included_SinpleFile
6: struct H ava_l ang_String;
7.
8
9

typedef struct O assSinpleFile {

. #define SinpleFile_separatorChar 62L
10: struct H ava_lang_String *path;
11: | ong fd;

12: } d assSinpleFile;
13: Handl eTo(Si npl eFile);

15: #ifdef _ cplusplus

16: extern "C' {

17: #endif

18: extern /*bool ean*/ long SinpleFile open(struct HSi npleFile *);

19: extern void SinpleFile close(struct HSi npleFile *);

20: extern long SinpleFile_read(struct HSinpleFile *, HArrayOrByte *,1ong);
21: extern long SinpleFile_wite(struct HSinpleFile *, HArrayOf Byte *,1o0ng);
22: #ifdef __cplusplus

23: }
24: #endif
25: #endif

There are afew things to note about this header file. First, notethe st r uct C assSi npl eFi | e, which contains variables
that parallel the instance variables inside your class. Second, note the method signatures at the end of the file; these are the
function definitions you'll usein your C or C++ file to implement the actual native methods in the Java code.

Stub Files

To "run interference” between the Javaworld of objects, arrays, and other high-level constructs and the lower-level world of
C, you need stubs, which trandate arguments and return val ues between Java and C.

Subs are pieces of "glue" code that tie together Java and C. Stubs trandlate arguments and values and convert the various
constructs in each language to something that can be understood in the other.

Stubs can be automatically generated by j avah, just like headers. There isn't much you need to know about the stub file, just
that it has to be compiled and linked with the C code you writeto alow it to interface properly with Java.

To create stub files, you also usethej avah program:

Usethej avah program with the - st ubs option to create the stub file:

javah -stubs SinpleFile
Thefile Si npl eFi | e. ¢ will be generated in the same directory as the classfile.
The stub file was generated at the same time you created the header file.
Listing 20.3 shows the result of the stub file for the Si npl eFi | e class.

Listing 20.3. Si npl eFi | e. c (astub file).

1:/* DONOT EDT THIS FILE - it is machine generated */
2: #i ncl ude <St ubPreanbl e. h>
3:

file:///G|/ebooks/1575211831/ch20.htm (8 of 16) [11/06/2000 7:44:48 PM]

Day 20 -- Using Native Methods and Libraries

4:/* Stubs for class SinpleFile */
5:/* SYMBOL: "SinpleFilelopen()Zz", Java_Si npl eFile_open_stub */
6: _decl spec(dl | export) stack_ item *Java_Si npl eFil e_open_stub(stack_item*_P_,
7: struct execenv * _EE) {
8: extern long SinpleFile_open(void *);
9: P [0].i = (SinpleFile open(_P_[0].p) ? TRUE : FALSE);
10: return _P_ + 1;
11:}

12:/* SYMBOL: "SinpleFilelclose()V', Java_Sinpl eFile_close_stub */
13: decl spec(dl Il export) stack _item *Java_Sinpl eFil e _cl ose_stub(stack item*_P_,

14: struct execenv * EE) {

15: extern void SinpleFile_close(void *);
16: (void) SinpleFile close(_P [0].p);
17: return _P_;

18:}

19:/* SYMBOL: "SinpleFile/read([Bl)I", Java SinpleFile read stub */
20: decl spec(dll export) stack item *Java_SinpleFile read stub(stack item* P_|,

21: struct execenv *_EE) {

22: extern long SinpleFile_read(void *,void *,|ong);

23: _P [0].i = SinpleFile_read(_P_[O].p,((_P_[1].p)),((_P_[2].1)));
24: return P+ 1;

25:}

26:/* SYMBOL: "SinpleFile/wite([Bl)I", Java SinpleFile wite_stub */
27: __decl spec(dll export) stack _item*Java_SinpleFile wite_stub(stack item*_P_,

28: struct execenv * EE) {

29: extern long SinpleFile wite(void *,void *,1ong);

30: _P[0].i = SinmpleFile wite(_P_[O].p,((_P_[1].p)),((_P_[2].1)));
31: return P_ + 1;

32:}

Implementing the Native Library

The last step, and the most difficult, isto write the C code for your native methods.

The header file generated by j avah gives you the prototypes of the functions you need to implement to make your native
code complete. Y ou then write some C code that implements those functions and provides the native facilities that your Java
class needs (in the case of Si npl eFi | e, some low-level file 1/O routines).

Y ou'll want to include your header file as part of theinitial i ncl udesfor your native implementation:

#i ncl ude <Si npl eFile. h>

INote

This description glosses over alot of what you might want to do to
actually implement those methods. In particular, Java provides
severa utility functions that help your native methods interact with
Java methods and classes and help map C and C++ constructs to their
Javaequivalents. We'll describe several of these functions later onin
today's lesson in the section "Tools and Techniques for Writing
Native Implementations.”

Listing 20.4 shows the native implementation of the methods from the Si npl eFi | e class.

file:///G|/ebooks/1575211831/ch20.htm (9 of 16) [11/06/2000 7:44:48 PM]

Day 20 -- Using Native Methods and Libraries
Listing 20.4. Si npl eFi | eNat i ve. c, aC implementation of a native method from Si npl eFi | e.

1. #include "SinpleFile.h" /* for unhand(), anong other things */
2:
3: #include <sys/param h> /* for MAXPATHLEN */
4: #include <fcntl.h> /* for O RDWR and O CREAT */
5:
6: #define LOCAL_PATH _SEPARATOR '/ /* UNI X */
7.
8: static void fixSeparators(char *p) {
9: for (; *p!="'\0"; ++p)
10: if (*p == SinpleFile_separatorChar)
11: *p = LOCAL_PATH SEPARATOR
12: }
13:
14: long SinpleFile_ open(struct HSinpleFile *this) {
15: I nt fd,
16: char buf f er [MAXPATHLEN] ;
17:
18: javaString2Cstri ng(unhand(this)->path, buffer, sizeof(buffer));
19: fi xSeparators(buffer);
20: if ((fd = open(buffer, O RDWR | O CREAT, 0664)) < 0) /* UNI X open */
21: return(FALSE); /* or, SignalError() could "throw' an exception */
22: unhand(this)->fd = fd; /* save fd in the Java world */
23: return(TRUE) ;
24: }
25:
26: void SinpleFile close(struct HSinpleFile *this) {
27: cl ose(unhand(this)->fd);
28: unhand(this)->fd = -1;
29: }
30:
31: long SinpleFile_read(struct HSinpleFile *this,
32: HArrayOf Byte *buffer, _ long count) {
33: char *data = unhand(buffer)->body; /* get array data */
34: I nt | en = obj _l ength(buffer); /* get array length */
35: I nt nunBytes = (len < count ? len : count);
36:
37: if ((nunBytes = read(unhand(this)->fd, data, nunBytes)) == 0)
38: return(-1);
39: return(nunBytes); /* the nunber of bytes actually read */
40: }
41
42: long SinpleFile wite(struct HSinpleFile *this,
43: HArrayOf Byte *buffer,_long count) {
44 char *data = unhand(buffer)->body;
45: i nt len = obj |ength(buffer);
46:
47: return(wite(unhand(this)->fd, data, (len < count ? len : count)));
48: }

Compile Everything into a Shared Library

Thefinal step isto compileal the. c files, including the stub file and your native method files. Use your favorite C compiler

file://IG|/ebooks/1575211831/ch20.htm (10 of 16) [11/06/2000 7:44:48 PM]

Day 20 -- Using Native Methods and Libraries

to compile and link those two filesinto a shared library (a DLL on Windows). On some systems, you may need to specify
special compilation flags that mean "make it relocatable and dynamically linkable." (Those flags, if they are required, may
vary from system to system; check with your compiler documentation for details.)

