
Teach Yourself

Java in 21 Days
Professional Reference Edition

by Laura Lemay, Charles L. Perkins and Michael Morrison

C  O  N  T  E  N  T  S
Introduction

Day 1   An Introduction to Java Programming

What Is Java?●   

Java's Past, Present, and Future●   

Why Learn Java?

Java Is Platform Independent❍   

Java Is Object Oriented❍   

Java Is Easy to Learn❍   

●   

Getting Started Programming in Java

Getting a Java Development Environment❍   

Installing the JDK and Sample Files❍   

Configuring the JDK❍   

Creating a Java Application❍   

Creating a Java Applet❍   

●   

Troubleshooting●   

Summary●   

Q&A●   

Day 2   Object-Oriented Programming and Java

Thinking in Objects: An Analogy●   

Objects and Classes●   

Behavior and Attributes●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (1 of 37) [11/06/2000 7:44:37 PM]



Attributes❍   

Behavior❍   

Creating a Class❍   

Inheritance, Interfaces, and Packages

Inheritance❍   

Creating a Class Hierarchy❍   

How Inheritance Works❍   

Single and Multiple Inheritance❍   

Interfaces and Packages❍   

Creating a Subclass❍   

●   

Summary●   

Q&A●   

Day 3   Java Basics

Statements and Expressions●   

Variables and Data Types

Declaring Variables❍   

Notes on Variable Names❍   

Variable Types❍   

Assigning Values to Variables❍   

●   

Comments●   

Literals

Number Literals❍   

Boolean Literals❍   

Character Literals❍   

String Literals❍   

●   

Expressions and Operators

Arithmetic❍   

More About Assignment❍   

Incrementing and Decrementing❍   

Comparisons❍   

Logical Operators❍   

Bitwise Operators❍   

Operator Precedence❍   

●   

String Arithmetic●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (2 of 37) [11/06/2000 7:44:37 PM]



Summary●   

Q&A●   

Day 4   Working with Objects

Creating New Objects

Using new❍   

What new Does❍   

A Note on Memory Management❍   

●   

Accessing and Setting Class and Instance Variables

Getting Values❍   

Changing Values❍   

Class Variables❍   

●   

Calling Methods

Class Methods❍   

●   

References to Objects●   

Casting and Converting Objects and Primitive Types

Casting Primitive Types❍   

Casting Objects❍   

Converting Primitive Types to Objects and Vice Versa❍   

●   

Odds and Ends

Comparing Objects❍   

Determining the Class of an Object❍   

●   

Class and Object Reflection (Java 1.1)●   

The Java Class Library●   

Summary●   

Q&A●   

Day 5   Arrays, Conditionals, and Loops

Arrays

Declaring Array Variables❍   

Creating Array Objects❍   

Accessing Array Elements❍   

Changing Array Elements❍   

Multidimensional Arrays❍   

●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (3 of 37) [11/06/2000 7:44:37 PM]



Block Statements●   

if Conditionals

The Conditional Operator❍   

●   

switch Conditionals●   

for Loops●   

while and do Loops

while Loops❍   

do...while Loops❍   

●   

Breaking Out of Loops

Labeled Loops❍   

●   

Summary●   

Q&A●   

Day 6   Creating Classes and Applications in Java

Defining Classes●   

Creating Instance and Class Variables

Defining Instance Variables❍   

Constants❍   

Class Variables❍   

●   

Creating Methods

Defining Methods❍   

The this Keyword❍   

Variable Scope and Method Definitions❍   

Passing Arguments to Methods❍   

Class Methods❍   

●   

Creating Java Applications

Helper Classes❍   

●   

Java Applications and Command-Line Arguments

Passing Arguments to Java Programs❍   

Handling Arguments in Your Java Program❍   

●   

Summary●   

Q&A●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (4 of 37) [11/06/2000 7:44:37 PM]



Day 7   More About Methods

Creating Methods with the Same Name, Different Arguments●   

Constructor Methods

Basic Constructors❍   

Calling Another Constructor❍   

Overloading Constructors❍   

●   

Overriding Methods

Creating Methods That Override Existing Methods❍   

Calling the Original Method❍   

Overriding Constructors❍   

●   

Finalizer Methods●   

Summary●   

Q&A●   

Day 8   Java Applet Basics

How Applets and Applications Are Different●   

Creating Applets

Major Applet Activities❍   

A Simple Applet❍   

●   

Including an Applet on a Web Page

The <APPLET> Tag❍   

Testing the Result❍   

Making Java Applets Available to the Web❍   

●   

More About the <APPLET> Tag

ALIGN❍   

HSPACE and VSPACE❍   

CODE and CODEBASE❍   

●   

Java Archives●   

Passing Parameters to Applets●   

Summary●   

Q&A●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (5 of 37) [11/06/2000 7:44:37 PM]



Day 9   Graphics, Fonts, and Color

The Graphics Class

The Graphics Coordinate System❍   

●   

Drawing and Filling

Lines❍   

Rectangles❍   

Polygons❍   

Ovals❍   

Arcs❍   

A Simple Graphics Example❍   

Copying and Clearing❍   

●   

Text and Fonts

Creating Font Objects❍   

Drawing Characters and Strings❍   

Finding Out Information About a Font❍   

●   

Color

Using Color Objects❍   

Testing and Setting the Current Colors❍   

A Simple Color Example❍   

●   

Summary●   

Q&A●   

Day 10   Simple Animation and Threads

Creating Animation in Java

Painting and Repainting❍   

Starting and Stopping an Applet's Execution❍   

The Missing Link: Threads❍   

Putting It Together❍   

●   

Threads: What They Are and Why You Need Them

Writing Applets with Threads❍   

Another Look at the Digital Clock❍   

●   

Reducing Animation Flicker

Flicker and How to Avoid It❍   

How to Override update()❍   

●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (6 of 37) [11/06/2000 7:44:37 PM]



Solution One: Don't Clear the Screen❍   

Solution Two: Redraw Only What You Have To❍   

Summary●   

Q&A●   

Day 11   More Animation, Images, and Sound

Retrieving and Using Images

Getting Images❍   

Drawing Images❍   

A Note About Image Observers❍   

Modifying Images❍   

●   

Creating Animation Using Images

An Example: Neko❍   

●   

Retrieving and Using Sounds●   

Using Animation Packages

Sun's Animator Applet❍   

Dimension X's Liquid Motion❍   

●   

More About Flicker: Double-Buffering

Creating Applets with Double-Buffering❍   

A Note on Disposing Graphics Contexts❍   

An Example: Checkers Revisited❍   

●   

Summary●   

Q&A●   

Day 12   Managing Simple Events and Interactivity

Mouse Clicks

Mouse Down and Mouse Up Events❍   

An Example: Spots❍   

Double-Clicks❍   

●   

Mouse Movements

Mouse Drag and Mouse Move Events❍   

Mouse Enter and Mouse Exit Events❍   

An Example: Drawing Lines❍   

Keyboard Events❍   

●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (7 of 37) [11/06/2000 7:44:37 PM]



The keyDown() and keyUp() Methods❍   

Default Keys❍   

An Example: Entering, Displaying, and Moving Characters❍   

Testing for Modifier Keys and Multiple Mouse Buttons❍   

The awt Event Handler●   

Summary●   

Q&A●   

Day 13   Creating User Interfaces with the awt

An awt Overview●   

The Basic User Interface Components

Labels❍   

Buttons❍   

Check Boxes❍   

Radio Buttons❍   

Choice Menus❍   

Text Fields❍   

●   

Panels and Layout

Layout Managers: An Overview❍   

The FlowLayout Class❍   

Grid Layouts❍   

Border Layouts❍   

Card Layouts❍   

Grid Bag Layouts❍   

Insets❍   

●   

Handling UI Actions and Events●   

Nesting Panels and Components

Nested Panels❍   

Events and Nested Panels❍   

●   

More UI Components

Text Areas❍   

Scrolling Lists❍   

Scrollbars and Sliders❍   

Canvases❍   

●   

More UI Events●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (8 of 37) [11/06/2000 7:44:37 PM]



Fun with Components●   

A Complete Example: RGB-to-HSB Converter

Designing and Creating the Applet Layout❍   

Defining the Subpanels❍   

Handling the Actions❍   

Updating the Result❍   

The Complete Source Code❍   

●   

Up and Coming in Java 1.1●   

Summary●   

Q&A●   

Day 14   Windows, Networking, and Other Tidbits

Windows, Menus, and Dialog Boxes

The awt Window Classes❍   

Frames❍   

Closing Windows❍   

Menus❍   

Dialog Boxes❍   

Cursors❍   

Window Events❍   

Standalone awt Applications❍   

●   

Networking in Java

Creating Links Inside Applets❍   

Opening Web Connections❍   

openStream()❍   

Sockets❍   

Changes to Sockets for Java 1.1❍   

●   

Other Applet Hints

The showStatus() Method❍   

Applet Information❍   

Communicating Between Applets❍   

●   

Summary●   

Q&A●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (9 of 37) [11/06/2000 7:44:37 PM]



Day 15   Modifiers, Access Control, and Class Design

Modifiers●   

Controlling Access to Methods and Variables

Why Access Control Is Important❍   

The Four Ps of Protection❍   

Method Protection and Inheritance❍   

Instance Variable Protection and Accessor Methods❍   

●   

Class Variables and Methods●   

Finalizing Classes, Methods, and Variables

Finalizing Classes❍   

Finalizing Variables❍   

Finalizing Methods❍   

●   

Abstract Classes and Methods●   

Summary●   

Q&A●   

Day 16   Packages and Interfaces

Programming in the Large and Programming in the Small●   

What Are Packages?●   

Using Packages

Full Package and Class Names❍   

The import Command❍   

Name Conflicts❍   

A Note About CLASSPATH and Where Classes Are Located❍   

●   

Creating Your Own Packages

Pick a Package Name❍   

Create the Directory Structure❍   

Use package to Add Your Class to a Package❍   

Packages and Class Protection❍   

●   

What Are Interfaces?

The Problem of Single Inheritance❍   

Abstract Design and Concrete Implementation❍   

Interfaces and Classes❍   

●   

Implementing and Using Interfaces●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (10 of 37) [11/06/2000 7:44:37 PM]



The implements Keyword❍   

Implementing Multiple Interfaces❍   

Other Uses of Interfaces❍   

Creating and Extending Interfaces

New Interfaces❍   

Methods Inside Interfaces❍   

Extending Interfaces❍   

An Example: Enumerating Linked Lists❍   

●   

Summary●   

Q&A●   

Day 17   Exceptions

Exceptions, the Old and Confusing Way●   

Java Exceptions●   

Managing Exceptions

Exception Consistency Checking❍   

Protecting Code and Catching Exceptions❍   

The finally Clause❍   

●   

Declaring Methods That Might Throw Exceptions

The throws Clause❍   

Which Exceptions Should You Throw?❍   

Passing On Exceptions❍   

throws and Inheritance❍   

●   

Creating and Throwing Your Own Exceptions

Throwing Exceptions❍   

Creating Your Own Exceptions❍   

Doing It All: Combining throws, try, and throw❍   

●   

When and When Not to Use Exceptions

When to Use Exceptions❍   

When Not to Use Exceptions❍   

Bad Style Using Exceptions❍   

●   

Summary●   

Q&A●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (11 of 37) [11/06/2000 7:44:38 PM]



Day 18   Multithreading

Thread Fundamentals●   

The Problem with Parallelism●   

Thinking Multithreaded

Points About Points❍   

Protecting a Class Variable❍   

●   

Creating and Using Threads

The Runnable Interface❍   

ThreadTester❍   

NamedThreadTester❍   

●   

Knowing When a Thread Has Stopped●   

Thread Scheduling

Preemptive Versus Nonpreemptive❍   

Testing Your Scheduler❍   

●   

Summary●   

Q&A●   

Day 19   Streams and I/O

What Are Streams?●   

The java.io Package●   

Input Streams

The Abstract Class InputStream❍   

ByteArrayInputStream❍   

FileInputStream❍   

FilterInputStream❍   

PipedInputStream❍   

SequenceInputStream❍   

StringBufferInputStream❍   

●   

Output Streams

The Abstract Class OutputStream❍   

ByteArrayOutputStream❍   

FileOutputStream❍   

FilterOutputStream❍   

PipedOutputStream❍   

●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (12 of 37) [11/06/2000 7:44:38 PM]



Related Classes●   

Object Serialization (Java 1.1)●   

Summary●   

Q&A●   

Day 20   Using Native Methods and Libraries

Why Use Native Methods?

Advantages of Using Native Methods❍   

●   

Disadvantages of Native Methods●   

The Illusion of Required Efficiency

Design First, Efficiency Later❍   

Just-in-Time Compilers❍   

Simple Optimization Tricks❍   

●   

Writing Native Methods

Write Your Java Code❍   

Generate Header and Stub Files❍   

Implementing the Native Library❍   

Using Your Library❍   

●   

Tools and Techniques for Writing Native Implementations

Names❍   

Accessing Java Objects❍   

Calling Methods❍   

Creating New Java Objects❍   

Handling Exceptions❍   

Dealing with Strings❍   

●   

Summary●   

Q&A●   

Day 21   Under the Hood

-The Big Picture

Why It's a Powerful Vision❍   

●   

The Java Virtual Machine

An Overview❍   

The Fundamental Parts❍   

●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (13 of 37) [11/06/2000 7:44:38 PM]



The Constant Pool❍   

Limitations❍   

The Bytecode Interpreter●   

Just-in-Time Compilers●   

The Class File Format●   

Method Signatures●   

The Garbage Collector

The Problem❍   

The Solution❍   

Java's Parallel Garbage Collector❍   

●   

The Security Story

Why You Should Worry❍   

Why You Might Not Have To❍   

Java's Applet Security Model❍   

Signed Applets❍   

Coming Up in Java 1.1❍   

●   

Summary●   

Q&A●   

Day 22   Java Programming Tools

Overview of the Standard JDK Tools●   

The Runtime Interpreter

Usage❍   

The OptionsArgument❍   

The Non-Optimized Interpreter❍   

●   

The Compiler

Usage❍   

The OptionsArgument❍   

The Non-Optimizing Compiler❍   

●   

The Applet Viewer

Usage❍   

The OptionsArgument❍   

Commands❍   

Profiling Java Applets❍   

●   

The Debugger●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (14 of 37) [11/06/2000 7:44:38 PM]



Usage❍   

The OptionsArgument❍   

Commands❍   

The Class File Disassembler

Usage❍   

The OptionsArgument❍   

●   

The Header and Stub File Generator

Usage❍   

The OptionsArgument❍   

●   

The Documentation Generator

Usage❍   

The OptionsArgument❍   

Documentation Tags❍   

●   

Visual Development Tools

Sun's Java WorkShop❍   

Symantec Café❍   

Microsoft Visual J++❍   

Natural Intelligence's Roaster❍   

Rogue Wave Software's JFactory❍   

Penumbra Software's Mojo❍   

Aimtech's Jamba❍   

Kinetix's Hyperwire❍   

●   

Summary●   

Q&A●   

Day 23   Working with Data Structures in Java

Data Structure Fundamentals●   

The Standard Java Data Structures

Enumerations❍   

Bit Sets❍   

Vectors❍   

Stacks❍   

Dictionaries❍   

Hash Tables❍   

●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (15 of 37) [11/06/2000 7:44:38 PM]



Building Your Own Data Structures

Linked List Basics❍   

Implementing a Linked List❍   

●   

Summary●   

Q&A●   

Day 24   Advanced Animation and Media

What Is Animation?●   

Types of Animation

Frame-Based Animation❍   

Cast-Based Animation❍   

●   

Tracking Images●   

The MediaTracker Class●   

Implementing Sprite Animation

The Sprite Class❍   

The SpriteVector Class❍   

The Background Classes❍   

●   

Sample Applet: Sharks●   

Summary●   

Q&A●   

Day 25   Fun with Image Filters

The Basics of Color●   

Color Images in Java●   

Color Models

Direct Color Models❍   

Index Color Models❍   

●   

The Color Model Classes●   

Image Filters●   

The Image Filter Classes●   

Writing Your Own Image Filters

A Color Image Filter❍   

An Alpha Image Filter❍   

A Brightness Image Filter❍   

●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (16 of 37) [11/06/2000 7:44:38 PM]



Using Image Filters●   

Summary●   

Q&A●   

Day 26   Client/Server Networking in Java

Internet Network Basics

Addresses❍   

Protocols❍   

Ports❍   

●   

The Client/Server Paradigm●   

Sockets

Datagram Sockets❍   

Stream Sockets❍   

●   

Fortune: A Datagram Client and Server

Designing Fortune❍   

Implementing the Fortune Server❍   

Implementing the Fortune Client Applet❍   

Running Fortune❍   

●   

Trivia: A Stream Client and Server

Designing Trivia❍   

Implementing the Trivia Server❍   

Implementing the Trivia Client Applet❍   

Running Trivia❍   

●   

Summary●   

Q&A●   

Day 27   The Standard Extension APIs

Java API Overview●   

The Enterprise API

Java Database Connectivity❍   

Interface Definition Language❍   

Remote Method Invocation❍   

●   

The Commerce API●   

The Management API●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (17 of 37) [11/06/2000 7:44:38 PM]



The Server API●   

The Media API●   

The Security API●   

The Java Beans API●   

The Embedded API●   

Summary●   

Q&A●   

Day 28   Emerging Technologies

Java Beans

The Goal of Java Beans❍   

How Java Beans Relates to Java❍   

The Java Beans API❍   

●   

JavaOS

Overhead❍   

Industry Support❍   

●   

Java Microprocessors

picoJAVA❍   

microJAVA❍   

UltraJAVA❍   

●   

Summary●   

Q&A●   

appendix A   Language Summary

Reserved Words●   

Comments●   

Literals●   

Variable Declaration●   

Variable Assignment●   

Operators●   

Objects●   

Arrays●   

Loops and Conditionals●   

Class Definitions●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (18 of 37) [11/06/2000 7:44:38 PM]



Method and Constructor Definitions●   

Packages, Interfaces, and Importing●   

Exceptions and Guarding●   

appendix B   Class Hierarchy Diagrams

About These Diagrams●   

appendix C   The Java Class Library

java.lang

Interfaces❍   

Classes❍   

●   

java.util

Interfaces❍   

Classes❍   

●   

java.io

Interfaces❍   

Classes❍   

●   

java.net

Interfaces❍   

Classes❍   

●   

java.awt

Interfaces❍   

Classes❍   

●   

java.awt.image

Interfaces❍   

Classes❍   

●   

java.awt.peer●   

java.applet

Interfaces❍   

Classes❍   

●   

appendix D   Bytecodes Reference

The _quick Bytecodes●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (19 of 37) [11/06/2000 7:44:38 PM]



appendix E   java.applet Package Reference

AppletContext●   

AppletStub●   

AudioClip●   

Applet●   

appendix F   java.awt Package Reference

LayoutManager●   

MenuContainer●   

BorderLayout●   

Button●   

Canvas●   

CardLayout●   

Checkbox●   

CheckboxGroup●   

CheckboxMenuItem●   

Choice●   

Color●   

Component●   

Container●   

Dialog●   

Dimension●   

Event●   

FileDialog●   

FlowLayout●   

Font●   

FontMetrics●   

Frame●   

Graphics●   

GridBagConstraints●   

GridBagLayout●   

GridLayout●   

Image●   

Insets●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (20 of 37) [11/06/2000 7:44:38 PM]



Label●   

List●   

MediaTracker●   

Menu●   

MenuBar●   

MenuComponent●   

MenuItem●   

Panel●   

Point●   

Polygon●   

Rectangle●   

Scrollbar●   

TextArea●   

TextComponent●   

TextField●   

Toolkit●   

Window

awtException❍   

●   

awtError●   

appendix G   java.awt.image Package Reference

ImageConsumer●   

ImageObserver●   

ImageProducer●   

ColorModel●   

CropImageFilter●   

DirectColorModel●   

FilteredImageSource●   

ImageFilter●   

IndexColorModel●   

MemoryImageSource●   

PixelGrabber●   

RGBImageFilter●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (21 of 37) [11/06/2000 7:44:38 PM]



appendix H   java.awt.peer Package Reference

ButtonPeer●   

CanvasPeer●   

CheckboxMenuItemPeer●   

CheckboxPeer●   

ChoicePeer●   

ComponentPeer●   

ContainerPeer●   

DialogPeer●   

FileDialogPeer●   

FramePeer●   

LabelPeer●   

ListPeer●   

addItem●   

MenuBarPeer●   

MenuComponentPeer●   

MenuItemPeer●   

MenuPeer●   

PanelPeer●   

ScrollbarPeer●   

TextAreaPeer●   

TextComponentPeer●   

TextFieldPeer●   

WindowPeer●   

appendix I   java.io Package Reference

DataInput●   

DataOutput●   

FilenameFilter●   

BufferedInputstream●   

BufferedOutputStream●   

ByteArrayInputStream●   

ByteArrayOutputStream●   

DataInputStream●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (22 of 37) [11/06/2000 7:44:38 PM]



DataOutputStream●   

File●   

FileDescriptor●   

FileInputStream●   

FileOutputStream●   

FilterInputStream●   

FilterOutputStream●   

InputStream●   

LineNumberInputStream●   

OutputStream●   

PipedInputStream●   

PipedOutputStream●   

PrintStream●   

PushbackInputStream●   

RandomAccessFile●   

SequenceInputStream●   

StreamTokenizer●   

StringBufferInputStream●   

EOFException●   

FileNotFoundException●   

IOException●   

InterruptedIOException●   

UTFDataFormatException●   

appendix J   java.lang Package Reference

Cloneable●   

Runnable●   

Boolean●   

Character●   

Class●   

ClassLoader●   

Compiler●   

Double●   

Float●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (23 of 37) [11/06/2000 7:44:38 PM]



Integer●   

Long●   

Math●   

Number●   

Object●   

Process●   

Runtime●   

SecurityManager●   

String●   

StringBuffer●   

System●   

Thread●   

ThreadGroup●   

Throwable●   

RuntimeException●   

ClassNotFoundException●   

CloneNotSupportedException●   

Exception●   

IllegalAccessException●   

IllegalArgumentException●   

IllegalMonitorStateException●   

IllegalThreadStateException●   

IndexOutOfBoundsException●   

InstantiationException●   

InterruptedException●   

NegativeArraySizeException●   

NullPointerException●   

NumberFormatException●   

RuntimeException●   

SecurityException●   

StringIndexOutOfBoundsException●   

AbstractMethodError●   

ClassFormatError●   

Error●   

IllegalAccessError●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (24 of 37) [11/06/2000 7:44:38 PM]



IncompatibleClassChangeError●   

InstantiationError●   

InternalError●   

LinkageError●   

NoClassDefFoundError●   

NoSuchFieldError●   

NoSuchMethodError●   

OutOfMemoryError●   

StackOverflowError●   

ThreadDeath●   

UnknownError●   

UnsatisfiedLinkError●   

VerifyError●   

VirtualMachineError●   

appendix K   java.net Package Reference

ContentHandlerFactory●   

SocketImplFactory●   

URLStreamHandlerFactory●   

ContentHandler●   

DatagramPacket●   

DatagramSocket●   

InetAddress●   

ServerSocket●   

Socket●   

SocketImpl●   

URL●   

URLConnection●   

URLEncoder●   

MalformedURLException●   

ProtocolException●   

SocketException●   

UnknownHostException●   

UnknownServiceException●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (25 of 37) [11/06/2000 7:44:38 PM]



appendix L   java.util Package Reference

Enumeration●   

Observer●   

BitSet●   

Date●   

Dictionary●   

Hashtable●   

Observable●   

Properties●   

Random●   

Stack●   

StringTokenizer●   

Vector●   

EmptyStackException●   

NoSuchElementException●   

Credits

Copyright © 1996 by Sams.net Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any
means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the
publisher. No patent liability is assumed with respect to the use of the information contained herein. Although
every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the
information contained herein. For information, address Sams.net Publishing, 201 W. 103rd St., Indianapolis, IN
46290.

International Standard Book Number: 1-57521-183-1

HTML conversion by :
    M/s. LeafWriters (India) Pvt. Ltd.
    Website : http://leaf.stpn.soft.net
    e-mail : leafwriters@leaf.stpn.soft.net

CONTENTS

file:///G|/ebooks/1575211831/index.htm (26 of 37) [11/06/2000 7:44:38 PM]

http://leaf.stpn.soft.net/
mailto:leafwriters@leaf.stpn.soft.net


Credits

President, Sams
Publishing

Richard K. Swadley

Publishing Manager Mark Taber
Managing Editor Cindy Morrow
Director of Marketing John Pierce
Assistant Marketing
Managers

Kristina Perry, Rachel Wolfe

Acquisitions
Editor

Mark Taber Development
Editor

Fran Hatton

Software
Development
Specialist

Bob Correll Senior Editor Kitty Wilson

Copy Editors Kimberly K.
Hannel, Colleen
Williams

Indexer Johnna VanHoose

Technical
Reviewers

Brad Birnbaum,
Pratip Banerji, Jeff
Bankston, Jeff
Shockley,

Editorial
Coordinator

Bill Whitmer

Technical Edit
Coordinator

Lorraine Schaffer Editorial
Assistants

Carol Ackerman,
Andi Richter,
Rhonda Tinch-Mize

Cover Designer Tim Amrhein Book Designer Gary Adair
Copy Writer Peter Fuller Production Team

Supervisor
Brad Chinn

Production Cynthia Davis, Elizabeth Deeter, Sonja Hart, Lousia
Klucznik, Polly Lavrick, Paula Lowell, Andrew Stone

Preface to the Professional Reference Edition

I first saw Java running in May of 1995, and was immediately struck by what it offered to the Web. What I saw
seems almost quaint in this day and age of multimedia Web pages-a small animation of a character doing
cartwheels across the screen-but at the time it was a revolution. My friend Jim Graham, a programmer on the
Java team, showed me various aspects of the Java language and the HotJava browser, and I sat with my mouth
agape, unable to say much of anything except for "that is so cool." At the time, I was just finishing up a book
about HTML and looking for something else to do. I immediately knew that this had to be it. I had to write a
book on Java.

It took somewhat longer to actually produce the book, between needing to finish a number of other projects,
having to wait for a new version of Java itself, and coming down with a number of bad cases of the flu, but the
book was written and shipped in early 1996. That book was the original Teach Yourself Java in 21 Days.

CONTENTS

file:///G|/ebooks/1575211831/index.htm (27 of 37) [11/06/2000 7:44:38 PM]



While not the first book available on the Java language, it was widely regarded as the first good book and the
first one that wasn't either too vague or that assumed too much knowledge of programming. Written for an
intermediate programmer, Teach Yourself Java continues to be one of the few books available that offers a
basic tutorial in Java, enough to get you started and enough to move beyond the basics. Teach Yourself Java
continues to be popular and continues to be recommended as one of the best books on getting started in Java.

Which brings us to this hefty tome that you're holding in your hands. Since early 1996 Java itself has not
changed overly much. The current 1.0.2 release has added few features since 1.0; for the new features we'll
have to wait for 1.1 (due out in late 1996). But given the explosion of tools for building Java applications and
the wide variety of things that people are doing with Java out there for the Web and for general-purpose
applications, there is no shortage of things to talk about when it comes to Java.

This book, therefore, is an extension of the original Teach Yourself Java. It has been greatly expanded and
enhanced, with all the original content updated, the weak parts fixed, and more examples added. This book also
contains a bonus week that adds further depth and detail about existing topics such as images, animation, and
networking; it includes information about tools, debugging, and advanced data structures; and it goes into great
detail about upcoming features in Java 1.1 and the extension APIs. With more than 250 pages of reference
material, there's little you won't be able to discover using this book.

If you haven't yet worked with Java, this is the book to start with. If you have worked with Java but are looking
for more information, this is the book to continue with. And even if you've read the original Teach Yourself
Java, you'll find enough new in this edition to merit putting aside the original and adding this one to the stack
of programming books on your desk.

Good luck and enjoy!

Laura Lemay
August 1996

Acknowledgments

From Laura Lemay:

To Sun's Java team, for all their hard work on Java, the language, and on the browser, and
particularly to Jim Graham, who demonstrated Java and HotJava to me on very short notice in
May and planted the idea for this book.

To everyone who bought my previous books and liked them: Buy this one, too.

From Charles L. Perkins:

To Patrick Naughton, who first showed me the power and the promise of Oak (Java) in early 1993.

To Mark Taber, who shepherded this lost sheep through his first book.

From Mike Morrison:

Thanks to Mark Taber for giving me the opportunity to contribute to such a cool project, and to
Fran Hatton for being so enormously positive and helpful.

CONTENTS

file:///G|/ebooks/1575211831/index.htm (28 of 37) [11/06/2000 7:44:38 PM]



About the Authors

Laura Lemay

Laura Lemay is a technical writer and a nerd. After spending six years writing software documentation for
various computer companies in Silicon Valley, she decided that writing books would be much more fun (but
has still not yet made up her mind). In her spare time she collects computers, e-mail addresses, interesting hair
colors, and nonrunning motorcycles. She is also the perpetrator of Teach Yourself Web Publishing with HTML
in 14 Days.

You can visit her home page at http://www.lne.com/lemay/.

Charles L. Perkins

Charles L. Perkins is the founder of Virtual Rendezvous, a company building a Java-based service that will
foster socially focused, computer-mediated, real-time filtered interactions between people's personas in the
virtual environments of the near future. In previous lives, he has evangelized NeXTSTEP, SmallTalk, and
UNIX, and has degrees in both physics and computer science. Before attempting this book, he was an amateur
columnist and author. He's done research in speech recognition, neural nets, gestural user interfaces, computer
graphics, and language theory, but had the most fun working at Thinking Machines and Xerox PARC's
SmallTalk group. In his spare time, he reads textbooks for fun.

You can reach him via e-mail at virtual@rendezvous.com, or visit his Java page at
http://rendezvous.com/java.

Michael Morrison

Michael Morrison is the author of Teach Yourself Internet Game Programming with Java in 21 Days, and a
contributing author to Tricks of the Java Programming Gurus, Java Unleashed, and Game Developer
magazine. Michael lives in Scottsdale, Arizona, with his (now legally recognized) female cohort, Mahsheed. In
his spare time, Michael enjoys testing his threshold for pain on skateboard ramps. You can reach Michael via
e-mail at mmorrison@thetribe.com, or check out his Web site at http://www.thetribe.com.

Tell Us What You Think!

As a reader, you are the most important critic and commentator of our books. We value your opinion and want
to know what we're doing right, what we could do better, what areas you'd like to see us publish in, and any
other words of wisdom you're willing to pass our way. You can help us make strong books that meet your
needs and give you the computer guidance you require.

Do you have access to CompuServe or the World Wide Web? Then check out our CompuServe forum by
typing GO SAMS at any prompt. If you prefer the World Wide Web, check out our site at http://www.mcp.com.

Note
If you have a technical question about this book, call the technical
support line at 800-571-5840, ext. 3668.

As the team leader of the group that created this book, I welcome your comments. You can fax, e-mail, or write
me directly to let me know what you did or didn't like about this book-as well as what we can do to make our
books stronger. Here's the information:

CONTENTS

file:///G|/ebooks/1575211831/index.htm (29 of 37) [11/06/2000 7:44:38 PM]

http://www.lne.com/lemay/
mailto:virtual@rendezvous.com
http://rendezvous.com/java
mailto:mmorrison@thetribe.com
http://www.thetribe.com/


FAX: 317-581-4669
E-mail: newtech_mgr@sams.mcp.com

Mail: Mark Taber
Publishing Manager
Sams.net Publishing
201 W. 103rd Street
Indianapolis, IN 46290

Introduction

The World Wide Web, for much of its existence, has been a method for distributing passive information to a
widely distributed number of people. The Web has, indeed, been exceptionally good for that purpose. With the
addition of forms and image maps, Web pages began to become interactive-but the interaction was often simply
a new way to get at the same information. The limitations of Web distribution were all too apparent once
designers began to try to stretch the boundaries of what the Web can do. Even other innovations, such as
Netscape's server push to create dynamic animations, were merely clever tricks layered on top of a framework
that wasn't built to support much other than static documents with images and text.

Enter Java, and the capability for Web pages to contain Java applets. Applets are small programs that create
animations, multimedia presentations, real-time (video) games, multiuser networked games, and real
interactivity-in fact, most anything a small program can do, Java applets can. Downloaded over the Net and
executed inside a Web page by a browser that supports Java, applets are an enormous step beyond standard
Web design.

The disadvantage of Java is that to create Java applets right now, you need to write them in the Java language.
Java is a programming language, and therefore, creating Java applets is more difficult than creating a Web page
or a form using HTML. Soon there will be tools and programs that will make creating Java applets easier-they
may be available by the time you read this. For now, however, the only way to delve into Java is to learn the
language and start playing with the raw Java code. Even when the tools come out, you may want to do more
with Java than the tools can provide, and you're back to learning the language.

That's whereTeach Yourself Java in 21 Days comes in. This book teaches you all about the Java language and
how to use it to create not only applets, but also applications, which are more general Java programs that don't
need to run inside a Web browser. By the time you get through with this book, you'll know enough about Java
to do just about anything, inside an applet or out.

How This Book Is Organized

Teach Yourself Java in 21 Days covers the Java language and its class libraries in 21 days, organized as three
separate weeks. In addition, this edition contains a bonus week that's chock full of new and advanced
information. Each week covers a different broad area of developing Java applets and applications.

In the first week you'll learn about the Java language itself:

Day 1 is the basic introduction: what Java is, why it's cool, and how to get the software. You'll also
create your first Java applications and applets.

●   

On Day 2 you'll explore basic object-oriented programming concepts as they apply to Java.●   

On Day 3 you'll start getting down to details with the basic Java building blocks: data types, variables,●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (30 of 37) [11/06/2000 7:44:38 PM]

mailto:newtech_mgr@sams.mcp.com


and expressions, such as arithmetic and comparisons.

Day 4 goes into detail about how to deal with objects in Java: how to create them, how to access their
variables and call their methods, and how to compare and copy them. You'll also get your first glance at
the Java class libraries.

●   

On Day 5 you'll learn more about Java, with arrays, conditional statements, and loops.●   

Day 6 is the best one yet. You'll learn how to create classes, the basic building blocks of any Java
program, and how to put together a Java application (a Java program that can run on its own without a
Web browser).

●   

Day 7 builds on what you learned on Day 6. You'll learn more about how to create and use methods,
including overriding and overloading methods and creating constructors.

●   

Week 2 is dedicated to applets and the Java class libraries:

Day 8 provides the basics of applets-how they're different from applications, how to create them, and
about the most important parts of an applet's life cycle. You'll also learn how to create HTML pages that
contain Java applets.

●   

On Day 9 you'll learn about the Java classes for drawing shapes and characters to the screen-in black,
white, or any other color.

●   

On Day 10 you'll start animating those shapes you learned about on Day 9, including learning about
threads and their uses.

●   

Day 11 covers more detail about animation, adding bitmap images and audio to the soup.●   

Day 12 delves into interactivity-handling mouse and keyboard clicks from the user in your Java applets.●   

Day 13 is ambitious; you'll learn about using Java's Abstract Windowing Toolkit to create a user
interface in your applet, including menus, buttons, check boxes, and other elements.

●   

On Day 14 you'll explore the last of the main Java class libraries for creating applets: windows and
dialogs, networking, and a few other tidbits.

●   

Week 3 includes advanced topics for when you start doing larger and more complex Java programs or when
you want to learn more:

On Day 15 you'll learn more about the Java language's modifiers-for abstract and final methods and
classes as well as for protecting a class's private information from the prying eyes of other classes.

●   

Day 16 covers interfaces and packages, useful for abstracting protocols of methods to aid reuse and for
the grouping and categorization of classes.

●   

Day 17 covers exceptions: errors and warnings and other abnormal conditions, generated either by the
system or by you in your programs.

●   

Day 18 builds on the thread basics you learned on Day 10 to give a broad overview of multithreading and
how to use it to allow different parts of your Java programs to run in parallel.

●   

On Day 19 you'll learn all about the input and output streams in Java's I/O library.●   

Day 20 teaches you about native code-how to link C code into your Java programs to provide missing
functionality or to gain performance.

●   

On Day 21 you'll get an overview of some of the behind-the-scenes technical details of how Java works:
the bytecode compiler and interpreter, the techniques Java uses to ensure the integrity and security of
your programs, and the Java garbage collector.

●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (31 of 37) [11/06/2000 7:44:38 PM]



This Professional Reference Edition also includes a bonus week that contains more depth about some of the
topics previously mentioned in the book, lots more sample programs, and coverage of the various tools and
utilities currently available for writing with Java. It also gives you a preview of the features coming up in Java
1.1:

Day 22 describes tools and utilities for programming in Java, including debugging techniques, Java
development environments such as Symantec Café and Visual J++, the javadoc documentation
system, and other tips and tricks.

●   

On Day 23 you'll learn about creating structures for modeling various forms of data, both with the classes
in the java.util package and by creating new classes.

●   

Day 24 goes into even more detail about animation in Java, building on the simple techniques covered in
Week 2. On this day you'll learn about creating sprite-based animation and coordinating image and
media loading with your programs.

●   

Sun's java.awt.image package provides a set of classes for working with images. Day 25 covers
these classes in detail, explaining the image filter architecture and how you can use it in your own Java
programs.

●   

Day 14 gives a very basic introduction to networking in Java. Day 26 takes it further, with extensive
examples of networking applets and applications, working with "live" data sent from a server, and
connecting to databases from Java applets.

●   

On Day 27 we move into the future and describe what are known as the standard extension APIs. Sun is
developing these APIs in conjunction with other interested parties, and many of the features you'll learn
about in this chapter will be part of the 1.1 Java API.

●   

Day 28 finishes up with more future topics, including Sun's Java Beans API, Java chips, and the JavaOS.
How will these technologies affect how you work in Java and how Java will affect you? Learn about it
here as you finish up the book.

●   

Preparing for the Future: The Upcoming Java 1.1 Release

At the time this book is being written, the current version of Java is known as the 1.0 API (or, more exactly, the
1.0.2 version of the JDK). A new version of Java is on the horizon, one that will add a significant number of
new features to Java while still being backward compatible with the original version. This new version of Java,
called Java 1.1, is expected to be available in a prerelease form in late 1996.

This book covers the Java 1.0 API in intimate detail. Where information about an upcoming feature of 1.1 is
available, we have attempted to explain that new feature, how it will affect what you have already learned
about the 1.0 API, and where to look for further information. In addition, the last two chapters of this book
cover the more advanced features of 1.1 and how they will be used. These notes and comments will help you
prepare for when 1.1 is released and help you migrate the code you may have already written quickly and easily
to the new API.

Features expected to be in the 1.1 JDK include

JDBC (the Java Database Connectivity interface) provides a mechanism for connecting Java applications
and applets to SQL databases such as Oracle and Sybase. The JDBC, available in a prerelease form at
this time from http://splash.javasoft.com/jdbc/, is covered on Day 27.

●   

RMI (Remote Method Invocation) is the ability to call a Java method from an object running elsewhere
(for example, in a different Java environment running on the same machine or on any machine on the
network). RMI is closely related to object serialization, which allows objects to be encoded into a stream

●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (32 of 37) [11/06/2000 7:44:38 PM]

http://splash.javasoft.com/jdbc/


of bytes, which can then be sent over a network or saved to a file. The result can then also be decoded
back into a Java object at the other end. Object serialization is an extension of the stream classes
discussed on Day 19. RMI is discussed in greater detail on Day 27. Information about both of these
topics can be found at http://chatsubo.javasoft.com/current/.

The Java native methods interface is the ability for Java to call system-specific libraries such as DLLs or
loadable libraries written in C. Writing native methods is described on Day 20; enhancement in Java 1.1
will include a better API for making sure native method libraries are compatible with every
implementation of the Java runtime across platforms.

●   

JIT compilers are tools that convert Java bytecode to native machine code. You'll learn about JIT
compilers throughout this book, but particularly on Days 21 and 22. In Java 1.1 there will be better
specifications for writing your own JIT or other tool that generates native code from Java bytecodes.

●   

Changes to the awt. Probably some of the more significant changes to Java will be in the area of the
Abstract Windowing Toolkit, or awt, the portion of Java that controls drawing to the screen, creating user
interface elements such as buttons and windows, and handling painting and user input between all those
elements. This book covers the awt primarily in Week 2. Enhancements to the awt in Java 1.1 include
printing, pop-up menus, supports for clipboards (copy and paste), internationalization for fonts, better
scrolling capabilities, and delegation-based events. You'll learn more about these changes throughout
Week 2.

●   

Security enhancements. JDK 1.1 will provide many features for implementing security in Java
applications, including signatures, access control, key management, and message digests (MD5 hashes,
for example). These additions won't affect much of 1.0 because they are new enhancements. You'll learn
all about 1.1's security features on Day 27.

●   

Networking enhancements. Java 1.0 provides the java.net classes, which provide simple network
connections, URL management, and simple client and server sockets. Java 1.1 provides more flexibility
for the existing socket classes, a new MulticastSocket class, and BSD-style socket options. Learn
about all these new features on Day 14 or from the URL
http://java.sun.com/products/JDK/1.1/designspecs/net/index.html.

●   

Adapter classes allow you to implement an API defined by an interface or a class and have the flow of
control move from the adapter class back to an enclosing object. Java 1.1 provides Java syntax for
nesting class definitions inside other class definitions to more easily create adapter classes. You'll learn
more on Day 6.

●   

Object reflection is the ability for Java to inspect an object and find out its methods and variables (and
call and change them). Object reflection is useful for class browsers or other tools that need to find out
information about an object on-the-fly, as well as component object systems that need defined ways of
referring to other objects' contents. Java 1.1 provides many features for handling object reflection,
including a number of new classes. You'll find out more on Day 4 or from
http://java.sun.com/products/JDK/1.1/designspecs/reflection/index.html.

●   

Java 1.1 provides a number of new features for internationalization, particularly language-specific
features such as strings, character set conversions, Unicode character display, and support for definable
"locales."

●   

Java archives (JAR files) provide a mechanism for combining several classes into a single file for faster
downloading over the Net. Netscape provides a single archive file mechanism for applets, but JAR files
provide a more cross-platform file format, compression, and the ability to include media files in the
archive. The capability to store Java classes in JAR files, and to use them with Java-enabled browsers,
will be in Java 1.1. The current JAR file format specification is available from

●   

CONTENTS

file:///G|/ebooks/1575211831/index.htm (33 of 37) [11/06/2000 7:44:38 PM]

http://chatsubo.javasoft.com/current/
http://java.sun.com/products/JDK/1.1/designspecs/net/index.html
http://java.sun.com/products/JDK/1.1/designspecs/reflection/index.html


http://java.sun.com/security/codesign/jar-format.html.

You can learn more about all these features via information throughout this book or from the Java 1.1 preview
page at http://www.java.sun.com/products/JDK/1.1/designspecs/.

Conventions Used in This Book

Text that you type and text that should appear on your screen is presented in monospace type:

It will look like this.

It mimics the way text looks on your screen. Placeholders for variables and expressions appear in monospace
italic.

The end of each chapter offers common questions asked about that day's subject matter, with answers from the
authors.

Sources for Further Information

Before, while, and after you read this book, there are several Web sites that may be of interest to you as a Java
developer.

The official Java Web site is at http://java.sun.com/. At this site, you'll find the Java development
software and online documentation for all aspects of the Java language, including the previously mentioned
Java 1.1 preview page. It has several mirror sites that it lists online, and you should probably use the site
"closest" to you on the Internet for your downloading and Java Web browsing.

There is also an excellent site for developer resources, called Gamelan, at http://www.gamelan.com/,
which contains an enormous number of applets and applications, with sample code, help, and plenty of
information about Java and Java development.

This book also has a companion Web site at http://www.lne.com/Web/JavaProf/. Information at
that site includes examples, more information, and background for this book, corrections to this book, and other
tidbits that are not included here.

For discussion about the Java language and the tools to develop in it, check out the Usenet newsgroups for
comp.lang.java. This set of newsgroups-which includes comp.lang.java.programming,
comp.lang.java.api, comp.lang.java.misc, comp.lang.java.security, and
comp.lang.java.tech-is a terrific source for getting questions answered and for keeping up on new Java
developments.

Praise for Teach Yourself Java

"If you get only one Java book, it should be Teach Yourself Java in 21 Days. Authors Laura Lemay and Charles
L. Perkins cover all aspects of Java programming in an easy-to-read guide organized around daily lesson
plans."

-Jay Munro, pc Magazine

"…this is where to begin. Java in all its gory details: classes to applets, methods to multithreading."

-Thom Gillespie, Library Journal

CONTENTS

file:///G|/ebooks/1575211831/index.htm (34 of 37) [11/06/2000 7:44:38 PM]

http://java.sun.com/security/codesign/jar-format.html
http://www.java.sun.com/products/JDK/1.1/designspecs/
http://java.sun.com/
http://www.gamelan.com/
http://www.lne.com/Web/JavaProf/


"Teach Yourself Java gives a thoughtful treatment to under-the-hood issues of Java's implementation."

-Peter Coffee, pc Week

"If you buy one book on Java, this is the one to buy. Teach Yourself Java is one of the best introductions to
hands-on Java programming. The setup of the book is extremely well thought out."

-Scott Sidel, Independent Web Review

"This is the best introduction to object-oriented programming ever written. This book does not assume that you
know C or C++, but it offers tips for those who do. Laura Lemay is my favorite tech author.…If you can afford
only one Java book, then this is the one to get."

-David Geary

What's New in This Edition

Given the explosion of tools for building Java applications and the wide variety of things that people are doing
with Java, for the Web and for general-purpose applications, there is no shortage of new things to talk about
when it comes to Java.

This edition, therefore, is a fully revised and extended edition of the original Teach Yourself Java in 21 Days. It
has been greatly expanded and enhanced, with all the original content updated, the weak parts fixed, and more
examples added. This edition also contains a bonus week that adds further depth and detail about existing
topics such as images, animation, and networking, as well as information about tools, debugging, and advanced
data structures. In the bonus week you'll also learn about the following:

Day 22 describes tools and utilities for programming in Java, including debugging techniques, Java
development environments such as Symantec Café and Visual J++, the javadoc documentation
system, and other tips and tricks.

●   

Day 23 covers creating structures for modeling various forms of data, both with the classes in the
java.util package and by creating new classes.

●   

Day 24 goes into even more detail about animation in Java, building on the simple techniques covered in
Week 2.

●   

Sun's java.awt.image package provides a set of classes for working with images. Day 25 covers
these classes in detail, explaining the image filter architecture and how you can use it in your own Java
programs.

●   

Day 26 takes a further look at client/server networking, with extensive examples of networking applets
and applications and working with live data sent from a server, as well as connecting to databases from
Java applets.

●   

Days 27 and 28 move into the future and describe what are known as the standard extension APIs. Many
of the features you'll learn about on Day 27 will be part of Java 1.1. Day 28 finishes up with more future
topics, including Sun's Java Beans API, Java chips, and the JavaOS.

●   

The bonus week goes into great detail about upcoming features in Java 1.1 and the extension APIs. And with
more than 250 pages of reference material in the appendixes, there's little you won't be able to discover using
this book.

CONTENTS

file:///G|/ebooks/1575211831/index.htm (35 of 37) [11/06/2000 7:44:38 PM]



About This Book

This book teaches you all about the Java language and how to use it to create applets for the World Wide Web,
as well as standalone applications. By the time you get through with this book, you'll know enough about Java
and about the Java class libraries to do just about anything, inside an applet or out.

Who Should Read This Book

This book is intended for people with at least some basic programming background, which includes people
with years of programming experience and people with only a small amount of experience. If you understand
what variables, loops, and functions are, you'll be just fine for this book. The sorts of people who might want to
read this book include you, if

You're a real whiz at HTML, understand CGI programming (in Perl, AppleScript, Visual Basic, or some
other popular CGI language) pretty well, and want to move on to the next level in Web page design.

●   

You had some BASIC or Pascal in school and you have a basic grasp of what programming is, but
you've heard Java is easy to learn, really powerful, and very cool.

●   

You've programmed C and C++ for many years, you've heard this Java thing is becoming really popular,
and you're wondering what all the fuss is about.

●   

You've heard that Java is really good for Web-based applets, and you're curious about how good it is for
creating more general applications.

●   

What if you know programming, but you don't know object-oriented programming? Fear not. This book
assumes no background in object-oriented design. If you know object-oriented programming, in fact, the first
couple days will be easy for you.

What if you're a rank beginner? This book might move a little fast for you. Java is a good language to start
with, though, and if you take it slow and work through all the examples, you may still be able to pick up Java
and start creating your own applets.

How This Book Is Structured

This book is intended to be read and absorbed over the course of four weeks. During each week, you'll read
seven chapters that present concepts related to the Java language and the creation of applets and applications.

Conventions

Note
A note box presents interesting pieces of information related to the
surrounding discussion.

Technical Note
A technical note presents specific technical information related to the
surrounding discussion.

Tip
A tip box offers advice or teaches an easier way to do something.

Warning

CONTENTS

file:///G|/ebooks/1575211831/index.htm (36 of 37) [11/06/2000 7:44:38 PM]



A warning box advises you about potential problems and helps you
steer clear of disaster.

New terms
New terms are introduced in new term boxes, with the new term in
italics.

Type
A type icon identifies some new Java code that you can type in. You
can also get the code from the CD-ROM that accompanies this book.

Output
An output icon shows the output from a Java program.

Analysis
An analysis icon alerts you to the author's line-by-line analysis.

 

CONTENTS

file:///G|/ebooks/1575211831/index.htm (37 of 37) [11/06/2000 7:44:38 PM]



Day 1

An Introduction to Java Programming
by Laura Lemay

CONTENTS
What Is Java?●   

Java's Past, Present, and Future●   

Why Learn Java?

Java Is Platform Independent❍   

Java Is Object Oriented❍   

Java Is Easy to Learn❍   

●   

Getting Started Programming in Java

Getting a Java Development Environment❍   

Installing the JDK and Sample Files❍   

Configuring the JDK❍   

Creating a Java Application❍   

Creating a Java Applet❍   

●   

Troubleshooting●   

Summary●   

Q&A●   

Hello and welcome to Teach Yourself Java in 21 Days! Starting today and for the next few weeks you'll
learn all about the Java language and how to use it to create programs that run inside Web pages (called
applets) and programs that can run on their own (called applications).

That's the overall goal for the next couple weeks. Today, the goals are somewhat more modest, and you'll
learn about the following:

What exactly Java is, and its current status●   

Why you should learn Java-its various features and advantages over other programming languages●   

Getting started programming in Java-what you'll need in terms of software and background, as
well as some basic terminology

●   

How to create your first Java programs-to close this day, you'll create both a simple Java
application and a simple Java applet!

●   

Day 1 -- An Introduction to Java Programming

file:///G|/ebooks/1575211831/ch1.htm (1 of 21) [11/06/2000 7:44:43 PM]



What Is Java?
Based on the enormous amount of press Java is getting and the amount of excitement it has generated,
you may get the impression that Java will save the world-or at least solve all the problems of the Internet.
Not so. Java's hype has run far ahead of its capabilities, and while Java is indeed new and interesting, it
really is another programming language with which you write programs that run on the Internet. In this
respect, Java is closer to popular programming languages such as C, C++, Visual Basic, or Pascal, than it
is to a page description language such as HTML, or a very simple scripting language such as JavaScript.

More specifically, Java is an object-oriented programming language developed by Sun Microsystems, a
company best known for its high-end UNIX workstations. Modeled after C++, the Java language was
designed to be small, simple, and portable across platforms and operating systems, both at the source and
at the binary level, which means that Java programs (applets and applications) can run on any machine
that has the Java virtual machine installed (you'll learn more about this later).