INote

If you have several classes with nat i ve methods, you can include
all their stubsin the same. c file, if you like. Of course you might
want to name it something else, such as St ubs. c, in that case.

The resulting library should be the same name as you gave in your original Java class file as the argument to
System | oadLi brary() .IntheSi npl eFi | e class, that library was called | i bnynat i vel i brary. so. Youll
want to name the library that same name and install it wherever your particular system needs libraries to be installed.

Using Your Library

With all the code written and compiled and installed in the right place, all you have to do is run your Java program using the
Java bytecode interpreter. When the Java classis|oaded, it will also try to load the native library automatically; if it succeeds
you should be able to use the classes in your Java class, and they will transparently run the native libraries as they are needed.

If you get an error that the library was not found, the most likely problem is that you do not have your environment set up
correctly or that you have not installed your library in the right place.

DLL filesarelocated according to the standard Windows algorithm: the directory the application was located in, the current
directory, the System directory in Windows 95 (System32 in NT), the System directory in NT, the Windows directory, and
then directories listed in the PATH environment variable.

UNIX systems use the environment variable LD LI BRARY_PATH to search for libraries. This environment variable should
include the standard places shared libraries are stored, as well asthe current directory (.). After LD_LI BRARY_PATH has
been set, Java will be able to find your library.

Shared libraries for Java must be stored in the folder Syst em Fol der: Ext ensi ons: JavaSoft Fol der. Rather
than copying your native library there, you can aso just create an aliasto your native library and put it in that folder.

Tools and Techniques for Writing Native Implementations

When writing the code for native implementations, a whole set of useful macros and functionsis available for mapping
between C and C++ and Java, and for accessing Java runtime structures. (Several of them were used in

Si npl eFi | eNat i ve. c.) In addition, there are several rules and techniques for dealing with the conversion between Java
and C. In this section you'll learn about those functions and techniques to make writing your native code easier.

Names

Java names for classes, methods, and variables can be used inside native methods with the following changes (if needed):

« Any Unicode charactersin names are converted to _0dddd, where the ds represent the Unicode number for that
character. For example, the Unicode registered trademark symbol, which is Unicode 00ae, would be represented in C
as_000ae.

« Package names are included with al names, with the dots replaced by underscores (_). So, for example,
j ava. Mat h. pi would bej ava_Mat h_pi from the native side.

« Slashesin package names, if any, are replaced by underscores.

« Class names are renamed with theword Cl ass prepended to the full name (including package names) For example,
the Javaclass Si npl eFi | e would be Cl assSi npl eFi | e (usually, however, you'll refer to classes through
handles, which are explained in the next section).

file:///G|/ebooks/1575211831/ch20.htm (11 of 16) [11/06/2000 7:44:48 PM]

Day 20 -- Using Native Methods and Libraries
Accessing Java Objects

Java objects are passed to native methods using handles to structures. The handle name is the name of the object (including
any package names), prepended with the letter H. So, for example, the class Si npl eFi | e would have a handle called

HSi npl eFi | e. Theclassj ava. | ang. St ri ng would convertto Hy ava_| ang. St ri ng (remember, class names have
package names included, with underscores to separate them).

Handles are references to structures that represent Java objects. Each handle has the same name as the class it references, with
the letter H prepended.

Each native function automatically gets passed at least one handle in its parameter list. Thisis called the automatic
parameter, and it's a handle to the class that contained the original native method. Even if the origina name method has no
arguments, the C equivalent for that method is passed a handle to the class so it can reference other parts of that object or pass
data back to it. In fact, because the handle to the original class behaves asif it werethet hi s object, it'soften calledt hi s in
the native code's method signature as well.

The automatic parameter is a handle to the original Java class that called the native method. Because it is roughly equivalent
tot hi s in Java, the automatic parameter is also often called t hi s.

Note the native method signature for the open() methodin Si npl eFi | eNat i ve. ¢, which shows the automatic
parameter:

long SinpleFile open(struct HSinpleFile *this)
To get to the methods or variables inside a class, you must dereference that class's handle. To do this, you can use the macro
unhand() (asin"Unhand that object!"). Theunhand() macro returns a pointer to a struct. So, for example, to get at the
variablesinside thet hi s handle, you'd referenceit like this:

unhand(t hi s);

After the handle is dereferenced, you can accessits variables asif they were normal st r uct elements:

unhand(t hi s) - >pat h;

Referencesto arrays are dlightly different than references to objects, although both are passed as handles, and you can
reference their elements by "unhanding” them as well. In the case of arrays, however, the name of the handle includes the
words Ar r ay Of prepended to the type of the array, and the letter H prepended to that. So, for example, an array of integers,
declared like thisin Java:

int[] lotsOInts;

would look like this on the native side:

HArrayOf I nt *lotsOf I nts;

Calling Methods

In the previous section you learned how to deal with references to Java objects as handles. Using unhand() , you can
dereference those handles and get to the object's variables. But what about methods? From your native code, you can call
methods inside Java objects using several utility functions for just that purpose.

In addition, as you pass data back and forth between the Java side and the native side, you'll need to know how data types
convert and how to deal with those typesin either side.

Functions for Executing Methods

To call methods inside Java objects from within native code, you use special utility functions. To call aregular Java method,

file:///G|/ebooks/1575211831/ch20.htm (12 of 16) [11/06/2000 7:44:48 PM]

Day 20 -- Using Native Methods and Libraries

use thefunction execut e_j ava_dynam c_net hod() . To call aclass method, use the function
execut e_java_static_net hod() . Heresthe signature for these functions (from the Javai ncl ude file
i nt erpreter. h,which definesthings like this):

| ong execute_java_dynam c_net hod(ExecEnv *env, HObject *obj,

char *net hod_nane, char *signature, ...);
| ong execute_java_static_nethod(ExecEnv *env, C assC ass *cb,
char *nethod_nane, char *signature, ...);

Both functions take at least four arguments:

« An ExecEnv structure, which defines the current execution environment. Right now the only possible value for this
argument is 0, which refersto the current execution environment.

« For dynamic methods, a reference to the object in which the method you're calling is defined. Thiswould be the left
side of the dot in normal Java dot notation. Here, it's a handle to that object.

« For static (class) methods, areference to the class structure in which the method is defined. Y ou can get a hold of a
reference to aclassusing the Fi ndCl ass() and Fi ndC assFrontCl ass() functions, described later on in this
section.

« The method name (as a string).
« The method signature.

Any remaining argumentsto theexecut e_j ava_stati c_net hod() andexecut e_j ava_dynam c_net hod()
functions are arguments to the method itself.

Method signatures can be complex, because in this case they are not ssimply the list of arguments and the return types. Method
signatures, for this function, are strings with a set of parentheses containing an argument list, and areturn type just after the
closing parentheses. Both the argument list and the return type are letters or strings that represent a type.

For the primitive types, use single-letter codes for the argument list and the return type (Bisbyt e, | isi nt,Visvoi d, and
Z isbool ean). For arrays, use an open square bracket before the type (for example, [B denotes a byte array). More letter
codes for different types are contained in the Javai ncl ude filesi gnat ur e. h. So, for example, amethod that has no
arguments and returns voi d would have a signature of () V. One that take three integer arguments and returns an integer
would have asignatureof (111) V.

For object arguments, the code isthe letter L, then the class name (including the package, with al elements separated by
slashes), followed by a semicolon. So, for example, areferencetoa St r i ng object would beLj aval/ | ang/ Stri ng; .

Got al that? Here are afew examples:

execut e_j ava_dynam c_net hod(0, this, "close", "()Z"
execute_java_static_nethod(0, Myd ass, "reverseString",
"(Ljaval/lang/ String;)Ljaval/lang/ String;", "This is ny string");

execut e_java_dynam c_net hod(0, this, "open_speaker()",
"(Lconi | ne/ audi o/ Devi ce;)Z", theDevice);

TheFi ndd ass() and Fi ndCl assFrontl ass() functions can be used to get areference to a class structure (a pointer
of type O assC ass) for usewiththeexecut e_j ava_stati c_net hod() function. Here are their signatures:

Cl assC ass *Fi ndd ass(ExecEnv *env,
char *cl assNanme, bool _t resol ve);
Cl assd ass *Fi ndd assFronCl ass(ExecEnv *env,
char *cl assNane, bool _t resolve, CassC ass *from;

Aswith the functions for calling methods, the first argument should be O to indicate that this function isto be run in the
current environment. The second argument is the class nameto find. Ther esol ve argument is a boolean which, if TRUE or
1, indicates that ther esol ve Cl ass() method should be called on that class (class resolution is a function of the class

file://IG|/ebooks/1575211831/ch20.htm (13 of 16) [11/06/2000 7:44:48 PM]

Day 20 -- Using Native Methods and Libraries

loader; it's probably safe to use TRUE for this argument in most cases). In the case of Fi ndCl assFr onCl ass, the fourth
argument is an already existing class; the class loader that loaded that class will also be used to find and load the new class.

Passing Parameters Back and Forth

To pass parameters to Java methods from native code or vice versa, you have to understand how data types convert between
the two sides of the process.

The primitive data types in Java convert to their nearest equivalentsin C. All the Javainteger types (char , byt e, short,

i nt)and bool ean convertto C| ong types; | ong convertstoi nt 64_t ,andf | oat and doubl e remain floats and
doubles. Keep in mind that because of these conversions, your original native method definitions may need return types that
reflect the values sent back from the C side of the native method (for example, all methods that returni nt eger types must
actualy return| ong).

Object types are passed as handles to structures, as you learned earlier, and must be dereferenced using unhand() inorder
to be used.

Creating New Java Objects

Because you can access Java objects and call methods from inside your native code, the one thing left is the capability to
create new objects. You can do thistoo, using theexecut e_cl ass_const ruct or () function. Thisfunction isvery
similar to the functions for calling methods; in fact, it has the same set of arguments that
execute_java_static_nethod() does:

HObj ect *execute_java_constructor (ExecEnv *, char *cl assnane,
Cl assd ass *cb, char *signature, ...);

Theexecute_java_stati c_net hod() function hasfour arguments, but can have more. The four required arguments
are

« 0, for the current environment (the only value of this argument currently supported).
« A string representing the class name that defines this constructor.

« A class handle such asthe one you'd get from Fi ndCl ass() . If you use a class name, this argument should be NULL;
if you use a class object, the class name should be NULL (use one or the other, not both). Using class references over
class names can be more efficient if you expect to create lots of objects with the same class, because you can just use
the same class reference over and over again (class names must be looked up each time).

« Thesignature of the constructor which, as with the functions to execute Java methods, is a string representing the
arguments to the method (constructors don't have areturn type). As with the functions to call methods, [T isarray of
typeT,Bisbyte, | isi nt,and Zisbool ean. Other types are defined in si gnat ur e. h (part of the standard Java
i ncl ude files).

« Any other arguments to the constructor are added onto the end of the parameter list.

Here are some examples:

execute_java_constructor (0, "Myd ass", NULL, "()");
execute_java constructor (0, "MQherd ass", NuLL, "(II)", 10, 12);

Thefirst example creates an instance of the MyCl ass class, using the constructor with no arguments. The second creates an
instance of MyQt her Cl ass, in which the constructor has two integer arguments. Those arguments, 10 and 12, are included
at the end of the parameter list.

Handling Exceptions

To handle errors, Java has exceptions. In your native C code, you can set up a Javaexception using Si gnal Err or , like this:

Si gnal Error (0, JAVAPKG "ExceptionCl assNane", "nessage");

file:///G|/ebooks/1575211831/ch20.htm (14 of 16) [11/06/2000 7:44:48 PM]

Day 20 -- Using Native Methods and Libraries

Here, the exception class name is the name of a Java exception class, including its package name, with the separation of
package names delineated with a slash rather than aperiod asin Java. So, for example, the classj ava. i 0. | OExcepti on
wouldbe"j aval/i o/ | OExcepti on" whenusedinside Si gnal Error.

The exception will be thrown in Java when your native method returns (which it should immediately after the
Si gnal Er r or). Note that just like regular methods, native methods that throw exceptions must be declared to throw those
exceptions using thet hr ow keyword.