Java is usually mentioned in the context of the World Wide Web, where browsers such as Netscape's
Navigator and Microsoft's Internet Explorer claim to be "Java enabled." Java enabled means that the
browser in question can download and play Java programs, called applets, on the reader's system.
Applets appear in a Web page much the same way as images do, but unlike images, applets are dynamic
and interactive. Applets can be used to create animation, figures, forms that immediately respond to input
from the reader, games, or other interactive effects on the same Web pages among the text and graphics.
Figure 1.1 shows an applet running in Netscape 3.0. (This applet, at
http://prominence.com/java/poetry/, is an electronic version of the refrigerator magnets
that you can move around to create poetry or messages.)

Figure 1.1 : Netscape running a Java applet.

New Term
Applets are programs that are downloaded from the World Wide Web
by a Web browser and run inside an HTML Web page. You'll need a
Java-enabled browser such as Netscape Navigator or Microsoft's
Internet Explorer to run applets.

To create an applet, you write it in the Java language, compile it using a Java compiler, and refer to that
applet in your HTML Web pages. You put the resulting HTML and Java files on a Web site in the same
way that you make ordinary HTML and image files available. Then, when someone using a Java-enabled
browser views your page with the embedded applet, that browser downloads the applet to the local
system and executes it, allowing your reader to view and interact with your applet in all its glory.
(Readers using other browsers may see text, a static graphic, or nothing.) You'll learn more about how
applets, browsers, and the World Wide Web work together later in this book.

While applets are probably the most popular use of Java, the important thing to understand about Java is
that you can do so much more with it than create and use applets. Java was written as a full-fledged
general-purpose programming language in which you can accomplish the same sorts of tasks and solve
the same sorts of problems that you can in other programming languages, such as C or C++.

Day 1 -- An Introduction to Java Programming

file:///G|/ebooks/1575211831/ch1.htm (2 of 21) [11/06/2000 7:44:43 PM]

http://prominence.com/java/poetry/


Java's Past, Present, and Future
The Java language was developed at Sun Microsystems in 1991 as part of a research project to develop
software for consumer electronics devices-television sets, VCRs, toasters, and the other sorts of machines
you can buy at any department store. Java's goals at that time were to be small, fast, efficient, and easily
portable to a wide range of hardware devices. Those same goals made Java an ideal language for
distributing executable programs via the World Wide Web and also a general-purpose programming
language for developing programs that are easily usable and portable across different platforms.

The Java language was used in several projects within Sun (under the name Oak), but did not get very
much commercial attention until it was paired with HotJava. HotJava, an experimental World Wide Web
browser, was written in 1994 in a matter of months, both as a vehicle for downloading and running
applets and also as an example of the sort of complex application that can be written in Java. Although
HotJava got a lot of attention in the Web community, it wasn't until Netscape incorporated HotJava's
ability to play applets into its own browser that Java really took off and started to generate the excitement
that it has both on and off the World Wide Web. Java has generated so much excitement, in fact, that
inside Sun the Java group spun off into its own subsidiary called JavaSoft.

Versions of Java itself, or, as it's most commonly called, the Java API, correspond to versions of Sun's
Java Developer's Kit, or JDK. As of this writing, the current version of the JDK is 1.0.2. Previously
released versions of the JDK (alphas and betas) did not have all the features or had a number of
security-related bugs. Most Java tools and browsers conform to the features in the 1.0.2 JDK, and all the
examples in this book run on that version as well.

The next major release of the JDK and therefore of the Java API will be 1.1, with a prerelease version
available sometime in the later part of 1996. This release will have few changes to the language, but a
number of additional capabilities and features added to the class library. Throughout this book, if a
feature will change or will be enhanced in 1.1, we'll let you know, and in the last two days of this book
you'll find out more about new Java features for 1.1 and for the future.

Currently, to program in Java, you'll need a Java development environment of some sort for your
platform. Sun's JDK works just fine for this purpose and includes tools for compiling and testing Java
applets and applications. In addition, a wide variety of excellent Java development environments have
been developed, including Sun's own Java Workshop, Symantec's Café, Microsoft's Visual J++ (which is
indeed a Java tool, despite its name), and Natural Intelligence's Roaster, with more development tools
appearing all the time.

To run and view Java applets, you'll need a Java-enabled browser or other tool. As mentioned before,
recent versions of Netscape Navigator (2.0 and higher) and Internet Explorer (3.0) can both run Java
applets. (Note that for Windows you'll need the 32-bit version of Netscape, and for Macintosh you'll need
Netscape 3.0.) You can also use Sun's own HotJava browser to view applets, as long as you have the 1.0
prebeta version (older versions are not compatible with newer applets, and vice versa). Even if you don't
have a Java-enabled browser, many development tools provide simple viewers with which you can run
your applets. The JDK comes with one of these; it's called the appletviewer.

Note

Day 1 -- An Introduction to Java Programming

file:///G|/ebooks/1575211831/ch1.htm (3 of 21) [11/06/2000 7:44:43 PM]



If you're running Windows 3.x as your main system, very few tools
exist for you to be able to work with Java. As I write this, the only
Java tool available for writing and running Java applets is a version of
the JDK from IBM called the ADK. You can write applets using this
tool, and view them using the applet viewer that comes with that
package (neither Netscape nor Internet Explorer will run Java applets
on Windows 3.1). See http://www.alphaWorks.ibm.com/
for more information.

What's in store for Java in the future? A number of new developments have been brewing (pardon the
pun):

Sun is developing a number of new features for the Java environment, including a number of new
class libraries for database integration, multimedia, electronic commerce, and other uses. Sun also
has a Java-based Web server, a Java-based hardware chip (with which you can write Java-specific
systems), and a Java-based operating system. You'll learn about all these things later in this book.
The 1.1 release of the JDK will include many of these features; others will be released as separate
packages.

●   

Sun is also developing a framework called Java Beans, which will allow the development of
component objects in Java, similarly to Microsoft's ActiveX (OLE) tech-nology. These different
components can then be easily combined and interact with each other using standard component
assembly tools. You'll learn more about Java Beans later in this book.

●   

Java capabilities will be incorporated into a wide variety of operating systems, including Solaris,
Windows 95, and MacOS. This means that Java applications (as opposed to applets) can run nearly
anywhere without needing additional software to be installed.

●   

Many companies are working on performance enhancements for Java programs, including the
aforementioned Java chip and what are called just-in-time compilers.

●   

Why Learn Java?
At the moment, probably the most compelling reason to learn Java-and probably the reason you bought
this book-is that applets are written in Java. Even if that were not the case, Java as a programming
language has significant advantages over other languages and other environments that make it suitable
for just about any programming task. This section describes some of those advantages.

Java Is Platform Independent

Platform independence-that is, the ability of a program to move easily from one computer system to
another-is one of the most significant advantages that Java has over other programming languages,
particularly if your software needs to run on many different platforms. If you're writing software for the
World Wide Web, being able to run the same program on many different systems is crucial to that
program's success. Java is platform independent at both the source and the binary level.

New Term

Day 1 -- An Introduction to Java Programming

file:///G|/ebooks/1575211831/ch1.htm (4 of 21) [11/06/2000 7:44:43 PM]

http://www.alphaworks.ibm.com/


Platform independence means that a program can run on any
computer system. Java programs can run on any system for which a
Java virtual machine has been installed.

At the source level, Java's primitive data types have consistent sizes across all development platforms.
Java's foundation class libraries make it easy to write code that can be moved from platform to platform
without the need to rewrite it to work with that platform. When you write a program in Java, you don't
need to rely on features of that particular operating system to accomplish basic tasks. Platform
independence at the source level means that you can move Java source files from system to system and
have them compile and run cleanly on any system.

Platform independence in Java doesn't stop at the source level, however. Java compiled binary files are
also platform independent and can run on multiple platforms (if they have a Java virtual machine
available) without the need to recompile the source.

Normally, when you compile a program written in C or in most other languages, the compiler translates
your program into machine code or processor instructions. Those instructions are specific to the
processor your computer is running-so, for example, if you compile your code on an Intel-based system,
the resulting program will run only on other Intel-based systems. If you want to use the same program on
another system, you have to go back to your original source code, get a compiler for that system, and
recompile your code so that you have a program specific to that system. Figure 1.2 shows the result of
this system: multiple executable programs for multiple systems.

Figure 1.2 : Traditional compiled programs.

Things are different when you write code in Java. The Java development environment actually has two
parts: a Java compiler and a Java interpreter. The Java compiler takes your Java program and, instead of
generating machine codes from your source files, it generates bytecodes. Bytecodes are instructions that
look a lot like machine code, but are not specific to any one processor.

To execute a Java program, you run a program called a bytecode interpreter, which in turn reads the
bytecodes and executes your Java program (see Figure 1.3). The Java bytecode interpreter is often also
called the Java virtual machine or the Java runtime.

Figure 1.3 : Java programs.

New Term
Java bytecodes are a special set of machine instructions that are not
specific to any one processor or computer system. A platform-specific
bytecode interpreter executes the Java bytecodes. The bytecode
interpreter is also called the Java virtual machine or the Java runtime
interpreter.

Where do you get the bytecode interpreter? For applets, the bytecode interpreter is built into every
Java-enabled browser, so you don't have to worry about it-Java applets just automatically run. For more
general Java applications, you'll need to have the interpreter installed on your system in order to run that
Java program. Right now, you can get the Java interpreter as part of your development environment, or if
you buy a Java program, you'll get it with that package. In the future, however, the Java bytecode

Day 1 -- An Introduction to Java Programming

file:///G|/ebooks/1575211831/ch1.htm (5 of 21) [11/06/2000 7:44:43 PM]



interpreter will most likely come with every new operating system-buy a Windows machine, and you'll
get Java for free.

Why go through all the trouble of adding this extra layer of the bytecode interpreter? Having your Java
programs in bytecode form means that instead of being specific to any one system, your programs can be
run on any platform and any operating or window system as long as the Java interpreter is available. This
capability of a single binary file to be executable across platforms is crucial to what makes applets work
because the World Wide Web itself is also platform independent. Just as HTML files can be read on any
platform, so can applets be executed on any platform that has a Java-enabled browser.

The disadvantage of using bytecodes is in execution speed. Because system-specific programs run
directly on the hardware for which they are compiled, they run significantly faster than Java bytecodes,
which must be processed by the interpreter. For many basic Java programs, speed may not be an issue. If
you write programs that require more execution speed than the Java interpreter can provide, you have
several solutions available to you, including being able to link native code into your Java program or
using special tools (called just-in-time compilers) to convert your Java bytecodes into native code and
speed up their execution. Note that by using any of these solutions, you lose the portability that Java
bytecodes provide. You'll learn about each of these mechanisms on Day 20, "Using Native Methods and
Libraries."

Java Is Object Oriented

To some, the object-oriented programming (OOP) technique is merely a way of organizing programs,
and it can be accomplished using any language. Working with a real object-oriented language and
programming environment, however, enables you to take full advantage of object-oriented methodology
and its capabilities for creating flexible, modular programs and reusing code.

Many of Java's object-oriented concepts are inherited from C++, the language on which it is based, but it
borrows many concepts from other object-oriented languages as well. Like most object-oriented
programming languages, Java includes a set of class libraries that provide basic data types, system input
and output capabilities, and other utility functions. These basic libraries are part of the standard Java
environment, which also includes simple libraries, form networking, common Internet protocols, and
user interface toolkit functions. Because these class libraries are written in Java, they are portable across
platforms as all Java applications are.

You'll learn more about object-oriented programming and Java tomorrow.

Java Is Easy to Learn

In addition to its portability and object orientation, one of Java's initial design goals was to be small and
simple, and therefore easier to write, easier to compile, easier to debug, and, best of all, easy to learn.
Keeping the language small also makes it more robust because there are fewer chances for programmers
to make mistakes that are difficult to fix. Despite its size and simple design, however, Java still has a
great deal of power and flexibility.

Java is modeled after C and C++, and much of the syntax and object-oriented structure is borrowed from
the latter. If you are familiar with C++, learning Java will be particularly easy for you because you have

Day 1 -- An Introduction to Java Programming

file:///G|/ebooks/1575211831/ch1.htm (6 of 21) [11/06/2000 7:44:43 PM]



most of the foundation already. (In fact, you may find yourself skipping through the first week of this
book fairly rapidly. Go ahead; I won't mind.)

Although Java looks similar to C and C++, most of the more complex parts of those languages have been
excluded from Java, making the language simpler without sacrificing much of its power. There are no
pointers in Java, nor is there pointer arithmetic. Strings and arrays are real objects in Java. Memory
management is automatic. To an experienced programmer, these omissions may be difficult to get used
to, but to beginners or programmers who have worked in other languages, they make the Java language
far easier to learn.

However, while Java's design makes it easier to learn than other programming languages, working with a
programming language is still a great deal more complicated than, say, working in HTML. If you have
no programming language background at all, you may find Java difficult to understand and to grasp. But
don't be discouraged! Learning programming is a valuable skill for the Web and for computers in
general, and Java is a terrific language to start out with.

Getting Started Programming in Java
Enough background! For the second half of this day let's actually dive into simple Java programming and
create two Java programs: a standalone Java application and an applet that you can view in a
Java-enabled browser. Although both these programs are extremely simple, they will give you an idea of
what a Java program looks like and how to compile and run it.

Getting a Java Development Environment

In order to write Java programs, you will, of course, need a Java development environment. (Although
browsers such as Netscape allow you to play Java applets, they don't let you write them. For that you'll
need a separate tool.) Sun's JDK, which is available for downloading at the JavaSoft Web site
(http://www.javasoft.com/) and included on the CD for this book, will do just fine. It runs on
Solaris, Windows 95 and NT, and Macintosh. However, despite the JDK's popularity, it is not the easiest
development tool to use. If you're used to using a graphical user interface-based development tool with
an integrated editor and debugger, you'll most likely find the JDK's command-line interfaces rather
primitive. Fortunately, the JDK is not the only tool in town.

As mentioned earlier, a number of third-party development environments (called integrated development
environments, or IDEs) are also available for developing in Java. These include Sun's Java Workshop for
Solaris, Windows NT and Windows 95 (you can get more information about it at
http://www.sun.com/developer-products/java/); Symantec's Café for Windows 95,
Windows NT, and Macintosh (http://cafe.symantec.com/); Microsoft's Visual J++ for
Windows 95 and Windows NT (http://www.microsoft.com/visualj/); and Natural
Intelligence's Roaster
(http://www.natural.com/pages/products/roaster/index.html). All three are
commercial programs, but you might be able to download trial or limited versions of these programs to
try them out. You'll learn more about the features and capabilities of the various Java IDEs on Day 22,
"Java Programming Tools."

Day 1 -- An Introduction to Java Programming

file:///G|/ebooks/1575211831/ch1.htm (7 of 21) [11/06/2000 7:44:43 PM]

http://www.javasoft.com/
http://www.sun.com/developer-products/java/
http://cafe.symantec.com/
http://www.microsoft.com/visualj/
http://www.natural.com/pages/products/roaster/index.html


Note
I find the graphical development environments far easier to use than
the standard JDK. If you have the money and the time to invest in one
of these tools, I highly recommend you do so. It'll make your Java
development experience much more pleasant.

Installing the JDK and Sample Files

Sun's JDK for Solaris, Windows, and Macintosh is included as part of the CD-ROM that comes with this
book. Also on the CD-ROM are all of the code examples from this book-a great help if you don't want to
type them all in again. To install either the JDK or the sample files (or both), use one of the following
procedures:

Note
If you don't have access to a CD-ROM drive, you can also get access
to these files over the World Wide Web. You can download the JDK
itself from http://java.sun.com/products/JDK/1.0.2/
and install it per the instructions on those pages. The sample files
from this book are available on the Web site for this book:
http://www.lne.com/Web/JavaProf/.

If you download the JDK and source files, as opposed to getting them
off the CD-ROM, make sure you read the section "Configuring the
JDK" to make sure everything is set up right.

Windows
Sun's JDK runs on Windows 95 and Windows NT. It does not run on
Windows 3.x.

To install the JDK or the sample files on Windows, run the Setup program on the CD-ROM
(double-clicking the CD icon will do this automatically). By default, the package will be installed into
C:\Java; you can install it anywhere on your hard disk that you'd like. You'll be given options to install
the JDK, the sample files, and various other extra files; choose the options you want and those files will
be installed.

If you've installed the JDK, note that in the directory JDK\lib there is a file called classes.zip. Do
not unzip this file; it needs to remain in zip form for it to work correctly. The file JDK\src.zip
contains the source code for many of the JDK libraries; you can unzip this one if you like. Make sure if
you do that you have a zip program that supports long filenames, or it will not work correctly!

Macintosh
Sun's JDK for Macintosh runs on System 7 (MacOS) for 68KB or
Power Mac.

To install the JDK or the sample files on the Macintosh, double-click the installation program on the

Day 1 -- An Introduction to Java Programming

file:///G|/ebooks/1575211831/ch1.htm (8 of 21) [11/06/2000 7:44:43 PM]

http://java.sun.com/products/JDK/1.0.2/


CD-ROM. By default, the package will be installed into the folder Java on your hard disk; you can
install it anywhere on your disk that you'd like. You'll be given options to install the JDK, the sample
files, and various other extra files; choose the options you want and those files will be installed.

Solaris
Sun's JDK for Solaris runs on Solaris 2.3, 2.4, and 2.5, as well as the
x86 version of Solaris.

The CD-ROM for this book contains the tarred and zipped JDK in the directory
jdk/solaris/jdk1.02.tgz. Using the utilities gunzip and tar, you can extract the contents of
that file anywhere on the file system you would like. For example, if you copy the .tgz file to your
home directory and use the following commands to extract it, you'll end up with a java directory that
contains the full JDK:

gunzip ./jdk1.02.tgz
tar xvf ./jdk1.02.tar

Note that in the directory java\lib there is a file called classes.zip. Do not unzip this file; it
needs to remain in zip form for it to work correctly. The file java\src.zip contains the source code
for many of the JDK libraries; you can unzip this one if you're interested in the source code.

The sample files are also contained on the CD-ROM in authors/authors.tar. Create a directory
where the sample files will live (for example, a directory called javasamples in your home directory),
copy the authors.tar file there, and then use the tar command to extract it, like this:

mkdir ~/javasamples
cp /cdrom/authors/authors.tar
tar xvf authors.tar

Configuring the JDK

If you've installed the JDK using the setup programs from the CD-ROM, chances are good that it has
been correctly configured for you. However, because most common problems with Java result from
configuration errors, I recommend that you double-check your configuration to make sure everything is
right. And if you've installed the JDK from a source other than the CD-ROM, you'll definitely want to
read this section to make sure you're all set up.

Windows
The JDK needs two important modifications to your
autoexec.bat file in order to work correctly: The JDK\bin
directory must be in your execution path, and you must have the
CLASSPATH variable set up.

Edit your autoexec.bat file using your favorite editor (Notepad will do just fine). Look for a line
that looks something like this:

Day 1 -- An Introduction to Java Programming

file:///G|/ebooks/1575211831/ch1.htm (9 of 21) [11/06/2000 7:44:43 PM]



PATH C:\WINDOWS;C:\WINDOWS\COMMAND;C:\DOS; ...

Somewhere in that line you should see an entry for the JDK; if you installed the JDK from CD-ROM, it'll
look something like this (the dots are there to indicate that there may be other stuff on this line):

PATH C:\WINDOWS; ... C:\TEAchY~1\JDK\BIN; ...

If you cannot find any reference to JDK\BIN or JAVA\BIN in your PATH, you'll need to add it. Simply
include the full pathname to your JDK installation to the end of that line, starting with C: and ending
with BIN; for example, C:\JAVA\BIN or C:\Java\JDK\BIN.

Note
The directories Teach Yourself Java and TEAchY~1 are
actually the same thing; the former is how the directory appears in
Windows 95, and the latter is how it appears in DOS. Either one will
work fine; there's no need to change it if one or the other appears.
Note, however, that if the pathname contains spaces, it must be in
quotes.

The second thing you'll need to add to the autoexec.bat file (if it isn't already there) is a
CLASSPATH variable. Look for a line that looks something like this:

SET CLASSPATH=C:\TEAchY~1\JDK\lib\classes.zip;.;

The CLASSPATH variable may also have other entries in it for Netscape or Internet Explorer, but the one
you're most interested in is a reference to the classes.zip file in the JDK, and to the current
directory (.). If your autoexec.bat file does not include either of these locations, add a line to the
file that contains both these things (the line shown above will work just fine).

After saving your autoexec.bat file, you'll need to restart Windows for the changes to take effect.

Macintosh
The JDK for Macintosh should need no further configuration after
installation.

Solaris
To configure the JDK for Solaris, all you need to do is add the
java/bin or jdk/bin directory to your execution path. Usually a
line something like this in your .cshrc, .login, or .profile
files will work:

set path= (~/java/bin/ $path)

This line assumes that you've installed the JDK (as the directory java) into your home directory; if
you've installed it somewhere else, you'll want to substitute that pathname.

Make sure you use the source command with the name of the appropriate file to make sure the changes
take effect (or log out and log back in again):

Day 1 -- An Introduction to Java Programming

file:///G|/ebooks/1575211831/ch1.htm (10 of 21) [11/06/2000 7:44:43 PM]



source ~/.login

Creating a Java Application

Now let's actually get to work. We'll start by creating a simple Java application: the classic Hello World
example that many programming language books use to begin.

Java applications are different from Java applets. Applets, as you have learned, are Java programs that
are downloaded over the World Wide Web and executed by a Web browser on the reader's machine.
Applets depend on a Java-enabled browser in order to run.

New Term
Java applications, however, are more general programs written in the
Java language. Java applications don't require a browser to run; in
fact, Java can be used to create all the kinds of applications that you
would normally use a more conventional programming language to
create.

Java applications are standalone Java programs that do not require a Web browser to run. Java
applications are more general-purpose programs such as you'd find on any computer.

A single Java program can be an applet or an application, or both, depending on how you write that
program and the capabilities that program uses. Throughout this first week as you learn the Java
language, you'll be writing mostly applications; then you'll apply what you've learned to write applets in
Week 2. If you're eager to get started with applets, be patient. Everything that you learn while you're
creating simple Java applications will apply to creating applets, and it's easier to start with the basics
before moving onto the hard stuff. You'll be creating plenty of applets in Week 2.

Creating the Source File

As with all programming languages, your Java source files are created in a plain text editor, or in an
editor that can save files in plain ASCII without any formatting characters. On UNIX, emacs, pico,
and vi will work; on Windows, Notepad or DOS Edit are both text editors that will work (although I
prefer to use the shareware TextPad). On the Macintosh, SimpleText (which came with your Mac) or the
shareware BBedit will work. If you're using a development environment like Café or Roaster, it'll have
its own built-in text editor you can use.

Note
If you're using Windows to do your Java development, you may have
to make sure Windows understands the .java file extension before
you start; otherwise, your text editor may insist on giving all your
files a .txt extension. The easiest way to do this is to go to any
Windows Explorer window, choose View|Options|File Types, choose
New Type, and add Java Source File and .java to the
Description of Type and Associated Extension boxes, respectively.

Day 1 -- An Introduction to Java Programming

file:///G|/ebooks/1575211831/ch1.htm (11 of 21) [11/06/2000 7:44:43 PM]



Fire up your editor of choice and enter the Java program shown in Listing 1.1. Type this program, as
shown, in your text editor. Be careful that all the parentheses, braces, and quotes are there, and that
you've used all the correct upper- and lowercase letters.

Note
You can also find the code for these examples on the CD-ROM as
part of the sample code. However, it's a good idea to actually type
these first few short examples in so that you get a feel for what Java
code actually looks like.

Listing 1.1. Your first Java application.

1: class HelloWorld {
2:     public static void main (String args[]) {
3:         System.out.println("Hello World!");
4:     }
5: }

Warning
The number before each line is part of the listing and not part of the
program; the numbers are there so I can refer to specific line numbers
when I explain what's going on in the program. Do not include them
in your own file.

After you've finished typing in the program, save the file somewhere on your disk with the name
HelloWorld.java. This is very important. Java source files must have the same name as the class
they define (including the same upper- and lowercase letters), and they must have the extension .java.
Here, the class definition has the name HelloWorld, so the filename must be HelloWorld.java. If
you name your file something else (even something like helloworld.java or
Helloworld.java), you won't be able to compile it. Make absolutely certain the name is
HelloWorld.java.

You can save your Java files anywhere you like on your disk, but I like to have a central directory or
folder to keep them all in. For the examples in this chapter, I've put my files into a directory called
TYJtests (short for Teach Yourself Java Tests).

Compiling and Running the Source File

Now it's time to compile the file. If you're using the JDK, you can use the instructions for your computer
system contained in the next few pages. If you're using a graphical development environment, there will
most likely be a button or option to compile the file (check with the documentation that came with your
program).

Windows

Day 1 -- An Introduction to Java Programming

file:///G|/ebooks/1575211831/ch1.htm (12 of 21) [11/06/2000 7:44:43 PM]



To compile the Java source file, you'll use the command-line Java
compiler that comes with the JDK. To run the compiler, you'll need to
first start up a DOS shell. In Windows 95, the DOS shell is under the
Programs menu (it's called MS-DOS Prompt).

From inside DOS, change directories to the location where you've saved your HelloWorld.java file.
I put mine into the directory TYJtests, so to change directories I'd use this command:

CD C:\TYJtests

Once you've changed to the right directory, use the javac command as follows, with the name of the
file as you saved it in Windows (javac stands for Java compiler). Note that you have to make sure you
type all the same upper- and lowercase here as well:

javac HelloWorld.java

Note
The reason that I've emphasized using the original filename is that
once you're inside the DOS shell, you might notice that your nice
long filenames have been truncated to old-style 8.3 names and that, in
fact, HelloWorld.java actually shows up as HELLOW~1.jav.
Don't panic; this is simply a side effect of Windows 95 and how it
manages long filenames. Ignore the fact that the file appears to be
HELLOW~1.jav and just use the filename you originally used when
you saved the file.

Figure 1.4 shows what I've done in the DOS shell so you can make sure you're following along.

Figure 1.4 : Compiling Java in the DOS shell.

If all goes well, you'll end up with a file called HelloWorld.class (or at least that's what it'll be
called if you look at it outside the DOS shell; from inside DOS its called HELLOW~1.cla). That's your
Java bytecode file. If you get any errors, go back to your original source file and make sure you typed it
exactly as it appears in Listing 1.1 with the same upper- and lowercase. Also make sure the filename has
exactly the same upper- and lowercase as the name of the class (that is, both should be HelloWorld).

Once you have a class file, you can run that file using the Java bytecode interpreter. The Java interpreter
is called simply java, and you run it from the DOS shell as you did javac. Run your Hello World
program like this from the command line, with all the same upper- and lowercase (and note that the
argument to the java program does not have a .class extension):

java HelloWorld

If your program was typed and compiled correctly, you should get the phrase Hello World! printed
to your screen as a response. Figure 1.5 shows how I did it.

Day 1 -- An Introduction to Java Programming

file:///G|/ebooks/1575211831/ch1.htm (13 of 21) [11/06/2000 7:44:43 PM]



Figure 1.5 : Running Java applications in the DOS shell.

Note
Remember, the Java compiler and the Java interpreter are different
things. You use the Java compiler (javac) for your Java source files
to create .class files, and you use the Java interpreter (java) to
actually run your class files.

Macintosh
The JDK for the Mac comes with an application called Java
Compiler. To compile your Java source file, simply drag and drop it
on top of the Java Compiler icon. The program will compile your
Java file and, if there are no errors, create a file called
HelloWorld.class in the same folder as your original source
file.

Tip
Putting an alias for Java Compiler on the desktop makes it easy to
drag and drop Java source files.

If you get any errors, go back to your original source file and make sure you typed it exactly as it appears
in Listing 1.1, with the same upper- and lowercase. Also make sure the filename has exactly the same
upper- and lowercase as the name of the class (that is, both should be HelloWorld).

Once you've successfully generated a HelloWorld.class file, simply double-click it to run it. The
application Java Runner, part of the Mac JDK, will start, and the program will ask you for command-line
arguments. Leave that screen blank and click OK. A window labeled stdout will appear with the
message Hello World!. Figure 1.6 shows that window.

Figure 1.6 : Running Java applications on the Mac using Java Runner.

That's it! Keep in mind as you work that you use the Java Compiler application to compile your .java
files into .class files, which you can then run using Java Runner.

To compile the Java source file in Solaris, you'll use the command-line Java compiler that comes with the
JDK. From a UNIX command line, cd to the directory that contains your Java source file. I put mine in
the directory TYJtests, so to change directories I'd use this command:

cd ~/TYJtests

Once you're in the right directory, use the javac command with the name of the file, like this:

javac HelloWorld.java

If all goes well, you'll end up with a file called HelloWorld.class in the same directory as your
source file. That's your Java bytecode file. If you get any errors, go back to your original source file and
make sure you typed it exactly as it appears in Listing 1.1, with the same upper- and lowercase letters.
Also make sure the filename has exactly the same upper- and lowercase letters as the name of the class

Day 1 -- An Introduction to Java Programming

file:///G|/ebooks/1575211831/ch1.htm (14 of 21) [11/06/2000 7:44:43 PM]



(that is, both should be HelloWorld).

Once you have a class file, you can run that file using the Java bytecode interpreter. The Java interpreter
is called simply java, and you run it from the command line as you did javac, like this (and note that
the argument to the java program does not have a .class extension):

java HelloWorld

If your program was typed and compiled correctly, you should get the phrase Hello World! printed
to your screen as a response. Figure 1.7 shows a listing of all the commands I used to get to this point
(the part with [desire]~[1] is my system prompt).

Figure 1.7 : Compiling and running a Java application on Solaris.

Note
Remember that the Java compiler and the Java interpreter are
different things. You use the Java compiler (javac) for your Java
source files to create .class files, and you use the Java interpreter
(java) to actually run your class files.

Creating a Java Applet

Creating applets is different from creating a simple application. Java applets run and are displayed inside
a Web page with other page elements, and therefore have special rules for how they behave. Because of
these special rules for applets, creating an applet may in many cases be more complex than creating an
application.

For example, to create a simple Hello World applet, instead of merely being able to print a message as a
set of characters, you have to make space for your message on the Web pages and then use special font
and graphics operations to paint the message to the screen.

Note
Actually, you can run a plain Java application as an applet, but the
Hello World message will print to a special window or to a log
file, depending on how the browser has its output set up. You'll learn
more about this next week.

Creating the Source File

In this example, you'll create a simple Hello World applet, place it inside a Web page, and view the
result. As with the Hello World application, you'll first create the source file in a plain text editor. Listing
1.2 shows the code for the example.

Listing 1.2. The Hello World applet.

1: import java.awt.Graphics;
2: 

Day 1 -- An Introduction to Java Programming

file:///G|/ebooks/1575211831/ch1.htm (15 of 21) [11/06/2000 7:44:43 PM]



3: public class HelloWorldApplet extends java.applet.Applet {
4: 
5:     public void paint(Graphics g) {
6:        g.drawString("Hello world!", 5, 25);
7:    }
8:}

Save that file just as you did the Hello World application, with the filename exactly the same as the name
of the class. In this case the class name is HelloWorldApplet, so the filename you save it to would
be HelloWorldApplet.java. As with the application, I put the file in a directory called TYJch01,
but you can save it anywhere you like.

Compiling the Source File

The next step is to compile the Java applet file. Despite the fact that this is an applet, you compile the file
exactly the same way you did the Java application, using one of the following procedures:

javac HelloWorldApplet.java
javac HelloWorldApplet.java

Windows
From inside a DOS shell, cd to the directory containing your applet
source file, and use the javac command to compile it (watch those
upper- and lowercase letters):

Macintosh
Drag and drop the HelloWorldApplet.java file onto the Java
Compiler icon.

Salaris
From a command line, cd to the directory containing your applet
source file and use the javac command to compile it:

Including the Applet in a Web Page

If you've typed the file correctly, you should end up with a file called HelloWorldApplet.class in
the same directory as your source file. That's your Java applet file; to have the applet run inside a Web
page you must refer to that class file inside the HTML code for that page using the <APPLET> tag.
Listing 1.3 shows a simple HTML file you can use.

Listing 1.3. The HTML with the applet in it.

1: <HTML>
2: <HEAD>

Day 1 -- An Introduction to Java Programming

file:///G|/ebooks/1575211831/ch1.htm (16 of 21) [11/06/2000 7:44:43 PM]



3: <TITLE>Hello to Everyone!</TITLE>
4: </HEAD><BODY>
5: <P>My Java applet says:
6: <APPLET CODE="HelloWorldApplet.class" WIDTH=150 HEIGHT=25>
7: </APPLET>
8: </BODY>
9: </HTML>

You'll learn more about <APPLET> later in this book, but here are two things to note about it:

Use the CODE attribute to indicate the name of the class that contains your applet, here
HelloWorldApplet.Class.

●   

Use the WIDTH and HEIGHT attributes to indicate the size of the applet on the page. The browser
uses these values to know how big a chunk of space to leave for the applet on the page. Here, a
box 150 pixels wide and 25 pixels high is created.

●   

Save the HTML file in the same directory as your class file, with a descriptive name and an .html
extension (for example, you might name your HTML file the same name as your
applet-HelloWorldApplet.html).

Note
As mentioned earlier with the Java source files, your text editor may
insist on naming your HTML files with a .txt extension if Windows
does not understand what the .html extension is used for. Select
View|Options|File Types from any Windows Explorer window to add
a new file type for HTML files to solve this problem.

Now you're ready for the final test-actually viewing the result of running your applet. To view the applet,
you need one of the following:

A browser that supports Java applets, such as Netscape 2.0 or Internet Explorer 3.0. If you're
running on the Macintosh, you'll need Netscape 3.0 or later. If you're running on Windows 95 or
NT, you'll need the 32-bit version of Netscape. And if you're using Internet Explorer, you'll need
the 3.0 beta 5 or later (the final version will do just fine).

●   

The appletviewer application, which is part of the JDK. The appletviewer is not a Web
browser and won't let you to see the entire Web page, but it's acceptable for testing to see how an
applet will look and behave if there is nothing else available.

●   

An applet viewer or runner tool that comes with your development environment.●   

If you're using a Java-enabled browser such as Netscape to view your applet files, you can use the Open
File... item under the File menu to navigate to the HTML file containing the applet (make sure you open
the HTML file and not the class file). In Internet Explorer, select File|Open and then Browse to find the
file on your disk. You don't need to install anything on a Web server yet; all this works on your local
system. Note that the Java applet may take a while to start up after the page appears to be done loading;
be patient. Figure 1.8 shows the result of running the applet in Netscape.

Figure 1.8 : The applet running in Netscape.

Day 1 -- An Introduction to Java Programming

file:///G|/ebooks/1575211831/ch1.htm (17 of 21) [11/06/2000 7:44:43 PM]



If you don't have a Web browser with Java capabilities built into it, you can use the JDK's
appletviewer program to view your Java applet.

appletviewer HTML/HelloWorldApplet.html

Windows or Solaris
To run the appletviewer in Windows or Solaris versions of the
JDK, cd to the directory where your HTML and class files are
contained and use the appletviewer command with the name of
the HTML file you just created:

The appletviewer will show you only the applet itself, not the HTML text around the applet.
Although the appletviewer is a good way to do simple tests of Java applets, it's a better idea to get a
Java-enabled browser so that you can see your applet on its page in its full glory.

Troubleshooting
If you've run into any problems with the previous examples, this section can help. Here are some of the
most common problems and how to fix them:

Bad command or filename or Command not found
These errors result when you do not have the JDK's bin directory in your execution path, or the
path to that directory is wrong. On Windows, double-check your autoexec.bat file; on UNIX,
check the system file with your path commands in it (.cshrc, .login, .profile, or some
similar file).

●   

javac: invalid argument
Make sure the name of the file you're giving to the javac command is exactly the same name as
the file. In particular, in the DOS shell you want to use the Windows filename with a .java
extension, not the DOS equivalent (HELLOW~1.jav, for example).

●   

Warning: public class HelloWorldApplet must be defined in a file
called HelloWorldApplet.java
This error most often happens if there is a mismatch between the name of the class as defined in
the Java file itself (the name following the word class) and the name of the java source file. Both
the filenames must match, including upper- and lowercase letters (this particular error implies that
the filename had lowercase letters). Rename either the filename or the class name, and this error
will go away.

●   

Insufficient-memory errors
The JDK is not the most efficient user of memory. If you're getting errors about memory, consider
closing larger programs before running Java compiles, turn on virtual memory, or install more
RAM.

●   

Other code errors
If you're unable to compile the Java source files because of other errors I haven't mentioned here,
be sure that you've typed them in exactly as they appear, including all upper- and lowercase letters.
Java is case sensitive, meaning that upper- and lowercase letters are treated differently, so you will
need to make sure that everything is capitalized correctly. If all else fails, try comparing your

●   

Day 1 -- An Introduction to Java Programming

file:///G|/ebooks/1575211831/ch1.htm (18 of 21) [11/06/2000 7:44:43 PM]



source files to the files on the CD-ROM.

Summary
Today you've gotten a basic introduction to the Java language and its goals and features. Java is a
programming language, similar to C or C++, in which you can develop a wide range of programs. The
most common use of Java at the moment is in creating applets for HotJava, an advanced World Wide
Web browser also written in Java. Applets are Java programs that are downloaded and run as part of a
Web page. Applets can create animation, games, interactive programs, and other multimedia effects on
Web pages.

Java's strengths lie in its portability-both at the source and at the binary level, in its object-oriented
design-and in its simplicity. Each of these features helps make applets possible, but they also make Java
an excellent language for writing more general-purpose programs that do not require a Java-enabled
browser to run. These general-purpose Java programs are called applications.

To end this day, you experimented with an example of an applet and an example of an application,
getting a feel for the differences between the two and how to create, compile, and run Java programs-or,
in the case of applets, how to include them in Web pages. From here, you now have the foundation to
create more complex applications and applets. Onward to Day 2, "Object-Oriented Programming and
Java"!

Q&A

Q: I know a lot about HTML, but not much about computer programming. Can I still write
Java programs?

A: If you have no programming experience whatsoever, you most likely will find programming
Java significantly more difficult than HTML. However, Java is an excellent language to learn
programming with, and if you patiently work through the examples and the exercises in this
book, you should be able to learn enough to get started with Java.

Q: What's the relationship between JavaScript and Java?
A: They have the same first four letters.

A common misconception in the Web world today is that Java and JavaScript have more in
common than they actually do. Java is the general-purpose programming language that you'll
learn about in this book; you use it to create applets. JavaScript is a Netscape-invented scripting
language that looks sort of like Java; with it you can do various nifty things in Web pages. They
are independent languages, used for different purposes. If you're interested in JavaScript
programming, you'll want to pick up another book, such as Teach Yourself JavaScript in a Week
or Laura Lemay's Web Workshop: JavaScript, both also available from Sams.net Publishing.

Q: According to today's lesson, Java applets are downloaded via a Java-enabled browser such
as Netscape and run on the reader's system. Isn't that an enormous security hole? What
stops someone from writing an applet that compromises the security of my system-or
worse, that damages my system?

Day 1 -- An Introduction to Java Programming

file:///G|/ebooks/1575211831/ch1.htm (19 of 21) [11/06/2000 7:44:43 PM]



A: Sun's Java team has thought a great deal about the security of applets within Java-enabled
browsers and has implemented several checks to make sure applets cannot do nasty things:

Java applets cannot read or write to the disk on the local system.●   

Java applets cannot execute any programs on the local system.●   

Java applets cannot connect to any machines on the Web except for the server from which
they are originally downloaded.

●   

Note that some of these restrictions may be allowed in some browsers or may be turned on in the
browser configuration. However, you cannot expect any of these capabilities to be available.

In addition, the Java compiler and interpreter check both the Java source code and the Java
bytecodes to make sure that the Java programmer has not tried any sneaky tricks (for example,
overrunning buffers or stack frames).

These checks obviously cannot stop every potential security hole (no system can promise that!),
but they can significantly reduce the potential for hostile applets. You'll learn more about
security issues for applets on Day 8, "Java Applet Basics," and in greater detail on Day 21,
"Under the Hood."

Q: I followed all the directions you gave for creating a Java applet. I loaded it into HotJava,
but Hello World didn't show up. What did I do wrong?

A: Don't use HotJava to view applets you've created in this book; get a more up-to-date browser
such as Netscape or Internet Explorer. HotJava was an experimental browser and has not been
updated since soon after its original release. The steps you take to define and write an applet
have changed since then, and the applets you write now will not run on HotJava.

Q: You've mentioned Solaris, Windows, and Macintosh in this chapter. What about other
operating systems?

A: If you use a flavor of UNIX other than Solaris, chances are good that the JDK has been ported to
your system. Here are some examples:

SGI's version of the JDK can be found at
http://www.sgi.com/Products/cosmo/cosmo_instructions.html.

●   

Information about Java for Linux can be found at
http://www.blackdown.org/java-linux/.

●   

IBM has ported the JDK to OS/2 and AIX. Find out more from
http://www.ncc.hurley.ibm.com/javainfo/.

●   

OSF is porting the JDK to HP/UX, Unixware, Sony NEWS, and Digital UNIX. See
http://www.osf.org/mall/web/javaport.htm.

●   

(Thanks to Elliote Rusty Harold's Java FAQ at
http://www.sunsite.unc.edu/javafaq/javafaq/html for this information.)

Q: Why doesn't Java run on Windows 3.1?
A: Technical limitations in Windows 3.1 make porting Java to Windows 3.1 particularly difficult.

Rumor has it that both IBM and Microsoft are working on ports, but no real information is
forthcoming.

Day 1 -- An Introduction to Java Programming

file:///G|/ebooks/1575211831/ch1.htm (20 of 21) [11/06/2000 7:44:43 PM]

http://www.sgi.com/Products/cosmo/cosmo_instructions.html
http://www.blackdown.org/java-linux/
http://www.ncc.hurley.ibm.com/javainfo/
http://www.osf.org/mall/web/javaport.htm
http://www.sunsite.unc.edu/javafaq/javafaq/html


Q: I'm using Notepad on Windows to edit my Java files. The program insists on adding a
.txt extension to all my files, regardless of what I name them (so I always end up with
files like HelloWorld.java.txt). Short of renaming them before I compile them, what
else can I do to fix this?

A: Although you can rename the files just before you compile them, that can get to be a pain,
particularly when you have a lot of files. The problem here is that Windows doesn't understand
the .java extension (you may also have this problem with HTML's .html extension as well).

To fix this, go into any Windows Explorer window and select View|Options|File Types. From
that panel, select New Type. Enter Java Source Files in the Description of Type box and
.java into the Associated Extension box. Then click OK. Do the same with HTML files if you
need to, and click OK again. You should now be able to use Notepad (or any other text editor) to
create and save Java and HTML files.

Q: Where can I learn more about Java and find applets and applications to play with?
A: You can read the rest of this book! Here are some other places to look for Java information and

Java applets:

The Java home page at http://www.java.sun.com/ is the official source for Java
information, including information about the JDK, about the upcoming 1.1 release, and
about developer tools such as the Java Workshop, as well as extensive documentation.

●   

Gamelan, at http://www.gamelan.com/, is a repository of applets and Java
information, organized into categories. If you want to play with applets or applications,
this is the place to look.

●   

For Java discussion, check out the comp.lang.java newsgroups, including
comp.lang.java.programmer, comp.lang.java.tech,
comp.lang.java.advocacy, and so on. (You'll need a Usenet newsreader to access
these newsgroups.)

●   

  

Day 1 -- An Introduction to Java Programming

file:///G|/ebooks/1575211831/ch1.htm (21 of 21) [11/06/2000 7:44:43 PM]

http://www.java.sun.com/
http://www.gamelan.com/


file:///G|/ebooks/1575211831/f1-1.gif

file:///G|/ebooks/1575211831/f1-1.gif [11/06/2000 7:44:45 PM]



file:///G|/ebooks/1575211831/f1-2.gif

file:///G|/ebooks/1575211831/f1-2.gif [11/06/2000 7:44:45 PM]



file:///G|/ebooks/1575211831/f1-3.gif

file:///G|/ebooks/1575211831/f1-3.gif [11/06/2000 7:44:45 PM]



Day 20

Using Native Methods and Libraries
by Laura Lemay and Charles L. Perkins

CONTENTS
Why Use Native Methods?

Advantages of Using Native Methods❍   

●   

Disadvantages of Native Methods●   

The Illusion of Required Efficiency

Design First, Efficiency Later❍   

Just-in-Time Compilers❍   

Simple Optimization Tricks❍   

●   

Writing Native Methods

Write Your Java Code❍   

Generate Header and Stub Files❍   

Implementing the Native Library❍   

Using Your Library❍   

●   

Tools and Techniques for Writing Native Implementations

Names❍   

Accessing Java Objects❍   

Calling Methods❍   

Creating New Java Objects❍   

Handling Exceptions❍   

Dealing with Strings❍   

●   

Summary●   

Q&A●   

Up to this point in the book you've been learning specifically about programming in the Java language and with the Java class
libraries. That's why this book is called Teach Yourself Java, after all. Today I'm going to digress a little bit and talk about
native methods and libraries.

Native methods and libraries are bits of executable code that are written in the traditional way: They are written in a language
such as C or C++ and compiled into a platform-specific library such as a DLL or a shared library. Inside your Java
applications you can gain access to the functions inside those libraries, allowing you to create a sort of hybrid Java and native
code application. Although using native methods can give you some extra benefits Java does not provide (such as faster
execution or access to a large body of existing code), there are significant disadvantages in using native methods as well.

New Term

Day 20 -- Using Native Methods and Libraries

file:///G|/ebooks/1575211831/ch20.htm (1 of 16) [11/06/2000 7:44:48 PM]



Native methods and native libraries are bits of platform-specific
executable code (written in languages such as C or C++) contained in
libraries or DLLs. You can create a hybrid Java application that has
access to those native libraries.

Today's lesson covers various topics relating to native methods, including the following:

The advantages and disadvantages of using native methods●   

Why using native methods for speed or efficiency is often unnecessary●   

The steps for creating native methods, header and stub files, and native implementations, and linking it all together●   

Various functions and utilities for mapping between Java and C and C++●   

Note
In today's lesson you'll learn the basic techniques for writing native
methods in the current version of Java. For the Java 1.1 release, Sun
will publish further guidelines for writing native methods to help
make sure that native implementations will work between different
versions of the Java runtime. These guidelines will be in addition to
the technique you will learn in today's lesson, and will build on the
skills you learn here.

Why Use Native Methods?
Before I get into the nitty-gritty details of creating native methods, you should first be aware of what native methods give
you-and what they take away. Although native methods provide some advantages, those advantages may not appear too
exciting when viewed in light of native methods' disadvantages. This section describes both.

Advantages of Using Native Methods

There are several reasons that you might want to consider using native methods in your own Java programs. By far the best of
these reasons are

Gaining access to special capabilities of your computer or operating system●   

Needing the extra speed that native methods provide●   

Needing access to a large body of existing code●   

The first, and by far the best, reason to implement native methods is because you need to utilize a special capability of your
computer or operating system that the Java class library does not already provide for you. Such capabilities include
interfacing to new peripheral devices or plug-in cards, accessing a different type of networking, or using a unique, but
valuable feature of your particular operating system. Two more concrete examples are acquiring real-time audio input from a
microphone or using 3D "accelerator" hardware in a 3D library. Neither of these is provided to you by the current Java
environment, so you must implement them outside Java, in some other language (currently C or any language that can link
with C).

The second, and often illusory, reason to use native methods is speed. The argument has been made that because interpreted
bytecode is terribly slow in comparison to how quickly native code runs (and it is far slower, as much as 25 times slower),
Java code is unsuitable for most applications. In many cases this simply isn't true, or you may be able to extract a fair amount
of speed out of your Java program without resorting to native methods (as we'll explore in greater detail later in today's
lesson). If, however, your Java application uses very processor-intensive calculations (for example, number crunching or 3D
rendering), using native methods for the speed-critical functions and Java for the more general interfaces creates a system
with more benefits than a system written in either pure native code or pure Java. In fact, the Java class library uses this
approach for many critical system classes to raise the overall level of efficiency in the system. As a user of the Java
environment, you don't even know (or see) any side effects of this (except, perhaps, a few classes or methods that are final
that might not be otherwise).

Day 20 -- Using Native Methods and Libraries

file:///G|/ebooks/1575211831/ch20.htm (2 of 16) [11/06/2000 7:44:48 PM]



The third reason to use native classes is if your project has a large body of existing code (what's called legacy code, which
may be hundreds of lines of code written and maintained by other people over the years). As a good Java programmer and
advocate you would, of course, want to port this large body of code to Java. However, real-life considerations of time and
resources often don't allow this option. Native methods allow you to write a single interface to that code through Java and link
into the existing code as it's needed.

Disadvantages of Native Methods
After reading the advantages of using native methods, you may be all set to jump to the section on how to use them and skip
this section. Don't. For every good thing native methods provide in your Java code, they take away a benefit that Java
provides in the first place: the ability for your code to run anywhere and be easily ported from one system to another.

Using pure Java, an application or applet can be run on any Java environment in the world by downloading it via the Web or
by simply loading the class file on that system. Any new architectures created-or new operating systems written-are irrelevant
to your code. All you need is that the (tiny) Java Virtual Machine (or a browser that has one inside it) be available, and it can
run anywhere, anytime-now and in the future.

With a hybrid Java and native method program, however, you've given up that cross-platform capability. First of all, Java
programs that use native methods cannot be applets. Period. For security reasons, applets cannot load native code. So if you
use native methods, you've just removed the enormous number of users on the World Wide Web from your market.

Even if you're just creating a Java application, however, and don't intend your code to be run on the Web, using native
methods also negates the capability of your program to run on any platform. Native code is, by definition, platform specific.
The native code must exist on the platform your Java program is running on for that program to work. For your program to
work on different platforms, you'll have to port your native code to that specific platform-which may not be a trivial task. And
as new systems or new versions of operating systems appear, you may have to update or re-release new versions of that native
code for every system. The write-it-once-run-it-everywhere advantage of Java ceases to exist when you use native methods.

The Illusion of Required Efficiency
Let's digress for a moment and talk about the concept of speed and efficiency of Java programs-or the supposed lack thereof,
which may drive you to using native code in your Java programs.

Java bytecode has acquired the reputation of being extraordinarily slow to run in comparison with native executable code.
And, examining the benchmarks, Java bytecode is indeed very much slower-as much as 25 times slower. However, that
doesn't necessarily make a Java program unbearable to use. Simple applets or applications that rely on user interface elements
will appear to run just as fast as their native equivalents. Button clicks are just as fast in Java as they are in native code, and
your users are very slow compared to modern computers. It's only in the case of very processor-intensive operations that Java
starts to come up short in comparison to native code.

At any rate, worrying over the speed of your Java programs before you write them is often a rathole that can distract you from
the larger issues. In this section I'll look at both those larger issues and at the solutions that can make your Java programs run
faster.

Design First, Efficiency Later

When you design your program, all your energy and creativity should be directed at the design of a tight, concise, minimal set
of classes and methods that are maximally general, abstract, and reusable. (If you think that is easy, look around for a few
years and see how bad most software is.) If you spend most of your programming time on thinking and rethinking these
fundamental goals and how to achieve them, you are preparing for the future-a future where software is assembled as needed
from small components swimming in a sea of network facilities, and anyone can write a component seen by millions (and
reused in their programs) in minutes. If, instead, you spend your energy worrying about the speed your software will run right
now on some computer, your work will be irrelevant after the 18 to 36 months it will take hardware to be fast enough to hide
that minor inefficiency in your program.

Day 20 -- Using Native Methods and Libraries

file:///G|/ebooks/1575211831/ch20.htm (3 of 16) [11/06/2000 7:44:48 PM]



So you should ignore efficiency altogether? Of course not! Some of the great algorithms of computer science deal with
solving hard or "impossible" problems in reasonable amounts of time-and writing your programs carelessly can lead to
remarkably slow results. Carelessness, however, can as easily lead to incorrect, fragile, or nonreusable results. If you correct
all these latter problems first, the resulting software will be clean, will naturally reflect the structure of the problem you're
trying to solve, and thus will be amenable to "speeding up" later.

Note
There are always cases where you must be fanatical about efficiency
in many parts of a set of classes. The Java class library itself is such a
case, as is anything that must run in real-time for some critical
real-world application (such as flying a plane). Such applications are
rare, however.

When speaking of a new kind of programming that must soon
emerge, Bill Joy likes to invoke the four S's of Java: small, simple,
safe, and secure. The "feel" of the Java language itself encourages the
pursuit of clarity and the reduction of complexity. The intense pursuit
of efficiency, which increases complexity and reduces clarity, is
antithetical to these goals.

Once you build a solid foundation, debug your classes, and your program (or applet) works as you'd like it to, then it's time to
begin optimizing it.

Just-in-Time Compilers

The first thing to keep in mind about the execution speed of Java is that lots of people are working on fixing it. And the most
promising of these technical advancements is the just-in-time (JIT) compiler.

Just-in-time compilers translate Java bytecode into native machine code on-the-fly as the bytecode is running. Depending on
how good the JIT compiler is, you can often get very close to native execution speeds out of a standard Java program-without
needing to use native code and without needing to make any modifications to your Java program-it just works.

The disadvantage, however, is that to get the speed increase your Java program must be run on a platform that has a JIT
compiler installed. At the time of this writing, JIT compilers are still new. Many companies are working on JIT compilers,
however, and most of them have versions working or bundled in with development tools so you can experiment with their
power. Microsoft's Internet Explorer Web browser, for example, has a JIT compiler built into it. (You'll learn more about the
available JIT compilers are expected on Day 22, "Java Programming Tools.") JIT compilers are expected to become much
more popular and widespread over the next year.

Simple Optimization Tricks

In addition to relying on JIT technology to speed up your Java programs, there are usually simple optimization tricks you can
do to make your programs run more efficiently. Your development environment may even provide a profiler, which tells you
where the slowest or more frequently run portions of your program are occurring. Even if you don't have a profiler, you can
often use debugging tools to find the bottlenecks in your programs and begin to make targeted changes to your classes.

Whole books have been written for optimizing various bits of code in any language, and they can describe it much better than
we can. But there are a few simple tricks you can try for the first pass.

First, identify the crucial few methods that take most of the time (there are almost always just a few, and often just one, that
take up the majority of your program's time). If those methods contain loops, examine the inner loops to see whether they

Call methods that can be made final●   

Call a group of methods that can be collapsed into a single method●   

Create objects that can be reused rather than created anew for each loop●   

If you notice that a long chain of, for example, four or more method calls is needed to reach a destination method's code, and
this execution path is in one of the critical sections of the program, you can "short-circuit" directly to that destination method

Day 20 -- Using Native Methods and Libraries

file:///G|/ebooks/1575211831/ch20.htm (4 of 16) [11/06/2000 7:44:48 PM]



in the topmost method. This may require adding a new instance variable to reference the object for that method call directly.
This quite often violates layering or encapsulation constraints. This violation, and any added complexity, is the price you pay
for efficiency.

Writing Native Methods
If, after all these tricks, your Java code is still just too slow, it's time to consider using native methods. In this section you'll
learn the steps you must take to write your Java code so that it uses native methods, how to write the native code to
implement those native methods, and how to compile and link it all together so it works. This involves four basic steps:

Write your Java code so that the methods that will be native have special declarations using the native modifier.●   

Compile your Java code and use the javah program to generate special header and stub files, which make up the
starting point for your native code.

●   

Write your native implementations of the native methods.●   

Compile all the native files into a shared library or DLL and run your Java program.●   

Note
This discussion-and, in fact, the JDK itself-assumes that you'll be
writing your native code in C and C++. Other Java development
environments may support other languages.

Write Your Java Code

The first step to implementing native methods is to decide which methods in which classes of your Java program will be
native. The mapping between Java and native libraries is through methods (functions), so designing your Java code and
keeping track of which methods are native is the most important first step.

To declare that a method will be native inside your Java code, you add the native modifier to that method signature, like
this:

public native void goNative(int x, int y);

Note
The native modifier can be used with many of the modifiers you
learned about on Day 15, "Modifiers, Access Control, and Class
Design," including public, private, protected, final, and
so on. It cannot be used with abstract because abstract methods
do not have definitions, native or otherwise.

Note also that the native method in your Java code has no method body. Because this is a native method, its implementation
will be provided by the native code, not by Java. Just add a semicolon to the end of the line.

The other change you'll have to make to your Java code is to explicitly load the native library that will contain the native code
for these methods. To do this, you add the following boilerplate code to your Java class:

static {
    System.loadLibrary("libmynativelibrary.so");
}

This bit of code, called a static initializer, is used to run code only once when the class is first loaded into the system. In this
case, the static initializer executes the System.loadLibrary() method to load in your native library as the class itself is
being loaded. If the native library fails to load for some reason, the loading of the Java class fails as well, guaranteeing that no
half-set-up version of the class can ever be created.

Day 20 -- Using Native Methods and Libraries

file:///G|/ebooks/1575211831/ch20.htm (5 of 16) [11/06/2000 7:44:48 PM]



You can pick any name you want for your native library-here we've used the UNIX convention that libraries start with the
word lib and end with the extension .so. For Windows systems, libraries typically end with the extension .DLL.

You can also use the System.load() method to load your native libraries. The difference is that the single argument to
load() is the complete pathname to your native library, whereas the argument to loadLibrary() is just the library
name, and Java uses the standard way of finding libraries for your system to locate that library (usually environment variables
such as LD_LIBRARY_PATH). The latter is more flexible and general-purpose, so it's recommended you use it instead.

And that's all you need to do in your Java code to create native methods and libraries. Subclasses of any class containing your
new native methods can still override them, and these new (Java) methods are called for instances of the new subclasses
(just as you'd expect).

Listing 20.1 shows an example of a Java program called SimpleFile that was written to use native methods. This program
might be used in a version of the Java environment that does not provide file input or output (I/O). Because file I/O is
typically system-dependent, native methods must be used to implement those operations.

Note
This example combines simplified versions of two actual Java library
classes, java.io.File and java.io.RandomAccessFile.

Listing 20.1. SimpleFile, a Java program that uses native methods.

 1: public class  SimpleFile {
 2:     public static final  char    separatorChar = '>';
 3:     protected    String  path;
 4:     protected    int     fd;
 5: 
 6:     public  SimpleFile(String s) {
 7:         path = s;
 8:     }
 9: 
10:     public String  getFileName() {
11:         int  index = path.lastIndexOf(separatorChar);
12: 
13:         return (index < 0) ? path : path.substring(index + 1);
14:     }
15: 
16:     public String  getPath() {
17:         return path;
18:     }
19: 
20:     public native boolean  open();
21:     public native void     close();
22:     public native int      read(byte[]  buffer, int  length);
23:     public native int      write(byte[]  buffer, int  length);
24: 
25:     static {
26:         System.loadLibrary("simple");  // runs when class first loaded
27:     }
28: }

The first thing you notice about SimpleFile's implementation is how unremarkable the first two-thirds of its Java code is!
It looks just like any other class, with a class and an instance variable, a constructor, and two normal method implementations
(getFileName() and getPath()). Then, in lines 20 through 23, there are four native method declarations, which are

Day 20 -- Using Native Methods and Libraries

file:///G|/ebooks/1575211831/ch20.htm (6 of 16) [11/06/2000 7:44:48 PM]



just normal method declarations with the code block replaced by a semicolon and the modifier native added. These are the
methods you have to implement in C code later.

Finally, note the call to System.loadLibrary() in line 26, which loads a native library called simple. (We've
intentionally violated library-naming standards here to make this example simpler.)

Note
The unusual separatorChar ('>') is used simply to demonstrate
what an implementation might look like on some strange computer
whose file system didn't use any of the more common path-separator
conventions. Early Xerox computers used '>' as a separator, and
several existing computer systems still use strange separators today,
so this is not all that farfetched.

After you write the native part of your Java program, SimpleFile objects can be created and used in the usual way:

SimpleFile  f = new SimpleFile(">some>path>and>fileName");

f.open();
f.read(...);
f.write(...);
f.close();

Generate Header and Stub Files

The second step to implementing native code is to generate a special set of header and stub files for use by your C or C++
files that implement those native methods. To generate these header and stub files, you use the javah program, which is part
of the JDK (it's called JavaH in the Mac JDK).

First, you'll need to compile your Java program as you would any other Java program, using the Java compiler.

Header Files

To generate the headers you need for your native methods, use the javah program. For the SimpleFile class listed in the
previous section, use one of the following:

To generate header files for a class, use the javah program with the name of the class file, minus the .class extension.
For example, to generate the header file for the SimpleFile class, use this command line:

javah SimpleFile

To generate the header file for the SimpleFile class, drag-and-drop the class file onto the JavaH icon.

The file SimpleFile.h will be created in the same directory as the SimpleFile.class file.

Note that if the class you've given to javah is inside a package, javah prepends the package's full name to the header
filename (and to the structure names it generates inside that file) with all the dots (.) replaced by underscores (_). If
SimpleFile had been contained in a hypothetical package called acme.widgets.files, javah would have
generated a header file named acme_widgets_files_SimpleFile.h, and the various names within it would have
been renamed in a similar manner.

Listing 20.2 shows the header file that is generated by javah.

Listing 20.2. SimpleFile.h (a header file).

 1: #include <native.h>
 2: /* Header for class SimpleFile */

Day 20 -- Using Native Methods and Libraries

file:///G|/ebooks/1575211831/ch20.htm (7 of 16) [11/06/2000 7:44:48 PM]



 3: 
 4: #ifndef _Included_SimpleFile
 5: #define _Included_SimpleFile
 6: struct Hjava_lang_String;
 7: 
 8: typedef struct ClassSimpleFile {
 9: #define SimpleFile_separatorChar 62L
10:     struct Hjava_lang_String *path;
11:     long fd;
12: } ClassSimpleFile;
13: HandleTo(SimpleFile);
14: 
15: #ifdef __cplusplus
16: extern "C" {
17: #endif
18: extern /*boolean*/ long SimpleFile_open(struct HSimpleFile *);
19: extern void SimpleFile_close(struct HSimpleFile *);
20: extern long SimpleFile_read(struct HSimpleFile *,HArrayOfByte *,long);
21: extern long SimpleFile_write(struct HSimpleFile *,HArrayOfByte *,long);
22: #ifdef __cplusplus
23: }
24: #endif
25: #endif

There are a few things to note about this header file. First, note the struct ClassSimpleFile, which contains variables
that parallel the instance variables inside your class. Second, note the method signatures at the end of the file; these are the
function definitions you'll use in your C or C++ file to implement the actual native methods in the Java code.

Stub Files

To "run interference" between the Java world of objects, arrays, and other high-level constructs and the lower-level world of
C, you need stubs, which translate arguments and return values between Java and C.

Stubs are pieces of "glue" code that tie together Java and C. Stubs translate arguments and values and convert the various
constructs in each language to something that can be understood in the other.

Stubs can be automatically generated by javah, just like headers. There isn't much you need to know about the stub file, just
that it has to be compiled and linked with the C code you write to allow it to interface properly with Java.

To create stub files, you also use the javah program:

Use the javah program with the -stubs option to create the stub file:

javah -stubs SimpleFile

The file SimpleFile.c will be generated in the same directory as the class file.

The stub file was generated at the same time you created the header file.

Listing 20.3 shows the result of the stub file for the SimpleFile class.

Listing 20.3. SimpleFile.c (a stub file).

 1:/* DO NOT EDIT THIS FILE - it is machine generated */
 2:#include <StubPreamble.h>
 3: 

Day 20 -- Using Native Methods and Libraries

file:///G|/ebooks/1575211831/ch20.htm (8 of 16) [11/06/2000 7:44:48 PM]



 4:/* Stubs for class SimpleFile */
 5:/* SYMBOL: "SimpleFile/open()Z", Java_SimpleFile_open_stub */
 6:__declspec(dllexport) stack_item *Java_SimpleFile_open_stub(stack_item *_P_,
 7:    struct execenv *_EE_) {
 8:        extern long SimpleFile_open(void *);
 9:        _P_[0].i = (SimpleFile_open(_P_[0].p) ? TRUE : FALSE);
10:        return _P_ + 1;
11:}
12:/* SYMBOL: "SimpleFile/close()V", Java_SimpleFile_close_stub */
13:__declspec(dllexport) stack_item *Java_SimpleFile_close_stub(stack_item *_P_,
14:    struct execenv *_EE_) {
15:        extern void SimpleFile_close(void *);
16:        (void) SimpleFile_close(_P_[0].p);
17:        return _P_;
18:}
19:/* SYMBOL: "SimpleFile/read([BI)I", Java_SimpleFile_read_stub */
20:__declspec(dllexport) stack_item *Java_SimpleFile_read_stub(stack_item *_P_,
21:    struct execenv *_EE_) {
22:        extern long SimpleFile_read(void *,void *,long);
23:        _P_[0].i = SimpleFile_read(_P_[0].p,((_P_[1].p)),((_P_[2].i)));
24:        return _P_ + 1;
25:}
26:/* SYMBOL: "SimpleFile/write([BI)I", Java_SimpleFile_write_stub */
27:__declspec(dllexport) stack_item *Java_SimpleFile_write_stub(stack_item *_P_,
28:    struct execenv *_EE_) {
29:        extern long SimpleFile_write(void *,void *,long);
30:        _P_[0].i = SimpleFile_write(_P_[0].p,((_P_[1].p)),((_P_[2].i)));
31:        return _P_ + 1;
32:}

Implementing the Native Library

The last step, and the most difficult, is to write the C code for your native methods.

The header file generated by javah gives you the prototypes of the functions you need to implement to make your native
code complete. You then write some C code that implements those functions and provides the native facilities that your Java
class needs (in the case of SimpleFile, some low-level file I/O routines).

You'll want to include your header file as part of the initial includes for your native implementation:

#include <SimpleFile.h>

Note
This description glosses over a lot of what you might want to do to
actually implement those methods. In particular, Java provides
several utility functions that help your native methods interact with
Java methods and classes and help map C and C++ constructs to their
Java equivalents. We'll describe several of these functions later on in
today's lesson in the section "Tools and Techniques for Writing
Native Implementations."

Listing 20.4 shows the native implementation of the methods from the SimpleFile class.

Day 20 -- Using Native Methods and Libraries

file:///G|/ebooks/1575211831/ch20.htm (9 of 16) [11/06/2000 7:44:48 PM]



Listing 20.4. SimpleFileNative.c, a C implementation of a native method from SimpleFile.

 1: #include "SimpleFile.h"     /* for unhand(), among other things */
 2: 
 3: #include <sys/param.h>      /* for MAXPATHLEN */ 
 4: #include <fcntl.h>          /* for O_RDWR and O_CREAT */
 5: 
 6: #define LOCAL_PATH_SEPARATOR  '/'    /* UNIX */
 7: 
 8: static void  fixSeparators(char *p) { 
 9:     for (;  *p != '\0';  ++p)
10:         if (*p == SimpleFile_separatorChar) 
11:             *p = LOCAL_PATH_SEPARATOR;
12: }
13: 
14: long  SimpleFile_open(struct HSimpleFile  *this) { 
15:     int   fd;
16:     char  buffer[MAXPATHLEN];
17: 
18:     javaString2CString(unhand(this)->path, buffer, sizeof(buffer)); 
19:     fixSeparators(buffer);
20:     if ((fd = open(buffer, O_RDWR | O_CREAT, 0664)) < 0)    /* UNIX open */
21:         return(FALSE);   /* or, SignalError() could "throw" an exception */
22:     unhand(this)->fd = fd;         /* save fd in the Java world */ 
23:     return(TRUE);
24: }
25: 
26: void  SimpleFile_close(struct HSimpleFile  *this) { 
27:     close(unhand(this)->fd);
28:     unhand(this)->fd = -1;
29: }
30: 
31: long  SimpleFile_read(struct HSimpleFile  *this, 
32:     HArrayOfByte  *buffer, _ long  count) {
33:     char  *data     = unhand(buffer)->body;  /* get array data   */ 
34:     int    len      = obj_length(buffer);    /* get array length */ 
35:     int    numBytes = (len < count ? len : count);
36: 
37:     if ((numBytes = read(unhand(this)->fd, data, numBytes)) == 0) 
38:         return(-1);
39:     return(numBytes);       /* the number of bytes actually read */ 
40: }
41: 
42: long  SimpleFile_write(struct HSimpleFile  *this, 
43:     HArrayOfByte  *buffer,_ long  count) {
44:     char  *data = unhand(buffer)->body; 
45:     int    len  = obj_length(buffer);
46: 
47:     return(write(unhand(this)->fd, data, (len < count ? len : count))); 
48: }

Compile Everything into a Shared Library

The final step is to compile all the .c files, including the stub file and your native method files. Use your favorite C compiler

Day 20 -- Using Native Methods and Libraries

file:///G|/ebooks/1575211831/ch20.htm (10 of 16) [11/06/2000 7:44:48 PM]



to compile and link those two files into a shared library (a DLL on Windows). On some systems, you may need to specify
special compilation flags that mean "make it relocatable and dynamically linkable." (Those flags, if they are required, may
vary from system to system; check with your compiler documentation for details.)

Note
If you have several classes with native methods, you can include
all their stubs in the same .c file, if you like. Of course you might
want to name it something else, such as Stubs.c, in that case.

The resulting library should be the same name as you gave in your original Java class file as the argument to
System.loadLibrary(). In the SimpleFile class, that library was called libmynativelibrary.so. You'll
want to name the library that same name and install it wherever your particular system needs libraries to be installed.

Using Your Library

With all the code written and compiled and installed in the right place, all you have to do is run your Java program using the
Java bytecode interpreter. When the Java class is loaded, it will also try to load the native library automatically; if it succeeds
you should be able to use the classes in your Java class, and they will transparently run the native libraries as they are needed.

If you get an error that the library was not found, the most likely problem is that you do not have your environment set up
correctly or that you have not installed your library in the right place.

DLL files are located according to the standard Windows algorithm: the directory the application was located in, the current
directory, the System directory in Windows 95 (System32 in NT), the System directory in NT, the Windows directory, and
then directories listed in the PATH environment variable.

UNIX systems use the environment variable LD_LIBRARY_PATH to search for libraries. This environment variable should
include the standard places shared libraries are stored, as well as the current directory (.). After LD_LIBRARY_PATH has
been set, Java will be able to find your library.

Shared libraries for Java must be stored in the folder System Folder: Extensions:JavaSoft Folder. Rather
than copying your native library there, you can also just create an alias to your native library and put it in that folder.

Tools and Techniques for Writing Native Implementations
When writing the code for native implementations, a whole set of useful macros and functions is available for mapping
between C and C++ and Java, and for accessing Java runtime structures. (Several of them were used in
SimpleFileNative.c.) In addition, there are several rules and techniques for dealing with the conversion between Java
and C. In this section you'll learn about those functions and techniques to make writing your native code easier.

Names

Java names for classes, methods, and variables can be used inside native methods with the following changes (if needed):

Any Unicode characters in names are converted to _0dddd, where the ds represent the Unicode number for that
character. For example, the Unicode registered trademark symbol, which is Unicode 00ae, would be represented in C
as _000ae.

●   

Package names are included with all names, with the dots replaced by underscores (_). So, for example,
java.Math.pi would be java_Math_pi from the native side.

●   

Slashes in package names, if any, are replaced by underscores.●   

Class names are renamed with the word Class prepended to the full name (including package names) For example,
the Java class SimpleFile would be ClassSimpleFile (usually, however, you'll refer to classes through
handles, which are explained in the next section).

●   

Day 20 -- Using Native Methods and Libraries

file:///G|/ebooks/1575211831/ch20.htm (11 of 16) [11/06/2000 7:44:48 PM]



Accessing Java Objects

Java objects are passed to native methods using handles to structures. The handle name is the name of the object (including
any package names), prepended with the letter H. So, for example, the class SimpleFile would have a handle called
HSimpleFile. The class java.lang.String would convert to Hjava_lang.String (remember, class names have
package names included, with underscores to separate them).

Handles are references to structures that represent Java objects. Each handle has the same name as the class it references, with
the letter H prepended.

Each native function automatically gets passed at least one handle in its parameter list. This is called the automatic
parameter, and it's a handle to the class that contained the original native method. Even if the original name method has no
arguments, the C equivalent for that method is passed a handle to the class so it can reference other parts of that object or pass
data back to it. In fact, because the handle to the original class behaves as if it were the this object, it's often called this in
the native code's method signature as well.

The automatic parameter is a handle to the original Java class that called the native method. Because it is roughly equivalent
to this in Java, the automatic parameter is also often called this.

Note the native method signature for the open() method in SimpleFileNative.c, which shows the automatic
parameter:

long  SimpleFile_open(struct HSimpleFile  *this)

To get to the methods or variables inside a class, you must dereference that class's handle. To do this, you can use the macro
unhand() (as in "Unhand that object!"). The unhand() macro returns a pointer to a struct. So, for example, to get at the
variables inside the this handle, you'd reference it like this:

unhand(this);

After the handle is dereferenced, you can access its variables as if they were normal struct elements:

unhand(this)->path;

References to arrays are slightly different than references to objects, although both are passed as handles, and you can
reference their elements by "unhanding" them as well. In the case of arrays, however, the name of the handle includes the
words ArrayOf prepended to the type of the array, and the letter H prepended to that. So, for example, an array of integers,
declared like this in Java:

int[] lotsOfInts;

would look like this on the native side:

HArrayOfInt *lotsOfInts;

Calling Methods

In the previous section you learned how to deal with references to Java objects as handles. Using unhand(), you can
dereference those handles and get to the object's variables. But what about methods? From your native code, you can call
methods inside Java objects using several utility functions for just that purpose.

In addition, as you pass data back and forth between the Java side and the native side, you'll need to know how data types
convert and how to deal with those types in either side.

Functions for Executing Methods

To call methods inside Java objects from within native code, you use special utility functions. To call a regular Java method,

Day 20 -- Using Native Methods and Libraries

file:///G|/ebooks/1575211831/ch20.htm (12 of 16) [11/06/2000 7:44:48 PM]



use the function execute_java_dynamic_method(). To call a class method, use the function
execute_java_static_method(). Here's the signature for these functions (from the Java include file
interpreter.h, which defines things like this):

long execute_java_dynamic_method(ExecEnv *env, HObject *obj,
     char *method_name, char *signature, ...);
long execute_java_static_method(ExecEnv *env, ClassClass *cb,
     char *method_name, char *signature, ...);

Both functions take at least four arguments:

An ExecEnv structure, which defines the current execution environment. Right now the only possible value for this
argument is 0, which refers to the current execution environment.

●   

For dynamic methods, a reference to the object in which the method you're calling is defined. This would be the left
side of the dot in normal Java dot notation. Here, it's a handle to that object.

●   

For static (class) methods, a reference to the class structure in which the method is defined. You can get a hold of a
reference to a class using the FindClass() and FindClassFromClass() functions, described later on in this
section.

●   

The method name (as a string).●   

The method signature.●   

Any remaining arguments to the execute_java_static_method() and execute_java_dynamic_method()
functions are arguments to the method itself.

Method signatures can be complex, because in this case they are not simply the list of arguments and the return types. Method
signatures, for this function, are strings with a set of parentheses containing an argument list, and a return type just after the
closing parentheses. Both the argument list and the return type are letters or strings that represent a type.

For the primitive types, use single-letter codes for the argument list and the return type (B is byte, I is int, V is void, and
Z is boolean). For arrays, use an open square bracket before the type (for example, [B denotes a byte array). More letter
codes for different types are contained in the Java include file signature.h. So, for example, a method that has no
arguments and returns void would have a signature of ()V. One that take three integer arguments and returns an integer
would have a signature of (III)V.

For object arguments, the code is the letter L, then the class name (including the package, with all elements separated by
slashes), followed by a semicolon. So, for example, a reference to a String object would be Ljava/lang/String;.

Got all that? Here are a few examples:

execute_java_dynamic_method(0, this, "close", "()Z"
execute_java_static_method(0, MyClass, "reverseString", 
   "(Ljava/lang/String;)Ljava/lang/String;", "This is my string");
execute_java_dynamic_method(0, this, "open_speaker()", 
   "(Lcom/lne/audio/Device;)Z", theDevice);

The FindClass() and FindClassFromClass() functions can be used to get a reference to a class structure (a pointer
of type ClassClass) for use with the execute_java_static_method() function. Here are their signatures:

ClassClass *FindClass(ExecEnv *env, 
    char *className, bool_t resolve);
ClassClass *FindClassFromClass(ExecEnv *env, 
    char *className, bool_t resolve, ClassClass *from);

As with the functions for calling methods, the first argument should be 0 to indicate that this function is to be run in the
current environment. The second argument is the class name to find. The resolve argument is a boolean which, if TRUE or
1, indicates that the resolve Class() method should be called on that class (class resolution is a function of the class

Day 20 -- Using Native Methods and Libraries

file:///G|/ebooks/1575211831/ch20.htm (13 of 16) [11/06/2000 7:44:48 PM]



loader; it's probably safe to use TRUE for this argument in most cases). In the case of FindClassFromClass, the fourth
argument is an already existing class; the class loader that loaded that class will also be used to find and load the new class.

Passing Parameters Back and Forth

To pass parameters to Java methods from native code or vice versa, you have to understand how data types convert between
the two sides of the process.

The primitive data types in Java convert to their nearest equivalents in C. All the Java integer types (char, byte, short,
int) and boolean convert to C long types; long converts to int64_t, and float and double remain floats and
doubles. Keep in mind that because of these conversions, your original native method definitions may need return types that
reflect the values sent back from the C side of the native method (for example, all methods that return integer types must
actually return long).

Object types are passed as handles to structures, as you learned earlier, and must be dereferenced using unhand() in order
to be used.

Creating New Java Objects

Because you can access Java objects and call methods from inside your native code, the one thing left is the capability to
create new objects. You can do this too, using the execute_class_constructor() function. This function is very
similar to the functions for calling methods; in fact, it has the same set of arguments that
execute_java_static_method() does:

HObject *execute_java_constructor(ExecEnv *, char *classname,
   ClassClass *cb, char *signature, ...);

The execute_java_static_method() function has four arguments, but can have more. The four required arguments
are

0, for the current environment (the only value of this argument currently supported).●   

A string representing the class name that defines this constructor.●   

A class handle such as the one you'd get from FindClass(). If you use a class name, this argument should be NULL;
if you use a class object, the class name should be NULL (use one or the other, not both). Using class references over
class names can be more efficient if you expect to create lots of objects with the same class, because you can just use
the same class reference over and over again (class names must be looked up each time).

●   

The signature of the constructor which, as with the functions to execute Java methods, is a string representing the
arguments to the method (constructors don't have a return type). As with the functions to call methods, [T is array of
type T, B is byte, I is int, and Z is boolean. Other types are defined in signature.h (part of the standard Java
include files).

●   

Any other arguments to the constructor are added onto the end of the parameter list.●   

Here are some examples:

execute_java_constructor(0, "MyClass", NULL, "()");
execute_java_constructor(0, "MyOtherClass", NULL, "(II)", 10, 12);

The first example creates an instance of the MyClass class, using the constructor with no arguments. The second creates an
instance of MyOtherClass, in which the constructor has two integer arguments. Those arguments, 10 and 12, are included
at the end of the parameter list.

Handling Exceptions

To handle errors, Java has exceptions. In your native C code, you can set up a Java exception using SignalError, like this:

SignalError(0, JAVAPKG "ExceptionClassName", "message");

Day 20 -- Using Native Methods and Libraries

file:///G|/ebooks/1575211831/ch20.htm (14 of 16) [11/06/2000 7:44:48 PM]



Here, the exception class name is the name of a Java exception class, including its package name, with the separation of
package names delineated with a slash rather than a period as in Java. So, for example, the class java.io.IOException
would be "java/io/IOException" when used inside SignalError.

The exception will be thrown in Java when your native method returns (which it should immediately after the
SignalError). Note that just like regular methods, native methods that throw exceptions must be declared to throw those
exceptions using the throw keyword.

Dealing with Strings

Several functions and macros are available in the include file javaString.h to help manage strings. To gain access to
these functions, include that header as part of your native code:

#include <javaString.h>

The makeJavaString() function creates a Java String object out of a C string. To convert a Java String object into
a C string, you can use makeCString() or allocCString() (where the former allocates the string from temporary
storage and the latter from the heap). Here are their signatures:

Hjava_lang_String  *makeJavaString(char  *string, int  length)

char  *makeCString(Hjava_lang_String *s)
char  *allocCString(Hjava_lang_String *s)

To copy Java Strings into preexisting Unicode or ASCII C buffers, you can use javaString2unicode() and
javaString2CString():

unicode  *javaString2unicode(Hjava_lang_String *s, unicode  *buf, int  len)
char     *javaString2CString(Hjava_lang_String *s, char     *buf, int  len)

Finally, the javaStringPrint() function prints a Java String object (just like System.out.print()), and the
javaStringLength() function gets its length:

void  javaStringPrint(Hjava_lang_String *s)
int   javaStringLength(Hjava_lang_String *s)

Summary
Today you have learned about the advantages and disadvantages of using native methods, about the many ways that Java
(and you) can make your programs run faster, and also about the often illusory need for efficiency.

Finally, you learned the procedure for creating native methods, from both the Java and the C sides, in detail-by generating
header files and stubs, and by compiling and linking a full example.

After working your way through today's difficult material, you've mastered one of the most complex parts of the Java
language. As a reward, tomorrow we'll look "under the hood" to see some of the hidden power of Java, and you can just sit
back and enjoy the ride.

Q&A

Q: Your descriptions here are somewhat sparse. What can I use to supplement what I've learned here?
A: Look at Sun's Java tutorial (online or on the CD-ROM included with this book) for a more detailed version of how to

work with native methods.

Day 20 -- Using Native Methods and Libraries

file:///G|/ebooks/1575211831/ch20.htm (15 of 16) [11/06/2000 7:44:48 PM]



Q: Does the Java class library need to call System.loadLibrary() to load the built-in classes?
A: No, you won't see any loadLibrary() calls in the implementation of any classes in the Java class library. That's

because the Java team had the luxury of being able to statically link most of their code into the Java environment,
something that really makes sense only when you're in the unique position of providing an entire system, as they are.
Your classes must dynamically link their libraries into an already-running copy of the Java system. This is, by the
way, more flexible than static linking; it allows you to unlink old and relink new versions of your classes at any time,
making updating them trivial.

Q: Can I statically link my own classes into Java like the Java team did?
A: Yes. You can, if you like, ask Sun Microsystems for the sources to the Java runtime environment itself, and, as long

as you obey the (relatively straightforward) legal restrictions on using that code, you can relink the entire Java system
plus your classes. Your classes are then statically linked into the system, but you have to give everyone who wants to
use your program this special version of the Java environment. Sometimes, if you have strong enough requirements,
this is the only way to go, but most of the time, dynamic linking is not only good enough, but preferable.

   

Day 20 -- Using Native Methods and Libraries

file:///G|/ebooks/1575211831/ch20.htm (16 of 16) [11/06/2000 7:44:48 PM]



Day 22

Java Programming Tools
by Michael Morrison

CONTENTS
Overview of the Standard JDK Tools●   

The Runtime Interpreter

Usage❍   

The OptionsArgument❍   

The Non-Optimized Interpreter❍   

●   

The Compiler

Usage❍   

The OptionsArgument❍   

The Non-Optimizing Compiler❍   

●   

The Applet Viewer

Usage❍   

The OptionsArgument❍   

Commands❍   

Profiling Java Applets❍   

●   

The Debugger

Usage❍   

The OptionsArgument❍   

Commands❍   

●   

The Class File Disassembler

Usage❍   

The OptionsArgument❍   

●   

The Header and Stub File Generator

Usage❍   

The OptionsArgument❍   

●   

The Documentation Generator

Usage❍   

The OptionsArgument❍   

●   

Day 22 -- Java Programming Tools

file:///G|/ebooks/1575211831/ch22.htm (1 of 22) [11/06/2000 7:44:52 PM]



Documentation Tags❍   

Visual Development Tools

Sun's Java WorkShop❍   

Symantec Café❍   

Microsoft Visual J++❍   

Natural Intelligence's Roaster❍   

Rogue Wave Software's JFactory❍   

Penumbra Software's Mojo❍   

Aimtech's Jamba❍   

Kinetix's Hyperwire❍   

●   

Summary●   

Q&A●   

Trying to perform any craft without the proper tools is a daunting task at best. Java programming is indeed a
craft, and like woodworking or engraving, your level of programming success largely depends on your choice
of tools as well as your skill in using the tools. You begin this bonus week by looking inside the standard
Java programming tools included with the Java Developer's Kit (JDK). Today's lesson isn't just a cursory
glance at the Java tools, however. You actually dig into the details of using the tools, including some hidden
features and capabilities that seem to have been glossed over in much of the Java documentation. After
learning the ins and outs of the standard JDK tools, you'll finish up the lesson by taking a look at some of the
more popular Java visual development tools.

Today's lesson covers the following major topics:

The tools included with the JDK and where to get the latest versions●   

Executing programs with the Java runtime interpreter●   

Compiling source files with the Java compiler●   

Debugging programs with the Java debugger●   

Visual development tools●   

By the end of today's lesson, you will be well acquainted with the standard JDK tools and how they work.
This insight into the standard tools will allow you to use them more effectively in your own projects. Even if
you decide to use one of the visual tools highlighted toward the end of the lesson, such as Symantec Café or
Visual J++, you may still sometimes find the JDK tools invaluable in certain situations.

Overview of the Standard JDK Tools
The JDK provides a core set of tools necessary for developing programs in Java. Even though the JDK tools
aren't particularly fancy in their implementation, they are guaranteed to work with the latest Java release
because updated JDK tools are written in Java and are a part of each release. And although third-party
add-ons and development environments promise to make Java development smoother and easier, the JDK
provides all the essential tools and information necessary to write professional Java applets immediately and

Day 22 -- Java Programming Tools

file:///G|/ebooks/1575211831/ch22.htm (2 of 22) [11/06/2000 7:44:52 PM]



at no cost. Because the JDK is Sun's official development kit for Java, you can always count on it to provide
the most extensive Java support.

Following is a complete list of the tools that are standard with the JDK:

The runtime interpreter●   

The compiler●   

The applet viewer●   

The debugger●   

The class file disassembler●   

The header and stub file generator●   

The documentation generator●   

You'll learn about each of these tools in detail in today's lesson. Before you get started, however, it's
important to make sure you have the latest version of the JDK. As of this writing, the latest version of the
JDK is version 1.02, which is included on the accompanying CD-ROM. This version will probably be around
for a while, so you should be okay using it. Just to be sure, you can check Sun's Java Web site at
http://www.javasoft.com to see what the latest version is. This Web site provides all the latest news
and information regarding Java, including the latest release of the JDK. Keep in mind that Java is a new
technology that is still in a state of rapid change. Be sure to keep an eye on the Java Web site for the latest
information.

The Runtime Interpreter
The Java runtime interpreter is a standalone version of the Java interpreter built into Java-compatible Web
browsers, such as Netscape Navigator 3.0 and Microsoft Internet Explorer 3.0. The runtime interpreter
provides the support to run Java executable programs in the compiled bytecode class format. Since the
interpreter doesn't directly provide any means to view graphical output, you are limited to using it to execute
purely textual Java programs and applications that manage their own graphics. If you want to run graphical
Java applets, you need to use either the Java applet viewer or a Java-compatible Web browser.

You can think of the runtime interpreter as exposing the bare essentials of the Java runtime system. Even
though I use the term bare essentials, the interpreter actually lets you do quite a lot. Essentially, you can run
any Java programs that don't rely on the Applet class. In fact, the statement earlier about not being able to
run graphical programs isn't entirely true; you can run graphical Java applications, but you just can't run Java
applets. The difference between a Java application and a Java applet is that an application is responsible for
creating and maintaining its own window should it require the need for graphical output, whereas an applet
relies on a Web browser to provide a window on which to display graphics. So the Java interpreter is capable
of executing both textual Java programs and graphical Java applications, but not applets.

Usage

The runtime interpreter is a command-line tool for running Java programs and applications; Java applets
require the graphics and display support of a Web browser.

New Term

Day 22 -- Java Programming Tools

file:///G|/ebooks/1575211831/ch22.htm (3 of 22) [11/06/2000 7:44:52 PM]

http://www.javasoft.com/


A command-line tool is a tool that is executed at a command prompt,
such as a DOS or UNIX shell prompt, with a specified list of
arguments.

The syntax for using the Java runtime interpreter follows:

java Options Classname Arguments

The Classname argument specifies the name of the class you want to execute. If the class resides in a
package, you must fully qualify the name. For example, if you want to run a class called SolveIt that is
located in a package called Equations, you would execute it in the interpreter like this:

java Equations.SolveIt

When the Java interpreter executes a class, what it is really doing is executing the main method of the class.
The interpreter exits when the main method and any threads created by it are finished executing. The main
method accepts a list of arguments that can be used to control the program. Following is the definition of the
main method as specified by the Java language:

class DoIt {
  public static void main(String argv[]) {
    // do something
  }
}

Notice that main has a single parameter, argv, which is an array of String objects. This brings us to the
Arguments argument for the runtime interpreter, which specifies the arguments passed into the main
method. Any arguments passed to the runtime interpreter via Arguments are accessible from the argv
parameter in main. The following interpreter call passes two numeric arguments to the main method in the
DoIt class:

java DoIt 8 24

Technical Note
The fact that the Java runtime interpreter actually executes the main
method when running a class should give you an idea about one of
the reasons why you can't run applets using the runtime interpreter.
Give up? The answer is that applets don't even have a main method,
so there is no way for the runtime interpreter to know how to begin
executing an applet.

The OptionsArgument

The Options argument specifies options related to how the runtime interpreter executes the Java program.
Following is a list of the most common runtime interpreter options:

Day 22 -- Java Programming Tools

file:///G|/ebooks/1575211831/ch22.htm (4 of 22) [11/06/2000 7:44:52 PM]



-debug
-checksource or -cs
-classpath Path
-mx x
-ms x
-noasyncgc
-noverify
-prof
-ss x
-oss x
-t
-verbose or -v
-verbosegc
-verify
-verifyremote
-DPropertyName=NewValue

The -debug option starts the interpreter in debugging mode, which allows you to use the Java debugger
(jdb) in conjunction with the interpreter. You'll learn more about using the Java debugger a little later in
today's lesson.

The -checksource option causes the interpreter to compare the modification dates of the source code files
and executable class files. If the source file is more recent, the class is automatically recompiled and the new
bytecode executable is loaded.

The Java interpreter uses an environment variable, CLASSPATH, to determine where to look for user-defined
classes. The CLASSPATH variable contains a semicolon-delimited list of system paths to user-defined Java
classes. Actually, most of the Java tools use the CLASSPATH variable to know where to find user-defined
classes. The -classpath option informs the runtime interpreter to override CLASSPATH with the path
specified by Path.

The -mx x option allows you to modify the maximum size of the memory allocation pool, or garbage
collection heap, used by the interpreter. By default, the pool has a maximum size of 16MB (-mx 16m). x
specifies the new maximum size of the pool and is measured in bytes by default. You can also specify x in
either kilobytes or megabytes by appending the letter k or m (respectively) onto the value. Also, x must be
greater than 1000 bytes, meaning that the pool must have a maximum size of at least 1000 bytes.

The -ms x option is similar to the -mx option, except it allows you to modify the initial size of the memory
allocation pool rather than the maximum size. By default, the size of the pool is initially set to 1MB (-ms
1m). x specifies the new initial pool size, and is measured in bytes by default. Similar to the -mx option, you
can also specify x in either kilobytes or megabytes by appending the letter k or m (respectively) onto the
value. Additionally, x must be greater than 1000 bytes.

The Java runtime system typically performs garbage collection automatically to make sure unneeded memory
stays freed up. This takes place in an asynchronous thread that runs alongside other threads in the runtime
system. The -noasyncgc option alters this behavior by turning off asynchronous garbage collection. The
result is that no garbage collection takes place unless it is explicitly called on or the Java program runs out of
memory.

Technical Note

Day 22 -- Java Programming Tools

file:///G|/ebooks/1575211831/ch22.htm (5 of 22) [11/06/2000 7:44:52 PM]



You can force an explicit garbage collection by calling the gc method
in the System class.

The -noverify option turns all code verification off, meaning that no bytecodes are processed by the
bytecode verifier. Typically, the verifier verifies code loaded into the system using a class loader.

The runtime interpreter includes a built-in profiler, which is invoked using the -prof option. The profiler's
job is to report on the amount of time spent in each section of code as a program is executing, which can
often be used to find performance bottlenecks in the code. The built-in profiler writes the profile information
to a file called java.prof, which is a text file. The profile information consists of how many times each
method was called and the relative amount of time spent in the method during each call. The larger the latter
number is, the more costly the method in terms of processor overhead. You can easily use this information as
a guide to determine the code on which to focus your code optimization efforts.

Note
Since the runtime interpreter, and therefore the built-in profiler, can
only be used with textual Java programs and standalone applications,
you may be wondering how to profile Java applets. Fortunately, you
can use the profiler in the runtime interpreter in conjunction with the
Java applet viewer. You'll learn how to do this a little later today
when you find out about the applet viewer.

Every thread in the Java runtime system is given two stacks: one for Java code and one for C/C++ code. The
presence of two stacks reflects the native code support in Java. The -ss x option allows you to alter the
maximum stack size used by C code in a thread. The default C stack size is 128KB (-ss 128k). The x
parameter specifies the new maximum size in bytes of the C stack, which must be greater than 1000 bytes.
You can also specify x in either kilobytes or megabytes by appending the letter k or m (respectively) onto the
value. Keep in mind that this option applies to all threads created during program execution.

Similar to the -ss x option, the -oss option allows you to set the maximum stack size that can be used by
the Java code in a thread. The default Java code stack size is 400KB (-oss 400k). The x parameter
specifies the new maximum size in bytes of the Java stack, which must be greater than 1000 bytes.

The -t option prints a trace of the bytecode instructions executed. This option only works with the
non-optimized version of the Java interpreter, java_g. (You'll learn about the non-optimized interpreter in a
moment.) The -t option generates a great deal of information that can give you a lot of insight into what is
happening within a program, provided you are good at following raw bytecodes!

The -verbose option causes the interpreter to print a message to standard output each time a Java class is
loaded. Similarly, the -verbosegc option causes the interpreter to print a message each time a garbage
collection is performed. A garbage collection is performed by the runtime system to clean up unneeded
objects and to free memory.

The opposite of the -noverify option, the -verify option causes the interpreter to run the bytecode
verifier on all code loaded into the runtime environment. The default function of the verifier is to only verify
code loaded into the system using a class loader. This default behavior can also be explicitly specified using
the -verifyremote option.

The -D option allows you to redefine system property values. PropertyName specifies the name of the
system property you want to change, and NewValue specifies the new value you want to assign to it.

Day 22 -- Java Programming Tools

file:///G|/ebooks/1575211831/ch22.htm (6 of 22) [11/06/2000 7:44:52 PM]



New Term
System properties are global system variables that reflect the state of
the Java runtime system. For example, the version of the Java runtime
system is stored in the java.version system property.

The Non-Optimized Interpreter

Some distributions of the Java Developer's Kit include an alternate Java interpreter called java_g. This is a
non-optimized version of the Java interpreter that executes Java bytecodes in a manner more suitable for
debugging. If this interpreter is in your JDK distribution, be sure to use it when you are executing code within
the Java debugger.

The Compiler
The Java compiler (javac) is used to compile Java source code files into executable Java bytecode classes.
In Java, source code files have the extension .java. As you've seen throughout this book, Java source code
files are standard ASCII text files, much like the source code files for other popular programming languages
like C++. It is the job of the Java compiler to process Java source code files and create executable Java
bytecode classes from them. Executable bytecode class files have the extension .class and represent a Java
class in its usable form.

Java class files are generated on a one-to-one basis with the classes defined in the source code. In other
words, the Java compiler generates exactly one .class file for each class you create. Since it is technically
possible to define more than one class in a single source file, it is therefore possible for the compiler to
generate multiple class files from a single source file. When this happens, it means that the source file
contains multiple class definitions.

You may have heard something about just-in-time compilers in relationship to Java. It's important not to get
these compilers confused with the Java compiler and the role it plays. The Java compiler is responsible for
turning Java source code into Java bytecodes that can be executed within the Java runtime system. The Java
virtual machine, which is a component of the runtime system, is responsible for interpreting the bytecodes
and making the appropriate system level calls to the native platform. It is at this point where platform
independence is achieved by Java; the bytecodes are in a generic form that is only converted to a native form
when processed by the virtual machine.

Just-in-time compilers remove the role of the runtime interpreter by converting Java bytecodes to native code
on-the-fly before executing a Java program. In this way, just-in-time Java compilers work more like the back
end of traditional language compilers in that they generate code for a native platform. Similarly, the Java
compiler works more like the front end of a traditional compiler in that it parses Java source code and
generates internally useful bytecode classes.

Note
Both Netscape Navigator 3.0 and Microsoft Internet Explorer 3.0
include just-in-time Java compilers.

Keep in mind that Java executables are still centered around the bytecode class format. Even with just-in-time
compilers in the picture, all you must be concerned with as a developer is generating the appropriate
bytecode classes using the Java compiler. If no just-in-time compiler is present on a user's system, the

Day 22 -- Java Programming Tools

file:///G|/ebooks/1575211831/ch22.htm (7 of 22) [11/06/2000 7:44:52 PM]



bytecode classes will be processed and executed by the runtime interpreter. On the other hand, if a
just-in-time compiler happens to exist on the system, the bytecode classes will be converted to native code
and then executed. Either way, the key to executing Java programs is the bytecode classes, which are created
by the Java compiler.

Usage

The Java compiler is a command-line tool whose syntax follows:

javac Options Filename

The Filename argument specifies the name of the source code file you want to compile. The compiler will
generate bytecode classes for all classes defined in this file. Likewise, the compiler will also generate
bytecode classes for any dependent classes that haven't been compiled yet. In other words, if you are
compiling class A, which is derived from class B, and class B has not yet been compiled, the compiler will
notice the dependency and go ahead and compile both classes.

The OptionsArgument

The Options compiler argument specifies options related to how the compiler creates the executable Java
classes. Following is a list of the compiler options:

-classpath Path
-d Dir
-g
-nowarn
-O
-verbose

The -classpath option tells the compiler to override the CLASSPATH environment variable with the path
specified by Path. This causes the compiler to look for user-defined classes in the path specified by Path.
Path is a colon-delimited list of directory paths taking the following form:

.;YourPath

An example of a specific usage of -classpath follows:

javac -classpath .;\dev\animate\classes;\dev\render\classes A.java

In this case, the compiler is using a user-defined class path to access any classes it needs while compiling the
source code file A.java. The -classpath option is sometimes useful when you want to try compiling
something without taking the trouble to modify the CLASSPATH environment variable.

The -d option determines the root directory where compiled classes are stored. This is important because
many times classes are organized in a hierarchical directory structure. With the -d option, the directory
structure will be created beneath the directory specified by Dir.

The -g compiler option causes the compiler to generate debugging tables for the Java classes. Debugging

Day 22 -- Java Programming Tools

file:///G|/ebooks/1575211831/ch22.htm (8 of 22) [11/06/2000 7:44:52 PM]



tables are used by the Java debugger and contain information such as local variables and line numbers. The
default action of the compiler is to only generate line numbers.

New Term
A debugging table is a collection of information about a program that
is used internally by a debugger. Debugging tables are built directly
into executable classes during compilation.

Warning
If you are going to be using the Java debugger to debug the classes
generated by the compiler, you must use the -g option. Additionally,
for debugging make sure you don't use the -O option, which
optimizes the code.

The -nowarn option turns off compiler warnings. Warnings are printed to standard output during
compilation to inform you of potential problems with the source code. It is generally a good idea to keep
warnings enabled because they often signal problem areas in your code. However, you may run into a
situation where warnings are getting in the way, in which case the -nowarn option might be useful.

The -O option causes the compiler to optimize the compiled code. In this case, optimization simply means
that static, final, and private methods are compiled inline. When a method is compiled inline, it means that
the entire body of the method is included in place of each call to the method. This speeds up execution
because it eliminates the method call overhead. Optimized classes are usually larger in size to accommodate
the duplicate code. The -O optimization option also suppresses the default creation of line numbers by the
compiler. Keep in mind that the -O option should not be used when you plan on debugging the compiled
code using the Java debugger.

New Term
Method inlining is the process of replacing each call to a method with
the actual method code. Inlining often increases the size of the
resulting class file, but it can help improve performance.

The -verbose option has somewhat of an opposite effect as the -nowarn option-it prints out extra
information about the compilation process. You can use -verbose to see exactly what source files are
being compiled and what class files are being loaded.

The Non-Optimizing Compiler

Some distributions of the Java Developer's Kit include an alternate Java compiler called javac_g. This
version of the Java compiler generates code without some of the internal optimizations performed by the
standard javac compiler. If this compiler is in your JDK distribution, be sure to use it when you are
compiling code for debugging. Otherwise, stick with the javac compiler for all release code.

The Applet Viewer
The typical method of executing a Java applet is from within a Web browser that has a Web page loaded
containing the applet. This is the typical scenario in which most Web users come into contact with Java
applets. As a Java developer, you have another option for running Java applets that doesn't involve the use of

Day 22 -- Java Programming Tools

file:///G|/ebooks/1575211831/ch22.htm (9 of 22) [11/06/2000 7:44:52 PM]



a Web browser. This option is the Java applet viewer, which serves as a minimal test bed for Java applets. At
times you may not want to hassle with using a full-blown Web browser to test an applet, in which case the
applet viewer is an ideal alternative.

Even though the applet viewer logically takes the place of a Web browser, it functions very differently from a
Web browser. The applet viewer operates on HTML documents, but it only looks for embedded applet tags;
it ignores any other HTML code in the document. Each time the applet viewer encounters an applet tag in an
HTML document, it launches a separate applet viewer window containing the respective applet.

The only drawback to using the applet viewer is that it doesn't show you how an applet will run within the
confines of a real Web setting. Since the applet viewer ignores all HTML codes except applet tags, it doesn't
even attempt to display any other information contained in the HTML document. So once you've tested your
applet using the applet viewer, be sure to also test it using a Web browser just to make sure it works in the
context of a real Web page.

Usage

The Java applet viewer is a command-line tool, meaning that it is invoked from a command prompt. The
syntax for the applet viewer follows:

appletviewer Options URL

The URL argument specifies a document URL containing an HTML page with an embedded Java applet. The
applet viewer launches a separate window for each applet embedded in the HTML document. If the
document doesn't contain any embedded applets, the applet viewer will simply exit. Figure 22.1 shows the
applet viewer in action.

Figure 22.1 shows the Animator demo applet, which comes with the Java Developer's Kit, running in the
applet viewer. You run the applet by changing to the directory containing the Animator bytecode class and
embedded HTML file and then executing the following statement at the command prompt:

Figure 22.1 : The Animator applet running in the Java applet viewer.

appletviewer example1.html

example1.html is the HTML file containing the embedded Java applet. As you can see, there's nothing
complicated about running Java applets using the applet viewer. The applet viewer is a useful and easy-to-use
tool for testing Java applets in a simple environment.