Dealing with Strings

Severa functions and macros are available in thei ncl ude filej avaSt ri ng. h to help manage strings. To gain access to
these functions, include that header as part of your native code:
#i ncl ude <javaString. h>

ThemakeJavasSt ri ng() function createsaJava St ri ng object out of aC string. To convert aJava St r i ng object into
aCstring, you canuse makeCSt ri ng() oral | ocCStri ng() (wheretheformer allocates the string from temporary
storage and the latter from the heap). Here are their signatures:

H ava_lang_String *makeJdavaString(char *string, int |ength)

char *nmakeCString(H ava_l ang_String *s)

char *allocCString(H ava_|ang _String *s)
To copy Java St r i ngsinto preexisting Unicode or ASCII C buffers, you canusej avaSt ri ng2uni code() and
javaString2CString():

uni code *javaString2uni code(H ava_lang_String *s, unicode *buf, int 1en)

char *javaString2Cstring(H ava_lang_String *s, char *pbuf, int 1en)
Finally, thej avaSt ri ngPri nt () functionprintsaJava St ri ng object (just like Syst em out . pri nt ()), and the
j avaSt ri ngLengt h() function getsits length:

void javaStringPrint(H ava lang String *s)
i nt javaStringLengt h(H ava_ | ang_String *s)

Summary

Today you have learned about the advantages and disadvantages of using nat i ve methods, about the many ways that Java
(and you) can make your programs run faster, and also about the often illusory need for efficiency.

Finally, you learned the procedure for creating nat i ve methods, from both the Java and the C sides, in detail-by generating
header files and stubs, and by compiling and linking afull example.

After working your way through today's difficult material, you've mastered one of the most complex parts of the Java
language. As areward, tomorrow we'll look "under the hood" to see some of the hidden power of Java, and you can just sit
back and enjoy theride.

Q&A

Q: Your descriptions here are somewhat sparse. What can | use to supplement what |'ve learned here?
A: Look at Sun's Javatutorial (online or on the CD-ROM included with this book) for a more detailed version of how to
work with native methods.

file://IG|/ebooks/1575211831/ch20.htm (15 of 16) [11/06/2000 7:44:48 PM]

Day 20 -- Using Native Methods and Libraries

Q:
A:

> Q

Doesthe Java classlibrary need to call Syst em | oadLi brary() toload the built-in classes?

No, youwon't seeany | oadLi brary() calsintheimplementation of any classesin the Javaclasslibrary. That's
because the Java team had the luxury of being able to statically link most of their code into the Java environment,
something that really makes sense only when you're in the unique position of providing an entire system, asthey are.
Y our classes must dynamically link their libraries into an aready-running copy of the Java system. Thisis, by the
way, more flexible than static linking; it allows you to unlink old and relink new versions of your classes at any time,
making updating them trivial.

Can | statically link my own classesinto Java like the Java team did?

Yes. You can, if you like, ask Sun Microsystems for the sources to the Java runtime environment itself, and, aslong
asyou obey the (relatively straightforward) legal restrictions on using that code, you can relink the entire Java system
plus your classes. Your classes are then statically linked into the system, but you have to give everyone who wants to
use your program this specia version of the Java environment. Sometimes, if you have strong enough requirements,
thisisthe only way to go, but most of the time, dynamic linking is not only good enough, but preferable.

file://IG|/ebooks/1575211831/ch20.htm (16 of 16) [11/06/2000 7:44:48 PM]

Day 22 -- Java Programming Tools

Day 22

Java Programming Tools

by Michael Morrison

CONTENTS

« Overview of the Standard JDK Tools
« The Runtime Interpreter

o Usage

0 The Opt i onsArgument

0 The Non-Optimized Interpreter

o The Compiler
o Usage
0 The Opt i onsArgument
o The Non-Optimizing Compiler
o TheApplet Viewer
o Usage
o TheOQpt i onsArgument
o Commands
o Profiling Java Applets
« The Debugger
o Usage
0 The Opt i onsArgument
o Commands
o TheClassFile Disassembler
o Usage
o TheOQpt i onsArgument
» TheHeader and Stub File Generator
o Usage
o TheOpt i ons Argument
« The Documentation Generator
o Usage
o TheOQpt i onsArgument

file:///G|/ebooks/1575211831/ch22.htm (1 of 22) [11/06/2000 7:44:52 PM]

Day 22 -- Java Programming Tools

o Documentation Tags

» Visua Development Tools
0 Sun's Java WorkShop
o Symantec Café
0 Microsoft Visual J++
o Natural Intelligence's Roaster
0 Rogue Wave Software's JFactory

o Penumbra Software's Mojo

o Aimtech's Jamba

0 Kinetix's Hyperwire

e SumMmary
e O&A

Trying to perform any craft without the proper toolsis a daunting task at best. Java programming is indeed a
craft, and like woodworking or engraving, your level of programming success largely depends on your choice
of tools aswell as your skill in using the tools. Y ou begin this bonus week by looking inside the standard
Java programming tools included with the Java Developer's Kit (JDK). Today's lesson isn't just a cursory
glance at the Javatools, however. Y ou actually dig into the details of using the tools, including some hidden
features and capabilities that seem to have been glossed over in much of the Java documentation. After
learning the ins and outs of the standard JDK tools, you'll finish up the lesson by taking alook at some of the
more popular Java visual development tools.

Today's lesson covers the following major topics:
« Thetoolsincluded with the JDK and where to get the latest versions
« Executing programs with the Java runtime interpreter
« Compiling source files with the Java compiler
« Debugging programs with the Java debugger
« Visua development tools

By the end of today's lesson, you will be well acquainted with the standard JDK tools and how they work.
Thisinsight into the standard tools will allow you to use them more effectively in your own projects. Even if
you decide to use one of the visual tools highlighted toward the end of the lesson, such as Symantec Café or
Visual J++, you may still sometimes find the JDK toolsinvaluable in certain situations.

Overview of the Standard JDK Tools

The JDK provides a core set of tools necessary for developing programsin Java. Even though the JDK tools
aren't particularly fancy in their implementation, they are guaranteed to work with the latest Java release
because updated JDK tools are written in Java and are a part of each release. And although third-party
add-ons and devel opment environments promise to make Java development smoother and easier, the JDK
provides all the essential tools and information necessary to write professional Java appletsimmediately and

file:///G|/ebooks/1575211831/ch22.htm (2 of 22) [11/06/2000 7:44:52 PM]

Day 22 -- Java Programming Tools

at no cost. Because the JDK is Sun's official development kit for Java, you can always count on it to provide
the most extensive Java support.

Following is a complete list of the tools that are standard with the JDK:
o The runtime interpreter
o The compiler
« The applet viewer
« The debugger
» Theclassfile disassembler
« The header and stub file generator
« The documentation generator

You'll learn about each of these toolsin detail in today's lesson. Before you get started, however, it's
important to make sure you have the latest version of the JDK. As of thiswriting, the latest version of the
JDK isversion 1.02, which isincluded on the accompanying CD-ROM. This version will probably be around
for awhile, so you should be okay using it. Just to be sure, you can check Sun's Java Web site at
http://ww.] avasof t . comto see what the latest version is. This Web site provides all the latest news
and information regarding Java, including the latest release of the JDK. Keep in mind that Javais a new

technology that is still in a state of rapid change. Be sure to keep an eye on the Java Web site for the latest
information.