The OptionsArgument

The Options argument to the applet viewer specifies how to run the Java applet. There is currently only
one option supported by the applet viewer, -debug. The -debug option starts the applet viewer in the Java
debugger, which allows you to debug applets. You'll learn more about using the Java debugger a little later in
today's lesson.

Day 22 -- Java Programming Tools

file:///G|/ebooks/1575211831/ch22.htm (10 of 22) [11/06/2000 7:44:52 PM]



Commands

The applet viewer has a drop-down menu called Applet containing a group of commands, as shown in Figure
22.2.

Figure 22.2 : The Java applet viewer with commands available in the drop-down menu.

The Restart command restarts the currently loaded applet, resulting in a call to the start method for the
applet. The Restart command does not reload the applet, however. Similar to Restart, the Reload
command reloads the applet and then starts it. Reload is often a better command to use to restart applets as
it ensures that an applet is completely reinitialized.

The Clone command launches another instance of the applet viewer executing the same applet. This
command is useful when you want to run multiple copies of an applet. For example, a multiuser network
applet might support multiple instances that can communicate with each other. You could load one instance
of the applet and then use the Clone command to start other instances.

The Tag command displays a window showing the HTML applet tag for the executing applet. The Applet
HTML Tag window is shown in Figure 22.3.

Figure 22.3 : The Applet HTML Tag window displayed by the Tag command.

The Info command displays a window showing information about the executing applet, including general
applet information and information relating to the parameters used by the applet. This information is returned
by the getAppletInfo and getParameterInfo methods of the Applet class. The Applet Info
window is shown in Figure 22.4.

Figure 22.4 : The Applet Info window displayed by the Info command.

The Edit command is disabled in the current release of the applet viewer. It will presumably be activated in
a future release of the applet viewer, in which case it will probably provide a way to alter the applet
parameters in the HTML document containing the applet tag.

The Properties command displays a window with access options relating to HTTP and firewall proxies
and servers, along with network and class access options. The AppletViewer Properties window is shown in
Figure 22.5.

Figure 22.5 : The Applet Viewer Properties window displayed by the Properties command.

Finally, the Close and Quit commands perform the same function, which is shutting down the applet
viewer. It's not clear why there are two different commands for closing the applet viewer-it's presumably an
oversight.

Profiling Java Applets

You learned a little earlier today about the profiler built into the Java runtime interpreter. You learned that
you can't profile applets using the runtime interpreter alone because you can't even run applets using the
interpreter. However, you can profile applets by running the interpreter's profiler in conjunction with the
applet viewer. In this case, the applet viewer is launched from within the runtime interpreter, like this:

java -prof sun.applet.AppletViewer URL

Day 22 -- Java Programming Tools

file:///G|/ebooks/1575211831/ch22.htm (11 of 22) [11/06/2000 7:44:52 PM]



URL specifies the name of the HTML file containing an applet tag (or tags). Notice that the applet viewer is
referenced using its fully qualified class name, AppletViewer. When you finish running the applet, the
interpreter writes a text file named java.prof to the current directory. This file contains profile
information for the applet you just ran. Refer to the earlier discussion of the profiler in the section "The
Runtime Interpreter" for information regarding the meaning of the contents of this file.

The Debugger
The Java debugger (jdb) is a command-line utility that enables you to debug Java programs. The Java
debugger uses the Java Debugger API to provide debugging support within the Java runtime interpreter.
Although the debugger is a command-line tool, it still provides a wide range of standard debugging features
such as setting breakpoints and single-stepping through code.

New Term
A breakpoint is a line of code you specify that halts the execution of a
program.

New Term
Single-stepping is the process of executing your code one line at a
time (in single steps).

Before you can use jdb, you must compile your code so that it includes debugging information. The Java
compiler switch for doing this is -g, which causes the compiler to generate debugging tables containing
information about line numbers and variables.

Note
Some distributions of the JDK also include an alternative Java
compiler called javac_g. If you have this compiler in your
distribution (look in the java/bin directory), use it, because it
compiles code without using some of the internal optimizations
performed by the javac compiler.

Because debugging is a very broad subject, I've tried to keep this discussion focused on the Java debugger
and the basics of how it is used. For a more hands-on look at Java debugging, you may want to check out
Sun's online Java debugger tutorials, which are located on Sun's Java Web site at
http://www.javasoft.com/products/JDK/debugging/.

Usage

The syntax for using the Java debugger follows:

jdb Options <Classname>

The Classname argument is optional and specifies the name of the class you want to execute. The fact that
Classname is optional brings up an interesting point regarding the usage of the debugger: There are two
different ways to go about using the debugger, depending on whether you are debugging an application or an
applet. For applications, you simply execute jdb directly and provide the name of the main class in the

Day 22 -- Java Programming Tools

file:///G|/ebooks/1575211831/ch22.htm (12 of 22) [11/06/2000 7:44:52 PM]

http://www.javasoft.com/products/JDK/debugging/


Classname argument, as the previous syntax shows. If you are debugging an applet, however, you must
execute the debugger within the applet viewer, like this:

appletviewer -debug URL

In this case, URL refers to a document URL containing an HTML page with the applet to be debugged.
Instead of directly executing the class, the applet viewer launches the debugger and allows you to debug the
applet. Technically, there are three ways to use the Java debugger. The third technique involves attaching the
debugger to an application that is already running in the interpreter. You'll learn a little more about this
debugging approach in the next section.

The OptionsArgument

The Options argument is used to specify different settings regarding how a debugging session is started.
Following is a list of the debugging options:

-host Hostname
-password Password

The -host option is used to specify the name of the host machine where an existing Java interpreter is
running. In this case, the debugger attaches itself to the interpreter so the currently executing application can
be debugged. You specify the name of the host machine in the Hostname argument.

The -password option is also used when attaching the debugger to an existing interpreter session. When
the interpreter is started with the -debug option, a password is displayed that must be used when initiating
the debugging session. You specify this password to the debugger via the -password option and the
Password argument.

Commands

When the debugger is up and running, you control it through commands that are entered at a command-line
prompt. The debugger command-line prompt is a > prompt by default, similar to DOS or UNIX shell
prompts. This prompt specifies that there is no default thread running. The thread that is currently executing
in the debugger is displayed in the command prompt itself, so the > prompt signifies that no thread is
currently being debugged. When you are debugging a thread, the command prompt changes to a thread name
followed by the current position of the stack frame, which is enclosed in square brackets. An example of a
thread prompt is main[1], which signifies that the main thread is running and you are at the topmost
position (1) in the stack frame.

Following is a list of some of the most useful debugging commands:

help
locals
print Object
dump Object
methods Class
classes
stop in Classname.Methodname

Day 22 -- Java Programming Tools

file:///G|/ebooks/1575211831/ch22.htm (13 of 22) [11/06/2000 7:44:52 PM]



stop at Classname.LineNumber
step
cont
clear <Classname.LineNumber>

Possibly the most important command in jdb is the help command, which prints out a listing of all the
available commands and what they do. The next three commands are all related to printing information about
objects. The locals command displays the current value of all the objects in the current scope (stack
frame). The print and dump commands are both used on objects independent of the current scope. The
print command is used to print both entire objects and individual member variables; you simply specify
the name of the object or member variable in the Object argument. Similar to print, the dump command
also prints objects or member variables, but it prints more detailed information such as an object's
inheritance.

The methods command is used to list all the methods defined in the class specified by Class. The
classes command lists all the classes that are currently loaded into memory. The list generated by the
classes command is often pretty large since many different classes end up being loaded behind the scenes
even in simple Java programs.

Now that you have an idea how to look at the values of different things in the debugger, let's move on to
some commands that are a little more exciting. The stop in and stop at commands are used to set
breakpoints in methods and at specific lines of source code, respectively. For example, to set a breakpoint in
the mouseDown method of an applet called Groovy, you would type the following command at the
debugger command line:

stop in Groovy.mouseDown

When you click the mouse button in the applet window, the debugger will halt the applet at the beginning of
the mouseDown method. To begin single-stepping through the method, you use the step command. The
debugger executes one line of code for each step command issued. When you find out the information you
need and are ready to get things running at full speed again, you use the cont command, which continues
the normal execution of the program. Likewise, you can clear any breakpoints you set with the clear
command.

That sums up the basics of using the Java debugger. Like any powerful tool, you'll gain confidence with the
debugger by simply tinkering with it. I suggest running the debugger on a simple program and getting
acquainted with some of the commands before trying to take on a serious debugging project.

The Class File Disassembler
The Java class file disassembler (javap) is used to disassemble a class file, which means the executable
class file is resolved into a list of public data, methods, or raw bytecode instructions. The disassembler's
default output consists of the public data and methods for a class. The class file disassembler is useful in
cases where you don't have the source code for a class but you'd like to know something about how it is
implemented.

Day 22 -- Java Programming Tools

file:///G|/ebooks/1575211831/ch22.htm (14 of 22) [11/06/2000 7:44:52 PM]



Usage

The syntax for the disassembler follows:

javap Options ClassNames

The ClassNames argument specifies the names of one or more classes to be disassembled.

The OptionsArgument

The Options argument specifies how the classes are to be disassembled. The disassembler supports the
following options:

-c
-p
-h
-classpath Path
-verify
-version

The -c option tells the disassembler to output the actual bytecodes for each method. The
-p option tells the disassembler to also include private variables and methods in its output. Without this
option, the disassembler only outputs the public member variables and methods. The -h option specifies that
information be created that can be used in C header files. This is useful when you are attempting to interface
C code to a Java class for which you don't have the source code.

The -classpath option informs the disassembler to override CLASSPATH with the path specified by
Path when looking for the input class or classes. The -verify option tells the disassembler to run the
verifier on the class and output debugging information. Finally, the -version option causes the
disassembler to print its version number.

The Header and Stub File Generator
The Java header and stub file generator (javah) is used to generate C header and source files for
implementing Java methods in C. The files generated can be used to access member variables of an object
from C code. The header and stub file generator accomplishes this by generating a C structure whose layout
matches that of the corresponding Java class.

Note
You learned how to use the javah header and stub file generator on
Day 20, "Using Native Methods and Libraries." You can think of
today's coverage as more of a reference for the javah tool itself
since you learn about all the options supported by javah.

Day 22 -- Java Programming Tools

file:///G|/ebooks/1575211831/ch22.htm (15 of 22) [11/06/2000 7:44:52 PM]



Usage

The syntax for using the header and stub file generator follows:

javah Options ClassName

The ClassName argument is the name of the class to generate C source files from.

The OptionsArgument

The Options argument specifies how the source files are to be generated. Following are the options
supported by the stub file generator:

-o OutputFile
-d Dir
-td Dir
-stubs
-verbose
-classpath Path

The -o option is used to concatenate the resulting header and source files when multiple classes are being
operated on. When used, the -o option results in the concatenated information being stored in the file
specified by OutputFile.

The -d option determines the root directory where the generated header and source files are stored. Along
with writing the header and source files, the header and stub file generator also writes its own temporary
files. The -td option specifies the directory where these temporary files are stored. By default, temporary
files are stored in the directory specified by the %TEMP% environment variable; the -td option overrides this
directory with Dir.

The -stubs option is probably the most important option supported by the header and stub file generator.
The -stubs option causes C declarations to be generated from the specified Java class or classes. Without
the -stubs option, only header files are generated. When you use the -stubs option, the header and stub
file generator creates both header and stub files, which are both typically required to incorporate native C
code with Java.

The -verbose option causes the header and stub file generator to print a message to standard output
regarding the status of files as they are being generated. Finally, the -classpath option informs the header
and stub file generator to override CLASSPATH with the path specified by Path when looking for the input
class.

The Documentation Generator
The Java documentation generator (javadoc) is a useful tool for generating programming documentation
directly from Java source code. The documentation generator parses through Java source files and generates
HTML pages based on the declarations and comments. Sun's online Java API documentation was created
using the documentation generator, which attests to the practicality of this tool.

Day 22 -- Java Programming Tools

file:///G|/ebooks/1575211831/ch22.htm (16 of 22) [11/06/2000 7:44:53 PM]



Usage

The syntax for using the documentation generator follows:

javadoc Options FileName

The FileName argument specifies either a package or a Java source code file. For source code files, the
documentation generator creates HTML pages based on the special documentation comments (/** and */)
used throughout the code. The documentation generator reformats and includes all public and protected
declarations for classes, interfaces, methods, and variables. You can include special documentation tags
within the documentation comments that allow you a little more power and flexibility over the resulting
documentation. You'll learn about these tags in a moment.

The FileName parameter to the documentation generator can also refer to a package name, in which case
documentation is created for all the classes contained in the package. This is an easy way to crank out
documentation for a large set of classes with one easy command.

The OptionsArgument

The Options argument enables you to change the default behavior of javadoc. Following are the options
supported by the documentation generator:

-d Dir
-classpath Path

The -d option specifies where the generated HTML documents are stored. The -classpath option
informs the documentation generator to override CLASSPATH with the path specified by Path when
looking for the Java source files.

Documentation Tags

The documentation generator supports special tags for adding extra information to the generated HTML
documents. All the tags begin with an @ symbol and must appear at the beginning of a line. Following are the
tags related to the generation of class documentation:

@see Classname
@see FullyQualifiedClassname
@see Classname.Methodname
@version Version
@author AuthorName

The @see tags all add a "see also" hyperlink to the HTML document that refers to a class or method within a
class. This is an easy way to provide associations between classes in the documentation. Sun's Java API
makes great use of the @see tag to provide cross-references between classes.

The @version tag allows you to include version information with the class, as specified by Version.
Version can contain any text you choose relating to the version of the code. The @author tag lets you
provide the name of the author or authors of the source code, as specified by AuthorName.

Day 22 -- Java Programming Tools

file:///G|/ebooks/1575211831/ch22.htm (17 of 22) [11/06/2000 7:44:53 PM]



Following is an example of source code making use of the class documentation tags:

/**
 * A class for modeling precious gems.
 *
 * @see      Object
 * @see      gemology.Rock
 * @version  2.0  Dec 5, 1996
 * @author   Brett Weir
 */
class Gem extends Rock {
  // class definition
}

Notice that the class documentation comment and tags appear just before the class definition. This is
important because the documentation generator associates this comment with the Gem class. You can also
associate comments with variables and methods in a similar way. For variables, you are limited to using the
@see tag. For methods, however, you can use a few other tags:

@param ParamName Description
@return Description
@exception Classname Description

The @param tag is used to add the method's parameters to the Parameters section generated in the
HTML document. The Parameters section is an HTML section that lists the parameters required of a
method. ParamName refers to the name of the parameter as defined by the method, and Description is a
text description of the parameter.

The @return tag adds a Returns section to the HTML document that brings attention to the return value
of the method. You simply provide a description of the return value in Description.

Finally, the @exception tag adds a Throws section to the HTML document, which lists the exceptions
potentially thrown by the method. You specify the exception in Classname along with a description of
what circumstances result in the exception being thrown in
Description. You can use multiple exception tags. The documentation generator automatically creates a
hyperlink to the documentation for the exception class referenced.

Following is an example of source code that uses the method tags:

/**
 * Determines an estimate of the gem's value.
 *
 * @param      weight   The weight of the gem in carats.
 * @param      color    The color of the gem (0 -> 1.0).
 * @param      clarity  The clarity of the gem (0 -> 1.0).
 * @return     The estimated value of the gem.
 * @exception  NumberFormatException  When the color or clarity isn't
 *             in the range 0 -> 1.0.

Day 22 -- Java Programming Tools

file:///G|/ebooks/1575211831/ch22.htm (18 of 22) [11/06/2000 7:44:53 PM]



*/
public int estimateValue(float weight, float color, float clarity) {
  // method definition
}

Visual Development Tools
Even though the JDK tools are powerful and certainly adequate for serious Java programming, few people
will argue the benefits of using visual development tools. Along with providing feature-packed source code
editors, most visual tools combine many of the standard Java programming tools within one environment. For
example, from one development environment you can typically edit, compile, run, and debug Java programs.
This seemingly simple merger of tools can really help save precious development time.

Although providing visual versions of the standard Java command-line tools is a benefit in and of itself,
visual development tools rarely stop there. Most visual tools also include sophisticated project-management
facilities as well as code-generation tools for creating applet templates with complete source code that
performs a certain type of core functionality. Some visual tools even go a step further and eliminate much of
the programming. These tools focus on harnessing prebuilt components that allow you to develop Java
programs without actually writing Java code. These types of tools are typically a little more limited because
of their high-level design, but they can save enormous amounts of time and energy in certain cases.

The rest of today's lesson focuses on some of the more popular Java visual development tools that are
currently available. My intention isn't to rate the tools or persuade you to try one over another. My goal is
simply to let you know what's out there so you can investigate what type of tool might suit your needs. Many
of the tools have evaluation versions that you can download for free from an associated Web site, so you can
very easily try them out for yourself and come to your own conclusions. Have fun!

Sun's Java WorkShop

Sun's Java WorkShop is a visual development tool written entirely in Java. This is an interesting tool because
its design is very Web-centric, meaning that much of the tool itself is comprised of Java applets embedded in
HTML pages. Java WorkShop is currently available for Windows and Solaris systems. You can check it out
at http://www.sun.com/sunsoft/Developer-products/java/, which is Sun's Java
WorkShop Web site (see Figure 22.6).

Figure 22.6 : Sun's Java WorkShop Web site.

Symantec Café

Symantec Café is a visual Java development environment based on Symantec's popular C++ development
environment. It was one of the first visual Java tools available and currently supports both Windows and
Macintosh platforms. You can get the latest information about Café at Symantec's Café Web site (see Figure
22.7), which is located at http://cafe.symantec.com/.

Figure 22.7 : The Symantec CafeWeb site.

Day 22 -- Java Programming Tools

file:///G|/ebooks/1575211831/ch22.htm (19 of 22) [11/06/2000 7:44:53 PM]

http://www.sun.com/sunsoft/Developer-products/java/
http://cafe.symantec.com/


Microsoft Visual J++

Microsoft finally decided to enter the Java development foray in full force with Visual J++, which is a visual
Java tool similar to their popular Visual C++ development environment. Visual J++ currently is available
only for the Windows platform. You can check out Visual J++ at Microsoft's Visual J++ Web site (see Figure
22.8), which is located at http://198.105.232.5/visualj/.

Figure 22.8 : The Microsoft Visual J++ Web site.

Natural Intelligence's Roaster

Natural Intelligence's Roaster is the first Java development environment targeted specifically for the
Macintosh platform. For information about Roaster, check out Natural Intelligence's Roaster Web site (see
Figure 22.9) at http://www.natural.com/pages/products/roaster/.

Figure 22.9 : Natural Intelligence's Roaster Web site.

Rogue Wave Software's JFactory

Rogue Wave Software's JFactory Java development tool is aimed more at rapid application development with
a minimal amount of programming. This visual application generator is currently available for the Windows
platform. You can get more information about JFactory from Rogue Wave Software's JFactory Web site (see
Figure 22.10), which is located at
http://www.roguewave.com/products/jfactory/jfactory.html.

Figure 22.10: Rogue Wave Software's JFactory Web site.

Penumbra Software's Mojo

Penumbra Software's Mojo development tool offers a programming environment based largely on reusable
components. Granted, this is a trend common among many of the visual tools, but Mojo makes a big attempt
to minimize custom coding whenever possible. Mojo is currently available for the Windows platform. You
can check out Mojo at Penumbra Soft-ware's Web site (see Figure 22.11), which is located at
http://www.penumbrasoftware.com/.

Figure 22.11: Penumbra Software's Mojo Web site.

Aimtech's Jamba

Aimtech's Jamba is one of the first offerings in the area of high-level visual Java tools. Jamba is aimed at
Internet developers who want to harness the power of Java without any programming or scripting. Jamba is
currently available for the Windows platform. You can get the scoop on Jamba by taking a stroll through
Aimtech's Jamba Web site (see Figure 22.12), which is located at
http://www.aimtech.com/prodjahome.html.

Figure 22.12: Animtech's Jamba Web site.

Day 22 -- Java Programming Tools

file:///G|/ebooks/1575211831/ch22.htm (20 of 22) [11/06/2000 7:44:53 PM]

http://198.105.232.5/visualj/
http://www.natural.com/pages/products/roaster/
http://www.roguewave.com/products/jfactory/jfactory.html
http://www.penumbrasoftware.com/
http://www.aimtech.com/prodjahome.html


Kinetix's Hyperwire

The last of the visual tools is Kinetix's Hyperwire, which is another high-level tool somewhat similar to
Jamba. Unlike Jamba, however, Hyperwire's emphasis is largely placed on creating highly graphical Java
applets, including 3D graphics. Hyperwire is currently available for the Windows platform. You can get more
information about Hyperwire from Kinetix's Hyperwire Web site (see Figure 22.13), which is located at
http://www.ktx.com/products/hyperwire/.

Figure 22.13: Kinetix's Hyperwire Web site.

Note
High-level tools such as Jamba and Hyperwire are sometimes referred
to as authoring tools because they involve little or no programming.

Summary
Even though Java is easier to use than some other programming languages, becoming a proficient Java
programmer still presents a number of hurdles to most of us. One way to lower these hurdles a little is to
become well acquainted with the development tools you are using. Possibly even more important is your
initial choice of development tools, which can greatly affect your effectiveness as a Java programmer.
Today's lesson addresses both of these concerns by presenting you with an in-depth look at the standard JDK
tools, along with showing you some other options in the form of visual development tools.

Ultimately, your selection of a development tool or tools will depend on your level of expertise and your
development style. Regardless of what type of tool you gravitate toward, be sure to take the time to learn all
you can about it. If you are still unsure about what kind of development tool to use, stick with the JDK for a
while, since it is guaranteed to meet the basic requirements necessary to build Java programs. Besides,
understanding Java programming from the perspective of the standard JDK tools will ultimately give you
more insight into the "big picture" of Java development.

You're probably tired of hearing me ramble on about tools by now. That's OK, because tomorrow you shift
gears and head straight back into programming by learning about data structures in Java. I'm sure you can't
wait!

Q&A

Q: What is the significance of the profiler built into the runtime interpreter?
A: The profiler is useful in assessing the relative execution times of different parts of a Java program,

which is crucial in situations in which you are trying to improve the performance of a Java program.
With the information generated by the profiler, you can target specific sections of code to focus
optimization efforts.

Q: How do I compile multiple classes within a single source code file? I keep getting compiler
errors!

A: Even though you can compile multiple classes that are defined in one source code file, only one of
the classes can be public. Furthermore, the source file must be named after the class that is public.
The purpose here is to allow you to include support classes in the same file with public classes.
However, you are only allowed one public class per source code file.

Day 22 -- Java Programming Tools

file:///G|/ebooks/1575211831/ch22.htm (21 of 22) [11/06/2000 7:44:53 PM]

http://www.ktx.com/products/hyperwire/


Q: When do I use the class file disassembler?
A: The class file disassembler, although powerful in its own right, isn't necessarily a tool you will find

yourself using a lot. Its primary purpose is dissecting Java classes for which you don't have the
source code. Using the disassembler, you can look at all the public methods and member variables
for a class, which can help a lot when you're trying to figure out how the class works. If you have a
knack for details and a lot of Tylenol, you can also use the disassembler to look at the raw bytecodes
for classes.

Q: I still don't quite understand the distinction between development environments and authoring
tools. What's the deal?

A: Both of these types of tools qualify as visual tools, but there is a distinct difference between them.
Development environments essentially replace the standard command-line JDK tools with integrated
visual versions, while sometimes also adding some extra features like project management and
simple code generation. Authoring tools, on the other hand, completely move away from the idea of
writing source code by providing you with a means to build programs purely by assembling
preexisting components. The main difference, then, is that development environments target Java
programmers, while authoring tools are readily accessible to nonprogrammers as well.

   

Day 22 -- Java Programming Tools

file:///G|/ebooks/1575211831/ch22.htm (22 of 22) [11/06/2000 7:44:53 PM]



file:///G|/ebooks/1575211831/f22-1.gif

file:///G|/ebooks/1575211831/f22-1.gif [11/06/2000 7:44:53 PM]



file:///G|/ebooks/1575211831/f22-2.gif

file:///G|/ebooks/1575211831/f22-2.gif [11/06/2000 7:44:54 PM]



file:///G|/ebooks/1575211831/f22-3.gif

file:///G|/ebooks/1575211831/f22-3.gif [11/06/2000 7:44:54 PM]



file:///G|/ebooks/1575211831/f22-4.gif

file:///G|/ebooks/1575211831/f22-4.gif [11/06/2000 7:44:55 PM]



file:///G|/ebooks/1575211831/f22-5.gif

file:///G|/ebooks/1575211831/f22-5.gif [11/06/2000 7:44:55 PM]



file:///G|/ebooks/1575211831/f22-6.gif

file:///G|/ebooks/1575211831/f22-6.gif [11/06/2000 7:44:55 PM]



file:///G|/ebooks/1575211831/f22-7.gif

file:///G|/ebooks/1575211831/f22-7.gif [11/06/2000 7:44:56 PM]



file:///G|/ebooks/1575211831/f22-8.gif

file:///G|/ebooks/1575211831/f22-8.gif [11/06/2000 7:44:57 PM]



file:///G|/ebooks/1575211831/f22-9.gif

file:///G|/ebooks/1575211831/f22-9.gif [11/06/2000 7:44:57 PM]



file:///G|/ebooks/1575211831/f22-10.gif

file:///G|/ebooks/1575211831/f22-10.gif [11/06/2000 7:44:58 PM]



file:///G|/ebooks/1575211831/f22-11.gif

file:///G|/ebooks/1575211831/f22-11.gif [11/06/2000 7:44:59 PM]



file:///G|/ebooks/1575211831/f22-12.gif

file:///G|/ebooks/1575211831/f22-12.gif [11/06/2000 7:45:00 PM]



file:///G|/ebooks/1575211831/f22-13.gif

file:///G|/ebooks/1575211831/f22-13.gif [11/06/2000 7:45:00 PM]



Day 21

Under the Hood
by Charles L. Perkins and Laura Lemay

CONTENTS
The Big Picture

Why It's a Powerful Vision❍   

●   

The Java Virtual Machine

An Overview❍   

The Fundamental Parts❍   

The Constant Pool❍   

Limitations❍   

●   

The Bytecode Interpreter●   

Just-in-Time Compilers●   

The Class File Format●   

Method Signatures●   

The Garbage Collector

The Problem❍   

The Solution❍   

Java's Parallel Garbage Collector❍   

●   

The Security Story

Why You Should Worry❍   

Why You Might Not Have To❍   

Java's Applet Security Model❍   

Signed Applets❍   

Coming Up in Java 1.1❍   

●   

Summary●   

Q&A●   

Today the inner workings of the Java system will be revealed.

You'll find out all about Java's vision, Java's virtual machine, those bytecodes you've heard so much about, that mysterious
garbage collector, and why you might worry about security but don't have to.

Note
The title of this chapter well describes its content; the discussion in
today's lesson is quite technical and assumes that you know
something about low-level languages (assembly) and
compiler/interpreter design concepts.

Day 21 -- Under the Hood

file:///G|/ebooks/1575211831/ch21.htm (1 of 21) [11/06/2000 7:45:04 PM]



Let's begin, however, with the big picture.

The Big Picture
The Java team is very ambitious. Their ultimate goal is nothing less than to revolutionize the way software is written and
distributed. They've started with the Internet, where they believe much of the interesting software of the future will live.

To achieve such an ambitious goal, a large portion of the Internet programming community itself must be marshaled behind
a similar goal and given the tools to help achieve it. The Java language, with its four S's (small, simple, safe, secure) and its
flexible, Net-oriented environment, hopes to become the focal point for the rallying of this new legion of programmers.

To this end, Sun Microsystems has done something rather gutsy. What was originally a secret, tens-of-millions-of-dollars
research-and-development project, and 100 percent proprietary, has become a free, open, and relatively unencumbered
technology standard upon which anyone can build. They are literally giving it away and reserving only the rights they need
to maintain and grow the standard.

Any truly open standard must be supported by at least one excellent, freely available "demonstration" implementation. Sun
has already shipped the 1.0 version of Java as part of the JDK, and has published specifications for the language itself and
for the virtual machine and bytecode compilers. In parallel, several universities, companies, and individuals have already
expressed their intention to duplicate the Java environment based on the open API that Sun has created.

In addition, the Java runtime environment is being incorporated into a wide variety of operating systems and environments
on different platforms. Microsoft and Apple have licensed Java to include the runtime in Windows and the MacOS. A Java
runtime will be available on IBM systems (OS/2 and AIX) as well as on nearly every commercial flavor of UNIX. What this
means is that applications written in Java will be automatically executable on these systems, without any other software
needing to be installed. These steps have been significant in making Java ubiquitous as not only the language for the Internet
but also the language for future software development.

Note
Throughout this book, the Java runtime and the Java virtual machine
are referred to interchangeably. While there are some slight
differences between the two, equating them highlights the single
environment that must be created to support Java.

Several other languages are even contemplating compiling down to Java bytecodes, to help support them in becoming a
more robust and widespread standard for moving executable content around on the Net.

Why It's a Powerful Vision

One of the reasons this brilliant move on Sun's part has a real chance of success is the pent-up frustration of literally a whole
generation of programmers who desperately want to share their code with one another. Right now, the computer science
world is balkanized into factions at universities and companies all over the world, with hundreds of languages, dozens of
them widely used, dividing and separating us all. It's the worst sort of Tower of Babel. Java hopes to build some bridges and
help tear down that tower. Because it is so simple, because it's so useful for programming over the Internet, and because the
Internet is so "hot" right now-this confluence of forces should help propel Java onto center stage.

It deserves to be there. It is the natural outgrowth of ideas that, since the early 1970s inside the Smalltalk group at Xerox
PARC, have lain relatively dormant in the mainstream. Smalltalk, in fact, invented the first object-oriented bytecode
interpreter and pioneered many of the deep ideas that Java builds on today. Those efforts were not embraced over the
intervening decades as a solution to the general problems of software, however. Today, with those problems becoming so
much more obvious, and with the Net crying out for a new kind of programming, the soil is fertile to grow something
stronger from those old roots, something that just might spread like wildfire. (Is it a coincidence that Java's previous internal
names were Green and OAK?)

This new vision of software is one in which the Net becomes an ocean of objects, classes, and the open APIs between them.
Traditional applications have vanished, replaced by skeletal frameworks like the Eiffel Tower into which can be fitted any

Day 21 -- Under the Hood

file:///G|/ebooks/1575211831/ch21.htm (2 of 21) [11/06/2000 7:45:04 PM]



parts from this ocean, on demand, to suit any purpose. User interfaces will be mixed and matched, built in pieces and
constructed to taste, whenever the need arises, by their own users. Menus of choices will be filled by dynamic lists of all the
choices available for that function, at that exact moment, across the entire ocean (of the Net).

In such a world, software distribution is no longer an issue. Software will be everywhere and will be paid for via a plethora
of new micro-accounting models, which charge tiny fractions of cents for the parts as they are assembled and used.
Frameworks will come into existence to support entertainment, business, and the social (cyber-)spaces of the near future.

This is a dream that many of us have waited all our lives to be a part of. There are tremendous challenges to making it all
come true, but the powerful winds of change we all feel must stir us into action because, at last, there is a base on which to
build that dream-Java.

The Java Virtual Machine
To make visions like this possible, Java must be ubiquitous. It must be able to run on any computer and any operating
system-now and in the future. In order to achieve this level of portability, Java must be very precise not only about the
language itself, but about the environment in which the language lives. You've seen throughout this book that the Java
environment includes a generally useful set of packages of classes and a freely available implementation of them. This takes
care of a part of what is needed, but it is crucial also to specify exactly how the runtime environment of Java behaves.

This final requirement is what has stymied many attempts at ubiquity in the past. If you base your system on any
assumptions about what is beneath the runtime system, you lose. If you depend in any way on the computer or operating
system below, you lose. Java solves this problem by inventing an abstract computer of its own and running on that.

This virtual machine, as it's called, and which you've used throughout this book as the Java bytecode interpreter, runs a
special set of instructions, called bytecodes, that are simply a stream of formatted bytes, each of which has a precise
specification of exactly what each bytecode does to this virtual machine. The virtual machine is also responsible for certain
fundamental capabilities of Java, such as object creation and garbage collection.

Finally, in order to be able to move bytecodes safely across the Internet, you need a bulletproof model of security-and how
to maintain it-and a precise format for how this stream of bytecodes can be sent from one virtual machine to another.

Each of these requirements is addressed in today's lesson.

Note
Much of the following description is based closely on the latest
"Virtual Machine Specifications" documents (and the 1.0 bytecodes),
so if you delve more deeply into the details online, you should cover
some familiar ground.

An Overview

It is worth quoting the introduction to the Java virtual machine documentation here, because it is so relevant to the vision
outlined earlier:

The Java virtual machine specification has a purpose that is both like and unlike equivalent documents for other
languages and abstract machines. It is intended to present an abstract, logical machine design free from the
distraction of inconsequential details of any implementation. It does not anticipate an implementation
technology or an implementation host. At the same time it gives a reader sufficient information to allow
implementation of the abstract design in a range of technologies.

However, the intent of the [...] Java project is to create a language [...] that will allow the interchange over the
Internet of "executable content," which will be embodied by compiled Java code. The project specifically does
not want Java to be a proprietary language and does not want to be the sole purveyor of Java language
implementations. Rather, we hope to make documents like this one, and source code for our implementation,
freely available for people to use as they choose.

This vision [...] can be achieved only if the executable content can be reliably shared between different Java

Day 21 -- Under the Hood

file:///G|/ebooks/1575211831/ch21.htm (3 of 21) [11/06/2000 7:45:04 PM]



implementations. These intentions prohibit the definition of the Java virtual machine from being fully abstract.
Rather, relevant logical elements of the design have to be made sufficiently concrete to allow the interchange of
compiled Java code. This does not collapse the Java virtual machine specification to a description of a Java
implementation; elements of the design that do not play a part in the interchange of executable content remain
abstract. But it does force us to specify, in addition to the abstract machine design, a concrete interchange
format for compiled Java code.

The Java virtual machine specification consists of the following:

The bytecode syntax, including opcode and operand sizes, values, and types, and their alignment and endian-ness●   

The values of any identifiers (for example, type identifiers) in bytecodes or in supporting structures●   

The layout of the supporting structures that appear in compiled Java code (for example, the constant pool)●   

The Java .class file format●   

Each of these is covered today.

Despite this degree of specificity, there are still several elements of the design that remain (purposely) abstract, including the
following:

The layout and management of the runtime data areas●   

The particular garbage-collection algorithms, strategies, and constraints used●   

The compiler, development environment, and runtime extensions (apart from the need to generate and read valid Java
bytecodes)

●   

Any optimizations performed when valid bytecodes are received●   

These places are where the creativity of a virtual machine implementor has full rein.

The Fundamental Parts

The Java virtual machine can be divided into five fundamental pieces:

A set of registers●   

A bytecode instruction set●   

A stack●   

A garbage-collected heap●   

An area for storing methods●   

Some of these might be implemented by using an interpreter, a native binary code compiler, or even a hardware chip-but all
these logical, abstract components of the virtual machine must be supplied in some form in every Java system.

Note
`The memory areas used by the Java virtual machine are not required
to be at any particular place in memory, to be in any particular order,
or even to use contiguous memory. However, all but the method area
must be able to represent aligned 32-bit values (for example, the Java
stack is 32 bits wide).

The virtual machine, and its supporting code, is often referred to as the runtime environment, and when this book refers to
something being done at runtime, the virtual machine is what's doing it.

Java Bytecodes

The Java virtual machine instruction set is optimized to be small and compact. It is designed to travel across the Net, and so
has traded off speed-of-interpretation for space. (Given that both Net bandwidth and mass storage speeds increase less
rapidly than CPU speed, this seems like an appropriate trade-off.)

Day 21 -- Under the Hood

file:///G|/ebooks/1575211831/ch21.htm (4 of 21) [11/06/2000 7:45:04 PM]



As mentioned, Java source code is "compiled" into bytecodes and stored in a .class file. On Sun's Java system, this is
performed using the Java compiler (javac). The Java compiler is not exactly a traditional "compiler," because it translates
source code into bytecodes, a lower-level format that cannot be run directly but must be further interpreted by each
computer. Of course, it is exactly this level of indirection that buys you the power, flexibility, and extreme portability of
Java code.

Note
Quotation marks are used around the word "compiler" when talking
about the Java compiler because later today you will also learn about
the "just-in-time" compiler, which acts more like the back end of a
traditional compiler. The use of the same word "compiler" for these
two different pieces of Java technology is unfortunate, but somewhat
reasonable, because each is really one-half (either the front or the
back end) of a more traditional compiler.

A bytecode instruction consists of a one-byte opcode that serves to identify the instruction involved and zero or more
operands, each of which may be more than one byte long, that encode the parameters the opcode requires.

Note
When operands are more than one byte long, they are stored in
big-endian order, high-order byte first. These operands must be
assembled from the byte stream at runtime. For example, a 16-bit
parameter appears in the stream as two bytes so that its value is
first_byte * 256 + second_byte. The bytecode
instruction stream is only byte-aligned, and alignment of any larger
quantities is not guaranteed (except inside the special bytecodes
lookupswitch and tableswitch, which have special alignment
rules of their own).

Bytecodes interpret data in the runtime memory areas as belonging to a fixed set of types: the primitive types you've seen
several times before, consisting of several signed integer types (8-bit byte, 16-bit short, 32-bit int, 64-bit long), one
unsigned integer type (16-bit char), and two signed floating-point types (32-bit float, 64-bit double), plus the type
"reference to an object" (a 32-bit pointer-like type). Some special bytecodes (for example, the dup instructions) treat
runtime memory areas as raw data, without regard to type. This is the exception, however-not the rule.

These primitive types are distinguished and managed by the Java compiler, not by the Java runtime environment. These
types are not identified in memory, and therefore cannot be distinguished at runtime. Different bytecodes are designed to
handle each of the various primitive types uniquely, and the compiler carefully chooses from this palette based on its
knowledge of the actual types stored in the various memory areas. For example, when adding two integers, the compiler
generates an iadd bytecode; for adding two floats, fadd is generated.

Specifics about the Java bytecodes themselves are contained in appendix D, "Bytecodes Reference."

Registers

The registers of the Java virtual machine are just like the registers inside a real computer.

New Terms
Registers are used to temporarily store data. In the Java vritual
machine registers hold the machine's state, affect its operation, and
are updated after each bytecode is executed.

The following are the Java registers:

pc, the program counter, which indicates what bytecode is being executed●   

optop, a pointer to the top of the operand stack, which is used to evaluate all arithmetic expressions●   

Day 21 -- Under the Hood

file:///G|/ebooks/1575211831/ch21.htm (5 of 21) [11/06/2000 7:45:04 PM]



frame, a pointer to the execution environment of the current method, which includes an activation record for this
method call and any associated debugging information

●   

vars, a pointer to the first local variable of the currently executing method●   

The virtual machine defines these registers to be 32 bits wide.

Note
Because the virtual machine is primarily stack-based, it does not use
any registers for passing or receiving arguments. This is a conscious
choice skewed toward bytecode simplicity and compactness. It also
aids efficient implementation on computer systems with fewer
registers.

By the way, the pc register is also used when the runtime handles
exceptions; catch clauses are (ultimately) associated with ranges of
the pc within a method's bytecodes.

The Stack

The Java virtual machine is stack-based. A Java stack frame is similar to the stack frame of a conventional programming
language-it holds the state for a single method call. Frames for nested method calls are stacked on top of this frame.

New Term
The stack is used to supply parameters to bytecodes and methods, and
to receive results back from them.

Each stack frame contains three (possibly empty) sets of data: the local variables for the method call, its execution
environment, and its operand stack. The sizes of the first two are fixed at the start of a method call, but the operand stack
varies in size as bytecodes are executed in the method.

Local variables are stored in an array of 32-bit slots, indexed by the register vars. Most types take up one slot in the array,
but the long and double types each take up two slots.

Note
Long and double values, stored or referenced via an index N, take up
the (32-bit) slots [N] and [N]+1. These 64-bit values are therefore
not guaranteed to be 64-bit-aligned. Implementors are free to decide
the appropriate way to divide these values between the two slots.

The execution environment in a stack frame helps to maintain the stack itself. It contains a pointer to the previous stack
frame, a pointer to the local variables of the method call, and pointers to the stack's current "base" and "top." Additional
debugging information can also be placed into the execution environment.

The operand stack, a 32-bit first-in-first-out (FIFO) stack, is used to store the parameters and return values of most bytecode
instructions. For example, the iadd bytecode expects two integers to be stored on the top of the stack. It pops them, adds
them together, and pushes the resulting sum back onto the stack.

Each primitive data type has unique instructions that know how to extract, operate, and push back operands of that type. For
example, long and double operands take two positions on the stack, and the special bytecodes that handle these operands
take this into account. It is illegal for the types on the stack and the instruction operating on them to be incompatible (the
Java compiler outputs bytecodes that always obey this rule).

Note
The top of the operand stack and the top of the overall Java stack are
almost always the same. Thus, "the stack" refers to both stacks,
collectively.

Day 21 -- Under the Hood

file:///G|/ebooks/1575211831/ch21.htm (6 of 21) [11/06/2000 7:45:04 PM]



The Heap

The heap is that part of memory from which newly created instances (objects) are allocated.

The heap is often assigned a large, fixed size when the Java runtime system is started, but on systems that support virtual
memory, it can grow as needed, in a nearly unbounded fashion.

Because objects are automatically garbage-collected in Java, programmers do not have to (and, in fact, cannot) manually
free the memory allocated to an object when they are finished using it.

Java objects are referenced indirectly in the runtime via handles, which are a kind of pointer into the heap.

Because objects are never referenced directly, parallel garbage collectors can be written that operate independently of your
program, moving around objects in the heap at will. You'll learn more about garbage collection in the section "The Garbage
Collector," later in this lesson.

The Method Area

Like the compiled code areas of conventional programming language environments, or the TEXT segment in a UNIX
process, the method area stores the Java bytecodes that implement almost every method in the Java system. (Remember that
some methods might be declared native, and thus implemented, for example, in C.) The method area also stores the
symbol tables needed for dynamic linking as well as any other additional information debuggers or development
environments that might want to associate with each method's implementation.

Because bytecodes are stored as byte streams, the method area is aligned on byte boundaries. (The other areas are all aligned
on 32-bit word boundaries.)

The Constant Pool

In the heap, each class has an array of constants, called a constant pool, available to it. Usually created by the Java compiler,
these constants encode all the names (of variables, methods, and so forth) used by any method in a class. The class contains
a count of how many constants there are and an offset that specifies how far into the class description itself the array of
constants begins. These constants are typed via specially coded bytes and have a precisely defined format when they appear
in the .class file for a class. Later today, a little of this file format is covered, but everything is fully specified by the
virtual machine specifications in your Java release.

Limitations

The virtual machine, as currently defined, places some restrictions on legal Java programs by virtue of the choices it has
made (some were previously described, and more will be detailed later today).

These limitations and their implications are

32-bit pointers, which imply that the virtual machine can address only 4GB of memory (this may be relaxed in later
releases)

●   

Unsigned 16-bit indices into the exception, line number, and local variable tables, which limits the size of a method's
bytecode implementation to 64KB (this limitation may be eliminated in the final release)

●   

Unsigned 16-bit indices into the constant pool, which limits the number of constants in a class to 64KB (a limit on the
complexity of a class)

●   

In addition, Sun's implementation of the virtual machine uses so-called _quick bytecodes, which further limit the system.
Unsigned 8-bit offsets into objects may limit the number of methods in a class to 256 (this limit may not exist in the final
release), and unsigned 8-bit argument counts limit the size of the argument list to 255 32-bit words. (Although this means
that you can have up to 255 arguments of most types, you can have only 127 of them if they're all long or double.)

Day 21 -- Under the Hood

file:///G|/ebooks/1575211831/ch21.htm (7 of 21) [11/06/2000 7:45:04 PM]



The Bytecode Interpreter
A bytecode interpreter examines each opcode byte (bytecode) in a method's bytecode stream, in turn, and executes a unique
action for that bytecode. This might consume further bytes for the operands of the bytecode and might affect which
bytecode will be examined next. It operates like the hardware CPU in a computer, which examines memory for instructions
to carry out in exactly the same manner. It is the software CPU of the Java virtual machine.

Your first, naive attempt to write such a bytecode interpreter will almost certainly be disastrously slow. The inner loop,
which dispatches one bytecode each time through the loop, is notoriously difficult to optimize. In fact, smart people have
been thinking about this problem, in one form or another, for more than 20 years. Luckily, they've gotten results, all of
which can be applied to Java.

The final result is that the interpreter shipped in the current release of Java has an extremely fast inner loop. In fact, on even
a relatively slow computer, this interpreter can perform more than 590,000 bytecodes per second! This is really quite
good-the CPU in that computer does only about 30 times better, and it has the advantage of using the hardware to do it.

This interpreter is fast enough for most Java programs (and for those requiring more speed, they can always use native
methods-see yesterday's discussion), but what if a smart implementor wants to do better?

Just-in-Time Compilers
About a decade ago, a really clever trick was discovered by Peter Deutsch while trying to make Smalltalk run faster. He
called it dynamic translation during interpretation. Sun calls it "just-in-time" (or JIT) compiling, which, effectively, means
converting the relatively slow interpreted bytecode into native machine code just before running it-and therefore getting
very close to native performance out of cross-platform Java bytecode.

The trick is to notice that the really fast interpreter you've just written-in C, for example-already has a useful sequence of
native binary code for each bytecode that it interprets: the binary code that the interpreter itself is executing. Because the
interpreter has already been compiled from C into native binary code, for each bytecode that it interprets, it passes through a
sequence of native code instructions for the hardware CPU on which it is running. By saving a copy of each binary
instruction as it's executed, the interpreter can keep a running log of the binary code it itself has run to interpret a bytecode.
It can just as easily keep a log of the set of bytecodes that it ran to interpret an entire method.

You take that log of instructions and "peephole-optimize" it, just as a smart compiler does (peephole optimization involves
taking a short sequence on instructions and replacing them with a shorter or faster set of instructions). This eliminates
redundant or unnecessary instructions from the log, and makes it look just like the optimized binary code that a good
compiler might have produced.

Note
This is where the name compiler comes from, in "just-in-time"
compiler, but it's really only the back end of a traditional compiler-the
part that does code generation. By the way, the front end here is the
Java compiler (javac).

Here's where the trick comes in. The next time that method is run (in exactly the same way), the interpreter can now simply
execute directly the stored log of binary native code. Because this optimizes the inner-loop overhead of each bytecode, as
well as any other redundancies between the bytecodes in a method, it can gain a factor of 10 or more in speed. In fact, an
experimental version of this technology at Sun has shown that Java programs using it can run as fast as compiled C
programs.

Note

Day 21 -- Under the Hood

file:///G|/ebooks/1575211831/ch21.htm (8 of 21) [11/06/2000 7:45:04 PM]



The parenthetical qualifier in the last paragraph is needed because if
anything is different about the input to the method, it takes a different
path through the interpreter and must be relogged. (There are
sophisticated versions of this technology that solve this, and other,
difficulties.) The cache of native code for a method must be
invalidated whenever the method has changed, and the interpreter
must pay a small cost up front each time a method is run for the first
time. However, these small bookkeeping costs are far outweighed by
the amazing gains in speed possible.

Just-in-time compilers, often called just JIT compilers, are becoming increasingly popular, and many major vendors
(including Microsoft and Symantec) are competing in this realm. Microsoft's Internet Explorer 3.0 ships with a JIT compiler
already. You'll learn more about the various JIT compilers available (or soon to be) on Day 28, "Emerging Technologies."

The Class File Format
A Java class file is the file generated by the Java compiler with a .class extension. You won't be given the entire
.class file format here, only a taste of what it's like. (You can read all about it in the release documentation.) It's
mentioned here because it is one of the parts of Java that needs to be specified carefully if all Java implementations are to be
compatible with one another, and if Java bytecodes are expected to travel across arbitrary networks-to and from arbitrary
computers and operating systems-and yet arrive safely.

The rest of this section paraphrases, and extensively condenses, the latest release of the class file documentation.

Java class files are used to hold the compiled versions of both Java classes and Java interfaces. Compliant Java interpreters
must be capable of dealing with all class files that conform to the following specification.

A Java class file consists of a stream of 8-bit bytes. All 16-bit and 32-bit quantities are constructed by reading in two or four
8-bit bytes, respectively. The bytes are joined together in big-endian order. (Use java.io.DataInput and
java.io.DataOutput to read and write class files.)

The class file format is presented below as a series of C-struct-like structures. However, unlike a C struct, there is no
padding or alignment between pieces of the structure. Each field of the structure may be of variable size, and an array may
be of variable size (in this case, some field prior to the array gives the array's dimension). The types u1, u2, and u4
represent an unsigned 1-, 2-, or 4-byte quantity, respectively.

Attributes are used at several different places in the class file format. All attributes have the following format:

GenericAttribute_info {
    u2 attribute_name;
    u4 attribute_length;
    u1 info[attribute_length];
}

The attribute_name is a 16-bit index into the class's constant pool; the value of
constant_pool[attribute_name] is a string giving the name of the attribute. The field attribute_length
gives the length of the subsequent information in bytes. This length does not include the 6 bytes needed to store
attribute_name and attribute_length. In the examples in the rest of this section, whenever an attribute is
required, names of all the attributes that are currently understood are listed. In the future, more attributes will be added.
Class file readers are expected to skip over and ignore the information in any attributes they do not understand.

The following pseudo-structure gives a top-level description of the format of a class file:

ClassFile {
    u4  magic;

Day 21 -- Under the Hood

file:///G|/ebooks/1575211831/ch21.htm (9 of 21) [11/06/2000 7:45:04 PM]



    u2  minor_version
    u2  major_version
    u2  constant_pool_count;
    cp_info         constant_pool[constant_pool_count - 1];
    u2  access_flags;
    u2  this_class;
    u2  super_class;
    u2  interfaces_count;
    u2  interfaces[interfaces_count];
    u2  fields_count;
    field_info      fields[fields_count];
    u2  methods_count;
    method_info     methods[methods_count];
    u2  attributes_count;
    attribute_info  attributes[attribute_count];
}

Here's one of the smaller structures used:

method_info {
    u2  access_flags;
    u2  name_index;
    u2  signature_index;
    u2  attributes_count;
    attribute_info  attributes[attribute_count];
}

Finally, here's a sample of one of the later structures in the class file description:

Code_attribute {
    u2  attribute_name_index;
    u2  attribute_length;
    u1  max_stack;
    u1  max_locals;
    u2  code_length;
    u1  code[code_length];
    u2  exception_table_length;
    {  u2   start_pc;
       u2   end_pc;
       u2   handler_pc;
       u2   catch_type;
    }  exception_table[exception_table_length];
    u2  attributes_count;
    attribute_info  attributes[attribute_count];
}

None of this is meant to be completely comprehensible (although you might be able to guess at what a lot of the structure
members are for), but just suggestive of the sort of structures that live inside class files. Because the compiler and runtime
sources are available, you can always begin with them if you actually have to read or write class files yourself. Therefore,
you don't need to have a deep understanding of the details, even in that case.

Day 21 -- Under the Hood

file:///G|/ebooks/1575211831/ch21.htm (10 of 21) [11/06/2000 7:45:04 PM]



Method Signatures
Because method signatures are used in class files, now is an appropriate time to explore them in the detail promised on
earlier days-but they're probably most useful to you when writing the native methods of yesterday's lesson.

New Terms
The method signature, in this instance, is a string representing the
type of method, field, or array.

A field signature represents the value of an argument to a method or the value of a variable and is a series of bytes in the
following grammar:

    <field signature> := <field_type>
    <field type>      := <base_type> | <object_type> | <array_type>
    <base_type>       := B | C | D | F | I | J | S | Z
    <object_type>     := L <full.ClassName> ;
    <array_type>      := [ <optional_size> <field_type>
    <optional_size>   := [0-9]*

Here are the meanings of the base types: B (byte), C (char), D (double), F (float), I (int), J (long), S (short),
and Z (boolean).

A return-type signature represents the return value from a method and is a series of bytes in the following grammar:

    <return signature>    := <field type> | V

The character V (void) indicates that the method returns no value. Otherwise, the signature indicates the type of the return
value. An argument signature represents an argument passed to a method:

    <argument signature>  := <field type>

Finally, a method signature represents the arguments that the method expects and the value that it returns:

    <method_signature>    := (<arguments signature>) <return signature>
    <arguments signature> := <argument signature>*

Let's try out the new rules: A method called complexMethod() in the class my.package.name.ComplexClass
takes three arguments-a long, a boolean, and a two-dimensional array of shorts-and returns this. Then its method
signature is (JZ[[S)Lmy.package.name.ComplexClass;.

A method signature is often prefixed by the name of the method, or by its full package (using an underscore in the place of
dots) and its class name followed by a slash (/) and the name of the method, to form a complete method signature. (You
saw several of these generated in stub comments yesterday.) Now, at last, you have the full story! Thus, the following:

my_package_name_ComplexClass/complexMethod(JZ[[S)Lmy.package.name.ComplexClass;

is the full, complete method signature of complexMethod(). (Phew!)

The Garbage Collector
Decades ago, programmers in both the Lisp and Smalltalk communities realized how extremely valuable it is to be able to
ignore memory deallocation. They realized that, although allocation is fundamental, deallocation is forced on the
programmer by the laziness of the system-it should be able to figure out what is no longer useful, and get rid of it. In relative
obscurity, these pioneering programmers developed a whole series of garbage collectors to perform this job, each getting

Day 21 -- Under the Hood

file:///G|/ebooks/1575211831/ch21.htm (11 of 21) [11/06/2000 7:45:04 PM]



more sophisticated and efficient as the years went by. Finally, now that the mainstream programming community has begun
to recognize the value of this automated technique, Java can become the first really widespread application of the
technology those pioneers developed.

The Problem

Imagine that you're a programmer in a C-like language (probably not too difficult for you, because these languages are the
dominant ones right now). Each time you create something, anything, dynamically in such a language, you are completely
responsible for tracking the life of that object throughout your program and mentally deciding when it will be safe to
deallocate it. This can be quite a difficult (sometimes impossible) task, because any of the other libraries or methods you've
called might have "squirreled away" a pointer to the object, unbeknownst to you. When it becomes impossible to know, you
simply choose never to deallocate the object, or at least to wait until every library and method call involved has completed,
which could be nearly as long.

The uneasy feeling you get when writing such code is a natural, healthy response to what is inherently an unsafe and
unreliable style of programming. If you have tremendous discipline-and so does everyone who writes every library and
method you call-you can, in principle, survive this responsibility without too many mishaps. But aren't you human? Aren't
they? There must be some small slips in this perfect discipline due to error. What's worse, such errors are virtually
undetectable, as anyone who's tried to hunt down a stray pointer problem in C will tell you. What about the thousands of
programmers who don't have that sort of discipline?

Another way to ask this question is: Why should any programmers be forced to have this discipline when it is entirely
possible for the system to remove this heavy burden from their shoulders?

Software engineering estimates have recently shown that for every 55 lines of production C-like code in the world, there is
one bug. This means that your electric razor has about 80 bugs, and your TV, 400. Soon they will have even more, because
the size of this kind of embedded computer software is growing exponentially. When you begin to think of how much C-like
code is in your car's engine, it should give you pause.

Many of these errors are due to the misuse of pointers, by misunderstanding or by accident, and to the early, incorrect
freeing of allocated objects in memory. Java addresses both of these-the former by eliminating explicit pointers from the
Java language altogether, and the latter by including, in every Java system, a garbage collector that solves the problem.

The Solution

Imagine a runtime system that tracks each object you create, notices when the last reference to it has vanished, and frees the
object for you. How could such a thing actually work?

One brute-force approach, tried early in the days of garbage collecting, is to attach a reference counter to every object. When
the object is created, the counter is set to 1. Each time a new reference to the object is made, the counter is incremented, and
each time such a reference disappears, the counter is decremented. Because all such references are controlled by the
language-as variables and assignments, for example-the compiler can tell whenever an object reference might be created or
destroyed, just as it does in handling the scoping of local variables, and thus it can assist with this task. The system itself
maintains a set of root objects that are considered too important to be freed. The class Object is one example of such a
V.I.P. object. (V.I.O.?) Finally, all that's needed is to test, after each decrement, whether the counter has hit 0. If it has, the
object is freed.

If you think carefully about this approach, you will soon convince yourself that it is definitely correct when it decides to free
anything. It is so simple that you can immediately tell that it will work. The low-level hacker in you might also feel that if
it's that simple, it's probably not fast enough to run at the lowest level of the system-and you'd be right.

Think about all the stack frames, local variables, method arguments, return values, and local variables created in the course
of even a few hundred milliseconds of a program's life. For each of these tiny, nano-steps in the program, an extra increment
(at best) or decrement, test, and deallocation (at worst) will be added to the running time of the program. In fact, the first
garbage collectors were slow enough that many predicted they could never be used at all!

Luckily, a whole generation of smart programmers has invented a big bag of tricks to solve these overhead problems. One

Day 21 -- Under the Hood

file:///G|/ebooks/1575211831/ch21.htm (12 of 21) [11/06/2000 7:45:04 PM]



trick is to introduce special "transient object" areas that don't need to be reference counted. The best of these generational
scavenging garbage collectors today can take less than 3 percent of the total time of your program-a remarkable feat if you
realize that many other language features, such as loop overheads, can be as large or larger!

There are other problems with garbage collection. If you are constantly freeing and reclaiming space in a program, won't the
heap of objects soon become fragmented, with small holes everywhere and no room to create new, large objects? Because
the programmer is now free from the chains of manual deallocation, won't he create even more objects than usual?

What's worse, there is another way that this simple reference counting scheme is inefficient: in space rather than time. If a
long chain of object references eventually comes full circle, back to the starting object, each object's reference count remains
at least 1 forever. None of these objects will ever be freed!

Together, these problems imply that a good garbage collector must, every once in a while, step back to compact or clean up
wasted memory.

Memory compaction occurs when a garbage collector steps back and reorganizes memory, eliminating the holes created by
fragmentation. Compacting memory is simply a matter of repositioning objects one by one into a new, compact grouping
that places them all in a row, leaving all the free memory in the heap in one big piece.

Cleaning up the circular garbage still lying around after reference counting is called marking and sweeping. A
mark-and-sweep of memory involves first marking every root object in the system and then following all the object
references inside those objects to new objects to mark, and so on, recursively. Then, when you have no more references to
follow, you "sweep away" all the unmarked objects and compact memory as before.

The good news is that this solves the space problems you were having. The bad news is that when the garbage collector
steps back and does these operations, a nontrivial amount of time passes during which your program is unable to run-all its
objects are being marked, swept, rearranged, and so forth, in what seems like an uninterruptible procedure. Your first hint to
a solution is the word "seems."

Garbage collecting can actually be done a little at a time, between or in parallel with normal program execution, thus
dividing up the large amount of time needed to step back into the numerous so-small-you-don't-notice-them chunks of time
that happen between the cracks. (Of course, years of smart thinking went into the abstruse algorithms that make all this
possible!)

One final problem that might worry you a little has to do with these object references. Aren't these references scattered
throughout your program and not just buried in objects? Even if they're only in objects, don't they have to be changed
whenever the object they point to is moved by these procedures? The answer to both of these questions is a resounding yes,
and overcoming them is the final hurdle to making an efficient garbage collector.

There are really only two choices. The first, brute force, assumes that all the memory containing object references needs to
be searched on a regular basis, and whenever the object references found by this search match objects that have moved, the
old reference is changed. This assumes that there are "hard" pointers in the heap's memory-ones that point directly to other
objects. By introducing various kinds of "soft" pointers, including pointers that are like forwarding addresses, the algorithm
improves greatly. Although these brute-force approaches sound slow, it turns out that modern computers can do them fast
enough to be useful.

Note
You might wonder how the brute-force techniques identify object
references. In early systems, references were specially tagged with a
pointer bit so they could be unambiguously located. Now, so-called
conservative garbage collectors simply assume that if it looks like an
object reference, it is-at least for the purposes of the mark-and-sweep.
Later, when actually trying to update it, they can find out whether it
really is an object reference.

The final approach to handling object references, and the one Java currently uses, is also one of the very first ones tried. It
involves using 100 percent soft pointers. An object reference is actually a handle, sometimes called an OOP, to the real
pointer, and a large object table exists to map these handles into the actual object reference. Although this does introduce

Day 21 -- Under the Hood

file:///G|/ebooks/1575211831/ch21.htm (13 of 21) [11/06/2000 7:45:04 PM]



extra overhead on almost every object reference (some of which can be eliminated by clever tricks, as you might guess), it's
not too high a price to pay for this incredibly valuable level of indirection.

This indirection allows the garbage collector, for example, to mark, sweep, move, or examine one object at a time. Each
object can be independently moved out from under a running Java program by changing only the object table entries. This
not only allows the step-back phase to happen in the tiniest steps, but it makes a garbage collector that runs literally in
parallel with your program much easier to write. This is what the Java garbage collector does.

Warning
You need to be very careful about garbage collection when you're
doing critical, real-time programs (such as those mentioned yesterday
that legitimately require native methods)-but how often will your Java
code be flying a commercial airliner in real time, anyway?

Java's Parallel Garbage Collector

Java applies almost all these advanced techniques to give you a fast, efficient, parallel garbage collector. Running in a
separate thread, it cleans up the Java environment of almost all trash (it is conservative), silently and in the background; is
efficient in both space and time; and never steps back for more than a small amount of time. You should never need to know
it's there.

By the way, if you want to force a full mark-and-sweep garbage collection to happen soon, you can do so simply by calling
the System.gc() method. You might want to do this if you just freed up a majority of the heap's memory in circular
garbage, and want it all taken away quickly. You might also call this whenever you're idle, as a hint to the system about
when it would be best to come and collect the garbage.

Ideally, you'll never notice the garbage collector, and all those decades of programmers beating their brains out on your
behalf will simply let you sleep better at night-and what's wrong with that?

The Security Story
Speaking of sleeping well at night, if you haven't stepped back yet and said, "My goodness! You mean Java programs will
be running rampant on the Internet!?!" you better do so now, for it is a legitimate concern. In fact, it is one of the major
technical stumbling blocks (the others being mostly social and economic) to achieving the dream of ubiquity and code
sharing for Java mentioned earlier in today's lesson.

Why You Should Worry

Any powerful, flexible technology can be abused. As the Net becomes mainstream and widespread, it, too, will be abused.
Already, there have been many blips on the security radar screens of those of us who worry about such things, warning that
(at least until today) not enough attention has been paid by the computer industry (or the media) to solving some of the
problems that this new world brings with it. One of the benefits of constructively solving security once and for all will be a
flowering unseen before in the virtual communities of the Net; whole new economies based on people's attention and
creativity will spring to life, rapidly transforming our world in new and positive ways.

The downside to all this new technology is that we (or someone!) must worry long and hard about how to make the
playgrounds of the future safe for our children, and for us. Fortunately, Java is a big part of the answer.

Why You Might Not Have To

What gives me any confidence that the Java language and environment will be safe, that it will solve the technically
daunting and extremely thorny problems inherent in any good form of security, especially for networks?

One simple reason is the history of the people, and the company, who created Java. Many of them are the very smart
programmers referred to throughout the book, who helped pioneer many of the ideas that make Java great and who have

Day 21 -- Under the Hood

file:///G|/ebooks/1575211831/ch21.htm (14 of 21) [11/06/2000 7:45:04 PM]



worked hard over the decades to make techniques such as garbage collection a mainstream reality. They are technically
capable of tackling and solving the hard problems that need to be solved.

Sun Microsystems, the company, has been pushing networks as the central theme of all its software for more than a decade.
Sun has the engineers and the commitment needed to solve these hard problems, because these same problems are at the
very center of both its future business and its vision of the future, in which networking is the center of everything-and global
networks are nearly useless without good security. Just this year, Sun has advanced the state of the art in easy-to-use Internet
security with its new SunScreen products, and it has assigned Whitfield Diffie to oversee them, who is the man who
discovered the underlying ideas on which essentially all interesting forms of modern encryption are based.

Enough on deep background. What does the Java environment provide right now that helps me feel secure?

Java's Applet Security Model

Java protects you against potential "nasty" Java code via a series of interlocking defenses that, together, form an imposing
barrier to any and all such attacks.

Warning
Of course no one can protect you from your own ignorance or
carelessness. If you're the kind of person who blindly downloads
binary executables from your Internet browser and runs them you
need read no farther! You are already in more danger than Java will
ever pose.

As a user of this powerful new medium, the Internet, you should
educate yourself to the possible threats this new and exciting world
entails. In particular, downloading "auto running macros" or reading
e-mail with "executable attachments" is just as much a threat as
downloading binaries from the Net and running them.

Java does not introduce any new dangers here, but by being the first
mainstream use of executable and mobile code on the Net, it is
responsible for making people suddenly aware of the dangers that
have always been there. Java is already, as you will soon see, much
less dangerous than any of these common activities on the Net, and
can be made safer still over time. Most of these other (dangerous)
activities can never be made safe. So please, do not do them!

A good rule of thumb on the Net is: Don't download anything that
you plan to execute (or that will be automatically executed for you)
except from someone (or some company) you know well and with
whom you've had positive, personal experience. If you don't care
about losing all the data on your hard drive, or about your privacy,
you can do anything you like, but for most of us, this rule should be
law.

Fortunately, Java allows you to relax that law. You can run Java
applets from anyone, anywhere, in relative safety.

Java's powerful security mechanisms act at four different levels of the system architecture. First, the Java language itself was
designed to be safe, and the Java compiler ensures that source code doesn't violate these safety rules. Second, all bytecodes
executed by the runtime are screened to be sure that they also obey these rules. (This layer guards against having an altered
compiler produce code that violates the safety rules.) Third, the class loader ensures that classes don't violate namespace or
access restrictions when they are loaded into the system. Finally, API-specific security prevents applets from doing
destructive things. This final layer depends on the security and integrity guarantees from the other three layers.

Let's now examine each of these layers in turn.

Day 21 -- Under the Hood

file:///G|/ebooks/1575211831/ch21.htm (15 of 21) [11/06/2000 7:45:05 PM]



The Language and the Compiler

The Java language and its compiler are the first line of defense. Java was designed to be a safe language.

Most other C-like languages have facilities to control access to object-like structures, but also have ways to gain unorthodox
access to objects (or to parts of objects), usually by (mis-)using pointers. This introduces two fatal security flaws to any
system built on these languages. One is that no object can protect itself from outside modification, duplication, or spoofing
(other objects pretending to be that object). Another is that a language with powerful pointers is more likely to have serious
bugs that compromise security. These pointer bugs, where a pointer starts modifying some other object's memory, were
responsible for most of the public (and not-so-public) security problems on the Internet this past decade.

Java eliminates these threats in one stroke by eliminating pointers from the language altogether. There are still pointers of a
kind-object references-but these are carefully controlled to be safe: they are unforgeable, and all casts are checked for
legality before being allowed. In addition, powerful new array facilities in Java not only help to offset the loss of pointers,
but add additional safety by strictly enforcing array bounds, catching more bugs for the programmer (bugs that, in other
languages, might lead to unexpected and, therefore, bad-guy-exploitable problems).

The language definition, and the compilers that enforce it, create a powerful barrier to any Java programmer with evil
intentions.

Because an overwhelming majority of the Net-savvy software on the Internet may soon be Java, its safe language definition
and compilers help to guarantee that most of this software has a solid, secure base. With fewer bugs, Net software will be
more predictable-a property that thwarts attacks.

Verifying the Bytecodes

What if that programmer with evil intentions gets a little more determined, and rewrites the Java compiler to suit his
nefarious purposes? The Java runtime, getting the lion's share of its bytecodes from the Net, can never tell whether those
bytecodes were generated by a trustworthy compiler. Therefore, it must verify that they meet all the safety requirements.

Before running any bytecodes, the runtime subjects them to a rigorous series of tests that vary in complexity from simple
format checks all the way to running a theorem prover to make certain that they are playing by the rules. These tests verify
that the bytecodes do not forge pointers, violate access restrictions, access objects as other than what they are
(InputStream objects are always used as InputStream objects, and never as anything else), call methods with
inappropriate argument values or types, nor overflow the stack.

Consider the following Java code sample:

public class VectorTest {
    public int  array[];

    public int  sum() {
        int[]  localArray = array;
        int    sum        = 0;

        for (int  i = localArray.length;  -i >= 0;  )
            sum += localArray[i];
        return sum;
    }
}

The bytecodes generated when this code is compiled look something like the following:

    aload_0              Load this
    getfield #10         Load this.array
    astore_1             Store in localArray

Day 21 -- Under the Hood

file:///G|/ebooks/1575211831/ch21.htm (16 of 21) [11/06/2000 7:45:05 PM]



    iconst_0             Load 0
    istore_2             Store in sum
    aload_1              Load localArray
    arraylength          Gets its length
    istore_3             Store in i
A:  iinc 3 -1            Subtract 1 from i
    iload_3              Load i
    iflt B               Exit loop if  < 0
    iload_2              Load sum
    aload_1              Load localArray
    iload_3              Load i
    iaload               Load localArray[i]
    iadd                 Add sum
    istore_2             Store in sum
    goto A               Do it again
B:  iload_2              Load sum
    ireturn              Return it

Note
The excellent examples and descriptions in this section of the book
are paraphrased from the tremendously informative "Low Level
Security in Java" paper by Frank Yellin. You can read this document
at http://java.sun.com:80/sfaq/verifier.html.

Extra Type Information and Requirements

Java bytecodes encode more type information than is strictly necessary for the interpreter. Even though, for
example, the aload and iload opcodes do exactly the same thing, aload is always used to load an object
reference and iload used to load an integer. Some bytecodes (such as getfield) include a symbol table
reference-and that symbol table has even more type information. This extra type information allows the runtime
system to guarantee that Java objects and data aren't illegally manipulated.

Conceptually, before and after each bytecode is executed, every slot in the stack and every local variable has
some type. This collection of type information-all the slots and local variables-is called the type state of the
execution environment. An important requirement of the Java type state is that it must be determinable
statically by induction-that is, before any program code is executed. As a result, as the runtime system reads
bytecodes, each is required to have the following inductive property: given only the type state before the
execution of the bytecode, the type state afterward must be fully determined.

Given straight-line bytecodes (no branches) and starting with a known stack state, the state of each slot in the
stack is therefore always known. For example, starting with an empty stack:

iload_1                Load integer variable. Stack type state is I.
iconst 5               Load integer constant. Stack type state is II.
iadd                   Add two integers, producing an integer. 
                       Stack type state is I.

Note
Smalltalk and PostScript bytecodes do not have this restriction. Their
more dynamic type behavior does create additional flexibility in those
systems, but Java needs to provide a secure execution environment. It
must therefore know all types at all times in order to guarantee a
certain level of security.

Day 21 -- Under the Hood

file:///G|/ebooks/1575211831/ch21.htm (17 of 21) [11/06/2000 7:45:05 PM]

http://java.sun.com/sfaq/verifier.html


Another requirement made by the Java runtime is that when a set of bytecodes can take more than one path to
arrive at the same point, all such paths must arrive there with exactly the same type state. This is a strict
requirement, and implies, for example, that compilers cannot generate bytecodes that load all the elements of an
array onto the stack. (Because each time through such a loop the stack's type state changes, the start of the
loop-"the same point" in multiple paths-would have more than one type state, which is not allowed.)

The Verifier

Bytecodes are checked for compliance with all these requirements, using the extra type information in the class
file, by a part of the runtime called the verifier. It examines each bytecode in turn, constructing the full type
state as it goes, and verifies that all the types of parameters, arguments, and results are correct. Thus, the
verifier acts as a gatekeeper to your runtime environment, letting in only those bytecodes that pass muster.

Warning
The verifier is the crucial piece of Java's security, and it depends on
your having a correctly implemented (no bugs, intentional or
otherwise) runtime system. As of this writing, only Sun is producing
Java runtimes (and licensing them to companies such as Netscape and
Microsoft for use in their browsers), and they are secure. In the
future, however, you should be careful when downloading or buying
another company's (or individual's) version of the Java runtime
environment. Eventually, Sun will implement validation suites for
runtimes, compilers, and so forth to be sure that they are safe and
correct. In the meantime, caveat emptor! Your runtime is the base on
which all the rest of Java's security is built, so make sure it is a good,
solid, secure base.

When bytecodes have passed the verifier, they are guaranteed not to do any of the following: cause any operand
stack under- or overflows; use parameter, argument, or return types incorrectly; illegally convert data from one
type to another (from an integer to a pointer, for example); or access any object's fields illegally (that is, the
verifier checks that the rules for public, private, package, and protected are obeyed).

As an added bonus, because the interpreter can now count on all these facts being true, it can run much faster
than before. All the required checks for safety have been done up front, so it can run at full throttle. In addition,
object references can now be treated as capabilities, because they are unforgeable-capabilities allow, for
example, advanced security models for file I/O and authentication to be safely built on top of Java.

Note
Because you can now trust that a private variable really is private,
and that no bytecode can perform some magic with casts to extract
information from it (such as your credit card number), many of the
security problems that might arise in other, less safe environments
simply vanish! These guarantees also make erecting barriers against
destructive applets possible, and easier. Because the Java system
doesn't have to worry about dangerous bytecodes, it can get on with
creating the other levels of security it wants to provide to you.

The Class Loader

The class loader is another kind of gatekeeper, albeit a higher-level one. The verifier is the security of last resort. The class
loader is the security of first resort.

When a new class is loaded into the system, it is placed into (lives in) one of several different realms. Commonly, there are
three possible realms: your local computer, the firewall-guarded local network on which your computer is located, and the
Internet (the global Net). Each of these realms is treated differently by the class loader.

Note

Day 21 -- Under the Hood

file:///G|/ebooks/1575211831/ch21.htm (18 of 21) [11/06/2000 7:45:05 PM]



Actually, there can be as many realms as your desired level of
security (or paranoia) requires. This is because the class loader is
under your control. As a programmer, you can make your own class
loader that implements your own peculiar brand of security. (This is a
radical step; you may have to give the users of your program a whole
bunch of classes-and they give you a whole lot of trust-to accomplish
this.)

In particular, the class loader never allows a class from a less protected realm to replace a class from a more protected realm.
The file system's I/O primitives, about which you should be very worried (and rightly so), are all defined in a local Java
class, which means that they all live in the local-computer realm. Thus, no class from outside your computer (from either the
supposedly trustworthy local network or from the Internet) can take the place of these classes and spoof Java code into using
nasty versions of these primitives. In addition, classes in one realm cannot call upon the methods of classes in other realms,
unless those classes have explicitly declared those methods public. This implies that classes from other than your local
computer cannot even see the file system I/O methods, much less call them, unless you or the system wants them to.

In addition, every new applet loaded from the network is placed into a separate package-like namespace. This means that
applets are protected even from each other! No applet can access another's methods (or variables) without its cooperation.
Applets from inside the firewall can even be treated differently from those outside the firewall, if you like.

Note
Actually, it's all a little more complex than this. In the current release,
an applet is in a package namespace along with any other applets
from that source. This source, or origin, is most often a host (domain
name) on the Internet. This special "subrealm" is used extensively in
the next section. Depending on where the source is located, outside
the firewall or inside, further restrictions may apply (or be removed
entirely). This model is likely to be extended in future releases of
Java, providing an even finer degree of control over which classes get
to do what.

The class loader essentially partitions the world of Java classes into small, protected little groups, about which you can
safely make assumptions that will always be true. This type of predictability is the key to well-behaved and secure
programs.

You've now seen the full lifetime of a method. It starts as source code on some computer, is compiled into bytecodes on
some (possibly different) computer, and can then travel (as a .class file) into any file system or network anywhere in the
world. When you run an applet in a Java-enabled browser (or download a class and run it by hand using java), the
method's bytecodes are extracted from its .class file and carefully looked over by the verifier. After they are declared
safe, the interpreter can execute them for you (or a code generator can generate native binary code for them using either the
just-in-time compiler or java2c, and then run that native code directly).

At each stage, more and more security is added. The final level of that security is the Java class library itself, which has
several carefully designed classes and APIs that add the final touches to the security of the system.

The Security Manager

SecurityManager is an abstract class that collects, in one place, all the security policy decisions that the system has
to make as bytecodes run. You learned before that you can create your own class loader. In fact, you may not have to,
because you can subclass SecurityManager to perform most of the same customizations.

An instance of some subclass of SecurityManager is always installed as the current security manager. It has complete
control over which of a well-defined set of potentially dangerous methods are allowed to be called by any given class. It
takes the realms from the last section into account, the source (origin) of the class, and the type of the class (standalone or
loaded by an applet). Each of these can be separately configured to have the effect you (the programmer) like on your Java
system. Note that environments such as Web browsers typically already have a security manager in place to handle basic

Day 21 -- Under the Hood

file:///G|/ebooks/1575211831/ch21.htm (19 of 21) [11/06/2000 7:45:05 PM]



applet security (all the restrictions you've learned about so far in this book), and that security manager cannot be replaced or
changed.

What is this "well-defined set" of methods that are protected?

File I/O is a part of the set, for obvious reasons. Applets, by default, can open, read, or write files on the local system.

Also in this protected set are the methods that create and use network connections, both incoming and outgoing.

The final members of the set are those methods that allow one thread to access, control, and manipulate other threads. (Of
course, additional methods can be protected as well, by creating a new subclass of SecurityManager that handles
them.)

Signed Applets

There is a middle ground between the "sandbox" restrictions that applets always have and an application that can freely run
amok on your system. This middle ground involves establishing where an applet comes from, so different applet sources can
be allowed different kinds of access.

For example, you might specify different groups of trusted domains (companies), each of which is allowed added privileges
when applets from that group are loaded. Applets from systems on an internal network, for example, are more trustworthy
than applets from the Internet at large. Some groups can be more trusted than others, and you might even allow groups to
grow automatically by allowing existing members to recommend new members for admission. (The Java seal of approval?)

In any case, the possibilities are endless, as long as there is a secure way of recognizing the original creator of an applet.

You might think this problem has already been solved, because classes are tagged with their origin. In fact, the Java runtime
goes far out of its way to be sure that that origin information is never lost-any executing method can be dynamically
restricted by this information anywhere in the call chain. So why isn't this enough?

Because what you'd really like to be able to do is permanently "tag" an applet with its original creator (its true origin), and
no matter where it has traveled, a browser could verify the integrity and authenticate the creator of that applet.

If somehow those applets were irrevocably tagged with a digital signature by their creator, and that signature could also
guarantee that the applet had not been tampered with, you'd be golden.

Luckily, Sun is planning to do exactly that for Java, to have a mechanism for using public key cryptography to "sign" a
fragment of code (an applet, an application, a single class) so that you can reliably and securely tell who created or verified
that the piece of Java code was trustworthy. With the signature in place, that code could then break out of the sandbox and
use the local system more freely. Expect this capability to become more popular and available in the future.

Coming Up in Java 1.1

Promised in Java 1.1 is a set of extension APIs for managing security and encryption in Java. These new classes include
support for the digital signature capabilities mentioned in the previous section, as well as general-purpose low-level and
high-level cryptography, key management, access control lists, message digest hashes (MD5), and other tools and utilities.
On Day 27, "The Standard Extension APIs," you'll learn more about the new security classes in Java.

Summary
Today you have learned about the grand vision that some of us have for Java, and about the exciting future it promises.

Under the hood, the inner workings of the virtual machine, the bytecode interpreter (and all its bytecodes), the garbage
collector, the class loader, the verifier, the security manager, and the powerful security features of Java were all revealed.

You now know almost enough to write a Java runtime environment of your own-but luckily, you don't have to. You can
simply download the latest release of Java-or use a Java-enabled browser to enjoy most of the benefits of Java right away.

Day 21 -- Under the Hood

file:///G|/ebooks/1575211831/ch21.htm (20 of 21) [11/06/2000 7:45:05 PM]



Q&A

Q: I'm still a little unclear about why the Java language and compiler make the Net safer. Can't they just be
"side-stepped" by nasty bytecodes?

A: Yes, they can-but don't forget that the whole point of using a safe language and compiler was to make the Net as
a whole safer as more Java code is written. An overwhelming majority of this Java code will be written by honest
Java programmers, who will produce safe bytecodes. This makes the Net more predictable over time, and thus
more secure.

Q: I know you said that garbage collection is something I don't have to worry about, but what if I want (or
need) to?

A: So, you are planning to fly a plane with Java. Cool! For just such cases, there is a way to ask the Java runtime,
during startup (java -noasyncgc), not to run garbage collection unless forced to, either by an explicit call
(System.gc()) or by running out of memory. (This can be quite useful if you have multiple threads that are
messing each other up and want to stop the gc thread from getting in the way while testing them.) Don't forget
that turning garbage collection off means that any object you create will live a long, long time. If you're
real-time, you never want to step back for a full gc-so be sure to reuse objects often, and don't create too many of
them!

Q: Is there anything else I can do to the garbage collector?
A: You can also force the finalize() methods of any recently freed objects to be called immediately via

System.runFinalization(). You might want to do this if you're about to ask for some resources that you
suspect might still be tied up by objects that are gone but not forgotten (waiting for finalize()). This is even
rarer than starting a gc by hand, but it's mentioned here for completeness.

Q: I've heard of a tool called java2c, which would convert Java code to C code. Does this exist? Where can I
get it?

A: An experimental java2c translator was rumored to exist inside Sun, but was never released. It may be released
at a later date.

Q: What's the last word on Java?
A: Java adds much more than it can ever take away. It has always done so for me, and now, I hope it will for you as

well.

The future of the Net is filled with as-yet-undreamt horizons, and the road is long and hard, but Java is a great
traveling companion.

   

Day 21 -- Under the Hood

file:///G|/ebooks/1575211831/ch21.htm (21 of 21) [11/06/2000 7:45:05 PM]



Day 27

The Standard Extension APIs
by Michael Morrison

CONTENTS
Java API Overview●   

The Enterprise API

Java Database Connectivity❍   

Interface Definition Language❍   

Remote Method Invocation❍   

●   

The Commerce API●   

The Management API●   

The Server API●   

The Media API●   

The Security API●   

The Java Beans API●   

The Embedded API●   

Summary●   

Q&A●   

Throughout this book you've learned a lot about the Java programming environment and how it can be
used to create interactive Web-based programs. Your knowledge of Java thus far has been entirely based
on what is known as the core Java API, or Java Base API. Until recently, this core API comprised the
entirety of the Java programming landscape. However, JavaSoft recently announced a broad plan for
integrating various new software technologies into the Java API. These new technologies come in the
form of extension APIs that integrate with the core Java API, and they are referred to as the standard
extension APIs. At some point, many of these APIs will merge and become part of the core API, but for
now they are all being presented as extensions.

Today's lesson takes a look at these new APIs and discusses what they have to offer, along with exactly
how they will integrate with the existing core API. The main topics you cover today are

Java software platform overview●   

Enterprise and commerce API extensions●   

Management and server API extensions●   

Day 27 -- The Standard Extension APIs

file:///G|/ebooks/1575211831/ch27.htm (1 of 11) [11/06/2000 7:45:07 PM]



Media API extensions●   

Security API extensions●   

Component API extensions●   

Embedded systems API extensions●   

Most of these API extensions are very new and haven't even reached the specification stage. For this
reason, today's lesson is only meant to give you an idea of where Java is headed with the standard
extension APIs. In other words, you may want to check JavaSoft's Web site (www.javasoft.com) to
get the latest scoop on the status of these APIs since they are in a constant state of flux.

Java API Overview
Java release 1.02, which is the latest Java release as of this writing, is now being referred to by JavaSoft
as the core Java API. The core Java API defines the minimal set of functionality a Java implementation
must support to be considered Java compliant. For example, when someone undertakes the job of
supporting Java on a particular platform, he must fully implement the core Java API. This guaranteed
support for the core API is what allows Java developers the luxury of being able to write Java programs
once and have them run on any Java-compliant platform.

In the near future, JavaSoft plans to expand on the core API by introducing new APIs addressing more
applied development needs. The new APIs cover a wide range of areas and will ultimately save
developers a great deal of time by establishing a consistent approach to certain development issues,
thereby reducing the need for custom coding. Some of these new APIs will merge with the core API;
others will remain extensions. Regardless of their ultimate relationship to the core API, the new
extension APIs are referred to as the standard extension APIs since they extend the current core API as
we know it.

The standard extension API is broken up into a set of individual APIs targeting different development
needs. Following are the major components of the standard extension APIs:

Enterprise API●   

Commerce API●   

Management API●   

Server API●   

Media API●   

Security API●   

Java Beans API●   

Embedded API●   

The rest of today's lesson focuses on each of these APIs and how they affect the Java software platform.

Day 27 -- The Standard Extension APIs

file:///G|/ebooks/1575211831/ch27.htm (2 of 11) [11/06/2000 7:45:07 PM]



The Enterprise API
Enterprise computing has become increasingly important in recent years as more and more companies
realize the importance of integrating their operations electronically. The unique possibilities afforded by
the increased usage of the Internet have served to magnify the popularity of enterprise computing.
JavaSoft took note of Java's lack of support for enterprise systems and announced plans for an Enterprise
API.

The Java Enterprise API is designed to give Java programs a formal mechanism for connecting to
enterprise information systems. This is a much-needed feature in Java since so many corporate computer
systems rely heavily on enterprise information sources. In answering this need, the Enterprise API
tackles the problem on three fronts. These fronts come in the form of three API subsets:

Java Database Connectivity (JDBC)●   

Interface Definition Language (IDL)●   

Remote Method Invocation (RMI)●   

JavaSoft has recognized the importance of these three API subsets and plans to directly incorporate them
into the core Java API at some point in the future.

Java Database Connectivity

The first of these subset APIs, JDBC, defines a structured interface to SQL (Structured Query Language)
databases, which is the industry standard approach to accessing relational databases. By supporting SQL,
JDBC allows developers to interact and support a wide range of databases. This means that the specifics
of the underlying database platform are pretty much irrelevant when it comes to JDBC, which is very
good news to Java developers.

New Term
SQL databases are databases built on the SQL standard, which is a
widely accepted standard that defines a strict protocol for accessing
and manipulating data.

The JDBC API provides Java developers with a consistent approach to accessing SQL databases that is
comparable to existing database development techniques, so interacting with a SQL database using
JDBC isn't all that much different than interacting with a SQL database using traditional database tools.
This should give Java programmers who already have some database experience confidence that they can
hit the ground running with JDBC. The JDBC API has already been widely endorsed by industry leaders,
including some development-tool vendors who have announced future support for JDBC in their
development products.

The JDBC API includes classes for common SQL database constructs such as database connections,
SQL statements, and result sets. JDBC Java programs will be able to use the familiar SQL programming
model of issuing SQL statements and processing the resulting data. The JDBC API is largely dependent
on a driver manager that supports multiple drivers connecting to different databases. JDBC database
drivers can be either written entirely in Java or implemented using native methods to bridge Java
applications to existing database access libraries.

Day 27 -- The Standard Extension APIs

file:///G|/ebooks/1575211831/ch27.htm (3 of 11) [11/06/2000 7:45:07 PM]



New Term
A result set is a group data retrieved from a database after a user
request.

Interface Definition Language

The IDL subset of the Enterprise API is aimed at providing a way to connect Java client programs to
network servers running on other platforms. IDL is an industry standard protocol for client/server
communications across different platforms. The primary use of the IDL API is to transparently connect
Java client programs to legacy systems.

New Term
A legacy system is an outdated system that has yet to be
reimplemented using current technologies.

The Java IDL API includes the following components:

A client framework that allows Java IDL clients to be designed as either applets or standalone
applications

●   

A server framework that allows Java applications to act as network servers for IDL clients●   

A development tool that automatically generates stub code for specific remote interfaces●   

Remote Method Invocation

The RMI component of the Enterprise API defines an interface for invoking object methods in a
distributed environment. The RMI API serves a crucial purpose in the Enterprise API by adding full
support for remote object communications. The RMI API makes it straightforward for Java developers to
add remote computing support to their classes.

The Commerce API
As the role of the Internet continues to evolve from being just an information source to also being a retail
marketplace, the need for a secure commercial transaction protocol is growing to new heights. Both
Internet vendors and shoppers alike are eagerly awaiting the inevitable migration of shopping to the Web.
JavaSoft has provided an answer to the secure purchasing problem with the Commerce API, which is a
Java API extension that provides the overhead for Java programs to support secure purchasing and
financial management.

The Java Commerce API aims to provide developers with an elegant solution to the problem of
commercial transactions on the Web. The goal is to make purchasing goods a seamless, yet secure, part
of the Web experience. To this end, the Commerce API is being pushed by JavaSoft as an open,
extensible environment for financial management on the Web. The long-term plan for the Commerce
API is for integration into the Java software platform partially with the core API and partially as a
standard extension. It isn't clear yet which components will make it into the core API and which will
remain separate.

Day 27 -- The Standard Extension APIs

file:///G|/ebooks/1575211831/ch27.htm (4 of 11) [11/06/2000 7:45:07 PM]



The Commerce API consists of the following primary components:

An infrastructure●   

A database●   

Payment cassettes●   

Service cassettes●   

Administrative interfaces●   

The infrastructure of the Commerce API is basically the architectural framework that defines the
interactions between the other components of the API. This infrastructure is also what gives the API its
extensibility to support future commerce extensions.

The database component serves as a repository for user information, such as payment methods and the
user's shipping address. The database component contains encryption features so that user information
can be kept completely private. Alternately, commerce service providers have the option of sharing user
information with one another.

The Commerce API makes use of cassettes, which are software modules that implement specific
financial protocols. The two different types of cassettes supported are payment cassettes and service
cassettes. A payment cassette defines the protocol for making electronic payments. Examples of payment
cassettes are credit cards, debit cards, and eventually digital cash. A user could have multiple payment
cassettes that represent different payment instruments, much like we carry different payment instruments
in our wallets or purses. In fact, one of the classes in the Commerce API specifically models an
electronic wallet.

New Term
A cassette is a software module that implements a specific payment
protocol.

Service cassettes are more general, and they model any type of value-added financial service such as
financial analysis or tax preparation modules. For example, you could feasibly purchase a service
cassette to help balance your electronic checkbook or assess the value of your stock portfolio.

The last component of the Commerce API includes administrative interfaces, which are dialog boxes and
other graphical interfaces used to retrieve information from the user and to configure commerce options.

The Management API
The Management API is designed to answer the needs of integrated network management systems. It
includes a wide range of interfaces, classes, and applets to facilitate the development of integrated
management solutions. The primary goal of the Management API is to provide a unified approach to
handling the complexities involved in developing and maintaining resources and services on a
heterogeneous network. Using the Management API, Java developers will be able to rapidly develop
network management applications supporting a wide range of systems on large and often complex
networks. JavaSoft plans to keep the Management API as a separate extension from the core API.

The Management API includes the following core components:

Day 27 -- The Standard Extension APIs

file:///G|/ebooks/1575211831/ch27.htm (5 of 11) [11/06/2000 7:45:07 PM]



The Admin View Module (AVM)●   

Base object interfaces●   

Managed container interfaces●   

Managed notification interfaces●   

Managed data interfaces●   

Managed protocol interfaces●   

SNMP interfaces●   

Applet integration interfaces●   

The Admin View Module is an extension of the Java Abstract Windowing Toolkit (awt) that is enhanced
to provide specific support for creating integrated management applications. The classes implemented in
the AVM serve as a basis for developing sophisticated graphical user interfaces. For example, the AVM
includes support for graphical tables, charts, graphs, and meters.

The base object interfaces define the core object types that are used for distributed resources and services
in a management system. Using the base object interfaces, developers can define abstractions for a
variety of attributes associated with a managed enterprise environment.

The managed container interfaces define a means for grouping together managed objects for better
organization. This organization facilitates a more group-oriented approach to keeping up with managed
resources, which can be a great benefit in complex systems.

The managed notification interfaces define a core foundation of managed-event notification services.
Developers are free to develop more advanced application-specific notification services by extending
these services.

The managed data interfaces provide a means of linking managed object attributes to relational databases
via JDBC. In doing so, the managed data interfaces establish a transparent link between management
resources and external databases.

The managed protocol interfaces use the Java Security APIs and Java RMI to add secure distributed
object support to the core functionality provided by the base object interfaces. In turn, the SNMP
interfaces extend the managed protocol interfaces to provide support for SNMP agents. Since SNMP is
the most popular management protocol in use, its support via the SNMP interfaces is an important part of
the Management API.

New Term
SNMP stands for Simple Network Management Protocol, which is a
relatively simple protocol originally developed to solve
communication problems between different types of networks and
gather network statistics.

Finally, the applet integration interfaces component of the Management API specifies how Java applets
can be integrated with the Management API to provide management solutions. Applet developers use the
applet integration interfaces to build management support into their applets.

Day 27 -- The Standard Extension APIs

file:///G|/ebooks/1575211831/ch27.htm (6 of 11) [11/06/2000 7:45:07 PM]



The Server API
After the success of Java and its immediate use for developing client-side applets, JavaSoft decided to
take steps to make Java a more viable alternative for server-side applications. The Server API is
JavaSoft's answer to the need for more complete server-oriented support in Java. The Server API
provides a wide range of server functionality including support for administration, accessibility control,
and dynamic resource handling. Also included in the Server API is the Servlet API, which provides a
framework for extending servers with servlets. JavaSoft plans to keep the Server API an extension
separate from the core API.

New Term
A servlet is a Java object that extends the functionality of an
information server, such as an HTTP server. You can think of servlets
as the server equivalents of client-side Java applets.

The Servlet API provides the overhead necessary for creating servlets and interfacing them with
information servers. The Servlet API is equipped to handle the entire servlet/server relationship, with an
emphasis on keeping things stable and simple. All that is required to run servlets is a server that supports
the Servlet API.

The Media API
Possibly the weakest area of the core Java API as we know it is its support for media. Currently, the Java
API supports only static GIF and JPEG images and wave sounds in the AU sound format. This limited
media support won't cut it in the long run. Sure, developers can hack their own media implementations to
some extent, but they could do that already in a variety of other languages and platforms. Java was
supposed to make things easier, right?

JavaSoft realized this weakness and is remedying things with the Media API, which is slated to include
support for a dizzying array of media types that will no doubt put Java on the map as a serious
multimedia platform. The Media API includes classes that model media types such as full-motion video,
audio, 2D and 3D graphics, and telephony. Furthermore, the structure of the API is such that many of
these media types will rely on the same underlying facilities. For example, all time-based media like
video and audio will use the same underlying timing mechanism, meaning that synchronization won't be
a problem.

The Media API is designed to be very open and extensible, which is important considering the fact that
the world of multimedia is ever changing. JavaSoft plans to integrate the Media API into the Java
platform both as core API additions and as standard extension APIs.

The following API subsets comprise the Media API:

The Media Framework API●   

The 2D Graphics API●   

The Animation API●   

The 3D Graphics API●   

Day 27 -- The Standard Extension APIs

file:///G|/ebooks/1575211831/ch27.htm (7 of 11) [11/06/2000 7:45:07 PM]



The Video API●   

The Audio API●   

The MIDI API●   

The Share API●   

The Telephony API●   

The Media Framework API handles the low-level timing functionality required by many of the other
media APIs. This API includes support for timing and synchronization, both of which are critical to
media types that must function together in harmony. Also included in the Media Framework API is
support for streaming, compression, and live data sources.

New Term
Synchronization refers to how different time-based media elements
agree with each other in time. For example, it is important for the
sound track of a movie to remain synchronized with the picture.

New Term
Streaming is the process of interacting with data while it is still being
transferred. For example, a streaming audio player would begin
playing audio as soon as a certain minimal amount of data has been
transferred.

The 2D Graphics API extends the functionality of the awt classes to provide wider support for 2D
graphics primitives and a variety of different graphical output devices, such as printers. Another
important addition to the 2D Graphics API is the definition of a uniform graphical model that brings
many graphics functions into one structure. The Animation API uses the 2D Graphics API as a basis for
its implementation of animated 2D graphics objects, or sprites. It also relies on the Media Framework
API for maintaining timing and synchronization.

The 3D Graphics API provides the overhead necessary to generate high-performance 3D graphics. This
API implements 3D graphics by supporting a model of 3D graphical objects that can be rendered at high
speeds. The 3D Graphics API also includes support for VRML, which is a popular 3D modeling
language. To pull off all this functionality, the 3D Graphics API relies heavily on the functions provided
by many of the other media APIs.

The Video API brings full-motion video to Java. The API provides the framework for managing and
processing video in either a streaming or stored scenario. Similar to the Video API in some ways, the
Audio API also provides support for both streaming and stored media. However, the media supported by
the Audio API consists of either sampled or synthesized audio. The Audio API even contains classes for
implementing 3D spatial audio.

The MIDI API brings timed musical events to Java by way of the popular MIDI standard. MIDI is an
efficient way to represent both musical pieces as well as more general timing resources. Expect to hear
the Web much differently once this API catches on!

New Term

Day 27 -- The Standard Extension APIs

file:///G|/ebooks/1575211831/ch27.htm (8 of 11) [11/06/2000 7:45:07 PM]



MIDI stands for Musical Instrument Digital Interface. It defines a
protocol for communicating and storing time-based events, such as
those generated by playing a musical instrument.

The Share API is probably the most interesting of the media APIs, simply because it's the least obvious.
It defines a means by which live, multiparty communication can take place over a network. The Share
API provides support for both synchronization and session management. I wouldn't be surprised to see
multiplayer games and "chat" applets take on a new feel once this API is out.

The last of the media APIs is the Telephony API, which gives Java the ability to interact with telephones.
Most important telephone functions, including teleconferencing and caller ID, are supported in this API.

The Security API
The eagerly awaited Security API will hopefully remedy one of the biggest limitations of Java applets:
the inability to read or write files locally. With full support for cryptography, digital signatures, and
authentication, Java developers should be able to leverage security issues to some extent and move away
from the seemingly overprotective solution currently in place. The Security API will eventually be
incorporated directly into the core Java API.

New Term
Cryptography encompasses the algorithms and techniques used to
render data unrecognizable in the hands of unauthorized parties,
thereby enforcing information privacy.

New Term
A digital signature is an electronic identification technique that
serves much the same purpose as a handwritten signature.

New Term
Authentication is the process of verifying an action based on a
security check.

The cryptographic functions built into the Security API are isolated from the programmatic interface
used by applets wanting to make security decisions. This layering allows the cryptographic functions to
be replaced by third-party alternatives without impacting any-thing at the applet level, thereby giving
Java developers more options when it comes to their security needs.

The Java Beans API
The Java Beans API defines an open standard for implementing dynamic Java software components,
which are tightly packaged classes designed for reusability. Because the Java Beans API is given
prominent coverage in tomorrow's lesson, I'll spare you the juicy details for now. However, I will tell you
now that the Java Beans API is planned to merge with the core Java API at some point.

Day 27 -- The Standard Extension APIs

file:///G|/ebooks/1575211831/ch27.htm (9 of 11) [11/06/2000 7:45:07 PM]



The Embedded API
The last of the standard extension APIs is the Embedded API, which defines a minimal set of Java
functionality specifically targeted for embedded systems applications, such as consumer electronics
devices. The Embedded API is the only API that doesn't really add anything to the Java core API. In fact,
the Embedded API will likely be a subset of the core API since only part of the core functionality is
needed in embedded applications. For example, since most embedded systems have no graphical output
to speak of, the entire awt is really unnecessary. Likewise, a network connection is unlikely in an
embedded system, so there is no need to include the Java networking package.

New Term
An embedded system is a scaled-down computer system programmed
to perform a particular function within an electronic device.

It is likely that the Embedded API will consist of the following packages from the core API: language,
utilities, and I/O. Beyond those, it's possible that Embedded API extensions could be developed to
support specialized networking and output requirements. Since the Embedded API is itself a subset of the
core API, it will probably be treated as an extension API.

Summary
Today you have learned about the standard extension APIs that are planned to expand Java in a variety of
different directions. These APIs will no doubt boost the appeal of Java to new levels, since developers
will have much more reusable code to leverage when building custom applications and applets. Although
this will ultimately mean more learning on the part of developers, it will also result in less time spent
writing code that is best suited to a standard extension. Knowing this, many developers will be forced to
rethink their current plans based on the availability of the standard extension APIs, as there's no need to
reinvent the wheel if it's already in the works.

Tomorrow you'll continue to learn about Java extensions by looking at some other technologies that are
going to affect Java in the near future.

Q&A

Q: What exactly is the core Java API and how will it change?
A: The core Java API as of Java version 1.02 consists of the eight packages that are shipped with

version 1.02 of the Java Developer's Kit. This API will change in future releases to incorporate
some of the technologies that are emerging as part of the standard extension APIs. However, not
all of the standard extension APIs will make it into the core API; some will remain as
extensions.

Q: Will the Commerce API help standardize financial transactions on the Web?

Day 27 -- The Standard Extension APIs

file:///G|/ebooks/1575211831/ch27.htm (10 of 11) [11/06/2000 7:45:07 PM]



A: I sure hope so. Considering the large amount of Java development already taking place,
combined with JavaSoft's desire to make the Commerce API extensible to a variety of
technologies, it stands to reason that the Commerce API will be a major force in shaping the
future of financial transactions on the Web.

Q: How are servlets developed?
A: Servlets are developed in much the same way as applets, except you use the Servlet API instead

of the Applet API. Most servlets probably won't have graphical interfaces, but the approach of
developing servlets based on an API is still very similar to the current approach to developing
applets.

Q: How will digital signatures affect Java security?
A: It's still not clear what the total impact of digital signatures will be on Java security, but the most

likely change will be the removal of the local file access restriction on applets. Using digital
signatures, it will be possible to validate the origination of an applet so that users can feel safe
allowing the applet more freedom on their system.

   

Day 27 -- The Standard Extension APIs

file:///G|/ebooks/1575211831/ch27.htm (11 of 11) [11/06/2000 7:45:07 PM]



Day 26

Client/Server Networking in Java
by Michael Morrison

CONTENTS
Internet Network Basics

Addresses❍   

Protocols❍   

Ports❍   

●   

The Client/Server Paradigm●   

Sockets

Datagram Sockets❍   

Stream Sockets❍   

●   

Fortune: A Datagram Client and Server

Designing Fortune❍   

Implementing the Fortune Server❍   

Implementing the Fortune Client Applet❍   

Running Fortune❍   

●   

Trivia: A Stream Client and Server

Designing Trivia❍   

Implementing the Trivia Server❍   

Implementing the Trivia Client Applet❍   

Running Trivia❍   

●   

Summary●   

Q&A●   

The networking capabilities of Java are perhaps the most powerful component of the Java API because the vast majority of
Java programs run in a networked environment. Using the wide range of network features built into Java, you can easily
develop Web-based applets that perform a variety of tasks over a network. The network support in Java is particularly well
suited to a client/server arrangement where a server marshals information and serves it to clients that handle the details of
displaying the information to a user.