The Runtime Interpreter

The Javaruntime interpreter is a standalone version of the Javainterpreter built into Java-compatible Web
browsers, such as Netscape Navigator 3.0 and Microsoft Internet Explorer 3.0. The runtime interpreter
provides the support to run Java executable programs in the compiled bytecode class format. Since the
interpreter doesn't directly provide any meansto view graphical output, you are limited to using it to execute
purely textual Java programs and applications that manage their own graphics. If you want to run graphical
Java applets, you need to use either the Java applet viewer or a Java-compatible Web browser.

Y ou can think of the runtime interpreter as exposing the bare essentials of the Java runtime system. Even
though | use the term bare essentials, the interpreter actually lets you do quite alot. Essentially, you can run
any Java programs that don't rely on the Appl et class. In fact, the statement earlier about not being able to
run graphical programs isn't entirely true; you can run graphical Java applications, but you just can't run Java
applets. The difference between a Java application and a Java applet is that an application is responsible for
creating and maintaining its own window should it require the need for graphical output, whereas an appl et
relies on a Web browser to provide awindow on which to display graphics. So the Javainterpreter is capable
of executing both textual Java programs and graphical Java applications, but not applets.

Usage

The runtime interpreter is acommand-line tool for running Java programs and applications; Java applets
require the graphics and display support of a Web browser.

INew Term

file:///G|/ebooks/1575211831/ch22.htm (3 of 22) [11/06/2000 7:44:52 PM]

http://www.javasoft.com/

Day 22 -- Java Programming Tools

A command-line tool isatool that is executed at acommand prompt,
such asaDOS or UNIX shell prompt, with a specified list of
arguments.

The syntax for using the Java runtime interpreter follows:

java Options C assnanme Argunents

The Cl assnane argument specifies the name of the class you want to execute. If the classresidesin a
package, you must fully qualify the name. For example, if you want to run aclasscalled Sol vel t thatis
located in a package called Equat i ons, you would execute it in the interpreter like this:

j ava Equati ons. Sol vel t

When the Java interpreter executes a class, what it isreally doing is executing the mai n method of the class.
The interpreter exits when the mai n method and any threads created by it are finished executing. The mai n
method accepts alist of arguments that can be used to control the program. Following is the definition of the
mai n method as specified by the Java language:

class Dolt {
public static void main(String argv[]) {
/1 do sonet hi ng

}
}

Notice that mai n has asingle parameter, ar gv, whichisan array of St ri ng objects. This brings usto the
Ar gunment s argument for the runtime interpreter, which specifies the arguments passed into the mai n
method. Any arguments passed to the runtime interpreter via Ar gunent s are accessible from the ar gv
parameter in mai n. The following interpreter call passes two numeric arguments to the mai n method in the
Dol t class:

java Dolt 8 24

|Technical Note

The fact that the Java runtime interpreter actually executes the mai n
method when running a class should give you an idea about one of
the reasons why you can't run applets using the runtime interpreter.
Give up? The answer isthat applets don't even have anai n method,
so there is no way for the runtime interpreter to know how to begin
executing an applet.

The Opti onsArgument

The OQpt i ons argument specifies options related to how the runtime interpreter executes the Java program.
Following isalist of the most common runtime interpreter options:

file:///G|/ebooks/1575211831/ch22.htm (4 of 22) [11/06/2000 7:44:52 PM]

Day 22 -- Java Programming Tools

- debug

- checksource or -cs
-cl asspath Path

-nX X

-mB X

- noasyncgc
-noverify

- pr of

-SS X

- 0SS X

-1

-verbose or -v

-ver bosegc

-verify
-verifyrenote

- DPr oper t yNane=NewVal ue

The - debug option starts the interpreter in debugging mode, which allows you to use the Java debugger
(j db) in conjunction with the interpreter. Y ou'll learn more about using the Java debugger alittle later in
today's lesson.

The - checksour ce option causes the interpreter to compare the modification dates of the source code files
and executable classfiles. If the source file is more recent, the class is automatically recompiled and the new
bytecode executable is |oaded.

The Javainterpreter uses an environment variable, CLASSPATH, to determine where to look for user-defined
classes. The CLASSPATH variable contains a semicolon-delimited list of system paths to user-defined Java
classes. Actually, most of the Javatools use the CLASSPATH variable to know where to find user-defined
classes. The - cl asspat h option informs the runtime interpreter to override CLASSPATH with the path
specified by Pat h.

The- nx x option alows you to modify the maximum size of the memory allocation pool, or garbage
collection heap, used by the interpreter. By default, the pool has a maximum size of 16MB (- nx 16m). X
specifies the new maximum size of the pool and is measured in bytes by default. Y ou can also specify x in
either kilobytes or megabytes by appending the letter k or m(respectively) onto the value. Also, x must be
greater than 1000 bytes, meaning that the pool must have a maximum size of at least 1000 bytes.

The- s x optionissimilar to the - mx option, except it allows you to modify theinitial size of the memory
alocation pool rather than the maximum size. By default, the size of the pool isinitially set to IMB (- ns
1m. x specifiesthe new initial pool size, and is measured in bytes by default. Similar to the - mx option, you
can also specify x in either kilobytes or megabytes by appending the letter k or m(respectively) onto the
value. Additionally, x must be greater than 1000 bytes.

The Java runtime system typically performs garbage collection automatically to make sure unneeded memory
stays freed up. This takes place in an asynchronous thread that runs alongside other threads in the runtime
system. The - noasyncgc option alters this behavior by turning off asynchronous garbage collection. The
result is that no garbage collection takes place unlessit is explicitly called on or the Java program runs out of
memory.

|Technical Note

file:///G|/ebooks/1575211831/ch22.htm (5 of 22) [11/06/2000 7:44:52 PM]

Day 22 -- Java Programming Tools

Y ou can force an explicit garbage collection by calling the gc method
in the Syst emclass.

The- noveri fy option turns all code verification off, meaning that no bytecodes are processed by the
bytecode verifier. Typicaly, the verifier verifies code loaded into the system using a class loader.

The runtime interpreter includes a built-in profiler, which isinvoked using the - pr of option. The profiler's
job isto report on the amount of time spent in each section of code as a program is executing, which can
often be used to find performance bottlenecks in the code. The built-in profiler writes the profile information
toafilecaledj ava. pr of , whichisatext file. The profile information consists of how many times each
method was called and the relative amount of time spent in the method during each call. The larger the latter
number is, the more costly the method in terms of processor overhead. Y ou can easily use thisinformation as
aguide to determine the code on which to focus your code optimization efforts.

INote

Since the runtime interpreter, and therefore the built-in profiler, can
only be used with textual Java programs and standalone applications,
you may be wondering how to profile Java applets. Fortunately, you
can use the profiler in the runtime interpreter in conjunction with the
Java applet viewer. You'll learn how to do this alittle later today
when you find out about the applet viewer.

Every thread in the Java runtime system is given two stacks: one for Java code and one for C/C++ code. The
presence of two stacks reflects the native code support in Java. The- ss x option alows you to alter the
maximum stack size used by C code in athread. The default C stack sizeis128KB (- ss 128k). Thex
parameter specifies the new maximum size in bytes of the C stack, which must be greater than 1000 bytes.