In today's lesson you'll learn what Java has to offer in regard to communicating over an Internet network connection using a
client/server arrangement. You'll begin the lesson by taking a look at some basic concepts surrounding the structure of the
Internet as a network. You'll then move on to what specific support is provided by the standard Java networking API and
how it fits in with the client/server paradigm. Finally, you'll conclude the lesson by developing a couple of interesting
sample programs demonstrating the different types of client/server approaches available in Java.

The following topics are covered in today's lesson:

Internet network basics●   

The client/server paradigm●   

Day 26 -- Client/Server Networking in Java

file:///G|/ebooks/1575211831/ch26.htm (1 of 23) [11/06/2000 7:45:11 PM]



Java sockets●   

Developing a datagram socket applet and server●   

Developing a stream socket applet and server●   

By the end of this lesson, you'll be ready to build your own Java network client/server programs from scratch. You'll also
have a better understanding of one of the reasons Java has become so popular-by virtue of its clean and straightforward
support for an otherwise messy and complex area of programming: network programming!

Internet Network Basics
Before you learn about the types of network support Java provides, it's important that you understand some fundamentals
about the structure of the Internet as a network. As you are no doubt already aware, the Internet is a global network of many
different types of computers connected in various ways. With this wide diversity of both hardware and software all
connected together, it's pretty amazing that the Internet is even functional. Trust me, the functionality of the Internet is no
accident and has come at no small cost in terms of planning.

The only way to guarantee compatibility and reliable communication across a wide range of different computer systems is to
define very strict standards that must be conformed to rigorously. That's exactly the approach taken by the planners of the
Internet in determining its communications protocols. Please understand that I'm not the type of person who typically
preaches conformity, but conformity in one's personal life is very different from conformity in complex computer networks.

The point is, the only way to allow a wide range of computer systems to coexist and communicate with each other
effectively is to hammer out some standards. Fortunately, plenty of standards abound for the Internet, and they share wide
support across many different computer systems. Hopefully, I've convinced you of the importance of communication
standards on the Internet-let's take a look at a few of them.

Addresses

One of the first areas of standardization on the Internet was in establishing a means to uniquely identify each connected
computer. It's not surprising that a technique logically equivalent to traditional mailing addresses is the one that was
adopted; each computer physically connected to the Internet is assigned an address that uniquely identifies it. These
addresses, also referred to as IP addresses, come in the form of a 32-bit number that looks like this: 243.37.126.82.
You're probably more familiar with the symbolic form of IP addresses, which looks like this: sams.mcp.com.

New Term
An IP address is a 32-bit number that uniquely identifies each
computer physically attached to the Internet.

So addresses provide each computer connected to the Internet with a unique identifier. Each Internet computer has an
address for the same reason you have a mailing address and a phone number at your home: to facilitate communication. It
might sound simple, and that's because conceptually it is. As long as we can guarantee that each computer is uniquely
identifiable, we can easily communicate with any computer without worry. Well, almost. The truth is, addresses are only a
small part of the Internet communication equation, but an important part nevertheless. Without addresses, there would be no
way to distinguish among different computers.

Protocols

The idea of communicating among different computers on the Internet might not sound like that big a deal now that you
understand that they use addresses similar to mailing addresses. The problem is that there are many different types of
communication that can take place on the Internet, meaning that there must be an equal number of mechanisms for handling
them. It's at this point that the mailing-address comparison to Internet addressing breaks down. The reason for this is that
each type of communication taking place on the Internet requires a unique protocol. Your mailing-address essentially
revolves around one type of communication: the postal carrier driving up to your mailbox and placing the mail inside.

Day 26 -- Client/Server Networking in Java

file:///G|/ebooks/1575211831/ch26.htm (2 of 23) [11/06/2000 7:45:11 PM]



A protocol specifies the format of data being sent over the Internet, along with how and when it is sent. On the other end of
the communication, the protocol also defines how the data is received along with its structure and what it means. You've
probably heard mention of the Internet being just a bunch of bits flying back and forth in cyberspace. That's a very true
statement, and without protocols, those bits wouldn't mean anything.

New Term
A protocol is a set of rules and standards defining a certain type of
Internet communication.

The concept of a protocol is not groundbreaking or even new. We use protocols all the time in everyday situations; we just
don't call them protocols. Think about how many times you've been involved in this type of dialogue:

"Hi, may I take your order?"
"Yes, I'd like the grilled salmon and a frozen strawberry margarita."
"Thanks, I'll put your order in and bring you your drink."
"Thank you, I'm famished."

Although this conversation might not look like anything special, it is a very definite social protocol used to place orders for
food at a restaurant. Conversational protocol is important because it gives us familiarity and confidence in knowing what to
do in certain situations. Haven't you ever been nervous when entering a new social situation in which you didn't quite know
how to act? In these cases, you didn't really have confidence in the protocol, so you probably worried about a
communication problem that could have easily resulted in embarrassment. For computers and networks, protocol breakdown
translates into errors and information transfer failure rather than embarrassment.

Now that you understand the importance of protocols, let's take a look at a couple of the more important ones used on the
Internet. Without a doubt, the protocol getting the most attention these days is HTTP, which stands for Hypertext Transfer
Protocol. HTTP is the protocol used to transfer HTML documents on the Web. Another important protocol is FTP, which
stands for File Transfer Protocol. FTP is a more general protocol used to transfer binary files over the Internet. Each of these
protocols has its own unique set of rules and standards defining how information is transferred, and Java provides support
for both of them.

New Term
HTTP stands for Hypertext Transfer Protocol, which is the protocol
used to transfer HTML documents on the Web.

New Term
FTP stands for File Transfer Protocol, which is the protocol used to
transfer files across the Internet.

Ports

Internet protocols make sense only in the context of a service. For example, the HTTP protocol comes into play when you
are providing Web content (HTML pages) through an HTTP service. Each computer on the Internet has the capability to
provide a variety of services through the various protocols supported. There is a problem, however, in that the type of
service must be known before information can be transferred. This is where ports come in. A port is a software abstraction
that provides a means to differentiate between network services. More specifically, a port is a 16-bit number identifying the
different services offered by a network server.

New Term
A port is a 16-bit number that identifies each service offered by a
network server.

Each computer on the Internet has a bunch of ports that can be assigned different services. To use a particular service and
therefore establish a line of communication via a particular protocol, you must connect to the correct port. Ports are
numbered, and some of the numbers are specifically associated with a type of service. Ports with specific service
assignments are known as standard ports, meaning that you can always count on a particular port corresponding to a certain

Day 26 -- Client/Server Networking in Java

file:///G|/ebooks/1575211831/ch26.htm (3 of 23) [11/06/2000 7:45:11 PM]



service. For example, the FTP service is located on port 21, so any other computer wanting to perform an FTP file transfer
would connect to port 21 of the host computer. Likewise, the HTTP service is located on port 80, so any time you access a
Web site, you are really connecting to port 80 of the host using the HTTP protocol behind the scenes. Figure 26.1 illustrates
how ports and protocols work.

Figure 26.1 : The relationship between protocols and ports.

All standard service assignments are given port values below 1024. This means that ports above 1024 are considered
available for custom communications, such as those required by a Java client/server program implementing its own
protocol. Keep in mind, however, that other types of custom communication also take place above port 1024, so you might
have to try a few different ports to find an unused one.

The Client/Server Paradigm
So far I've managed to explain a decent amount of Internet networking fundamentals while dodging a major issue: the
client/server paradigm. You've no doubt heard of clients and servers before, but you might not fully understand their
importance in regard to the Internet. Well, it's time to remedy that situation, because you won't be able to get much done in
Java without understanding how clients and servers work. As a matter of fact, the Java network- programming framework is
based on a client/server arrangement.

The client/server paradigm involves thinking of computing in terms of a client, who is essentially in need of some type of
information, and a server, who has lots of information and is just waiting to hand it out. Typically, a client will connect to a
server and query for certain information. The server will go off and find the information and then return it to the client. It
might sound as though I'm oversimplifying things here, but for the most part I'm not; conceptually, client/server computing
is as simple as a client asking for information and a server returning it.

In the context of the Internet, clients are typically run on desktop or laptop computers attached to the Internet looking for
information, whereas servers are typically run on larger computers with certain types of information available for the clients
to retrieve. The Web itself is made up of a bunch of computers that act as Web servers; they have vast amounts of HTML
pages and related data available for people to retrieve and browse. Web clients are used by those of us who connect to the
Web servers and browse through the Web pages. In this way, Netscape Navigator is considered client Web software. Take a
look at Figure 26.2 to get a better idea of the client/server arrangement.

Figure 26.2 : A Web server with multiple clients connected.

Sockets
One of Java's major strong suits as a programming language is its wide range of network support. Java has this advantage
because it was developed with the Internet in mind. The result is that you have lots of options in regard to network
programming in Java. Even though there are many network options, most Java network programming uses a particular type
of network communication known as sockets.

New Term
A socket is a software abstraction for an input or output medium of
communication.

Java performs all of its low-level network communication through sockets. Logically, sockets are one step lower than ports;
you use sockets to communicate through a particular port. So a socket is a communication channel that enables you to
transfer data through a certain port. Check out Figure 26.3, which shows communication taking place through multiple
sockets on a port.

Figure 26.3 : Multiple sockets communicating through a port.

This figure brings up an interesting point about sockets: Data can be transferred through multiple sockets for a single port.
This makes sense because it is common for multiple Web users to retrieve Web pages from a server via port 80 (HTTP) at

Day 26 -- Client/Server Networking in Java

file:///G|/ebooks/1575211831/ch26.htm (4 of 23) [11/06/2000 7:45:11 PM]



the same time. Java provides basic socket classes to make programming with sockets much easier. Java sockets are broken
down into two types: datagram sockets and stream sockets.

Datagram Sockets

A datagram socket uses User Datagram Protocol (UDP) to facilitate the sending of datagrams (self-contained pieces of
information) in an unreliable manner. Unreliable means that information sent via datagrams isn't guaranteed to make it to its
destination. The trade-off here is that datagram sockets require relatively few resources directly because of this unreliable
design. The clients and servers in a datagram scenario don't require a "live" or dedicated network connection, which is
sometimes desirable. In this way, a datagram socket is somewhat equivalent to a dial-up network connection, with which
you are temporarily connected to a network based on your immediate information needs.

Datagrams are sent as individually bundled packets that may or may not make it to their destination in any particular order
or at any particular time. On the receiving end of a datagram system, the packets of information can be received in any order
and at any time. For this reason, datagrams sometimes include a sequence number that specifies which piece of the puzzle
each bundle corresponds to. The receiver can then wait to receive the entire sequence, in which case it will put them back
together to form the original information structure.

New Term
UDP (User Datagram Protocol) is a network broadcast protocol that
doesn't guarantee transfer success. In return, UDP relies on few
network resources.

New Term
A datagram is an independent, self-contained piece of information
sent over a network whose arrival, arrival time, and content are not
guaranteed.

New Term
A datagram socket, or "unconnected" socket, is a socket over which
data is bundled into packets and sent without requiring a "live"
connection to the destination computer.

The fact that datagram sockets are openly unreliable may lead you to think that they are something to avoid in network
programming. However, there are very practical scenarios in which datagram sockets make perfectly acceptable solutions.
For example, servers that continually broadcast similar information make great candidates for datagram communication. A
stock quote server is a good example since the stock quotes are constantly being spit out with little regard for successful
delivery. The fact that stock quotes are highly time-dependent makes it less of an issue if a stock quote never reaches you;
you can just wait until a new one is sent.

Java supports datagram socket programming through two classes: DatagramSocket and DatagramPacket. The
DatagramSocket class provides an implementation for a basic datagram socket. The DatagramPacket class provides
the functionality required of a packet of information that is capable of being sent through a datagram socket. These two
classes are all you need to get busy writing your own datagram client/server Java programs.

Following is a list of some of the more important methods implemented in the DatagramSocket class:

DatagramSocket()
DatagramSocket(int port)
void send(DatagramPacket p)
synchronized void receive(DatagramPacket p)
synchronized void close()

The first two methods listed are actually constructors for the DatagramSocket class. The first constructor is the default
constructor and takes no parameters, and the second constructor creates a datagram socket connected to the specified port.
The send and receive methods are very straightforward and provide a means to send and receive datagram packets. The
close method simply closes the datagram socket. It doesn't get much simpler than that!

Day 26 -- Client/Server Networking in Java

file:///G|/ebooks/1575211831/ch26.htm (5 of 23) [11/06/2000 7:45:11 PM]



Notice that the DatagramSocket class doesn't distinguish between the socket being a client or server socket. The reason
for this is the manner in which datagram communication takes place, which doesn't require that the socket act specifically as
a client or server. Rather, Java clients and servers are distinguished by how they use the DatagramSocket class to
transmit/receive datagrams.

The other half of the datagram solution is the DatagramPacket class, which models a packet of information sent through
a datagram socket. Following are some of the more useful methods in the DatagramPacket class:

DatagramPacket(byte ibuf[], int ilength)
DatagramPacket(byte ibuf[], int ilength, InetAddress iaddr, int iport)
byte[] getData()
int getLength()

The first two methods are the constructors for DatagramPacket. As you probably guessed from the parameters, you
construct datagram packets from byte arrays of data. The first constructor is used for receiving datagrams, as is evident by
the absence of an address or port number. The second constructor is used for sending datagrams, which is why you have to
specify a destination address and port number for the datagram to be sent. The other two methods return the raw datagram
data and the length of the data, respectively.

Other than the constructors, all the methods in DatagramPacket are passive, meaning that they simply return
information about the datagram packet and don't actually change anything. This is evidence that the DatagramPacket
class is primarily used as a container for data being sent over a datagram socket. In other words, you will typically create a
DatagramPacket object as a wrapper for data being sent or received and never call any methods on it.

Stream Sockets

Unlike datagram sockets, in which the communication is roughly akin to that in a dial-up network, a stream socket is more
akin to a live network, in which the communication link is continuously active. A stream socket is a "connected" socket
through which data is transferred continuously. By continuously, I don't necessarily mean that data is being sent all the time,
but that the socket itself is active and ready for communication all the time.

New Term
A stream socket, or connected socket, is a socket through which data
can be transmitted continuously.

The benefit of using a stream socket is that information can be sent with less worry about when it will arrive at its
destination. Because the communication link is always live, data is generally transmitted immediately after you send it. Of
course, this dedicated communication link brings with it the overhead of consuming more resources. However, most
network programs benefit greatly from the consistency and reliability of a stream socket.

Note
A practical usage of a streaming mechanism is RealAudio, which is a
technology that provides a way to listen to audio on the Web as it is
being transmitted in real time.

Java supports stream socket programming primarily through two classes: Socket and ServerSocket. The Socket
class provides the necessary overhead to facilitate a stream socket client, and the ServerSocket class provides the core
functionality for a server.

Following is a list of some of the more important methods implemented in the Socket class:

Socket(String host, int port)
Socket(InetAddress address, int port)
synchronized void close()
InputStream getInputStream()
OutputStream getOutputStream()

The first two methods listed are constructors for the Socket class. The host computer you are connecting the socket to is

Day 26 -- Client/Server Networking in Java

file:///G|/ebooks/1575211831/ch26.htm (6 of 23) [11/06/2000 7:45:11 PM]



specified in the first parameter of each constructor; the difference between the two constructors is whether you specify the
host using a string name or an InetAddress object. The second parameter is an integer specifying the port you want to
connect to. The close method is used to close a socket. The getInputStream and getOutputStream methods are
used to retrieve the input and output streams associated with the socket.

The ServerSocket class handles the other end of socket communication in a client/server scenario. Following are a few
of the more useful methods defined in the ServerSocket class:

ServerSocket(int port)
ServerSocket(int port, int count)
Socket accept()
void close()

The first two methods are the constructors for ServerSocket, which both take a port number as the first parameter. The
count parameter in the second constructor specifies a timeout period for the server to quit automatically "listening" for a
client connection. This is the distinguishing factor between the two constructors; the first version doesn't listen for a client
connection, whereas the second version does. If you use the first constructor, you must specifically tell the server to wait for
a client connection. You do this by calling the accept method, which blocks program flow until a connection is made. The
close method simply closes the server socket.

Like with the datagram socket classes, you might be thinking that the stream socket classes seem awfully simple. In fact,
they are simple, which is a good thing. Most of the actual code facilitating communication via stream sockets is handled
through the input and output streams connected to a socket. In this way, the communication itself is handled independently
of the network socket connection. This might not seem like a big deal at first, but it is crucial in the design of the socket
classes; after you've created a socket, you connect an input or output stream to it and then forget about the socket.

Fortune: A Datagram Client and Server
You've now covered the basics of sockets and how they work in Java, but you haven't seen a socket in action. Well, it's time
to remedy that situation with a full-blown client/server program that uses datagram sockets. You'll also work through a
stream socket example later today, but first things first!

The datagram client/server example is called Fortune and consists of a server that transmits interesting quotes called
"fortunes" and a client that receives and displays the fortunes. The Fortune example could also be used to implement a
joke-of-the-day server, where users can connect and get the latest joke you have to offer. Since I had more interesting quotes
than funny jokes, I decided to stick with a quote server!

The Fortune example works like this: There is a server program that runs on a Web server and waits patiently for clients to
connect and ask for a fortune. On the other end, there is a client applet embedded in a Web page that a user accesses with a
Java-enabled Web browser. When the user loads the Web page and fires up the applet, the applet connects to the server and
asks it for a fortune. The server in turn picks a fortune at random and sends it back to the applet. The applet in return
displays the fortune for the user to see. It's that simple!

Designing Fortune

Before jumping into the Java code required to implement the Fortune example, let's briefly take a look at what is required of
the design on each side of the client/server fence. On the server side, you need a program that monitors a particular port on
the host machine for client connections. When a client is detected, the server picks a random fortune, which is a simple text
string, and sends it to the client over the specified port. The server is then free to break the connection and let the client go
on its merry way. The server returns to its original wait state, where it looks for other clients to connect. So the server is
required to perform the following tasks:

Wait for a client to connect.1.  

Accept the client connection.2.  

Send a random fortune to the client.3.  

Go back to step 1.4.  

Day 26 -- Client/Server Networking in Java

file:///G|/ebooks/1575211831/ch26.htm (7 of 23) [11/06/2000 7:45:11 PM]



Now, on to the client. The client side of the Fortune example is an applet that lives in a Web page and has full support for
graphical output. The client applet is responsible for connecting to the server and awaiting the server's response. The server's
response is the transmission of the fortune string, which the client must receive and display. When the client successfully
receives the fortune, it can break the connection with the server. As an added bonus, the client applet is also capable of
grabbing another fortune if you click the mouse button. The client's primary tasks follow:

Connect to the server.1.  

Wait for a fortune to be sent.2.  

Display the fortune.3.  

Go back to step 1 if the user clicks the mouse button.4.  

Implementing the Fortune Server

You're no doubt itching to see some real code that carries out all these ideas you've been learning. Well, the time has come!
Since the Fortune example ultimately begins and ends with the server, let's start by looking at the code for the server. The
complete source code for the FortuneServer class is located on the accompanying CD-ROM in the file
FortuneServer.java. Following are the member variables defined in the FortuneServer class:

private static final int  PORTNUM = 1234;
private String[]          fortunes;
private DatagramSocket    serverSocket;
private Random            rand = new Random(System.currentTimeMillis());

The PORTNUM member represents the number of the port used by Fortune. The value of PORTNUM-1234-is arbitrarily
chosen; the important thing is that it is greater than 1024. The fortunes member variable is an array of strings that hold
the text for the actual fortunes. The serverSocket member variable represents the datagram socket used for
communication with the client. The rand member variable is a Random object that is used in determining the random
fortune to be sent to the client.

Warning
Be sure to always make your port numbers greater than 1024 so that
they don't conflict with standard server port assignments.

The constructor for FortuneServer handles creating the server socket:

public FortuneServer() {
  super("FortuneServer");
  try {
    serverSocket = new DatagramSocket(PORTNUM);
    System.out.println("FortuneServer up and running...");
  }
  catch (SocketException e) {
    System.err.println("Exception: couldn't create datagram socket");
    System.exit(1);
  }
}

As you can see, the constructor creates a datagram socket using the port number specified by PORTNUM. If the socket cannot
be created, an exception is thrown, and the server exits. The server exits because it is pretty much worthless without a socket
to communicate through.

The method that does most of the work in the FortuneServer class is the run method, which is shown in Listing 26.1.

Listing 26.1. The run method.

Day 26 -- Client/Server Networking in Java

file:///G|/ebooks/1575211831/ch26.htm (8 of 23) [11/06/2000 7:45:11 PM]



 1: public void run() {
 2:   if (serverSocket == null)
 3:     return;
 4:   
 5:   // Initialize the array of fortunes
 6:   if (!initFortunes()) {
 7:     System.err.println("Error: couldn't initialize fortunes");
 8:     return;
 9:   }
10: 
11:   // Look for clients and serve up the fortunes
12:   while (true) {
13:     try {
14:       InetAddress     address;
15:       int             port;
16:       DatagramPacket  packet;
17:       byte[]          data = new byte[256];
18:       int             num = Math.abs(rand.nextInt()) % fortunes.length;
19: 
20:       // Wait for a client connection
21:       packet = new DatagramPacket(data, data.length);
22:       serverSocket.receive(packet);
23: 
24:       // Send a fortune
25:       address = packet.getAddress();
26:       port = packet.getPort();
27:       fortunes[num].getBytes(0, fortunes[num].length(), data, 0);
28:       packet = new DatagramPacket(data, data.length, address, port);
29:       serverSocket.send(packet);
30:     }
31:     catch (Exception e) {
32:       System.err.println("Exception: " + e);
33:       e.printStackTrace();
34:     }
35:   }
36: }

Analysis
The first thing the run method does is check to make sure the socket
is valid. If the socket is okay, run calls initFortunes to initialize
the array of fortune strings. You'll learn about the initFortunes
method in just a moment. Once the fortunes are initialized, run
enters an infinite while loop that waits for a client connection.
When a client connection is detected, a datagram packet is created
using a random fortune string. This packet is then sent to the client
through the socket.

Since you wouldn't want to have to recompile the server application every time you wanted to change the fortunes, the
fortunes are read from a text file. Each fortune is stored as a single line of text in the file Fortunes.txt. Following is a
listing of the Fortunes.txt file:

You can no more win a war than you can win an earthquake.

Day 26 -- Client/Server Networking in Java

file:///G|/ebooks/1575211831/ch26.htm (9 of 23) [11/06/2000 7:45:11 PM]



The highest result of education is tolerance.
The right to be let alone is indeed the beginning of all freedom.
When we lose the right to be different, we lost the right to be free.
The only vice that cannot be forgiven is hypocrisy.
We learn from history that we do not learn from history.
That which we call sin in others is experiment for us.
Few men have virtue to withstand the highest bidder.

The initFortunes method is responsible for reading the fortunes from this file and
storing them into an array that is more readily accessible. Listing 26.2 contains the source code for the initFortunes
method.

Listing 26.2. The initFortunes method.

 1: private boolean initFortunes() {
 2:   try {
 3:     File            inFile = new File("Fortunes.txt");
 4:     FileInputStream inStream = new FileInputStream(inFile);
 5:     byte[]          data = new byte[(int)inFile.length()];
 6: 
 7:     // Read the fortunes into a byte array
 8:     if (inStream.read(data) <= 0) {
 9:       System.err.println("Error: couldn't read fortunes");
10:       return false;
11:     }
12: 
13:     // See how many fortunes there are
14:     int numFortunes = 0;
15:     for (int i = 0; i < data.length; i++)
16:       if (data[i] == (byte)'\n')
17:         numFortunes++;
18:     fortunes = new String[numFortunes];
19: 
20:     // Parse the fortunes into an array of strings
21:     int start = 0, index = 0;
22:     for (int i = 0; i < data.length; i++)
23:       if (data[i] == (byte)'\n') {
24:         fortunes[index++] = new String(data, 0, start, i - start - 1);
25:         start = i + 1;
26:       }
27:   }
28:   catch (FileNotFoundException e) {
29:     System.err.println("Exception: couldn't find the fortune file");
30:     return false;
31:   }
32:   catch (IOException e) {
33:     System.err.println("Exception: I/O error trying to read fortunes");
34:     return false;
35:   }
36: 
37:   return true;
38: }

Analysis

Day 26 -- Client/Server Networking in Java

file:///G|/ebooks/1575211831/ch26.htm (10 of 23) [11/06/2000 7:45:11 PM]



The initFortunes method first creates a File object based on
the Fortunes.txt file, which is used to initialize a file input
stream. The File object is also used to determine the length of the
fortunes file. The length of the file is important because it is used to
create a byte array large enough to hold all the fortunes that are read.

initFortunes reads the fortunes from the text file with a simple call to the read method of the input stream. The
number of fortunes is then determined by counting the number of newline characters ('\n') in the fortune text. This works
because each fortune is separated by a newline character in the file. When the number of fortunes has been established, a
string array is created that is large enough to hold the fortunes. Using newline characters as separators, the fortune text is
then parsed and each fortune stored in the array of strings. The end result is an array of strings that is much more convenient
to access than attempting to read a file every time a client wants a fortune.

The last method in the FortuneServer class is main, which is the entry point of the server application:

public static void main(String[] args) {
  FortuneServer server = new FortuneServer();
  server.start();
}

As you can see, the main method is very simple; it creates a FortuneServer object and tells it to start running. That's it
for the server side of Fortune!

Implementing the Fortune Client Applet

You might have been surprised by the simplicity of the Fortune server code. If so, then you'll probably be even more
surprised by the client side of Fortune. The Fortune client class is simply called Fortune and is located on the CD-ROM
in the file Fortune.java. Following are the member variables defined in the Fortune class:

private static final int  PORTNUM = 1234;
private String            fortune;

The PORTNUM member should be very familiar to you. Notice that it is set to the same value as the PORTNUM variable
defined in FortuneServer. This is critical because the port number is what ties the two programs together. The
fortune member variable simply holds the current fortune being displayed.

Warning
It is very important that the port numbers for your client and server
match exactly, because the port number is how the client and server
are linked to each other.

The Fortune applet attempts to grab a fortune from the server as soon as it runs. This is accomplished in the init method,
whose code follows:

public void init() {
  fortune = getFortune();
  if (fortune == null)
    fortune = "Error: No fortunes found!";
}

The init method calls getFortune to get a fortune from the server. If the fortune is invalid, an error message is
displayed instead. The getFortune method handles the work of actually connecting to and getting a fortune from the
server. The code for getFortune is shown in Listing 26.3.

Listing 26.3. The getFortune method.

Day 26 -- Client/Server Networking in Java

file:///G|/ebooks/1575211831/ch26.htm (11 of 23) [11/06/2000 7:45:11 PM]



 1: private String getFortune() {
 2:   try {
 3:     DatagramSocket  socket;
 4:     DatagramPacket  packet;
 5:     byte[]          data = new byte[256];
 6: 
 7:     // Send a fortune request to the server
 8:     socket = new DatagramSocket();
 9:     packet = new DatagramPacket(data, data.length,
10:       InetAddress.getByName(getCodeBase().getHost()), PORTNUM);
11:     socket.send(packet);
12: 
13:     // Receive a fortune
14:     packet = new DatagramPacket(data, data.length);
15:     socket.receive(packet);
16:     fortune = new String(packet.getData(), 0);
17:     socket.close();
18:   }
19:   catch (UnknownHostException e) {
20:     System.err.println("Exception: host could not be found");
21:     return null;
22:   }
23:   catch (Exception e) {
24:     System.err.println("Exception: " + e);
25:     e.printStackTrace();
26:     return null;
27:   }
28:   return fortune;
29: }

Analysis
The getFortune method first creates a request packet and sends it
to the server. The contents of this packet are unimportant; the point is
to just make contact with the server. After sending the request packet,
getFortune creates a new packet and uses it to receive a fortune
from the server.

Because Fortune is an applet, the fortunes are displayed graphically via the paint method. Listing 26.4 contains the
paint method defined in the Fortune class.

Listing 26.4. The paint method.

 1: public void paint(Graphics g) {
 2:   // Draw the title and fortune text
 3:   Font        f1 = new Font("TimesRoman", Font.BOLD, 28),
 4:               f2 = new Font("Helvetica", Font.PLAIN, 16);
 5:   FontMetrics fm1 = g.getFontMetrics(f1),
 6:               fm2 = g.getFontMetrics(f2);
 7:   String      title = new String("Today's Fortune:");
 8:   g.setFont(f1);
 9:   g.drawString(title, (size().width - fm1.stringWidth(title)) / 2,
10:     ((size().height - fm1.getHeight()) / 2) + fm1.getAscent());

Day 26 -- Client/Server Networking in Java

file:///G|/ebooks/1575211831/ch26.htm (12 of 23) [11/06/2000 7:45:11 PM]



11:   g.setFont(f2);
12:   g.drawString(fortune, (size().width - fm2.stringWidth(fortune)) / 2,
13:     size().height - fm2.getHeight() - fm2.getAscent());
14: }

Analysis
The paint method may look a little complicated, but all it's doing is
performing some fancy centering and alignment so that the
positioning of the fortune looks good. The paint method also
displays the text Today's Fortune: just above the fortune.

The final aspect of the Fortune class that you haven't covered is how to get a new fortune when the user clicks the mouse
button. This is handled in the mouseDown method, whose code follows:

public boolean mouseDown(Event evt, int x, int y) {
  // Display a new fortune
  getFortune();
  repaint();
  return true;
}

Since getFortune already takes care of the details involved in getting a new fortune from the server, all the
mouseDown method has to do is call getFortune and update the screen with a call to repaint. That sums up the
client side of Fortune, which means you're probably ready to take it for a spin!

Running Fortune

As you already know, the Fortune example is composed of two parts: a client and a server. The Fortune server must be
running in order for the client to work. So to get things started, you must first run the server by using the Java interpreter
(java); you do this from a command line, like this:

java FortuneServer

The other half of Fortune is the client, which is an applet that runs from within a Java-compatible Web browser, like
Netscape Navigator or Microsoft Internet Explorer. After you have the server up and running, fire up a browser and load an
HTML document including the Fortune client applet. On the CD-ROM, this HTML document is called Example1.html,
in keeping with the standard JDK demo applets. After running the Fortune client applet, you should see something similar to
what's shown in Figure 26.4. You can click in the applet window to retrieve new fortunes.

Figure 26.4 : The Fortune client applet.

Note
This discussion on running the Fortune example assumes that you
either have access to a Web server or can simulate a network
connection on your local machine. Since my local Windows 95
system is not part of a physical network, I tested the programs by
simulating a network connection. I did this by changing the TCP/IP
configuration on my system so that it used a specific IP address (I just
made up an address). If you make this change to your network
configuration, you won't be able to access a real network using
TCP/IP until you set it back, so don't forget to restore things when
you're finished.

Day 26 -- Client/Server Networking in Java

file:///G|/ebooks/1575211831/ch26.htm (13 of 23) [11/06/2000 7:45:11 PM]



Trivia: A Stream Client and Server
The Fortune programs are a good example of how to use Java's datagram networking facilities. You will probably find,
however, that more networking problems require a stream approach. Since I wouldn't want to leave you feeling like half a
Java network programmer, let's look at an example that requires a stream socket approach.

The stream client/server example is called Trivia and consists of a server that asks trivia questions and a client that interacts
with the server by allowing the user to answer the questions. The Trivia example differs from the Fortune example in that
there is an ongoing two-way communication between the client and the server.

The Trivia example works like this: The server program waits patiently for a client to connect. When a client connects, the
server sends a question and waits for a response. On the other end, the client receives the question and prompts the user for
an answer. The user types in an answer that is sent back to the server. The server then checks to see if the answer is correct
and notifies the user. The server follows this up by asking the client if it wants another question. If so, the process repeats.

Designing Trivia

It's important to always perform a brief preliminary design before you start churning out code. With that in mind, let's take a
look at what is required of the Trivia server and client. On the server side, you need a program that monitors a particular port
on the host machine for client connections, just as you did in Fortune. When a client is detected, the server picks a random
question and sends it to the client over the specified port. The server then enters a wait state until it hears back from the
client. When it gets an answer back from the client, the server checks it and notifies the client whether it is correct or
incorrect. The server then asks the client if it wants another question, upon which it enters another wait state until the client
answers. Finally, the server either repeats the process by asking another question, or it terminates the connection with the
client. In summary, the server performs the following tasks:

Wait for a client to connect.1.  

Accept the client connection.2.  

Send a random question to the client.3.  

Wait for an answer from the client.4.  

Check the answer and notify the client.5.  

Ask the client if it wants another question.6.  

Wait for an answer from the client.7.  

Go back to step 3 if necessary.8.  

Unlike Fortune, the client side of the Trivia example is an application that runs from a command line. The client is
responsible for connecting to the server and waiting for a question. When it receives a question from the server, the client
displays it to the user and allows the user to type in an answer. This answer is sent back to the server, and the client again
waits for the server's response. The client displays the server's response to the user and allows the user to confirm whether
he wants another question. The client then sends the user's response to the server and exits if the user declined any more
questions. The client's primary tasks follow:

Connect to the server.1.  

Wait for a question to be sent.2.  

Display the question and input the user's answer.3.  

Send the answer to the server.4.  

Wait for a reply from the server.5.  

Display the server's reply and prompt the user to confirm another question.6.  

Send the user's reply to the server.7.  

Go back to step 2 if necessary.8.  

Day 26 -- Client/Server Networking in Java

file:///G|/ebooks/1575211831/ch26.htm (14 of 23) [11/06/2000 7:45:11 PM]



Implementing the Trivia Server

Like Fortune, the heart of the Trivia example lies in the server. The Trivia server program is called TriviaServer and is
located on the CD-ROM in the file TriviaServer.java. Following are the member variables defined in the
TriviaServer class:

private static final int PORTNUM = 1234;
private static final int WAITFORCLIENT = 0;
private static final int WAITFORANSWER = 1;
private static final int WAITFORCONFIRM = 2;
private String[] questions;
private String[] answers;
private ServerSocket serverSocket;
private int numQuestions;
private int num = 0;
private int state = WAITFORCLIENT;
private Random rand = new Random(System.currentTimeMillis());

The WAITFORCLIENT, WAITFORANSWER, and WAITFORCONFIRM members are all state constants that define different
states the server can be in. You'll see these constants in action in a moment. The questions and answers member
variables are string arrays used to store the questions and corresponding answers. The serverSocket member variable
keeps up with the server socket connection. numQuestions is used to store the total number of questions, while num is
the number of the current question being asked. The state member variable holds the current state of the server, as
defined by the three state constants (WAITFORCLIENT, WAITFORANSWER, and WAITFORCONFIRM). Finally, the rand
member variable is used to pick questions at random.

The TriviaServer constructor is very similar to FortuneServer's constructor, except that it creates a
ServerSocket rather than a DatagramSocket. Check it out:

public TriviaServer() {
  super("TriviaServer");
  try {
    serverSocket = new ServerSocket(PORTNUM);
    System.out.println("TriviaServer up and running...");
  }
  catch (IOException e) {
    System.err.println("Exception: couldn't create socket");
    System.exit(1);
  }
}

Also like Fortune, the run method in TriviaServer is where most of the action is. The source code for the run method
is shown in Listing 26.5.

Listing 26.5. The run method.

 1: public void run() {
 2:   Socket  clientSocket;
 3: 
 4:   // Initialize the arrays of questions and answers
 5:   if (!initQnA()) {
 6:     System.err.println("Error: couldn't initialize questions and answers");
 7:     return;
 8:   }
 9: 

Day 26 -- Client/Server Networking in Java

file:///G|/ebooks/1575211831/ch26.htm (15 of 23) [11/06/2000 7:45:11 PM]



10:   // Look for clients and ask trivia questions
11:   while (true) {
12:     // Wait for a client
13:     if (serverSocket == null)
14:       return;
15:     try {
16:       clientSocket = serverSocket.accept();
17:     }
18:     catch (IOException e) {
19:       System.err.println("Exception: couldn't connect to client socket");
20:       System.exit(1);
21:     }
22: 
23:     // Perform the question/answer processing
24:     try {
25:       DataInputStream is = new DataInputStream(new
26:         BufferedInputStream(clientSocket.getInputStream()));
27:       PrintStream os = new PrintStream(new
28:         BufferedOutputStream(clientSocket.getOutputStream()), false);
29:       String inLine, outLine;
30: 
31:       // Output server request
32:       outLine = processInput(null);
33:       os.println(outLine);
34:       os.flush();
35: 
36:       // Process and output user input
37:       while ((inLine = is.readLine()) != null) {
38:         outLine = processInput(inLine);
39:         os.println(outLine);
40:         os.flush();
41:         if (outLine.equals("Bye."))
42:           break;
43:       }
44: 
45:       // Cleanup
46:       os.close();
47:       is.close();
48:       clientSocket.close();
49:     }
50:     catch (Exception e) {
51:       System.err.println("Exception: " + e);
52:       e.printStackTrace();
53:     }
54:   }
55: }

Analysis

Day 26 -- Client/Server Networking in Java

file:///G|/ebooks/1575211831/ch26.htm (16 of 23) [11/06/2000 7:45:11 PM]



The run method first initializes the questions and answers by calling
initQnA. You'll learn about the initQnA method in a moment.
An infinite while loop is then entered that waits for a client
connection. When a client connects, the appropriate I/O streams are
created, and the communication is handled via the processInput
method. You'll learn about processInp ut next.
processInput continually processes client responses and handles
asking new questions until the client decides not to receive any more
questions. This is evidenced by the server sending the string
"Bye.". The run method then cleans up the streams and client
socket.

The processInput method keeps up with the server state and manages the logic of the whole question/answer process.
The source code for processInput is shown in Listing 26.6.

Listing 26.6. The processInput method.

 1: String processInput(String inStr) {
 2:   String outStr;
 3: 
 4:   switch (state) {
 5:   case WAITFORCLIENT:
 6:     // Ask a question
 7:     outStr = questions[num];
 8:     state = WAITFORANSWER;
 9:     break;
10: 
11:   case WAITFORANSWER:
12:     // Check the answer
13:     if (inStr.equalsIgnoreCase(answers[num]))
14:       outStr = "That's correct! Want another? (y/n)";
15:     else
16:       outStr = "Wrong, the correct answer is " + answers[num] +
17:         ". Want another? (y/n)";
18:     state = WAITFORCONFIRM;
19:     break;
20: 
21:   case WAITFORCONFIRM:
22:     // See if they want another question
23:     if (inStr.equalsIgnoreCase("y")) {
24:       num = Math.abs(rand.nextInt()) % questions.length;
25:       outStr = questions[num];
26:       state = WAITFORANSWER;
27:     }
28:     else {
29:       outStr = "Bye.";
30:       state = WAITFORCLIENT;
31:     }
32:     break;
33:   }
34:   return outStr;
35: }

Day 26 -- Client/Server Networking in Java

file:///G|/ebooks/1575211831/ch26.htm (17 of 23) [11/06/2000 7:45:11 PM]



Analysis
The first thing to note about the processInput method is the
outStr local variable. The value of this string is sent back to the
client in the run method when processInput returns. So keep an
eye on how processInput uses outStr to convey information
back to the client.

In FortuneServer, the state WAITFORCLIENT represents the server when it is idle and waiting for a client connection.
Understand that each case statement in processInput() represents the server leaving the given state. For example, the
WAITFORCLIENT case statement is entered when the server has just left the WAITFORCLIENT state. In other words, a
client has just connected to the server. When this occurs, the server sets the output string to the current question and sets the
state to WAITFORANSWER.

If the server is leaving the WAITFORANSWER state, it means that the client has responded with an answer.
processInput checks the client's answer against the correct answer and sets the output string accordingly. It then sets the
state to WAITFORCONFIRM.

The WAITFORCONFIRM state represents the server waiting for a confirmation answer from the client. In processInput,
the WAITFORCONFIRM case statement indicates that the server is leaving the state because the client has returned a
confirmation (yes or no). If the client answered yes with a y, processInput picks a new question and sets the state back
to WAITFORANSWER. Otherwise, the server tells the client Bye. and returns the state to WAITFORCLIENT to await a new
client connection.

Similar to Fortune, the questions and answers in Trivia are stored in a text file. This file is called QnA.txt and is organized
with questions and answers on alternating lines. By alternating, I mean that each question is followed by its answer on the
following line, which is in turn followed by the next question. Following is a partial listing of the QnA.txt file:

What caused the craters on the moon?
meteorites
How far away is the moon (in miles)?
239000
How far away is the sun (in millions of miles)?
93
Is the Earth a perfect spere?
no
What is the internal temperature of the Earth (in degrees F)?
9000

The initQnA method handles the work of reading the questions and answers from the text file and storing them in separate
string arrays. Listing 26.7 contains the source code for the initQnA method.

Listing 26.7. The initQnA method.

 1: private boolean initQnA() {
 2:   try {
 3:     File            inFile = new File("QnA.txt");
 4:     FileInputStream inStream = new FileInputStream(inFile);
 5:     byte[]          data = new byte[(int)inFile.length()];
 6: 
 7:     // Read the questions and answers into a byte array
 8:     if (inStream.read(data) <= 0) {
 9:       System.err.println("Error: couldn't read questions and answers");
10:       return false;
11:     }
12: 

Day 26 -- Client/Server Networking in Java

file:///G|/ebooks/1575211831/ch26.htm (18 of 23) [11/06/2000 7:45:11 PM]



13:     // See how many question/answer pairs there are
14:     for (int i = 0; i < data.length; i++)
15:       if (data[i] == (byte)'\n')
16:         numQuestions++;
17:     numQuestions /= 2;
18:     questions = new String[numQuestions];
19:     answers = new String[numQuestions];
20: 
21:     // Parse the questions and answers into arrays of strings
22:     int start = 0, index = 0;
23:     boolean isQ = true;
24:     for (int i = 0; i < data.length; i++)
25:       if (data[i] == (byte)'\n') {
26:         if (isQ) {
27:           questions[index] = new String(data, 0, start, i - start - 1);
28:           isQ = false;
29:         }
30:         else {
31:           answers[index] = new String(data, 0, start, i - start - 1);
32:           isQ = true;
33:           index++;
34:         }
35:         start = i + 1;
36:       }
37:   }
38:   catch (FileNotFoundException e) {
39:     System.err.println("Exception: couldn't find the fortune file");
40:     return false;
41:   }
42:   catch (IOException e) {
43:     System.err.println("Exception: I/O error trying to read questions");
44:     return false;
45:   }
46: 
47:   return true;
48: }

Analysis
The initQnA method is similar to the initFortunes method in
FortuneServer, except that in this case two arrays are being filled
with alternating strings. The two arrays are the question and answer
string arrays. Rather than repeat the earlier explanation for
initFortunes, I'll leave it up to you to compare and contrast the
differences between initFortunes and initQnA. You'll find
that the differences are very small and have to do with the fact that
you are now filling two arrays with alternating strings.

The only remaining method in TriviaServer is main, which follows:

public static void main(String[] args) {
  TriviaServer server = new TriviaServer();
  server.start();
}

Day 26 -- Client/Server Networking in Java

file:///G|/ebooks/1575211831/ch26.htm (19 of 23) [11/06/2000 7:45:11 PM]



Like the main method in FortuneServer, all this main method does is create the server object and get it started with a
call to the start method.

Implementing the Trivia Client Applet

Since the client side of the Trivia example requires the user to type in answers and receive responses back from the server, it
is more straightforward to implement as a command-line application. Sure, this may not be as cute as a graphical applet, but
it makes it very easy to see the communication events as they unfold. The client application is called Trivia and is located
on the CD-ROM in the file Trivia.java.

The only member defined in the Trivia class is PORTNUM, which defines the port number used by both the client and
server. There is also only one method defined in the Trivia class: main. The source code for the main method is shown
in Listing 26.8.

Listing 26.8. The main method.

 1: public static void main(String[] args) {
 2:   Socket          socket;
 3:   DataInputStream in;
 4:   PrintStream     out;
 5:   String          address;
 6: 
 7:   // Check the command-line args for the host address
 8:   if (args.length != 1) {
 9:     System.out.println("Usage: java Trivia <address>");
10:     return;
11:   }
12:   else
13:     address = args[0];
14: 
15:   // Initialize the socket and streams
16:   try {
17:     socket = new Socket(address, PORTNUM);
18:     in = new DataInputStream(socket.getInputStream());
19:     out = new PrintStream(socket.getOutputStream());
20:   }
21:   catch (IOException e) {
22:     System.err.println("Exception: couldn't create stream socket");
23:     System.exit(1);
24:   }
25: 
26:   // Process user input and server responses
27:   try {
28:     StringBuffer  str = new StringBuffer(128);
29:     String        inStr;
30:     int           c;
31: 
32:     while ((inStr = in.readLine()) != null) {
33:       System.out.println("Server: " + inStr);
34:       if (inStr.equals("Bye."))
35:         break;
36:       while ((c = System.in.read()) != '\n')
37:         str.append((char)c);
38:       System.out.println("Client: " + str);

Day 26 -- Client/Server Networking in Java

file:///G|/ebooks/1575211831/ch26.htm (20 of 23) [11/06/2000 7:45:11 PM]



39:       out.println(str.toString());
40:       out.flush();
41:       str.setLength(0);
42:     }
43: 
44:     // Cleanup
45:     out.close();
46:     in.close();
47:     socket.close();
48:   }
49:   catch (IOException e) {
50:     System.err.println("Exception: I/O error trying to talk to server");
51:   }
52: }

Analysis
The first interesting thing you might notice about the main method is
that it looks for a command-line argument. The command-line
argument required of the Trivia client is the address of the server,
such as thetribe.com. You may be wondering why the Fortune
client didn't require you to specify a server address. The reason is that
Java applets are accessed via Web pages, which are always associated
with a particular server. So Java applets are inherently tied to a server
and can therefore query the server for its address. This was
accomplished in the Fortune client by calling the getHost method.

With Java applications, you don't have this option because there is no inherent server associated with the application. So you
have to either hard-code the server address or ask for it as a command-line argument. I'm not very fond of hard-coding
because it requires you to recompile any time you want to change something. Hence the command-line argument!

If the server address command-line argument is valid (not null), the main method creates the necessary socket and I/O
streams. It then enters a while loop, where it processes information from the server and transmits user requests back to the
server. When the server quits sending information, the while loop falls through, and the main method cleans up the socket
and streams. And that's all there is to the Trivia client!

Running Trivia

Like Fortune, the Trivia server must be running in order for the client to work. To get things started, you must first run the
server by using the Java interpreter; this is done from a command line, like this:

java TriviaServer

The Trivia client is also run from a command line, but you must specify a server address as the only argument. Following is
an example of running the Trivia client and connecting to the server thetribe.com:

java Trivia "thetribe.com"

After running the Trivia client and answering a few questions, you should see output similar to this:

Server: Is the Galaxy rotating?
yes
Client: yes
Server: That's correct! Want another? (y/n)
y

Day 26 -- Client/Server Networking in Java

file:///G|/ebooks/1575211831/ch26.htm (21 of 23) [11/06/2000 7:45:11 PM]



Client: y
Server: Is the Earth a perfect sphere?
no
Client: no
Server: That's correct! Want another? (y/n)
y
Client: y
Server: What caused the craters on the moon?
asteroids
Client: asteroids
Server: Wrong, the correct answer is meteorites. Want another? (y/n)
n
Client: n
Server: Bye.

Summary
Today you have learned a wealth of information about client/server network programming in Java. You began the lesson by
learning some fundamental concepts about the Internet and how it is organized as a network. More specifically, you learned
about addresses, protocols, and ports, which all play a critical role in Internet communications. From there, you moved on to
learning about client/server computing and how Java supports the client/server model through two different types of sockets:
datagram sockets and stream sockets.

The last half of today's lesson led you through building two complete client/server programs. These two examples
demonstrate the differing approaches to client/server network programming afforded by the Java datagram and stream
socket classes. Both of these examples should serve as a solid basis for your own client/server projects.

If all the coding over the past few days has taken its toll on you, relax-tomorrow's lesson involves absolutely no
programming. Tomorrow's lesson covers the Java standard extension APIs, which are a new set of API extensions that
promise to add all kinds of neat features to Java. Aren't you excited?

Q&A

Q: Why is the client/server paradigm so important in Java network programming?
A: The client/server model was integrated into Java because it has proved time and again to be superior to other

networking approaches. By dividing the process of serving data from the process of viewing and working with data,
the client/server approach provides network developers with the freedom to implement a wide range of solutions to
common network problems.

Q: Why are datagram sockets less suitable for network communications than stream sockets?
A: The primary reason is speed, because you have no way of knowing when information transferred through a

datagram socket will reach its destination. Admittedly, you don't really know for sure when stream socket data will
get to its destination either, but you can rest assured it will be faster than with the datagram socket. Also, datagram
socket transfers have the additional complexity of your having to reorganize the incoming data, which is an
unnecessary and time-consuming annoyance except in very rare circumstances.

Q: How do I incorporate Fortune into a Web site?
A: Beyond simply including the client applet in an HTML document that is served up by your Web server, you must

also make sure that the Fortune server (FortuneServer) is running on the Web server machine. Without the
fortune server, the clients are worthless.

Q: How do I change the trivia questions and answers for Trivia?
A: You simply edit the QnA.txt text file and add as many questions and answers as you want. Just make sure that

each question and answer appears on its own line, and that each answer immediately follows its corresponding
question.

Day 26 -- Client/Server Networking in Java

file:///G|/ebooks/1575211831/ch26.htm (22 of 23) [11/06/2000 7:45:11 PM]



   

Day 26 -- Client/Server Networking in Java

file:///G|/ebooks/1575211831/ch26.htm (23 of 23) [11/06/2000 7:45:11 PM]



file:///G|/ebooks/1575211831/f26-1.gif

file:///G|/ebooks/1575211831/f26-1.gif [11/06/2000 7:45:12 PM]



file:///G|/ebooks/1575211831/f26-2.gif

file:///G|/ebooks/1575211831/f26-2.gif [11/06/2000 7:45:12 PM]



file:///G|/ebooks/1575211831/f26-3.gif

file:///G|/ebooks/1575211831/f26-3.gif [11/06/2000 7:45:12 PM]



file:///G|/ebooks/1575211831/f26-4.gif

file:///G|/ebooks/1575211831/f26-4.gif [11/06/2000 7:45:13 PM]



Day 25

Fun with Image Filters
by Michael Morrison

CONTENTS
The Basics of Color●   

Color Images in Java●   

Color Models

Direct Color Models❍   

Index Color Models❍   

●   

The Color Model Classes●   

Image Filters●   

The Image Filter Classes●   

Writing Your Own Image Filters

A Color Image Filter❍   

An Alpha Image Filter❍   

A Brightness Image Filter❍   

●   

Using Image Filters●   

Summary●   

Q&A●   

As you learned both yesterday and earlier in this book, Java provides lots of neat ways to work with
graphical images. One of Java's more interesting image-handling features is its support for image filters,
which allow you to alter the individual pixels of an image according to a particular algorithm. Image filters
can range from simple effects such as adjusting the brightness of an image to more advanced effects such as
embossing.

At the heart of Java's graphics and imaging are Java color models. Today's lesson begins by looking into
what a color model is, along with how color models affect image handling and Java graphics in general.
You'll then move on to learn about Java image filters and how they are used to manipulate graphical
images. Java provides a variety of image filter classes that interact together to form a framework for easily
filtering graphical images. You can extend the standard Java image filtering classes and build your own
image filters to perform just about any type of image processing you can imagine. You'll finish today's
lesson by implementing your own image filters.

So today's lesson covers the following primary topics:

Day 25 -- Fun with Image Filters

file:///G|/ebooks/1575211831/ch25.htm (1 of 16) [11/06/2000 7:45:16 PM]



The basics of color●   

Color models●   

Image filters●   

Writing your own image filters●   

I think you'll find that image filters are a very interesting and powerful feature of Java that haven't received
as much attention as they deserve. Granted, image filters don't share the wide applicability of some other
aspects of Java, but they can be fun to tinker with and will inevitably be useful in some specialized applets.

The Basics of Color
Everything graphical in Java, including image filters, begins with the concept of color. I know, you've
probably heard something about color before, but maybe not in the way I'm about to describe. You see,
when I talk about the notion of color, I mean a computer's notion of color. In other words, I want to briefly
take a look at how color is represented on a computer, since it will ultimately give you more insight into
how image filters work.

Since modern computer environments are highly graphical, it is imperative that computers know how to
process and display information in color. Although most computer operating systems have some degree of
platform-dependent handling of color, they all share a common approach to the general representation of
colors. Knowing that all data in a computer is ultimately stored in a binary form, it stands to reason that
physical colors are somehow mapped to binary values, or numbers, in the computer domain. The question
is, how are colors mapped to numbers?

One way to come up with numeric representations of colors would be to start at one end of the color
spectrum and assign a number to each color until you reach the other end. This approach solves the problem
of representing a color as a number, but it doesn't provide any way to handle the mixing of colors. As
anyone who has experienced the joy of Play-Doh can tell you, colors react in different ways when
combined with each other. The way colors mix to form other colors goes back to physics, which is a little
beyond this discussion. The point is that a computer color system needs to be able to handle mixing colors
with accurate, predictable results.

The best place to look for a solution to the color problem is a color computer monitor. A color monitor has
three electron guns: red, green, and blue. The output from these three guns converge on each pixel of the
screen, exciting phosphors to produce the appropriate color (see Figure 25.1). The combined intensities of
each gun determine the resulting pixel color. This convergence of different colors from the monitor guns is
very similar to the convergence of different colored Play-Doh. The primary difference is that monitors use
only these three colors (red, green, and blue) to come up with every possible color that can be represented
on a computer. (Actually, the biggest difference is that Play-Doh can't display high-resolution computer
graphics, but that's another discussion.)

Figure 25.1 : Electron guns in a color monitor converging to create a unique color.

Knowing that monitors form unique colors by using varying intensities of the colors red, green, and blue,
you might be thinking that a good solution to the color problem would be to provide an intensity value for
each of these primary colors. This is exactly how computers model color. Computers represent different
colors by combining the numeric intensities of the primary colors red, green, and blue. This color system is

Day 25 -- Fun with Image Filters

file:///G|/ebooks/1575211831/ch25.htm (2 of 16) [11/06/2000 7:45:16 PM]



known as RGB (red, green, blue) and is fully supported by Java.

New Term
RGB is the primary color system used by Java and stands for red,
green, blue.

Although RGB is the most popular computer color system in use, there are others. Another popular color
system is HSB, which stands for hue, saturation, brightness. In this system, colors are defined by varying
degrees of hue, saturation, and brightness. The HSB color system is also supported by Java.

Note
You already learned about Java's support for color on Day 9,
"Graphics, Fonts, and Color." Just so you won't think I'm repeating
what you've already learned, understand that this discussion of color
is meant to lay more complete groundwork for the advanced issues of
using color that are a big part of Java image filtering.

Color Images in Java
Bitmapped color images are composed of pixels that describe the colors at each location of an image. Each
pixel in an image has a specific color that is usually described using the RGB color system. Java provides
support for working with 32-bit images, which means that each pixel in an image is described using 32 bits.
The red, green, and blue components of a pixel's color are stored in these 32 bits, along with an alpha
component. The alpha component of a pixel refers to the transparency or opaqueness of the pixel.

New Term
A pixel is the smallest graphical component of an image and is
assigned a particular color.

New Term
The alpha component of a pixel refers to the transparency or
opaqueness of the pixel.

A 32-bit Java image pixel is therefore composed of red, green, blue, and alpha components. By default,
these four components are packed into a 32-bit pixel value, as shown in Figure 25.2. Notice that each
component is described by 8 bits (a byte), yielding possible values between 0 and 255 for each. These
components are packed into the 32-bit pixel value from high-order byte to low-order byte in the following
order: alpha, red, green, and blue. It is possible for the pixel components to be packed differently, but this is
the default pixel storage method used in Java.

Figure 25.2 : The four components of a pixel in a 32-bit Java image.

A color component value of 0 means the component is absent, and a value of 255 means it is maxed out. If
all three color components are 0, the resulting pixel color is black. Likewise, if all three components are
255, the color is white. If the red component is 255 and the others are 0, the resulting color is pure red.

The alpha component describes the transparency of a pixel, independent of the color components. An alpha
value of 0 means a pixel is completely transparent (invisible), and an alpha value of 255 means a pixel is

Day 25 -- Fun with Image Filters

file:///G|/ebooks/1575211831/ch25.htm (3 of 16) [11/06/2000 7:45:16 PM]



completely opaque. Values between 0 and 255 enable the background color to show through a pixel in
varying degrees.

The color components of a Java image are encapsulated in a simple class called Color. The Color class
is a member of the java.awt package and represents the three primary color components red, green, and
blue. This class is useful because it provides a clean abstraction for representing color, along with useful
methods for extracting and modifying the primary components. The Color class also contains predefined
constant members representing many popular colors.

Color Models
In Java, pixel colors are managed through color models. Java color models provide an important abstraction
that enables Java to work with images of different formats in a similar fashion. More specifically, a color
model is a Java object that provides methods for translating from pixel values to the corresponding red,
green, and blue color components of an image. At first, this may seem like a trivial chore, knowing that
pixel color components are packed neatly into a 32-bit value. However, there are different types of color
models reflecting different methods of maintaining pixel colors. The two types of color models supported
by Java are direct color models and index color models.

New Term
A color model is an abstraction that provides a means to convert pixel
color values to absolute colors.

Color models are used extensively in the internal implementations of the various Java image processing
classes. What does this mean to you, the ever-practical Java programmer? It means that by understanding
color models you know a great deal about the internal workings of color in the Java graphics system.
Without fully understanding color models and how they work, you would no doubt run into difficulties
when trying to work with the advanced graphics and image-processing classes provided by Java.

Direct Color Models

Direct color models are based on the earlier description of pixels, where each pixel contains specific color
and alpha components. Direct color models provide methods for translating these types of pixels into their
corresponding color and alpha components. Typically, direct color models extract the appropriate
components from the 32-bit pixel value using bit masks.

Technical Note
A bit mask is a binary code used to extract specific bits out of a
numeric value. The bits are extracted by bitwise ANDing the mask
with the value. Masks themselves are typically specified in
hexadecimal. For example, to mask out the low-order word of a
32-bit value, you use the mask 0x0000FFFF.

Day 25 -- Fun with Image Filters

file:///G|/ebooks/1575211831/ch25.htm (4 of 16) [11/06/2000 7:45:16 PM]



Index Color Models

Index color models work differently than direct color models. In fact, index color models work with pixels
containing completely different information than you've learned thus far. Pixels in an image using an index
color model don't contain the alpha and RGB components like the pixels used in a direct color model. An
index color model pixel contains an index into an array of fixed colors (see Figure 25.3). This array of
colors is called a color map.

Figure 25.3 : An index color model pixel and its associated color map.

New Term
A color map is a list of colors referenced by an image using an index
color model. Color maps are also sometimes referred to as palettes.

An example of an image that uses an index color model is a 256-color image. 256-color images use 8 bits to
describe each pixel, which doesn't leave much room for RGB components, let alone an alpha component.
Rather than try to cram these components into 8 bits, 256-color pixels store an 8-bit index into a color map.
The color map itself has 256 color entries that each contain RGB and alpha values describing a particular
color.

Index color models provide methods for resolving pixels containing color map indexes into alpha, red,
green, and blue components. Index color models handle looking up the index of a pixel in the color map and
extracting the appropriate components from the color entry.

The Color Model Classes
Java provides standard classes for working with color models in the java.awt.image package. At the
top of the hierarchy is the ColorModel class, which defines the core functionality required of all color
models. The ColorModel class is an abstract class containing the basic support required to translate pixel
values into alpha and color components. Two other classes are derived from ColorModel, representing
the two types of color models supported by Java: DirectColorModel and IndexColorModel.

The DirectColorModel class is derived from ColorModel and provides specific support for direct
color models. If you recall, pixels in a direct color model directly contain the alpha and color components in
each pixel value.

The IndexColorModel class is also derived from ColorModel and provides support for index color
models. Pixels in an index color model contain indexes into a fixed array of colors known as a color map, or
palette. Even though the color model classes are important in understanding the conceptual side of Java
graphics, you won't be using them directly when working with image filters, so there's no need to go into
any more detail with them here.

Image Filters
Now it's time to move into the meat of today's lesson: image filters. Image filtering is sometimes referred to
as image processing. Most popular graphical paint programs contain image-processing features, such as
sharpening or softening an image. Typically, image processing programs involve the usage of complex

Day 25 -- Fun with Image Filters

file:///G|/ebooks/1575211831/ch25.htm (5 of 16) [11/06/2000 7:45:16 PM]



libraries of routines for manipulating images. Java provides a simple yet powerful framework for
manipulating images. In Java, image processing objects are called image filters, and they serve as a way to
abstract the filtering of an image without worrying about the details associated with the source or
destination of the image data.

New Term
An image filter is an object that alters the individual pixels of an
image according to a particular algorithm.

A Java image filter can be thought of quite literally as a filter into which all the data for an image must enter
and exit on its way from a source to a destination. Take a look at Figure 25.4 to see how image data passes
through an image filter.

Figure 25.4 : Image data passing through an image filter.

While passing through an image filter, the individual pixels of an image can be altered in any way as
determined by the filter. By design, image filters are structured to be self-contained components. The image
filter model supported by Java is based on three logical components: an image producer, an image filter,
and an image consumer. The image producer makes the raw pixel data for an image available, the image
filter in turn filters this data, and the resulting filtered image data is passed on to the image consumer where
it has usually been requested. Figure 25.5 shows how these three components interact with each other.

Figure 25.5 : The relationship between an image producer, an image filter, and an image consumer.

New Term
An image producer is an abstract data source that makes available
raw pixel data for an image.

New Term
An image consumer is an abstract data destination that receives raw
pixel data from an image consumer.

Breaking down the process of filtering images into these three components provides a very powerful
object-oriented solution to a complex problem. Different types of image producers can be derived that are
able to retrieve image data from a variety of image sources. Likewise, this organization allows filters to
ignore the complexities associated with different image sources and focus on the details of manipulating the
individual pixels of an image.

The Image Filter Classes
Java's support for image filters is scattered across several classes and interfaces. You don't necessarily have
to understand all these classes in detail to work with image filters, but it is important that you understand
what functionality they provide and where they fit into the scheme of things. Following are the Java classes
and interfaces that provide support for image filtering:

ImageProducer●   

FilteredImageSource●   

MemoryImageSource●   

Day 25 -- Fun with Image Filters

file:///G|/ebooks/1575211831/ch25.htm (6 of 16) [11/06/2000 7:45:16 PM]



ImageConsumer●   

PixelGrabber●   

ImageFilter●   

RGBImageFilter●   

CropImageFilter●   

The ImageProducer interface describes the methods necessary to extract image pixel data from Image
objects. Classes implementing the ImageProducer interface provide implementations of these methods
specific to the image source they represent. For example, the MemoryImageSource class implements the
ImageProducer interface and produces image pixels from an array of pixel values stored in memory.

The FilteredImageSource class implements the ImageProducer interface and produces filtered
image data. The filtered image data produced is based on the image and the filter object passed in the
FilteredImageSource class's constructor. FilteredImageSource provides a very simple way to
apply image filters to Image objects.

The MemoryImageSource class implements the ImageProducer interface and produces image data
based on an array of pixels in memory. This is very useful in cases where you need to build an Image
object directly from data in memory.

The ImageConsumer interface describes methods necessary for an object to retrieve image data from an
image producer. Objects implementing the ImageConsumer interface are attached to an image producer
object when they are interested in its image data. The image producer object delivers the image data by
calling methods defined by the ImageConsumer interface.

The PixelGrabber class implements the ImageConsumer interface and provides a way of retrieving a
subset of the pixels in an image. A PixelGrabber object can be created based on either an Image
object or an object implementing the ImageProducer interface. The constructor for PixelGrabber
enables you to specify a rectangular section of the image data to be grabbed. This image data is then
delivered by the image producer to the PixelGrabber object.

The ImageFilter class provides the basic functionality of an image filter that operates on image data
being delivered from an image producer to an image consumer. ImageFilter objects are specifically
designed to be used in conjunction with FilteredImageSource objects. The ImageFilter class is
implemented as a null filter, which means that it passes image data unmodified. Nevertheless, it implements
the overhead for processing the data in an image. The only thing missing is the actual modification of the
pixel data, which is left up to derived filter classes. This is actually a very nice design because it enables
you to create new image filters by deriving from ImageFilter and overriding only a few methods.

The ImageFilter class operates on an image using the color model defined by the image producer. The
RGBImageFilter class, on the other hand, derives from ImageFilter and implements an image filter
specific to the default RGB color model. RGBImageFilter provides the overhead necessary to process
image data in a single method that converts pixels one at a time in the default RGB color model. This
processing takes place in the default RGB color model regardless of the color model used by the image
producer. Like ImageFilter, RGBImageFilter is meant to be used in conjunction with the
FilteredImageSource image producer.

The seemingly strange thing about RGBImageFilter is that it is an abstract class, so you can't instantiate
objects from it. It is abstract because of a single abstract method, filterRGB. The filterRGB method

Day 25 -- Fun with Image Filters

file:///G|/ebooks/1575211831/ch25.htm (7 of 16) [11/06/2000 7:45:16 PM]



is used to convert a single input pixel to a single output pixel in the default RGB color model. filterRGB
is the workhorse method that handles filtering the image data; each pixel in the image is sent through this
method for processing. To create your own RGB image filters, all you must do is derive from
RGBImageFilter and implement the filterRGB method. This is the technique you'll use a little later
today when you implement your own image filters.

The RGBImageFilter class contains a member variable that is very important in determining how it
processes image data: canFilterIndexColorModel. The canFilterIndexColorModel
member variable is a boolean that specifies whether the filterRGB method can be used to filter the color
map entries of an image using an index color model, rather than the individual pixels themselves. If this
member variable is false, each pixel in the image is processed, similar to if it was using a direct color
model.

The CropImageFilter class is derived from ImageFilter and provides a means of extracting a
rectangular region within an image. Like ImageFilter, the CropImageFilter class is designed to be
used with the FilteredImageSource image producer. You may be a little confused by
CropImageFilter because it sounds a lot like the PixelGrabber class mentioned earlier. It is
important to understand the differences between these two classes because they perform very different
functions.

First, remember that PixelGrabber implements the ImageConsumer interface, so it functions as an
image consumer. CropImageFilter, on the other hand, is an image filter. This means that
PixelGrabber is used as a destination for image data, where CropImageFilter is applied to image
data in transit. You use PixelGrabber to extract a region of an image to store in an array of pixels (the
destination). You use CropImageFilter to extract a region of an image that is sent along to its
destination (usually another Image object).

Writing Your Own Image Filters
Although the standard Java image filter classes are powerful as a framework, they aren't that exciting to
work with by themselves. Image filters don't really get interesting until you start implementing your own.
Fortunately, the Java classes make it very simple to write your own image filters.

All the image filters you'll develop in today's lesson are derived from RGBImageFilter, which enables
you to filter images through a single method, filterRGB. It really is as easy as deriving your class from
RGBImageFilter and implementing the filterRGB method. Let's give it a try!

A Color Image Filter

Probably the simplest image filter imaginable is one that filters out the individual color components (red,
green, and blue) of an image. The ColorFilter class does exactly that. Listing 25.1 contains the source
code for the ColorFilter class. It is located on the CD-ROM in the file ColorFilter.java.

Listing 25.1. The ColorFilter class.

 1: class ColorFilter extends RGBImageFilter {
 2:   boolean red, green, blue;

Day 25 -- Fun with Image Filters

file:///G|/ebooks/1575211831/ch25.htm (8 of 16) [11/06/2000 7:45:16 PM]



 3:   
 4:   public ColorFilter(boolean r, boolean g, boolean b) {
 5:     red = r;
 6:     green = g;
 7:     blue = b;
 8:     canFilterIndexColorModel = true;
 9:   }
10: 
11:   public int filterRGB(int x, int y, int rgb) {
12:     // Filter the colors
13:     int r = red ? 0: ((rgb >> 16) & 0xff);
14:     int g = green ? 0: ((rgb >> 8) & 0xff);
15:     int b = blue ? 0: ((rgb >> 0) & 0xff);
16: 
17:     // Return the result
18:     return (rgb & 0xff000000) | (r << 16) | (g << 8) | (b << 0);
19:   }
20: }

Analysis
The ColorFilter class is derived from RGBImageFilter and
contains three boolean member variables that determine which colors
are to be filtered out of the image. These member variables are set by
the parameters passed into the constructor. The member variable
inherited from
RGBImageFilter-canFilterIndexColorModel-is set to
true to indicate that the color map entries can be filtered using
filterRGB if the incoming image is using an index color model.

Beyond the constructor, ColorFilter implements only one method, filterRGB, which is the abstract
method defined in RGBImageFilter. filterRGB takes three parameters: the x and y position of the
pixel within the image and the 32-bit (integer) color value. The only parameter you are concerned with is
the color value, rgb.

Recalling that the default RGB color model places the red, green, and blue components in the lower 24 bits
of the 32-bit color value, it is easy to extract each one by shifting out of the rgb parameter. These
individual components are stored in the local variables r, g, and b. Notice, however, that each color
component is shifted only if it is not being filtered. For filtered colors, the color component is set to 0.

The new color components are then shifted back into a 32-bit color value and returned from filterRGB.
Notice that care is taken to ensure that the alpha component of the color value is not altered. The
0xff000000 mask takes care of this because the alpha component resides in the upper byte of the color
value.

Congratulations! You've written your first image filter! You have two more to go before you plug them all
into a test program.

Day 25 -- Fun with Image Filters

file:///G|/ebooks/1575211831/ch25.htm (9 of 16) [11/06/2000 7:45:16 PM]



An Alpha Image Filter

It isn't always apparent to programmers how the alpha value stored in the color value for each pixel affects
an image. Remember that the alpha component specifies the transparency or opaqueness of a pixel. By
altering the alpha values for an entire image, you can make it appear to fade in and out. This works because
the alpha values range from totally transparent (invisible) to totally opaque.

The AlphaFilter class filters the alpha components of an image according to the alpha level you supply
in its constructor. Listing 25.2 contains the source code for the AlphaFilter class. It is located on the
CD-ROM in the file AlphaFilter.java.

Listing 25.2. The AlphaFilter class.

 1: class AlphaFilter extends RGBImageFilter {
 2:   int alphaLevel;
 3: 
 4:   public AlphaFilter(int alpha) {
 5:     alphaLevel = alpha;
 6:     canFilterIndexColorModel = true;
 7:   }
 8: 
 9:   public int filterRGB(int x, int y, int rgb) {
10:     // Adjust the alpha value
11:     int alpha = (rgb >> 24) & 0xff;
12:     alpha = (alpha * alphaLevel) / 255;
13: 
14:     // Return the result
15:     return ((rgb & 0x00ffffff) | (alpha << 24));
16:   }
17: }

Analysis
The AlphaFilter class contains a single member variable,
alphaLevel, that keeps up with the alpha level to be applied to the
image. This member variable is initialized in the constructor, as is the
canFilterIndexModel member variable.

Similar to the ColorFilter class, the filterRGB method is the only other method implemented by
AlphaFilter. The alpha component of the pixel is first extracted by shifting it into a local variable,
alpha. This value is then scaled according to the alphaLevel member variable initialized in the
constructor. The purpose of the scaling is to alter the alpha value based on its current value. If you were to
set the alpha component to the alpha level, you wouldn't be taking into account the original alpha
component value.

The new alpha component is shifted back into the pixel color value and the result returned from
filterRGB. Notice that the red, green, and blue components are preserved by using the 0x00ffffff
mask.

Day 25 -- Fun with Image Filters

file:///G|/ebooks/1575211831/ch25.htm (10 of 16) [11/06/2000 7:45:16 PM]



A Brightness Image Filter

So far the image filters you've seen have been pretty simple. The last one you create is a little more
complex, but it acts as a more interesting filter. The BrightnessFilter class implements an image
filter that brightens or darkens an image based on a brightness percentage you provide in the constructor.
Listing 25.3 contains the source code for the BrightnessFilter class. It is located on the CD-ROM in
the file BrightnessFilter.java.

Listing 25.3. The BrightnessFilter class.

 1: class BrightnessFilter extends RGBImageFilter {
 2:   int brightness;
 3: 
 4:   public BrightnessFilter(int b) {
 5:     brightness = b;
 6:     canFilterIndexColorModel = true;
 7:   }
 8: 
 9:   public int filterRGB(int x, int y, int rgb) {
10:     // Get the individual colors
11:     int r = (rgb >> 16) & 0xff;
12:     int g = (rgb >> 8) & 0xff;
13:     int b = (rgb >> 0) & 0xff;
14: 
15:     // Calculate the brightness
16:     r += (brightness * r) / 100;
17:     g += (brightness * g) / 100;
18:     b += (brightness * b) / 100;
19: 
20:     // Check the boundaries
21:     r = Math.min(Math.max(0, r), 255);
22:     g = Math.min(Math.max(0, g), 255);
23:     b = Math.min(Math.max(0, b), 255);
24: 
25:     // Return the result
26:     return (rgb & 0xff000000) | (r << 16) | (g << 8) | (b << 0);
27:   }
28: }

Analysis

Day 25 -- Fun with Image Filters

file:///G|/ebooks/1575211831/ch25.htm (11 of 16) [11/06/2000 7:45:16 PM]



The BrightnessFilter class contains one member variable,
brightness, that keeps track of the percentage to alter the
brightness of the image. This member variable is set via the
constructor, along with the canFilterIndexModel member
variable. The brightness member variable can contain values in
the range -100 to 100. A value of -100 means the image is darkened
by 100 percent, and a value of 100 means the image is brightened by
100 percent. A value of 0 doesn't alter the brightness of the image at
all.

It should come as no surprise by now that filterRGB is the only other method implemented by
BrightnessFilter. In filterRGB, the individual color components are first extracted into the local
variables r, g, and b. The brightness effects are then calculated based on the brightness member
variable. The new color components are then checked against the 0 and 255 boundaries and modified if
necessary.

Finally, the new color components are shifted back into the pixel color value and returned from
filterRGB. Hey, it's not that complicated after all!

Using Image Filters
You put in the time writing some of your own image filters, but you have yet to enjoy the fruit of your
labors. It's time to plug the filters into a real Java applet and see how they work. Figure 25.6 shows the
FilterTest applet busily at work filtering an image of a pear, quite literally the fruit of your labors!

Figure 25.6 : The FilterTest applet.

The FilterTest applet uses all three filters you've written to enable you to filter an image of a pear. The
R, G, and B keys on the keyboard change the different colors filtered by the color filter. The left and right
arrow keys modify the alpha level for the alpha filter. The up and down arrow keys alter the brightness
percentage used by the brightness filter. Finally, the Home key restores the image to its unfiltered state.

Listing 25.4 contains the source code for the FilterTest applet. The complete source code and
executables for the FilterTest applet are located on the accompanying
CD-ROM.

Listing 25.4. The FilterTest applet.

 1: public class FilterTest extends Applet {
 2:   Image     src, dst;
 3:   boolean   red, green, blue;
 4:   final int alphaMax = 9;
 5:   int       alphaLevel = alphaMax;
 6:   int       brightness;
 7: 
 8:   public void init() {
 9:     src = getImage(getDocumentBase(), "Pear.gif");

Day 25 -- Fun with Image Filters

file:///G|/ebooks/1575211831/ch25.htm (12 of 16) [11/06/2000 7:45:16 PM]



10:     dst = src;
11:   }
12: 
13:   public void paint(Graphics g) {
14:     g.drawImage(dst, 0, 0, this);
15:   }
16: 
17:   public boolean keyDown(Event evt, int key) {
18:     switch (key) {
19:     case Event.HOME:
20:       red = false;
21:       green = false;
22:       blue = false;
23:       alphaLevel = alphaMax;
24:       brightness = 0;
25:       break;
26:     case Event.LEFT:
27:       if (--alphaLevel < 0)
28:         alphaLevel = 0;
29:       break;
30:     case Event.RIGHT:
31:       if (++alphaLevel > alphaMax)
32:         alphaLevel = alphaMax;
33:       break;
34:     case Event.UP:
35:       brightness = Math.min(brightness + 10, 100);
36:       break;
37:     case Event.DOWN:
38:       brightness = Math.max(-100, brightness - 10);
39:       break;
40:     case (int)'r':
41:     case (int)'R':
42:       red = !red;
43:       break;
44:     case (int)'g':
45:     case (int)'G':
46:       green = !green;
47:       break;
48:     case (int)'b':
49:     case (int)'B':
50:       blue = !blue;
51:       break;
52:     default:
53:       return false;
54:     }
55:     filterImage();
56:     return true;

Day 25 -- Fun with Image Filters

file:///G|/ebooks/1575211831/ch25.htm (13 of 16) [11/06/2000 7:45:16 PM]



57:   }
58: 
59:   void filterImage() {
60:     dst = src;
61:     
62:     // Apply the color filter
63:     dst = createImage(new FilteredImageSource(dst.getSource(),
64:       new ColorFilter(red, green, blue)));
65: 
66:     // Apply the alpha filter
67:     dst = createImage(new FilteredImageSource(dst.getSource(),
68:       new AlphaFilter((alphaLevel * 255) / alphaMax)));
69:     
70:     // Apply the brightness filter
71:     dst = createImage(new FilteredImageSource(dst.getSource(),
72:       new BrightnessFilter(brightness)));
73:     
74:     // Redraw the image
75:     repaint();
76:   }
77: }

Analysis
The FilterTest applet class contains member variables for
keeping up with the source and destination images, along with
member variables for maintaining the various filter parameters.

The first method implemented by FilterTest is init, which loads the image Pear.gif into the src
member variable. It also initializes the dst member variable to the same image. The paint method is
implemented next, and simply consists of a call to the drawImage method, which draws the destination
(filtered) Image object.

The keyDown method is implemented to handle keyboard events generated by the user. In this case, the
keys used to control the image filters are handled in the switch statement. The corresponding member
variables are altered according to the keys pressed. Notice the call to the filterImage near the end of
keyDown.

The filterImage method is where the actual filtering takes place; it applies each image filter to the
image. The dst member variable is first initialized with the src member variable to restore the destination
image to its original state. Each filter is then applied using a messy-looking call to createImage. The
only parameter to createImage is an ImageProducer object. In this case, you create a
FilteredImageSource object to pass into createImage. The constructor for
FilteredImageSource takes two parameters: an image producer and an image filter. The first
parameter is an ImageProducer object for the source image, which is obtained using the getSource
method for the image. The second parameter is an ImageFilter-derived object.

The color filter is first applied to the image by creating a ColorFilter object using the three boolean

Day 25 -- Fun with Image Filters

file:///G|/ebooks/1575211831/ch25.htm (14 of 16) [11/06/2000 7:45:16 PM]



color value member variables. The alpha filter is applied by creating an AlphaFilter object using the
alphaLevel member variable. Rather than allowing 255 different alpha levels, the alpha level is
normalized to provide only 10 different alpha levels. This is evident in the equation using alphaMax,
which is set to 9. Finally, the brightness filter is applied by creating a BrightnessFilter object and
passing in the brightness member variable.

Summary
Although the overall goal of today's lesson is to learn how to use image filters, you also covered a great deal
of related material along the way. You first learned about color in general and then about the heart of
advanced Java graphics: color models. With color models under your belt, you moved on to image filters.
You saw how the Java image filter classes provide a powerful framework for working with images without
worrying about unnecessary details. You finished up the lesson by writing three of your own image filters,
along with an applet that put them to work filtering a real image.

You're now well versed in one of the more advanced areas of Java graphics programming. Just in case
you're starting to burn out on all this graphics stuff, tomorrow's lesson shifts gears dramatically and
introduces you to client/server network programming in Java.

Q&A

Q: If Java colors are inherently 32 bit, how does Java display color on systems using less than 32
bits to represent color?

A: The reality is that there aren't a lot of computer systems out there equipped to fully support 32-bit
color. For example, most high-end pcs and Macintoshes only support 24-bit color. Additionally, the
average pc only supports 8-bit color. Java handles this internally by mapping 32-bit color values to
the underlying system as efficiently as possible, sometimes by using an index color model. In some
cases image quality will suffer because the full range of colors in the image can't be displayed.

Q: I still don't understand why there is an alpha component in Java colors. What's the deal?
A: Strictly speaking, all that is required of Java to support a wide range of colors are the three primary

color components: red, green, and blue. However, the alpha component adds the ability to alter the
opaqueness of a color, which makes it much easier to implement graphics effects that alter the
transparency properties of a color.

Q: Is there a situation in which I will ever need to implement my own color model?
A: I'm hesitant to say that you'll never need to implement your own color model, but let me say that

the situation in which you would need a custom color model is highly unlikely to occur. This is
because color models are mainly an internal abstraction used by the Java graphics system itself.

Q: I understand why image filters are useful, but what exactly is the importance of image
producers and consumers?

A: Image producers and consumers provide a clean abstraction for the source and destination of raw
image data. Without image producers and consumers, you would have to use a custom solution
each time you wanted to get data from or write data to an image. By having the source and
destination of image data clearly defined, more advanced graphics functions like image filters are
much easier to work with.

Day 25 -- Fun with Image Filters

file:///G|/ebooks/1575211831/ch25.htm (15 of 16) [11/06/2000 7:45:16 PM]



   

Day 25 -- Fun with Image Filters

file:///G|/ebooks/1575211831/ch25.htm (16 of 16) [11/06/2000 7:45:16 PM]



file:///G|/ebooks/1575211831/f25-1.gif

file:///G|/ebooks/1575211831/f25-1.gif [11/06/2000 7:45:16 PM]



Day 9

Graphics, Fonts, and Color
by Laura Lemay

CONTENTS
The Graphics Class

The Graphics Coordinate System❍   

●   

Drawing and Filling

Lines❍   

Rectangles❍   

Polygons❍   

Ovals❍   

Arcs❍   

A Simple Graphics Example❍   

Copying and Clearing❍   

●   

Text and Fonts

Creating Font Objects❍   

Drawing Characters and Strings❍   

Finding Out Information About a Font❍   

●   

Color

Using Color Objects❍   

Testing and Setting the Current Colors❍   

A Simple Color Example❍   

●   

Summary●   

Q&A●   

Knowing the basics of how applets work is only the first step. The next step is to become familiar with the
capabilities Java gives you for drawing to the screen, performing dynamic updating, managing mouse and keyboard
events, and creating user interface elements. You'll do all these things this week. You'll start today with how to draw
to the screen-that is, how to produce lines and shapes with the built-in graphics primitives, how to print text using
fonts, and how to use and modify color in your applets. Today you'll learn, specifically, the following:

How the graphics system works in Java: the Graphics class, the coordinate system used to draw to the
screen, and how applets paint and repaint

●   

How to use the Java graphics primitives, including drawing and filling lines, rectangles, ovals, and arcs●   

How to create and use fonts, including how to draw characters and strings and how to find out the metrics of a
given font for better layout

●   

Day 9 -- Graphics, Fonts, and Color

file:///G|/ebooks/1575211831/ch9.htm (1 of 17) [11/06/2000 7:45:20 PM]



All about color in Java, including the Color class and how to set the foreground (drawing) and background
color for your applet

●   

Note
Today and for the rest of this week, you'll get an introduction to many of the
classes that make up the Java class libraries, in particular the classes in the
java.awt package. Keep in mind, however, that I only have the space to
give you an introduction to these classes-there are many other capabilities
available to you in these classes that you can use in your own programs,
depending on what you're trying to accomplish. After you finish this book
(and perhaps after each of these lessons), you'll want to familiarize yourself
with the classes themselves and what they can do. Be sure to check out the
Java API documentation for more details; you can find that API
documentation on the Java Web site at
http://java.sun.com/products/JDK/1.0.2/api/packages.html.

The Graphics Class
With the basic graphics capabilities built into Java's class libraries, you can draw lines, shapes, characters, and
images to the screen inside your applet. Most of the graphics operations in Java are methods defined in the
Graphics class. You don't have to create an instance of Graphics in order to draw something in your applet; in
your applet's paint() method (which you learned about yesterday), you are given a Graphics object. By
drawing on that object, you draw onto your applet and the results appear onscreen.

The Graphics class is part of the java.awt package, so if your applet does any painting (as it usually will),
make sure you import that class at the beginning of your Java file:

import java.awt.Graphics;

public class MyClass extends java.applet.Applet {
...
}

The Graphics Coordinate System

To draw an object on the screen, you call one of the drawing methods available in the Graphics class. All the
drawing methods have arguments representing endpoints, corners, or starting locations of the object as values in the
applet's coordinate system-for example, a line starts at the point 10,10 and ends at the point 20,20.

Java's coordinate system has the origin (0,0) in the top-left corner. Positive x values are to the right and positive y
values are down. All pixel values are integers; there are no partial or fractional pixels. Figure 9.1 shows how you
might draw a simple square by using this coordinate system.

Figure 9.1 : The Java graphics coordinate system.

Java's coordinate system is different from that of many painting and layout programs, which have their x and y in
the bottom left. If you're not used to working with this upside-down graphics system, it may take some practice to
get familiar with it.

Day 9 -- Graphics, Fonts, and Color

file:///G|/ebooks/1575211831/ch9.htm (2 of 17) [11/06/2000 7:45:20 PM]

http://java.sun.com/products/JDK/1.0.2/api/packages.html


Drawing and Filling
The Graphics class provides a set of simple built-in graphics primitives for drawing, including lines, rectangles,
polygons, ovals, and arcs

.

Note
Bitmap images, such as GIF files, can also be drawn by using the
Graphics class. You'll learn about this tomorrow.

Lines

To draw straight lines, use the drawLine() method. drawLine() takes four arguments: the x and y coordinates
of the starting point and the x and y coordinates of the ending point. So, for example, the following MyLine class
draws a line from the point 25,25 to the point 75,75. Note that the drawLine() method is defined in the
Graphics class (as are all the other graphics methods you'll learn about today). Here we're using that method for
the current graphics context stored in the variable g:

import java.awt.Graphics;

public class MyLine extends java.applet.Applet {
    public void paint(Graphics g) {
        g.drawLine(25,25,75,75);
    }
}

Figure 9.2 shows how the simple MyLine class looks in a Java-enabled browser such as Netscape.

Figure 9.2 : Drawing lines.

Rectangles

The Java graphics primitives provide not just one, but three kinds of rectangles:

Plain rectangles●   

Rounded rectangles, which are rectangles with rounded corners●   

Three-dimensional rectangles, which are drawn with a shaded border●   

For each of these rectangles, you have two methods to choose from: one that draws the rectangle in outline form and
one that draws the rectangle filled with color.

To draw a plain rectangle, use either the drawRect() or fillRect() methods. Both take four arguments: the x
and y coordinates of the top-left corner of the rectangle, and the width and height of the rectangle to draw. For
example, the following class (MyRect) draws two squares: The left one is an outline and the right one is filled
(Figure 9.3 shows the result):

Figure 9.3 : Rectangles.

import java.awt.Graphics;

public class MyRect extends java.applet.Applet {

Day 9 -- Graphics, Fonts, and Color

file:///G|/ebooks/1575211831/ch9.htm (3 of 17) [11/06/2000 7:45:20 PM]



    public void paint(Graphics g) {
        g.drawRect(20,20,60,60);
        g.fillRect(120,20,60,60);
    }
}

Rounded rectangles are, as you might expect, rectangles with rounded corners. The drawRoundRect() and
fillRoundRect() methods to draw rounded rectangles are similar to regular rectangles except that rounded
rectangles have two extra arguments for the width and height of the angle of the corners. Those two arguments
determine how far along the edges of the rectangle the arc for the corner will start; the first for the angle along the
horizontal plane, the second for the vertical. Larger values for the angle width and height make the overall rectangle
more rounded; values equal to the width and height of the rectangle itself produce a circle. Figure 9.4 shows some
examples of rounded corners.

Figure 9.4 : Rounded corners.

The following is a paint() method inside a class called MyRRect that draws two rounded rectangles: one as an
outline with a rounded corner 10 pixels square; the other, filled, with a rounded corner 20 pixels square (Figure 9.5
shows the resulting squares):

Figure 9.5 : Rounded rectangles.

import java.awt.Graphics;

public class MyRRect extends java.applet.Applet {
    public void paint(Graphics g) {
        g.drawRoundRect(20,20,60,60,10,10);
        g.fillRoundRect(120,20,60,60,20,20);
    }
}

Finally, there are three-dimensional rectangles. These rectangles aren't really 3D; instead, they have a slight shadow
effect that makes them appear either raised or indented from the surface of the applet. Three-dimensional rectangles
have four arguments for the x and y of the start position and the width and height of the rectangle. The fifth
argument is a boolean indicating whether the 3D effect is to raise the rectangle (true) or indent it (false). As
with the other rectangles, there are also different methods for drawing and filling: draw3DRect() and
fill3DRect(). The following is a class called My3DRect, which produces two 3D squares-the left one raised,
the right one indented (Figure 9.6 shows the result):

Figure 9.6 : Three dimensional rectangles.

import java.awt.Graphics;

public class My3DRect extends java.applet.Applet {
    public void paint(Graphics g) {
        g.draw3DRect(20,20,60,60,true);
        g.draw3DRect(120,20,60,60,false);
    }
}

Note

Day 9 -- Graphics, Fonts, and Color

file:///G|/ebooks/1575211831/ch9.htm (4 of 17) [11/06/2000 7:45:20 PM]



The 3D rectangles in Figure 9.6 don't look very 3D, do they? In the
current version of the Java Developer's Kit, it is extremely difficult to
see the 3D effect on 3D rectangles, due to a very small line width. If
you are having troubles with 3D rectangles, this may be why.
Drawing 3D rectangles in any color other than black makes them
easier to see.

Polygons

Polygons are shapes with an unlimited number of sides. To draw a polygon, you need a set of x and y coordinates.
The polygon is then drawn as a set of straight lines from the first point to the second, the second to the third, and so
on.

As with rectangles, you can draw an outline or a filled polygon (using the drawPolygon() and
fillPolygon() methods, respectively). You also have a choice of how you want to indicate the list of
coordinates-either as arrays of x and y coordinates or as an instance of the Polygon class.

Using the first way of drawing polygons, the drawPolygon() and fillPolygon() methods take three
arguments:

An array of integers representing x coordinates●   

An array of integers representing y coordinates●   

An integer for the total number of points●   

The x and y arrays should, of course, have the same number of elements.

Here's an example of drawing a polygon's outline using this method (Figure 9.7 shows the result):

Figure 9.7 : A polygon.

import java.awt.Graphics;

public class MyPoly extends java.applet.Applet {
    public void paint(Graphics g) {
        int exes[] = { 39,94,97,142,53,58,26 };
        int whys[] = { 33,74,36,70,108,80,106 };
        int pts = exes.length;

        g.drawPolygon(exes,whys,pts);
    }
}

Note that Java does not automatically close the polygon; if you want to complete the shape, you have to include the
starting point of the polygon at the end of the array. Drawing a filled polygon, however, joins the starting and ending
points.

The second way of calling drawPolygon() and fillPolygon() is to use a Polygon object to store the
individual points of the polygon. The Polygon class is useful if you intend to add points to the polygon or if you're
building the polygon on-the-fly. Using the Polygon class, you can treat the polygon as an object rather than having
to deal with individual arrays.

To create a polygon object, you can either first create an empty polygon:

Day 9 -- Graphics, Fonts, and Color

file:///G|/ebooks/1575211831/ch9.htm (5 of 17) [11/06/2000 7:45:20 PM]



Polygon poly = new Polygon();

or create a polygon from a set of points using integer arrays, as in the previous example:

int exes[] = { 39,94,97,142,53,58,26 };
int whys[] = { 33,74,36,70,108,80,106 };
int pts = exes.length;
Polygon poly = new Polygon(exes,whys,pts);

Once you have a polygon object, you can add points to the polygon as you need to:

poly.addPoint(20,35);

Then, to draw the polygon, just use the polygon object as an argument to drawPolygon() or fillPolygon().
Here's that previous example, rewritten this time with a Polygon object. You'll also fill this polygon rather than
just drawing its outline (Figure 9.8 shows the output):

Figure 9.8 : Another polygon.

import java.awt.Graphics;

public class MyPoly2 extends java.applet.Applet {
    public void paint(Graphics g) {
        int exes[] = { 39,94,97,142,53,58,26 };
        int whys[] = { 33,74,36,70,108,80,106 };
        int pts = exes.length;
        Polygon poly = new Polygon(exes,whys,pts);
        g.fillPolygon(poly);
    }
}

Ovals

You use ovals to draw ellipses or circles. Ovals are just like rectangles with overly rounded corners. You draw them
using four arguments: the x and y of the top corner, and the width and height of the oval itself. Note that because
you're drawing an oval, the starting point is some distance to the left and up from the actual outline of the oval itself.
Again, if you think of it as a rectangle, it's easier to place.

As with the other drawing operations, the drawOval() method draws an outline of an oval, and the fillOval()
method draws a filled oval.

The following example draws two ovals-a circle and an ellipse (Figure 9.9 shows how these two ovals appear
onscreen):

Figure 9.9 : Ovals.

import java.awt.Graphics;

public class MyOval extends java.applet.Applet {
    public void paint(Graphics g) {
        g.drawOval(20,20,60,60);
        g.fillOval(120,20,100,60);

Day 9 -- Graphics, Fonts, and Color

file:///G|/ebooks/1575211831/ch9.htm (6 of 17) [11/06/2000 7:45:20 PM]



    }
}

Arcs

Of all the shapes you can construct using methods in the Graphics class, arcs are the most complex to construct,
which is why I saved them for last. An arc is a part of an oval; in fact, the easiest way to think of an arc is as a
section of a complete oval. Figure 9.10 shows some arcs.

Figure 9.10: Arcs.

The drawArc() method takes six arguments: the starting corner, the width and height, the angle at which to start
the arc, and the degrees to draw it before stopping. Once again, there is a drawArc method to draw the arc's outline
and the fillArc() method to fill the arc. Filled arcs are drawn as if they were sections of a pie; instead of joining
the two endpoints, both endpoints are joined to the center of the circle.

The important thing to understand about arcs is that you're actually formulating the arc as an oval and then drawing
only some of that. The starting corner and width and height are not the starting point and width and height of the
actual arc as drawn on the screen; they're the width and height of the full ellipse of which the arc is a part. Those first
points determine the size and shape of the arc; the last two arguments (for the degrees) determine the starting and
ending points.

Let's start with a simple arc, a C shape on a circle, as shown in Figure 9.11.

Figure 9.11: A C arc.

To construct the method to draw this arc, the first thing you do is think of it as a complete circle. Then you find the x
and y coordinates and the width and height of that circle. Those four values are the first four arguments to the
drawArc() or fillArc() methods. Figure 9.12 shows how to get those values from the arc.

Figure 9.12: Constructing a circular arc.

To get the last two arguments, think in degrees around the circle, going counterclockwise. Zero degrees is at 3
o'clock, 90 degrees is at 12 o'clock, 180 at 9 o'clock, and 270 at 6 o'clock. The start of the arc is the degree value of
the start of the arc. In this example, the starting point is the top of the C at 90 degrees; 90 is the fifth argument.

The sixth and last argument is another degree value indicating how far around the circle to sweep and the direction to
go in (it's not the ending degree angle, as you might think). In this case, because you're going halfway around the
circle, you're sweeping 180 degrees-and 180 is therefore the last argument in the arc. The important part is that
you're sweeping 180 degrees counterclockwise, which is in the positive direction in Java. If you are drawing a
backwards C, you sweep 180 degrees in the negative direction, and the last argument is -180. See Figure 9.13 for
the final illustration of how this works.

Figure 9.13: Arcs on circles.

Note
It doesn't matter which side of the arc you start with. Because the
shape of the arc has already been determined by the complete oval it's
a section of, starting at either endpoint will work.

Here's the code for this example; you'll draw an outline of the C and a filled C to its right, as shown in Figure 9.14:

Figure 9.14: Two circular arcs.

Day 9 -- Graphics, Fonts, and Color

file:///G|/ebooks/1575211831/ch9.htm (7 of 17) [11/06/2000 7:45:20 PM]



import java.awt.Graphics;

public class MyOval extends java.applet.Applet {
    public void paint(Graphics g) {
        g.drawArc(20,20,60,60,90,180);
        g.fillArc(120,20,60,60,90,180);
    }
}

Circles are an easy way to visualize arcs on circles; arcs on ellipses are slightly more difficult. Let's go through this
same process to draw the arc shown in Figure 9.15.

Figure 9.15: An elliptical arc.

Like the arc on the circle, this arc is a piece of a complete oval, in this case, an elliptical oval. By completing the
oval that this arc is a part of, you can get the starting points and the width and height arguments for the drawArc()
or fillArc() method (see Figure 9.16).

Figure 9.16: Arcs on ellipses.

Then all you need is to figure out the starting angle and the angle to sweep. This arc doesn't start on a nice boundary
such as 90 or 180 degrees, so you'll need some trial and error. This arc starts somewhere around 25 degrees, and then
sweeps clockwise about 130 degrees (see Figure 9.17).

Figure 9.17: Starting and ending points.

With all portions of the arc in place, you can write the code. Here's the Java code for this arc, both drawn and filled
(note in the filled case how filled arcs are drawn as if they were pie sections):

import java.awt.Graphics;

public class MyOval extends java.applet.Applet {
    public void paint(Graphics g) {
        g.drawArc(10,20,150,50,25,-130);
        g.fillArc(10,80,150,50,25,-130);
    }
}

Figure 9.18 shows the two elliptical arcs.

Figure 9.18: Two elliptical arcs.

To summarize, here are the steps to take to construct arcs in Java:

Think of the arc as a slice of a complete oval.1.  

Construct the full oval with the starting point and the width and height (it often helps to draw the full oval on
the screen to get an idea of the right positioning).

2.  

Determine the starting angle for the beginning of the arc.3.  

Determine how far to sweep the arc and in which direction (counterclockwise indicates positive values,
clockwise indicates negative).

4.  

Day 9 -- Graphics, Fonts, and Color

file:///G|/ebooks/1575211831/ch9.htm (8 of 17) [11/06/2000 7:45:20 PM]



A Simple Graphics Example

Here's an example of an applet that uses many of the built-in graphics primitives to draw a rudimentary shape. In this
case, it's a lamp with a spotted shade (or a sort of cubist mushroom, depending on your point of view). Listing 9.1
has the complete code for the lamp; Figure 9.19 shows the resulting applet.

Figure 9.19: The Lamp applet.

Listing 9.1. The Lamp class.

 1: import java.awt.*;
 2: 
 3: public class Lamp extends java.applet.Applet {
 4: 
 5:    public void paint(Graphics g) {
 6:        // the lamp platform
 7:        g.fillRect(0,250,290,290);
 8:
 9:        // the base of the lamp
10:        g.drawLine(125,250,125,160);
11:        g.drawLine(175,250,175,160);
12: 
13:        // the lamp shade, top and bottom edges
14:         g.drawArc(85,157,130,50,-65,312);
15:         g.drawArc(85,87,130,50,62,58);
16: 
17:         // lamp shade, sides
18:         g.drawLine(85,177,119,89);
19:         g.drawLine(215,177,181,89);
20: 
21:         // dots on the shade
22:         g.fillArc(78,120,40,40,63,-174);
23:         g.fillOval(120,96,40,40);
24:         g.fillArc(173,100,40,40,110,180);
25:    }
26: }

Copying and Clearing

Once you've drawn a few things on the screen, you may want to move them around or clear the entire applet. The
Graphics class provides methods for doing both these things.

The copyArea() method copies a rectangular area of the screen to another area of the screen. copyArea() takes
six arguments: the x and y of the top corner of the rectangle to copy, the width and the height of that rectangle, and
the distance in the x and y directions to which to copy it. For example, this line copies a square area 100 pixels on a
side 100 pixels directly to its right:

g.copyArea(0,0,100,100,100,0);

To clear a rectangular area, use the clearRect() method. clearRect(), which takes the same four arguments

Day 9 -- Graphics, Fonts, and Color

file:///G|/ebooks/1575211831/ch9.htm (9 of 17) [11/06/2000 7:45:20 PM]



as the drawRect() and fillRect() methods, fills the given rectangle with the current background color of the
applet (you'll learn how to set the current background color later today).

To clear the entire applet, you can use the size() method, which returns a Dimension object representing the
width and height of the applet. You can then get to the actual values for width and height by using the width and
height instance variables:

g.clearRect(0,0,size().width,size().height);

Text and Fonts
Using the Graphics class, you can also print text on the screen, in conjunction with the Font class (and,
sometimes, the FontMetrics class). The Font class represents a given font-its name, style, and point size-and
FontMetrics gives you information about that font (for example, the actual height or width of a given character)
so that you can precisely lay out text in your applet.

Note that the text here is drawn to the screen once and intended to stay there. You'll learn about entering text from
the keyboard later this week.

Creating Font Objects

To draw text to the screen, first you need to create an instance of the Font class. Font objects represent an
individual font-that is, its name, style (bold, italic), and point size. Font names are strings representing the family of
the font, for example, "TimesRoman", "Courier", or "Helvetica". Font styles are constants defined by the
Font class; you can get to them using class variables-for example, Font.PLAIN, Font.BOLD, or
Font.ITALIC. Finally, the point size is the size of the font, as defined by the font itself; the point size may or may
not be the height of the characters.

To create an individual font object, use these three arguments to the Font class's new constructor:

Font f = new Font("TimesRoman", Font.BOLD, 24);

This example creates a font object for the TimesRoman BOLD font, in 24 points. Note that like most Java classes,
you have to import the java.awt.Font class before you can use it.

Tip
Font styles are actually integer constants that can be added to create
combined styles; for example, Font.BOLD + Font.ITALIC
produces a font that is both bold and italic.

The fonts you have available to you in your applets depend on which fonts are installed on the system where the
applet is running. If you pick a font for your applet and that font isn't available on the current system, Java will
substitute a default font (usually Courier). You can get an array of the names of the current fonts available in the
system using this bit of code:

String[] fontslist = this.getToolkit().getFontList();

From this list, you can then often intelligently decide which fonts you want to use in your applet. For best results,
however, it's a good idea to stick with standard fonts such as "TimesRoman", "Helvetica", and "Courier".

Day 9 -- Graphics, Fonts, and Color

file:///G|/ebooks/1575211831/ch9.htm (10 of 17) [11/06/2000 7:45:20 PM]



Drawing Characters and Strings

With a font object in hand, you can draw text on the screen using the methods drawChars() and
drawString(). First, though, you need to set the current font to your font object using the setFont() method.

The current font is part of the graphics state that is kept track of by the Graphics object on which you're drawing.
Each time you draw a character or a string to the screen, Java draws that text in the current font. To change the font
of the text, therefore, first change the current font. The following paint() method creates a new font, sets the
current font to that font, and draws the string "This is a big font.", at the point 10,100:

public void paint(Graphics g) {
    Font f = new Font("TimesRoman", Font.PLAIN, 72);
    g.setFont(f);
    g.drawString("This is a big font.", 10, 100);
}

This should all look familiar to you; this is how the Hello World and Hello Again applets throughout this
book were produced.

The latter two arguments to drawString() determine the point where the string will start. The x value is the start
of the leftmost edge of the text; y is the baseline for the entire string.