Y ou can also specify x in either kilobytes or megabytes by appending the letter k or m(respectively) onto the
value. Keep in mind that this option appliesto all threads created during program execution.

Similar tothe- ss x option, the - oss option alows you to set the maximum stack size that can be used by
the Java code in athread. The default Java code stack sizeis400KB (- oss 400k). The x parameter
specifies the new maximum size in bytes of the Java stack, which must be greater than 1000 bytes.

The -t option prints atrace of the bytecode instructions executed. This option only works with the
non-optimized version of the Javainterpreter, j ava_g. (You'll learn about the non-optimized interpreter in a
moment.) The - t option generates a great deal of information that can give you alot of insight into what is
happening within a program, provided you are good at following raw bytecodes!

The - ver bose option causes the interpreter to print a message to standard output each time a Javaclassis
loaded. Similarly, the - ver bosegc option causes the interpreter to print a message each time a garbage
collection is performed. A garbage collection is performed by the runtime system to clean up unneeded
objects and to free memory.

The opposite of the - noveri fy option, the- ver i f y option causes the interpreter to run the bytecode
verifier on all code loaded into the runtime environment. The default function of the verifier isto only verify
code loaded into the system using a class loader. This default behavior can also be explicitly specified using
the-veri f yr enot e option.

The - D option allows you to redefine system property values. Pr oper t yName specifies the name of the
system property you want to change, and NewVal ue specifies the new value you want to assign to it.

file:///G|/ebooks/1575211831/ch22.htm (6 of 22) [11/06/2000 7:44:52 PM]

Day 22 -- Java Programming Tools

|New Term

System properties are global system variables that reflect the state of
the Java runtime system. For example, the version of the Java runtime
systemisstored inthej ava. ver si on system property.

The Non-Optimized Interpreter

Some distributions of the Java Developer's Kit include an alternate Javainterpreter called j ava_g. Thisisa
non-optimized version of the Javainterpreter that executes Java bytecodes in a manner more suitable for
debugging. If thisinterpreter isin your JDK distribution, be sure to use it when you are executing code within
the Java debugger.

The Compiler

The Java compiler (j avac) isused to compile Java source code files into executable Java bytecode classes.
In Java, source code files have the extension . | ava. Asyou've seen throughout this book, Java source code
files are standard ASCI| text files, much like the source code files for other popular programming languages
like C++. It isthejob of the Java compiler to process Java source code files and create executable Java
bytecode classes from them. Executable bytecode class files have the extension . ¢l ass and represent a Java
classin its usable form.

Java classfiles are generated on a one-to-one basis with the classes defined in the source code. In other
words, the Java compiler generates exactly one. cl ass filefor each classyou create. Sinceit istechnically
possible to define more than one class in asingle sourcefile, it is therefore possible for the compiler to
generate multiple class files from a single source file. When this happens, it means that the source file
contains multiple class definitions.

Y ou may have heard something about just-in-time compilersin relationship to Java. It'simportant not to get
these compilers confused with the Java compiler and the role it plays. The Java compiler is responsible for
turning Java source code into Java bytecodes that can be executed within the Java runtime system. The Java
virtual machine, which is a component of the runtime system, is responsible for interpreting the bytecodes
and making the appropriate system level calsto the native platform. It is at this point where platform
independence is achieved by Java; the bytecodes are in ageneric form that is only converted to a native form
when processed by the virtual machine.

Just-in-time compilers remove the role of the runtime interpreter by converting Java bytecodes to native code
on-the-fly before executing a Java program. In this way, just-in-time Java compilers work more like the back
end of traditional language compilersin that they generate code for a native platform. Similarly, the Java
compiler works more like the front end of atraditional compiler in that it parses Java source code and
generates internally useful bytecode classes.

INote

Both Netscape Navigator 3.0 and Microsoft Internet Explorer 3.0
include just-in-time Java compilers.

Keep in mind that Java executables are still centered around the bytecode class format. Even with just-in-time
compilersin the picture, all you must be concerned with as a developer is generating the appropriate
bytecode classes using the Java compiler. If no just-in-time compiler is present on a user's system, the

file:///G|/ebooks/1575211831/ch22.htm (7 of 22) [11/06/2000 7:44:52 PM]

Day 22 -- Java Programming Tools

bytecode classes will be processed and executed by the runtime interpreter. On the other hand, if a
just-in-time compiler happens to exist on the system, the bytecode classes will be converted to native code
and then executed. Either way, the key to executing Java programs is the bytecode classes, which are created
by the Java compiler.

Usage

The Java compiler is acommand-line tool whose syntax follows:

javac Options Fil enane

TheFi | enanme argument specifies the name of the source code file you want to compile. The compiler will
generate bytecode classes for all classes defined in thisfile. Likewise, the compiler will also generate
bytecode classes for any dependent classes that haven't been compiled yet. In other words, if you are
compiling class A, which is derived from class B, and class B has not yet been compiled, the compiler will
notice the dependency and go ahead and compile both classes.

The Opti onsArgument

The Opt i ons compiler argument specifies options related to how the compiler creates the executable Java
classes. Following isalist of the compiler options:

-cl asspath Path
-d Dr

-ver bose

The - cl asspat h option tells the compiler to override the CLASSPATH environment variable with the path
specified by Pat h. This causes the compiler to look for user-defined classes in the path specified by Pat h.
Pat h isacolon-delimited list of directory paths taking the following form:

.; Your Pat h

An example of a specific usage of - cl asspat h follows:

javac -classpath .;\dev\ani nate\cl asses;\dev\render\classes A java

In this case, the compiler is using a user-defined class path to access any classes it needs while compiling the
source codefile A. j ava. The- cl asspat h option is sometimes useful when you want to try compiling
something without taking the trouble to modify the CLASSPATH environment variable.

The - d option determines the root directory where compiled classes are stored. This is important because
many times classes are organized in a hierarchical directory structure. With the - d option, the directory
structure will be created beneath the directory specified by Di r .

The - g compiler option causes the compiler to generate debugging tables for the Java classes. Debugging

file:///G|/ebooks/1575211831/ch22.htm (8 of 22) [11/06/2000 7:44:52 PM]

Day 22 -- Java Programming Tools

tables are used by the Java debugger and contain information such as local variables and line numbers. The
default action of the compiler isto only generate line numbers.

|New Term

A debugging table is a collection of information about a program that
isused internally by a debugger. Debugging tables are built directly
into executable classes during compilation.

\Warning

If you are going to be using the Java debugger to debug the classes
generated by the compiler, you must use the - g option. Additionally,
for debugging make sure you don't use the - O option, which
optimizes the code.

The - nowar n option turns off compiler warnings. Warnings are printed to standard output during
compilation to inform you of potential problems with the source code. It is generally agood ideato keep
warnings enabled because they often signal problem areas in your code. However, you may run into a
situation where warnings are getting in the way, in which case the - nowar n option might be useful.

The - Ooption causes the compiler to optimize the compiled code. In this case, optimization ssmply means
that static, final, and private methods are compiled inline. When a method is compiled inline, it means that
the entire body of the method isincluded in place of each call to the method. This speeds up execution
because it eliminates the method call overhead. Optimized classes are usually larger in size to accommodate
the duplicate code. The - O optimization option also suppresses the default creation of line numbers by the
compiler. Keep in mind that the - O option should not be used when you plan on debugging the compiled
code using the Java debugger.

|New Term

Method inlining is the process of replacing each call to a method with
the actual method code. Inlining often increases the size of the
resulting classfile, but it can help improve performance.

The - ver bose option has somewhat of an opposite effect as the - nowar n option-it prints out extra
information about the compilation process. You can use - ver bose to see exactly what sourcefilesare
being compiled and what class files are being loaded.

The Non-Optimizing Compiler
Some distributions of the Java Developer's Kit include an alternate Java compiler calledj avac_g. This
version of the Java compiler generates code without some of the internal optimizations performed by the

standard j avac compiler. If thiscompiler isin your JDK distribution, be sure to use it when you are
compiling code for debugging. Otherwise, stick with thej avac compiler for all release code.

The Applet Viewer

The typical method of executing a Java applet is from within a Web browser that has a Web page |oaded
containing the applet. Thisisthe typical scenario in which most Web users come into contact with Java
applets. As a Java developer, you have another option for running Java applets that doesn't involve the use of

file:///G|/ebooks/1575211831/ch22.htm (9 of 22) [11/06/2000 7:44:52 PM]

Day 22 -- Java Programming Tools

aWeb browser. This option is the Java applet viewer, which serves as a minimal test bed for Java applets. At
times you may not want to hassle with using a full-blown Web browser to test an applet, in which case the
applet viewer isan ideal alternative.

Even though the applet viewer logically takes the place of a Web browser, it functions very differently from a
Web browser. The applet viewer operates on HTML documents, but it only looks for embedded appl et tags;

it ignores any other HTML code in the document. Each time the applet viewer encounters an applet tag in an
HTML document, it launches a separate applet viewer window containing the respective applet.

The only drawback to using the applet viewer isthat it doesn't show you how an applet will run within the
confines of areal Web setting. Since the applet viewer ignores all HTML codes except applet tags, it doesn't
even attempt to display any other information contained in the HTML document. So once you've tested your
applet using the applet viewer, be sure to also test it using a Web browser just to make sure it worksin the
context of areal Web page.

Usage

The Java applet viewer is acommand-line tool, meaning that it is invoked from a command prompt. The
syntax for the applet viewer follows:

appl et vi ewer Options URL

The URL argument specifies adocument URL containing an HTML page with an embedded Java applet. The
applet viewer launches a separate window for each applet embedded in the HTML document. If the
document doesn't contain any embedded appl ets, the applet viewer will simply exit. Figure 22.1 shows the
applet viewer in action.

Figure 22.1 shows the Animator demo applet, which comes with the Java Devel oper's Kit, running in the
applet viewer. You run the applet by changing to the directory containing the Animator bytecode class and
embedded HTML file and then executing the following statement at the command prompt:

Figure 22.1 : The Animator applet running in the Java applet viewer.

appl et vi ewer exanpl el. htm

exanpl el. ht M isthe HTML file containing the embedded Java applet. As you can see, there's nothing
complicated about running Java applets using the applet viewer. The applet viewer is a useful and easy-to-use
tool for testing Java appletsin a simple environment.

The Opt i onsArgument

The Opt i ons argument to the applet viewer specifies how to run the Java applet. There is currently only
one option supported by the applet viewer, - debug. The - debug option starts the applet viewer in the Java
debugger, which allows you to debug applets. You'll learn more about using the Java debugger alittle later in
today's lesson.

file:///G|/ebooks/1575211831/ch22.htm (10 of 22) [11/06/2000 7:44:52 PM]

Day 22 -- Java Programming Tools

Commands

The applet viewer has a drop-down menu called Applet containing a group of commands, as shown in Figure
22.2.

Figure 22.2 : The Java applet viewer with commands available in the drop-down menu.

The Rest art command restarts the currently loaded applet, resulting in acall tothest art method for the
applet. The Rest art command does not reload the applet, however. Similar to Rest ar t , the Rel oad
command rel oads the applet and then startsit. Rel oad is often a better command to use to restart applets as
It ensures that an applet is completely reinitialized.

The C one command launches another instance of the applet viewer executing the same applet. This
command is useful when you want to run multiple copies of an applet. For example, a multiuser network
applet might support multiple instances that can communicate with each other. Y ou could load one instance
of the applet and then use the Cl one command to start other instances.

The Tag command displays a window showing the HTML applet tag for the executing applet. The Applet
HTML Tag window is shown in Figure 22.3.

Figure 22.3 : The Applet HTML Tag window displayed by the Tag command.

The |l nf o command displays a window showing information about the executing applet, including general
applet information and information relating to the parameters used by the applet. Thisinformation is returned
by the get Appl et | nf o and get Par anet er | nf o methods of the Appl et class. The Applet Info
window is shown in Figure 22.4.

Figure 22.4 : The Applet Info window displayed by the | nf 0_command.

The Edi t command is disabled in the current release of the applet viewer. It will presumably be activated in
afuture release of the applet viewer, in which case it will probably provide away to ater the applet
parametersin the HTML document containing the applet tag.

The Pr operti es command displays awindow with access options relating to HTTP and firewall proxies
and servers, along with network and class access options. The AppletViewer Properties window is shown in
Figure 22.5.

Figure 22.5 : The Applet Viewer Properties window displayed by the Pr oper t i es command.

Finally, the Cl ose and Qui t commands perform the same function, which is shutting down the appl et
viewer. It's not clear why there are two different commands for closing the applet viewer-it's presumably an
oversight.

Profiling Java Applets
You learned alittle earlier today about the profiler built into the Java runtime interpreter. Y ou learned that
you can't profile applets using the runtime interpreter alone because you can't even run applets using the

interpreter. However, you can profile applets by running the interpreter's profiler in conjunction with the
applet viewer. In this case, the applet viewer islaunched from within the runtime interpreter, like this:

java -prof sun. appl et. Appl et Vi ewer URL

file://IG|/ebooks/1575211831/ch22.htm (11 of 22) [11/06/2000 7:44:52 PM]

Day 22 -- Java Programming Tools

URL specifies the name of the HTML file containing an applet tag (or tags). Notice that the applet viewer is
referenced using its fully qualified class name, Appl et Vi ewer . When you finish running the applet, the
interpreter writes atext filenamed j ava. pr of to the current directory. Thisfile contains profile
information for the applet you just ran. Refer to the earlier discussion of the profiler in the section "The
Runtime Interpreter” for information regarding the meaning of the contents of thisfile.

The Debugger

The Java debugger (j db) isacommand-line utility that enables you to debug Java programs. The Java
debugger uses the Java Debugger API to provide debugging support within the Java runtime interpreter.
Although the debugger is a command-line toal, it still provides awide range of standard debugging features
such as setting breakpoints and single-stepping through code.

INew Term

A breakpoint isaline of code you specify that halts the execution of a
program.

|New Term

Sngle-stepping is the process of executing your code oneline at a
time (in single steps).

Before you can use| db, you must compile your code so that it includes debugging information. The Java
compiler switch for doing thisis - g, which causes the compiler to generate debugging tables containing
information about line numbers and variables.

|Note

Some distributions of the JDK also include an alternative Java
compiler called j avac_g. If you have this compiler in your
distribution (look inthej ava/ bi n directory), useit, because it
compiles code without using some of the internal optimizations
performed by thej avac compiler.

Because debugging is avery broad subject, I've tried to keep this discussion focused on the Java debugger
and the basics of how it is used. For a more hands-on look at Java debugging, you may want to check out
Sun's online Java debugger tutorials, which are located on Sun's Java Web site at
http://ww.javasoft.conl products/JDK/ debuggi ng/.

Usage

The syntax for using the Java debugger follows:

j db Options <C assnane>

The Cl assnane argument is optional and specifies the name of the class you want to execute. The fact that
Cl assnarme isoptiona brings up an interesting point regarding the usage of the debugger: There are two
different ways to go about using the debugger, depending on whether you are debugging an application or an
applet. For applications, you simply execute j db directly and provide the name of the main classin the

file://IG|/ebooks/1575211831/ch22.htm (12 of 22) [11/06/2000 7:44:52 PM]

http://www.javasoft.com/products/JDK/debugging/

Day 22 -- Java Programming Tools

Cl assnane argument, as the previous syntax shows. If you are debugging an applet, however, you must
execute the debugger within the applet viewer, like this:

appl et vi ewer -debug URL

In this case, URL refersto adocument URL containing an HTML page with the applet to be debugged.
Instead of directly executing the class, the applet viewer launches the debugger and allows you to debug the
applet. Technically, there are three ways to use the Java debugger. The third technique involves attaching the
debugger to an application that is already running in the interpreter. You'll learn alittle more about this
debugging approach in the next section.

The Opt i onsArgument

The Opt i ons argument is used to specify different settings regarding how a debugging session is started.
Following isalist of the debugging options:

- host Host nane
- password Password

The- host optionisused to specify the name of the host machine where an existing Javainterpreter is
running. In this case, the debugger attaches itself to the interpreter so the currently executing application can
be debugged. Y ou specify the name of the host machine in the Host nane argument.

The - passwor d option is also used when attaching the debugger to an existing interpreter session. When
the interpreter is started with the - debug option, a password is displayed that must be used when initiating
the debugging session. Y ou specify this password to the debugger viathe - passwor d option and the
Passwor d argument.

Commands

When the debugger is up and running, you control it through commands that are entered at a command-line
prompt. The debugger command-line prompt is a> prompt by default, similar to DOS or UNIX shell
prompts. This prompt specifies that there is no default thread running. The thread that is currently executing
in the debugger is displayed in the command prompt itself, so the > prompt signifies that no thread is
currently being debugged. When you are debugging athread, the command prompt changes to a thread name
followed by the current position of the stack frame, which is enclosed in square brackets. An example of a
thread prompt ismai n[1] , which signifies that the mai n thread is running and you are at the topmost
position (1) in the stack frame.

Following isalist of some of the most useful debugging commands:

hel p

| ocal s

print Cbject
dunp bj ect
met hods C ass
cl asses

stop in C assnane. Met hodnane

file:///G|/ebooks/1575211831/ch22.htm (13 of 22) [11/06/2000 7:44:52 PM]

Day 22 -- Java Programming Tools

stop at C assnane. Li neNunber
step
cont
cl ear <C assnane. Li neNunber >

Possibly the most important command inj db isthe hel p command, which prints out alisting of all the
available commands and what they do. The next three commands are all related to printing information about
objects. Thel ocal s command displays the current value of all the objects in the current scope (stack
frame). The pri nt and dunp commands are both used on objects independent of the current scope. The
pri nt command is used to print both entire objects and individual member variables, you ssmply specify
the name of the object or member variablein the Cbj ect argument. Similar to pri nt , thedunp command
also prints objects or member variables, but it prints more detailed information such as an object's
inheritance.

Themet hods command isused to list all the methods defined in the class specified by Cl ass. The

cl asses command lists all the classes that are currently loaded into memory. The list generated by the

cl asses command is often pretty large since many different classes end up being loaded behind the scenes
even in simple Java programs.

Now that you have an idea how to look at the values of different thingsin the debugger, let's move on to
some commands that are alittle more exciting. Thest op i nandst op at commands are used to set
breakpoints in methods and at specific lines of source code, respectively. For example, to set a breakpoint in
the nrous e Down method of an applet called G oovy, you would type the following command at the
debugger command line:

stop in G oovy. nobuseDown

When you click the mouse button in the applet window, the debugger will halt the applet at the beginning of
the nouseDown method. To begin single-stepping through the method, you use the st ep command. The
debugger executes one line of code for each st ep command issued. When you find out the information you
need and are ready to get things running at full speed again, you use the cont command, which continues
the normal execution of the program. Likewise, you can clear any breakpoints you set with thecl ear
command.

That sums up the basics of using the Java debugger. Like any powerful tool, you'll gain confidence with the
debugger by ssmply tinkering with it. | suggest running the debugger on a simple program and getting
acquainted with some of the commands before trying to take on a serious debugging project.

The Class File Disassembler

The Java classfile disassembler (j avap) is used to disassemble a class file, which means the executable
classfileisresolved into alist of public data, methods, or raw bytecode instructions. The disassembler's
default output consists of the public data and methods for a class. The classfile disassembler is useful in
cases Where you don't have the source code for a class but you'd like to know something about how it is
implemented.

file:///G|/ebooks/1575211831/ch22.htm (14 of 22) [11/06/2000 7:44:52 PM]

Day 22 -- Java Programming Tools

Usage

The syntax for the disassembler follows:

j avap Options O assNanes

The C assNanes argument specifies the names of one or more classes to be disassembled.

The Opt i onsArgument

The Opt i ons argument specifies how the classes are to be disassembled. The disassembler supports the
following options:

-C

-p

-h

-cl asspath Path
-verify
-version

The - ¢ option tells the disassembler to output the actual bytecodes for each method. The

- p option tells the disassembler to also include private variables and methods in its output. Without this
option, the disassembler only outputs the public member variables and methods. The - h option specifies that
information be created that can be used in C header files. Thisis useful when