Similar to drawString() is the drawChars() method that, instead of taking a string as an argument, takes an
array of characters. drawChars() has five arguments: the array of characters, an integer representing the first
character in the array to draw, another integer for the last character in the array to draw (all characters between the
first and last are drawn), and the x and y for the starting point. Most of the time, drawString() is more useful
than drawChars().

Listing 9.2 shows an applet that draws several lines of text in different fonts; Figure 9.20 shows the result.

Figure 9.20: The output of the ManyFonts applet.

Listing 9.2. Many different fonts.

 1: import java.awt.Font;
 2: import java.awt.Graphics;
 3:
 4: public class ManyFonts extends java.applet.Applet {
 5:
 6:    public void paint(Graphics g) {
 7:        Font f = new Font("TimesRoman", Font.PLAIN, 18);
 8:        Font fb = new Font("TimesRoman", Font.BOLD, 18);
 9:        Font fi = new Font("TimesRoman", Font.ITALIC, 18);
10:        Font fbi = new Font("TimesRoman", Font.BOLD + Font.ITALIC, 18);
11:
12:        g.setFont(f);
13:        g.drawString("This is a plain font", 10, 25);
14:        g.setFont(fb);
15:        g.drawString("This is a bold font", 10, 50);
16:        g.setFont(fi);
17:        g.drawString("This is an italic font", 10, 75);
18:        g.setFont(fbi);

Day 9 -- Graphics, Fonts, and Color

file:///G|/ebooks/1575211831/ch9.htm (11 of 17) [11/06/2000 7:45:20 PM]



19:        g.drawString("This is a bold italic font", 10, 100);
20:    }
21:
22: }

Finding Out Information About a Font

Sometimes you may want to make decisions in your Java program based on the qualities of the current font-for
example, its point size and the total height of its characters. You can find out some basic information about fonts and
font objects by using simple methods on Graphics and on the Font objects. Table 9.1 shows some of these
methods.

Table 9.1. Font methods.

Method Name In Object Action
getFont() Graphics Returns the current font object as previously set

by setFont()
getName() Font Returns the name of the font as a string
getSize() Font Returns the current font size (an integer)
getStyle() Font Returns the current style of the font (styles are

integer constants: 0 is plain, 1 is bold, 2 is
italic, 3 is bold italic)

isPlain() Font Returns true or false if the font's style is
plain

isBold() Font Returns true or false if the font's style is
bold

isItalic() Font Returns true or false if the font's style is
italic

For more detailed information about the qualities of the current font (for example, the length or height of given
characters), you need to work with font metrics. The FontMetrics class describes information specific to a given
font: the leading between lines, the height and width of each character, and so on. To work with these sorts of values,
you create a FontMetrics object based on the current font by using the applet method getFontMetrics():

Font f = new Font("TimesRoman", Font.BOLD, 36);
FontMetrics fmetrics = getFontMetrics(f);
g.setfont(f);

Table 9.2 shows some of the things you can find out using font metrics. All these methods should be called on a
FontMetrics object.

Table 9.2. Font metrics methods.

Method Name Action
stringWidth(string) Given a string, returns the full width of that string, in

pixels
charWidth(char) Given a character, returns the width of that character
getAscent() Returns the ascent of the font, that is, the distance

between the font's baseline and the top of the
characters

Day 9 -- Graphics, Fonts, and Color

file:///G|/ebooks/1575211831/ch9.htm (12 of 17) [11/06/2000 7:45:20 PM]



getDescent() Returns the descent of the font-that is, the distance
between the font's baseline and the bottoms of the
characters (for characters such as p and q that drop
below the baseline)

getLeading() Returns the leading for the font, that is, the spacing
between the descent of one line and the ascent of
another line

getHeight() Returns the total height of the font, which is the sum
of the ascent, descent, and leading value

As an example of the sorts of information you can use with font metrics, Listing 9.3 shows the Java code for an
applet that automatically centers a string horizontally and vertically inside an applet. The centering position is
different depending on the font and font size; by using font metrics to find out the actual size of a string, you can
draw the string in the appropriate place.

Figure 9.21 shows the result (which is less interesting than if you actually compile and experiment with various
applet and font sizes).

Figure 9.21: The centered text.

Listing 9.3. Centering a string.

 1: import java.awt.Font;
 2: import java.awt.Graphics;
 3: import java.awt.FontMetrics;
 4:
 5: public class Centered extends java.applet.Applet {
 6:
 7:    public void paint(Graphics g) {
 8:        Font f = new Font("TimesRoman", Font.PLAIN, 36);
 9:        FontMetrics fm = getFontMetrics(f);
10:        g.setFont(f);
11:
12:        String s = "This is how the world ends.";
13:        int xstart = (size().width - fm.stringWidth(s)) / 2;
14:        int ystart = size().height / 2;
15:
16:        g.drawString(s, xstart, ystart);
17:    }
18:}

Analysis
Note the size() method in lines 13 and 14, which returns the width
and height of the overall applet area as a Dimension object. You
can then get to the individual width and height using the width and
height instance variables of that Dimension, here by chaining the
method call and the variable name. Getting the current applet size in
this way is a better idea than hard coding the size of the applet into
your code; this code works equally well with an applet of any size.

Day 9 -- Graphics, Fonts, and Color

file:///G|/ebooks/1575211831/ch9.htm (13 of 17) [11/06/2000 7:45:20 PM]



Note also that the line of text, as shown in Figure 9.21, isn't precisely vertically centered in the applet bounding box.
This example centers the baseline of the text inside the applet; using the getAscent() and getDescent()
methods from the FontMetrics class (to get the number of pixels from the baseline to the top of the characters
and the number of pixels from the baseline to the bottom of the characters), you can figure out exactly the middle of
the line of text.

Color
Drawing black lines and text on a gray background is all very nice, but being able to use different colors is much
nicer. Java provides methods and behaviors for dealing with color in general through the Color class, and also
provides methods for setting the current foreground and background colors so that you can draw with the colors you
created.

Java's abstract color model uses 24-bit color, wherein a color is represented as a combination of red, green, and blue
values. Each component of the color can have a number between 0 and 255. 0,0,0 is black, 255,255,255 is
white, and Java can represent millions of colors between as well.

Java's abstract color model maps onto the color model of the platform Java is running on, which usually has only 256
or fewer colors from which to choose. If a requested color in a color object is not available for display, the resulting
color may be mapped to another or dithered, depending on how the browser viewing the color implemented it, and
depending on the platform on which you're running. In other words, although Java gives the capability of managing
millions of colors, very few may actually be available to you in real life.

Using Color Objects

To draw an object in a particular color, you must create an instance of the Color class to represent that color. The
Color class defines a set of standard color objects, stored in class variables, to quickly get a color object for some
of the more popular colors. For example, Color.red returns a Color object representing red (RGB values of
255, 0, and 0), Color.white returns a white color (RGB values of 255, 255, and 255), and so on. Table 9.3
shows the standard colors defined by variables in the Color class.

Table 9.3. Standard colors.

Color Name RGB Value
Color.white 255,255,255

Color.black 0,0,0

Color.lightGray 192,192,192

Color.gray 128,128,128

Color.darkGray 64,64,64

Color.red 255,0,0

Color.green 0,255,0

Color.blue 0,0,255

Color.yellow 255,255,0

Color.magenta 255,0,255

Color.cyan 0,255,255

Color.pink 255,175,175

Color.orange 255,200,0

If the color you want to draw in is not one of the standard Color objects, fear not. You can create a color object for

Day 9 -- Graphics, Fonts, and Color

file:///G|/ebooks/1575211831/ch9.htm (14 of 17) [11/06/2000 7:45:20 PM]



any combination of red, green, and blue, as long as you have the values of the color you want. Just create a new color
object:

Color c = new Color(140,140,140);

This line of Java code creates a color object representing a dark gray. You can use any combination of red, green,
and blue values to construct a color object.

Alternatively, you can create a color object using three floats from 0.0 to 1.0:

Color c = new Color(0.55,0.55,0.55);

Testing and Setting the Current Colors

To draw an object or text using a color object, you have to set the current color to be that color object, just as you
have to set the current font to the font in which you want to draw. Use the setColor() method (a method for
Graphics objects) to do this:

g.setColor(Color.green);

After you set the current color, all drawing operations will occur in that color.

In addition to setting the current color for the graphics context, you can also set the background and foreground
colors for the applet itself by using the setBackground() and setForeground() methods. Both of these
methods are defined in the java.awt.Component class, which Applet-and therefore your
classes-automatically inherits.

The setBackground() method sets the background color of the applet, which is usually a light gray (to match
the default background of the browser). It takes a single argument, a Color object:

setBackground(Color.white);

The setForeground() method also takes a single color as an argument, and it affects everything that has been
drawn on the applet, regardless of the color in which it has been drawn. You can use setForeground() to
change the color of everything in the applet at once, rather than having to redraw everything:

setForeground(Color.black);

In addition to the setColor(), setForeground(), and setBackground() methods, there are
corresponding get methods that enable you to retrieve the current graphics color, background, or foreground. Those
methods are getColor() (defined in Graphics objects), getForeground() (defined in Applet), and
getBackground() (also in Applet). You can use these methods to choose colors based on existing colors in the
applet:

setForeground(g.getColor());

A Simple Color Example

Listing 9.4 shows the code for an applet that fills the applet's drawing area with square boxes, each of which has a
randomly chosen color in it. It's written so that it can handle any size of applet and automatically fill the area with
the right number of boxes.

Day 9 -- Graphics, Fonts, and Color

file:///G|/ebooks/1575211831/ch9.htm (15 of 17) [11/06/2000 7:45:20 PM]



Listing 9.4. Random color boxes.

 1:  import java.awt.Graphics;
 2:  import java.awt.Color;
 3:
 4:  public class ColorBoxes extends java.applet.Applet {
 5:
 6:      public void paint(Graphics g) {
 7:          int rval, gval, bval;
 8:
 9:          for (int j = 30; j < (size().height -25); j += 30)
10:             for (int i = 5; i < (size().width -25); i += 30) {
11:                 rval = (int)Math.floor(Math.random() * 256);
12:                 gval = (int)Math.floor(Math.random() * 256);
13:                 bval = (int)Math.floor(Math.random() * 256);
14:
15:                 g.setColor(new Color(rval,gval,bval));
16:                 g.fillRect(i, j, 25, 25);
17:                 g.setColor(Color.black);
18:                 g.drawRect(i-1, j-1, 25, 25);
19:             }
20:     }
21: }

Analysis
The two for loops are the heart of this example; the first one draws
the rows, and the second draws the individual boxes within each row.
When a box is drawn, the random color is calculated first, and then
the box is drawn. A black outline is drawn around each box, because
some of them tend to blend into the background of the applet.

Because this paint method generates new colors each time the applet is painted, you can regenerate the colors by
moving the window around or by covering the applet's window with another one (or by reloading the page). Figure
9.22 shows the final applet (although given that this picture is black and white, you can't get the full effect of the
multicolored squares).

Figure 9.22: The random colors applet.

Summary
You present something on the screen by painting inside your applet: shapes, graphics, text, or images. Today you
have learned the basics of how to paint, including how to use the graphics primitives to draw rudimentary shapes,
how to use fonts and font metrics to draw text, and how to use Color objects to change the color of what you're
drawing on the screen. It's this foundation in painting that enables you to do animation inside an applet (which
basically involves just painting repeatedly to the screen) and to work with images. These are topics you'll learn about
tomorrow.

Day 9 -- Graphics, Fonts, and Color

file:///G|/ebooks/1575211831/ch9.htm (16 of 17) [11/06/2000 7:45:20 PM]



Q&A

Q: In all the examples you show, and in all the tests I've made, the graphics primitives, such as
drawLine() and drawRect(), produce lines that are one pixel wide. How can I draw thicker lines?

A: In the current state of the Java Graphics class, you can't; no methods exist for changing the default line
width. If you really need a thicker line, you have to draw multiple lines one pixel apart to produce that
effect.

Q: I want to draw a line of text with a boldface word in the middle. I understand that I need two font
objects-one for the regular font and one for the bold one-and that I'll need to reset the current font in
between. The problem is that drawString() requires an x and a y position for the start of each
string, and can't find anything that refers to "current point." How can I figure out where to start the
boldface word?

A: Java's text display capabilities are fairly primitive. There is no concept of the current point, so you'll have to
manually figure out where the end of one string was so that you can begin the next string. The
stringWidth() methods can help you with that, both to find out the width of the string you just drew
and to add the space after it.

Q: How do I use non-roman fonts such as kanji in Java?
A: Java's support for international fonts in the 1.0.2 version of the JDK is sketchy, beyond the encoding of the

raw characters as Unicode. Your best bet is to wait for the 1.1 version of the JDK, which will offer much
more flexibility in the way of Unicode character display, support for internationalization, and non-roman
fonts.

Q: I tried out the applet that draws boxes with random colors, but each time it draws, a lot of the boxes
are the same color. If the colors are truly random, why is it doing this?

A: Two reasons. The first is that the random number generator I used in that code (from the Math class) isn't a
very good random number generator; in fact, the documentation for that method says as much. For a better
random number generator, use the Random class from the java.util package.

 The second, more likely, reason is that there just aren't enough colors available in your browser or on your
system to draw all the colors that the applet is generating. If your system can't produce the wide range of
colors available using the Color class, or if the browser has allocated too many colors for other things, you
may end up with duplicate colors in the boxes, depending on how the browser and the system have been
written to handle that. Usually your applet won't use quite so many colors, so you won't run into this
problem quite so often.

Q: I have a tiled background on my Web page. I can create images with transparent backgrounds so that
the tiled page background shows through. Can I create transparent applets?

A: Not with the 1.02 JDK (and perhaps not with 1.1 either). For applets, your best bet is to use a plain-colored
background and set your applet's background to be that same color.

Another idea if you use a tile for the page background is to import that image and draw it as the background
for your applet (you'll learn about images tomorrow). However, using that mechanism, it is unlikely that the
edges of the tile will exactly match up. Unfortunately, there doesn't appear to be a good workaround for this
problem.

   

Day 9 -- Graphics, Fonts, and Color

file:///G|/ebooks/1575211831/ch9.htm (17 of 17) [11/06/2000 7:45:20 PM]



file:///G|/ebooks/1575211831/f9-1.gif

file:///G|/ebooks/1575211831/f9-1.gif [11/06/2000 7:45:21 PM]



file:///G|/ebooks/1575211831/f9-2.gif

file:///G|/ebooks/1575211831/f9-2.gif [11/06/2000 7:45:21 PM]



file:///G|/ebooks/1575211831/f9-3.gif

file:///G|/ebooks/1575211831/f9-3.gif [11/06/2000 7:45:21 PM]



file:///G|/ebooks/1575211831/f9-4.gif

file:///G|/ebooks/1575211831/f9-4.gif [11/06/2000 7:45:22 PM]



file:///G|/ebooks/1575211831/f9-5.gif

file:///G|/ebooks/1575211831/f9-5.gif [11/06/2000 7:45:22 PM]



file:///G|/ebooks/1575211831/f9-6.gif

file:///G|/ebooks/1575211831/f9-6.gif [11/06/2000 7:45:22 PM]



file:///G|/ebooks/1575211831/f9-7.gif

file:///G|/ebooks/1575211831/f9-7.gif [11/06/2000 7:45:23 PM]



file:///G|/ebooks/1575211831/f9-8.gif

file:///G|/ebooks/1575211831/f9-8.gif [11/06/2000 7:45:23 PM]



file:///G|/ebooks/1575211831/f9-9.gif

file:///G|/ebooks/1575211831/f9-9.gif [11/06/2000 7:45:23 PM]



file:///G|/ebooks/1575211831/f9-10.gif

file:///G|/ebooks/1575211831/f9-10.gif [11/06/2000 7:45:24 PM]



file:///G|/ebooks/1575211831/f9-11.gif

file:///G|/ebooks/1575211831/f9-11.gif [11/06/2000 7:45:24 PM]



file:///G|/ebooks/1575211831/f9-12.gif

file:///G|/ebooks/1575211831/f9-12.gif [11/06/2000 7:45:24 PM]



file:///G|/ebooks/1575211831/f9-13.gif

file:///G|/ebooks/1575211831/f9-13.gif [11/06/2000 7:45:25 PM]



file:///G|/ebooks/1575211831/f9-14.gif

file:///G|/ebooks/1575211831/f9-14.gif [11/06/2000 7:45:25 PM]



file:///G|/ebooks/1575211831/f9-15.gif

file:///G|/ebooks/1575211831/f9-15.gif [11/06/2000 7:45:25 PM]



file:///G|/ebooks/1575211831/f9-16.gif

file:///G|/ebooks/1575211831/f9-16.gif [11/06/2000 7:45:25 PM]



file:///G|/ebooks/1575211831/f9-17.gif

file:///G|/ebooks/1575211831/f9-17.gif [11/06/2000 7:45:25 PM]



file:///G|/ebooks/1575211831/f9-18.gif

file:///G|/ebooks/1575211831/f9-18.gif [11/06/2000 7:45:26 PM]



file:///G|/ebooks/1575211831/f9-19.gif

file:///G|/ebooks/1575211831/f9-19.gif [11/06/2000 7:45:26 PM]



file:///G|/ebooks/1575211831/f9-20.gif

file:///G|/ebooks/1575211831/f9-20.gif [11/06/2000 7:45:27 PM]



file:///G|/ebooks/1575211831/f9-21.gif

file:///G|/ebooks/1575211831/f9-21.gif [11/06/2000 7:45:27 PM]



file:///G|/ebooks/1575211831/f9-22.gif

file:///G|/ebooks/1575211831/f9-22.gif [11/06/2000 7:45:27 PM]



Day 8

Java Applet Basics
by Laura Lemay

CONTENTS
How Applets and Applications Are Different●   

Creating Applets

Major Applet Activities❍   

A Simple Applet❍   

●   

Including an Applet on a Web Page

The <APPLET> Tag❍   

Testing the Result❍   

Making Java Applets Available to the Web❍   

●   

More About the <APPLET> Tag

ALIGN❍   

HSPACE and VSPACE❍   

CODE and CODEBASE❍   

●   

Java Archives●   

Passing Parameters to Applets●   

Summary●   

Q&A●   

Much of Java's current popularity has come about because of Java-enabled World Wide Web browsers and their support
for applets-Java programs that run on Web pages and can be used to create dynamic, interactive Web sites. Applets, as
noted at the beginning of this book, are written in the Java language, and can be viewed in any browser that supports
Java, including Netscape's Navigator and Microsoft's Internet Explorer. Learning how to create applets is most likely the
reason you bought this book, so let's waste no more time.

Last week, you focused on learning about the Java language itself, and most of the little programs you created were Java
applications. This week, now that you have the basics down, you'll move on to creating and using applets, which includes
a discussion of many of the classes in the standard Java class library.

Today you'll start with the basics:

A small review of differences between Java applets and applications●   

Getting started with applets: the basics of how an applet works and how to create your own simple applets●   

Including an applet on a Web page by using the <APPLET> tag, including the various features of that tag●   

Passing parameters to applets●   

Day 8 -- Java Applet Basics

file:///G|/ebooks/1575211831/ch8.htm (1 of 17) [11/06/2000 7:45:31 PM]



How Applets and Applications Are Different
Although you explored the differences between Java applications and Java applets in the early part of this book, let's
review them.

In short, Java applications are standalone Java programs that can be run by using just the Java interpreter, for example,
from a command line. Most everything you've used up to this point in the book has been a Java application, albeit a
simple one.

Java applets, however, are run from inside a World Wide Web browser. A reference to an applet is embedded in a Web
page using a special HTML tag. When a reader, using a Java-enabled browser, loads a Web page with an applet in it, the
browser downloads that applet from a Web server and executes it on the local system (the one the browser is running on).
(The Java interpreter is built into the browser and runs the compiled Java class file from there.)

Because Java applets run inside a Java browser, they have access to the structure the browser provides: an existing
window, an event-handling and graphics context, and the surrounding user interface. Java applications can also create
this structure (allowing you to create graphical applications), but they don't require it (you'll learn how to create Java
applications that use applet-like graphics and user interface (UI) features on Day 14, "Windows, Networking, and Other
Tidbits").

Note that a single Java program can be written to operate as both a Java application and a Java applet. While you use
different procedures and rules to create applets and applications, none of those procedures or rules conflict with each
other. The features specific to applets are ignored when the program runs as an application, and vice versa. Keep this in
mind as you design your own applets and applications.

One final significant difference between Java applets and applications-probably the biggest difference-is the set of
restrictions placed on how applets can operate in the name of security. Given the fact that Java applets can be
downloaded from any site on the World Wide Web and run on a client's system, Java-enabled browsers and tools limit
what can be done to prevent a rogue applet from causing system damage or security breaches. Without these restrictions
in place, Java applets could be written to contain viruses or trojan horses (programs that seem friendly but do some sort
of damage to the system), or be used to compromise the security of the system that runs them. The restrictions on applets
include the following:

Applets can't read or write to the reader's file system, which means they cannot delete files or test to see what
programs you have installed on the hard drive.

●   

Applets can't communicate with any network server other than the one that had originally stored the applet, to
prevent the applet from attacking another system from the reader's system.

●   

Applets can't run any programs on the reader's system. For UNIX systems, this includes forking a process.●   

Applets can't load programs native to the local platform, including shared libraries such as DLLs.●   

All these rules are true for Java applets running Netscape Navigator or Microsoft Internet Explorer. Other Java-enabled
browsers or tools may allow you to configure the level of security you want-for example, the appletviewer tool in
the JDK allows you to set an access control list for which directories an applet can read or write. However, as an applet
developer, it's safe to assume that most of your audience is going to be viewing your applets in a browser that implements
the strictest rules for what an applet can do. Java applications have none of these restrictions.

Note
The security restrictions imposed on applets are sometimes called
"the sandbox" (as in applets are only allowed to play in the sandbox
and can go no further). Work is being done by Sun and by the Java
community to find ways for applets to be able to break out of the
sandbox, including digital signatures and encryption. On Day 21,
"Under the Hood," you'll learn more details on Java and applet
security.

Day 8 -- Java Applet Basics

file:///G|/ebooks/1575211831/ch8.htm (2 of 17) [11/06/2000 7:45:31 PM]



In addition to the applet restrictions listed, Java itself includes various forms of security and consistency checking in the
Java compiler and interpreter for all Java programs to prevent unorthodox use of the language (you'll learn more about
this on Day 21). This combination of restrictions and security features makes it more difficult for a rogue Java applet to
do damage to the client's system.

Note
These restrictions prevent all of the traditional ways of causing
damage to a client's system, but it's impossible to be absolutely sure
that a clever programmer cannot somehow work around these
restrictions, violate privacy, use CPU resources, or just plain be
annoying. Sun has asked the Net at large to try to break Java's
security and to create an applet that can work around the restrictions
imposed on it, and, in fact, several problems have been unearthed and
fixed, usually relating to loading classes and to connecting to
unauthorized sites. You'll learn about more issues in Java security on
Day 21.

Creating Applets
For the most part, all the Java programs you've created up to this point have been Java applications-simple programs with
a single main() method that create objects, set instance variables, and run methods. Today and in the next few days
you'll be creating applets exclusively, so you will need a good grasp of how an applet works, the sorts of features an
applet has, and where to start when you first create your own applets.

To create an applet, you create a subclass of the class Applet. The Applet class, part of the java.applet package,
provides much of the behavior your applet needs to work inside a Java-enabled browser. Applets also take strong
advantage of Java's Abstract Windowing Toolkit (awt), which provides behavior for creating graphical user interface
(GUI)-based applets and applications: drawing to the screen; creating windows, menu bars, buttons, check boxes, and
other UI elements; and managing user input such as mouse clicks and keypresses. The awt classes are part of the
java.awt package.

New Term
Java's Abstract Windowing Toolkit (awt) provides classes and
behavior for creating GUI-based applications in Java. Applets make
use of many of the capabilities in the awt.

Although your applet can have as many additional "helper" classes as it needs, it's the main applet class that triggers the
execution of the applet. That initial applet class always has a signature like this:

public class myClass extends java.applet.Applet {
    ...
}

Note the public keyword. Java requires that your applet subclass be declared public. Again, this is true only of your
main applet class; any helper classes you create do not necessarily need to be public. public, private, and other
forms of access control are described on Day 15, "Modifiers, Access Control, and Class Design."

When a Java-enabled browser encounters your applet in a Web page, it loads your initial applet class over the network, as
well as any other helper classes that first class uses, and runs the applet using the browser's built-in bytecode interpreter.
Unlike with applications, where Java calls the main() method directly on your initial class, when your applet is loaded,
Java creates an instance of the applet class, and a series of special applet methods are called on that instance. Different
applets that use the same class use different instances, so each one can behave differently from the other applets running
in the same browser.

Day 8 -- Java Applet Basics

file:///G|/ebooks/1575211831/ch8.htm (3 of 17) [11/06/2000 7:45:31 PM]



Major Applet Activities

To create a basic Java application, your class has to have one method, main(), with a specific signature. Then, when
your application runs, main() is found and executed, and from main() you can set up the behavior that your program
needs to run. Applets are similar but more complicated-and, in fact, applets don't need a main() method at all. Applets
have many different activities that correspond to various major events in the life cycle of the applet-for example,
initialization, painting, and mouse events. Each activity has a corresponding method, so when an event occurs, the
browser or other Java-enabled tool calls those specific methods.

The default implementations of these activity methods do nothing; to provide behavior for an event you must override the
appropriate method in your applet's subclass. You don't have to override all of them, of course; different applet behavior
requires different methods to be overridden.

You'll learn about the various important methods to override as the week progresses, but, for a general overview, here are
five of the most important methods in an applet's execution: initialization, starting, stopping, destroying, and painting.

Initialization

Initialization occurs when the applet is first loaded (or reloaded), similarly to the main() method in applications. The
initialization of an applet might include reading and parsing any parameters to the applet, creating any helper objects it
needs, setting up an initial state, or loading images or fonts. To provide behavior for the initialization of your applet,
override the init() method in your applet class:

public void init() {
    ...
}

Starting

After an applet is initialized, it is started. Starting is different from initialization because it can happen many different
times during an applet's lifetime, whereas initialization happens only once. Starting can also occur if the applet was
previously stopped. For example, an applet is stopped if the reader follows a link to a different page, and it is started
again when the reader returns to this page. To provide startup behavior for your applet, override the start() method:

public void start() {
    ...
}

Functionality that you put in the start() method might include creating and starting up a thread to control the applet,
sending the appropriate messages to helper objects, or in some way telling the applet to begin running. You'll learn more
about starting applets on Day 10, "Simple Animation and Threads."

Stopping

Stopping and starting go hand in hand. Stopping occurs when the reader leaves the page that contains a currently running
applet, or you can stop the applet yourself by calling stop(). By default, when the reader leaves a page, any threads the
applet had started will continue running. You'll learn more about threads on Day 10. By overriding stop(), you can
suspend execution of these threads and then restart them if the applet is viewed again:

public void stop() {
    ...
}

Day 8 -- Java Applet Basics

file:///G|/ebooks/1575211831/ch8.htm (4 of 17) [11/06/2000 7:45:31 PM]



Destroying

Destroying sounds more violent than it is. Destroying enables the applet to clean up after itself just before it is freed or
the browser exits-for example, to stop and remove any running threads, close any open network connections, or release
any other running objects. Generally, you won't want to override destroy() unless you have specific resources that
need to be released-for example, threads that the applet has created. To provide clean-up behavior for your applet,
override the destroy() method:

public void destroy() {
    ...
}

Technical Note
How is destroy() different from finalize(), which was
described on Day 7, "More About Methods"? First, destroy()
applies only to applets. finalize() is a more general-purpose way
for a single object of any type to clean up after itself.

Painting

Painting is how an applet actually draws something on the screen, be it text, a line, a colored background, or an image.
Painting can occur many thousands of times during an applet's life cycle (for example, after the applet is initialized, if the
browser is placed behind another window on the screen and then brought forward again, if the browser window is moved
to a different position on the screen, or perhaps repeatedly, in the case of animation). You override the paint() method
if your applet needs to have an actual appearance on the screen (that is, most of the time). The paint() method looks
like this:

public void paint(Graphics g) {
    ...
}

Note that unlike the other major methods in this section, paint() takes an argument, an instance of the class
Graphics. This object is created and passed to paint by the browser, so you don't have to worry about it. However,
you will have to make sure that the Graphics class (part of the java.awt package) gets imported into your applet
code, usually through an import statement at the top of your Java file:

import java.awt.Graphics;

A Simple Applet

Way back on Day 2, "Object-Oriented Programming and Java," you created a simple applet called
HelloAgainApplet (this was the one with the big red Hello Again). There, you created and used that applet as
an example of creating a subclass. Let's go over the code for that applet again, this time looking at it slightly differently
in light of the things you just learned about applets. Listing 8.1 shows the code for that applet.

Listing 8.1. The Hello Again applet.

 1:  import java.awt.Graphics;
 2:  import java.awt.Font;
 3:  import java.awt.Color;
 4:

Day 8 -- Java Applet Basics

file:///G|/ebooks/1575211831/ch8.htm (5 of 17) [11/06/2000 7:45:31 PM]



 5:  public class HelloAgainApplet extends java.applet.Applet {
 6:
 7:     Font f = new Font("TimesRoman", Font.BOLD, 36);
 8:
 9:     public void paint(Graphics g) {
10:        g.setFont(f);
11:        g.setColor(Color.red);
12:        g.drawString("Hello again!", 5, 40);
13:     }
14: }

Analysis
This applet implements the paint() method, one of the major
methods described in the previous section (actually, it overrides the
default implementation of paint(), which does nothing). Because
the applet doesn't actually do much (all it does is print a couple words
to the screen), and there's not really anything to initialize, you don't
need a start(), stop(), init(), or destroy() method.

The paint method is where the real work of this applet (what little work goes on) really occurs. The Graphics object
passed into the paint() method holds the graphics state for the applet-that is, the current features of the drawing
surface, such as foreground and background colors or clipping area. Lines 10 and 11 set up the font and color for this
graphics state (here, the font object held in the f instance variable, and a Color object representing the color red).

Line 12 draws the string "Hello Again!" by using the current font and color at the position 5, 40. Note that the 0
point for x, y is at the top left of the applet's drawing surface, with positive y moving downward, so 50 is actually at
the bottom of the applet. Figure 8.1 shows how the applet's bounding box and the string are drawn on the page.

Figure 8.1 : Drawing the applet.

If you've been following along with all the examples up to this point, you might notice that there appears to be something
missing in this class: a main() method. As mentioned in the section on the differences between applets and
applications, applets don't need a main() method. By implementing the right applet methods in your class (init(),
start(), stop(), paint(), and so on), your applet just seamlessly works without needing an explicit jumping-off
point.

Including an Applet on a Web Page
After you create a class or classes that contain your applet and compile them into class files as you would any other Java
program, you have to create a Web page that will hold that applet by using the HTML language. There is a special
HTML tag for including applets in Web pages; Java-enabled browsers use the information contained in that tag to locate
the compiled class files and execute the applet itself. In this section, you'll learn about how to put Java applets in a Web
page and how to serve those files to the Web at large.

Note
The following section assumes that you have at least a passing
understanding of writing HTML pages. If you need help in this area,
you may find the book Teach Yourself Web Publishing with HTML
in 14 Days useful. It is also from Sams.net and also by Laura Lemay,
the author of much of this book.

Day 8 -- Java Applet Basics

file:///G|/ebooks/1575211831/ch8.htm (6 of 17) [11/06/2000 7:45:31 PM]



The <APPLET> Tag

To include an applet on a Web page, use the <APPLET> tag. <APPLET> is a special extension to HTML for including
applets in Web pages. Listing 8.2 shows a very simple example of a Web page with an applet included in it.

Listing 8.2. A simple HTML page.

 1:  <HTML>
 2:  <HEAD>
 3:  <TITLE>This page has an applet on it</TITLE>
 4:  </HEAD>
 5:  <BODY>
 6:  <P>My second Java applet says:
 7:  <BR><APPLET CODE="HelloAgainApplet.class" WIDTH=200 HEIGHT=50>
 8:  Hello Again!
 9:  </APPLET>
10:  </BODY>
11:  </HTML>

Analysis
There are three things to note about the <APPLET> tag in this page:

The CODE attribute indicates the name of the class file that contains this applet, including the .class extension.
In this case, the class file must be in the same directory as this HTML file. To indicate applets are in a specific
directory, use CODEBASE, described later today.

●   

WIDTH and HEIGHT are required and are used to indicate the bounding box of the applet-that is, how big a box to
draw for the applet on the Web page. Be sure you set WIDTH and HEIGHT to be an appropriate size for the applet;
depending on the browser, if your applet draws outside the boundaries of the space you've given it, you may not be
able to see or get to those parts of the applet outside the bounding box.

●   

The text between the <APPLET> and </APPLET> tags is displayed by browsers that do not understand the
<APPLET> tag (which includes most browsers that are not Java aware). Because your page may be viewed in
many different kinds of browsers, it is a very good idea to include some sort of alternate text or HTML tags here so
that readers of your page who don't have Java will see something other than a blank line. For example, you might
show just an image or some other element. Here, you include a simple statement that says Hello Again!.

●   

Note that the <APPLET> tag, like the <IMG> tag itself, is not a paragraph, so it should be enclosed inside a more general
text tag, such as <P> or one of the heading tags (<H1>, <H2>, and so on).

Testing the Result

Now with a class file and an HTML file that refers to your applet, you should be able to load that HTML file into your
Java-enabled browser from your local disk (in Netscape, use Open File from the File menu; in Internet Explorer, use
Open from the File menu and then choose Browse to find the right file on your disk). The browser loads and parses your
HTML file, and then loads and executes your applet class.

If you don't have a Java-enabled browser, there are often tools that come with your development environment to help you
test applets. In the JDK, the appletviewer application will test your applets. You won't see the Web page the applet
is running on, but you can figure out if the applet is indeed running the way you expect it to.

Figure 8.2 shows the Hello Again applet running in Netscape.

Figure 8.2 : The Hello Again applet.

Day 8 -- Java Applet Basics

file:///G|/ebooks/1575211831/ch8.htm (7 of 17) [11/06/2000 7:45:31 PM]



Making Java Applets Available to the Web

After you have an applet and an HTML file, and you've verified that everything is working correctly on your local
system, the last step is to make that applet available to the World Wide Web at large so that anyone with a Java-enabled
browser can view that applet.

Java applets are served by a Web server the same way that HTML files, images, and other media are. You don't need
special server software to make Java applets available to the Web; you don't even need to configure your server to handle
Java files. If you have a Web server up and running, or space on a Web server available to you, all you have to do is
move your HTML and compiled class files to that server, as you would any other file.

If you don't have a Web server, you have to rent space on one or set one up yourself. (Web server setup and
administration, as well as other facets of Web publishing in general, are outside the scope of this book.)

More About the <APPLET> Tag
In its simplest form, by using CODE, WIDTH, and HEIGHT, the <APPLET> tag merely creates a space of the appropriate
size and then loads and runs the applet in that space. The <APPLET> tag, however, does include several attributes that
can help you better integrate your applet into the overall design of your Web page.

Note
The attributes available for the <APPLET> tag are almost identical to
those for the HTML <IMG> tag.

ALIGN

The ALIGN attribute defines how the applet will be aligned on the page. This attribute can have one of nine values:
LEFT, RIGHT, TOP, TEXTTOP, MIDDLE, ABSMIDDLE, BASELINE, BOTTOM, or ABSBOTTOM.

In the case of ALIGN=LEFT and ALIGN=RIGHT, the applet is placed at the left or right margin of the page,
respectively, and all text following that applet flows in the space to the right or left of that applet. The text will continue
to flow in that space until the end of the applet, or you can use a line break tag (<BR>) with the CLEAR attribute to start
the left line of text below that applet. The CLEAR attribute can have one of three values: CLEAR=LEFT starts the text at
the next clear left margin, CLEAR=RIGHT does the same for the right margin, and CLEAR=ALL starts the text at the next
line where both margins are clear.

Note
In Netscape Navigator for Windows, the use of the ALIGN attribute
prevents the applet from actually being loaded (this is a bug; it works
fine in the UNIX and Macintosh versions of Netscape, as well as in
Internet Explorer). If you're using alignment extensively in your Web
pages with applets, you might want to enclose them in tables and
align the tables themselves rather than use ALIGN.

For example, here's a snippet of HTML code that aligns an applet against the left margin, has some text flowing
alongside it, and then breaks at the end of the paragraph so that the next bit of text starts below the applet:

<P><APPLET CODE="HelloAgainApplet.class" WIDTH=200 HEIGHT=50
ALIGN=LEFT>Hello Again!</APPLET>
To the left of this paragraph is an applet. It's a
simple, unassuming applet, in which a small string is
printed in red type, set in 36 point Times bold.
<BR CLEAR=ALL>

Day 8 -- Java Applet Basics

file:///G|/ebooks/1575211831/ch8.htm (8 of 17) [11/06/2000 7:45:31 PM]



<P>In the next part of the page, we demonstrate how
under certain conditions, styrofoam peanuts can be
used as a healthy snack.

Figure 8.3 shows how this applet and the text surrounding it might appear in a Java-enabled browser (I've lightened the
default page background so you can see where the applet begins and the background ends).

Figure 8.3 : An applet aligned left.

For smaller applets, you might want to include your applet within a single line of text. To do this, there are seven values
for ALIGN that determine how the applet is vertically aligned with the text:

ALIGN=TEXTTOP aligns the top of the applet with the top of the tallest text in the line.●   

ALIGN=TOP aligns the applet with the topmost item in the line (which may be another applet, or an image, or the
top of the text).

●   

ALIGN=ABSMIDDLE aligns the middle of the applet with the middle of the largest item in the line.●   

ALIGN=MIDDLE aligns the middle of the applet with the middle of the baseline of the text.●   

ALIGN=BASELINE aligns the bottom of the applet with the baseline of the text. ALIGN=BASELINE is the same
as ALIGN=BOTTOM, but ALIGN=BASELINE is a more descriptive name.

●   

ALIGN=ABSBOTTOM aligns the bottom of the applet with the lowest item in the line (which may be the baseline
of the text or another applet or image).

●   

Figure 8.4 shows the various alignment options, where the line is an image and the arrow is a small applet.

Figure 8.4 : Applet alignment options.

HSPACE and VSPACE

The HSPACE and VSPACE attributes are used to set the amount of space, in pixels, between an applet and its surrounding
text. HSPACE controls the horizontal space (the space to the left and right of the applet). VSPACE controls the vertical
space (the space above and below). For example, here's that sample snippet of HTML with vertical space of 50 and
horizontal space of 10:

<P><APPLET CODE="HelloAgainApplet.class" WIDTH=300 HEIGHT=200
ALIGN=LEFT VSPACE=50 HSPACE=10>Hello Again!</APPLET>
To the left of this paragraph is an applet. Its a
simple, unassuming applet, in which a small string is
printed in red type, set in 36 point Times bold.
<BR CLEAR=ALL>
<P>In the next part of the page, we demonstrate how
under certain conditions, styrofoam peanuts can be
used as a healthy snack.

The result in a typical Java browser might look like that in Figure 8.5.

Figure 8.5 : Vertical and horizontal space.

CODE and CODEBASE

The final two attributes to note in <APPLET> are CODE and CODEBASE. Unlike the other attributes, neither of these has
anything to do with the applet's appearance on the page; these two refer to the actual location of the Java applet file so
that the Java-enabled browser can find it.

CODE is used to indicate the name of the class file that holds the current applet. If CODE is used alone in the <APPLET>

Day 8 -- Java Applet Basics

file:///G|/ebooks/1575211831/ch8.htm (9 of 17) [11/06/2000 7:45:31 PM]



tag, the class file is searched for in the same directory as the HTML file that references it. Note that class filenames used
in CODE have the .class extension; this is different from in the Java command-line interpreter, which doesn't use the
extension.

If you want to store your class files in a different directory on your Web server than that of your HTML files, you have to
tell the browser where to find those class files. To do this, you use CODEBASE. CODE contains only the name of the class
file; CODEBASE contains an alternate pathname (actually a URL or relative pathname) where classes are contained. For
example, if you store your class files in a directory called classes, which is in the same directory as your HTML files,
CODEBASE is the following:

<APPLET CODE="myclass.class" CODEBASE="classes"
    WIDTH=100 HEIGHT=100></APPLET>

If you store all your Java classes in some central location, you can also use a URL in CODEBASE:

<APPLET CODE="myclass.class" CODEBASE="http://myserver.com/javaclasses"
    WIDTH=100 HEIGHT=100></APPLET>

What if your class files are actually stored on an entirely different server altogether? You can use that URL in
CODEBASE as well:

<APPLET CODE="myclass.class" CODEBASE="http://www.joesserver.com/javaclasses"
    WIDTH=100 HEIGHT=100></APPLET>

Java Archives
Normally, using the standard way of indicating Java applets in Web pages, you use <APPLET> to point to the primary
applet class for your applet. Your Java-enabled browser will then download and run that applet. That applet may use
other classes or media files, all of which are also downloaded from the Web server as they are needed.

The problem with running applets in this way is that every single file an applet needs-be it another helper class, image,
audio file, text file, or anything else-is a separate connection the browser has to make to the server. Because there's a fair
amount of time needed just to make the connection itself, this can increase the amount of time it takes to download your
applet and everything it needs.

The solution to this problem is a Java archive. A Java archive is a collection of Java classes and other files contained in a
single file. By using a Java archive, the browser only makes one connection to the server, rather than several. By
reducing the number of files the browser has to load from the server, your applet can be downloaded and run that much
faster. Java archives may also be compressed, making the overall file size smaller and therefore faster to download as
well (although it may take some time on the browser side for the files to be decompressed before they can run).

Right now only Netscape supports the use of Java archives, and only for Java class files (not for media). Within
Netscape, you can use the ARchIVE attribute to indicate the name of the archive, like this:

<APPLET CODE="MyApplet.class" ARchIVE="appletstuff.zip" WIDTH=100 HEIGHT=100>
...
</APPLET>

The archive itself is an uncompressed zip file. Standard zip files, which use some form of compression to make the file
smaller, are not recognized. Also, helper classes may be contained inside or outside the zip file; Netscape will look in
either place.

The ARchIVE attribute is ignored by browsers or applet viewers that may run across this Web page. If you do use Java
archives for Netscape, it's a good idea to store both the archive and the individual files on your Web server so that all the

Day 8 -- Java Applet Basics

file:///G|/ebooks/1575211831/ch8.htm (10 of 17) [11/06/2000 7:45:31 PM]



Java-enabled browsers who visit your Web page can view your applet.

In addition to Netscape's simple archive scheme, Java 1.1 will include support for JAR files. JAR files are Java archives,
with or without compression, that can contain both classes and media. In addition, JAR files are platform independent,
and the tools to create them will be available on any platform that supports the JDK. JAR files and their individual
components can also be digitally signed, meaning that their creator can be reliably identified (a form of security). For
more information about JAR files, including the specifications for the actual file format, see the JDK 1.1 Preview Page at
http://java.sun.com/products/JDK/1.1/designspecs/.

Passing Parameters to Applets
With Java applications, you pass parameters to your main() routine by using arguments on the command line, or, for
Macintoshes, in the Java Runner's dialog box. You can then parse those arguments inside the body of your class, and the
application acts accordingly, based on the arguments it is given.

Applets, however, don't have a command line. How do you pass in different arguments to an applet? Applets can get
different input from the HTML file that contains the <APPLET> tag through the use of applet parameters. To set up and
handle parameters in an applet, you need two things:

A special parameter tag in the HTML file●   

Code in your applet to parse those parameters●   

Applet parameters come in two parts: a parameter name, which is simply a name you pick, and a value, which is the
actual value of that particular parameter. So, for example, you can indicate the color of text in an applet by using a
parameter with the name color and the value red. You can determine an animation's speed using a parameter with the
name speed and the value 5.

In the HTML file that contains the embedded applet, you indicate each parameter using the <PARAM> tag, which has two
attributes for the name and the value, called (surprisingly enough) NAME and VALUE. The <PARAM> tag goes inside the
opening and closing <APPLET> tags:

<APPLET CODE="MyApplet.class" WIDTH=100 HEIGHT=100>
<PARAM NAME=font VALUE="TimesRoman">
<PARAM NAME=size VALUE="36">
A Java applet appears here.</APPLET>

This particular example defines two parameters to the MyApplet applet: one whose name is font and whose value is
TimesRoman, and one whose name is size and whose value is 36.

Parameters are passed to your applet when it is loaded. In the init() method for your applet, you can then get hold of
those parameters by using the getParameter() method. getParameter() takes one argument-a string
representing the name of the parameter you're looking for-and returns a string containing the corresponding value of that
parameter. (Like arguments in Java applications, all the parameter values are strings.) To get the value of the font
parameter from the HTML file, you might have a line such as this in your init() method:

String theFontName = getParameter("font");

Note

Day 8 -- Java Applet Basics

file:///G|/ebooks/1575211831/ch8.htm (11 of 17) [11/06/2000 7:45:31 PM]

http://java.sun.com/products/JDK/1.1/designspecs/


The names of the parameters as specified in <PARAM> and the names
of the parameters in getParameter() must match identically,
including having the same case. In other words, <PARAM
NAME="name"> is different from <PARAM NAME="Name">. If
your parameters are not being properly passed to your applet, make
sure the parameter cases match.

Note that if a parameter you expect has not been specified in the HTML file, getParameter() returns null. Most
often, you will want to test for a null parameter in your Java code and supply a reasonable default:

if (theFontName == null)
    theFontName = "Courier"

Keep in mind that getParameter() returns strings-if you want a parameter to be some other object or type, you have
to convert it yourself. To parse the size parameter from that same HTML file and assign it to an integer variable called
theSize, you might use the following lines:

int theSize;
String s = getParameter("size");
if (s == null)
    theSize = 12;
else theSize = Integer.parseInt(s);

Get it? Not yet? Let's create an example of an applet that uses this technique. You'll modify the Hello Again applet so
that it says hello to a specific name, for example, "Hello Bill" or "Hello Alice". The name is passed into the
applet through an HTML parameter.

Let's start by copying the original HelloAgainApplet class and calling it MoreHelloAgain (see Listing 8.3).

Listing 8.3. The More Hello Again applet.

 1:import java.awt.Graphics;
 2:import java.awt.Font;
 3:import java.awt.Color;
 4:
 5:public class MoreHelloApplet extends java.applet.Applet {
 6:
 7:    Font f = new Font("TimesRoman", Font.BOLD, 36);
 8:
 9:    public void paint(Graphics g) {
10:        g.setFont(f);
11:        g.setColor(Color.red);
12:        g.drawString("Hello Again!", 5, 40);
13:    }
14:}

The first thing you need to add to this class is a place to hold the name of the person you're saying hello to. Because
you'll need that name throughout the applet, let's add an instance variable for the name, just after the variable for the font
in line 7:

String name;

To set a value for the name, you have to get that parameter from the HTML file. The best place to handle parameters to

Day 8 -- Java Applet Basics

file:///G|/ebooks/1575211831/ch8.htm (12 of 17) [11/06/2000 7:45:31 PM]



an applet is inside an init() method. The init() method is defined similarly to paint() (public, with no
arguments, and a return type of void). Make sure when you test for a parameter that you test for a value of null. The
default, in this case, if a name isn't indicated, is to say hello to "Laura". Add the init() method in between your
instance variable definitions and the definition for paint(), just before line 9:

public void init() {
    name = getParameter("name");
    if (name == null)
        name = "Laura";
}

Now that you have the name from the HTML parameters, you'll need to modify it so that it's a complete string-that is, to
tack the word Hello with a space onto the beginning, and an exclamation point onto the end. You could do this in the
paint() method just before printing the string to the screen, but that would mean creating a new string every time the
applet is painted. It would be much more efficient to do it just once, right after getting the name itself, in the init()
method. Add this line to the init() method just before the last brace:

name = "Hello " + name + "!";

And now, all that's left is to modify the paint() method to use the new name parameter. The original
drawString() method looked like this:

g.drawString("Hello Again!", 5, 40);

To draw the new string you have stored in the name instance variable, all you need to do is substitute that variable for
the literal string:

g.drawString(name, 5, 40);

Listing 8.4 shows the final result of the MoreHelloApplet class. Compile it so that you have a class file ready.

Listing 8.4. The MoreHelloApplet class.

 1:  import java.awt.Graphics;
 2:  import java.awt.Font;
 3:  import java.awt.Color;
 4:
 5:  public class MoreHelloApplet extends java.applet.Applet {
 6:
 7:     Font f = new Font("TimesRoman", Font.BOLD, 36);
 8:     String name;
 9:
10:     public void init() {
11:         name = getParameter("name");
12:         if (name == null)
13:             name = "Laura";
14:
15:         name = "Hello " + name + "!";
16:     }
17:
18:     public void paint(Graphics g) {
19:         g.setFont(f);
20:         g.setColor(Color.red);

Day 8 -- Java Applet Basics

file:///G|/ebooks/1575211831/ch8.htm (13 of 17) [11/06/2000 7:45:31 PM]



21:         g.drawString(name, 5, 40);
22:     }
23: }

Now let's create the HTML file that contains this applet. Listing 8.5 shows a new Web page for the
MoreHelloApplet applet.

Listing 8.5. The HTML file for the MoreHelloApplet applet.

 1:  <HTML>
 2:  <HEAD>
 3:  <TITLE>Hello!</TITLE>
 4:  </HEAD>
 5:  <BODY>
 6:  <P>
 7:  <APPLET CODE="MoreHelloApplet.class" WIDTH=200 HEIGHT=50>
 8:  <PARAM NAME=name VALUE="Bonzo">
 9:  Hello to whoever you are!
10: </APPLET>
11: </BODY>
12: </HTML>

Analysis
Note the <APPLET> tag, which points to the class file for the applet
and has the appropriate width and height (200 and 50). Just below it
(line 8) is the <PARAM> tag, which you use to pass in the value for
the name. Here, the NAME parameter is simply name, and the VALUE
is the string "Bonzo".

Loading up this HTML file in Netscape produces the result shown in Figure 8.6.

Figure 8.6 : The result of using MoreHelloApplet the first time.

Let's try a second example. Remember that in the code for MoreHelloApplet, if no name is specified in a parameter,
the default is the name Laura. Listing 8.6 creates an HTML file with no parameter tag for name.

Listing 8.6. Another HTML file for the MoreHelloApplet applet.

 1: <HTML>
 2: <HEAD>
 3: <TITLE>Hello!</TITLE>
 4: </HEAD>
 5: <BODY>
 6: <P>
 7: <APPLET CODE="MoreHelloApplet.class" WIDTH=200 HEIGHT=50>
 8: Hello to whoever you are!
 9: </APPLET>
10: </BODY>
11: </HTML>

Here, because no name was supplied, the applet uses the default, and the result is what you might expect (see Figure 8.7).

Day 8 -- Java Applet Basics

file:///G|/ebooks/1575211831/ch8.htm (14 of 17) [11/06/2000 7:45:31 PM]



Figure 8.7 : The result of using MoreHelloApplet the second time.

Summary
Applets are probably the most common use of the Java language today. Applets are more complicated than many Java
applications because they are executed and drawn inline within Web pages, but they can access the graphics, user
interface, and event structure provided by the Web browser itself. Today you learned the basics of creating applets,
including the following things:

All applets you develop using Java inherit from the Applet class, which is part of the java.applet package.
The Applet class provides basic behavior for how the applet will be integrated with and react to the browser and
various forms of input from that browser and the person running it. By subclassing Applet, you have access to all
that behavior.

●   

Applets have five main methods, which are used for the basic activities an applet performs during its life cycle:
init(), start(), stop(), destroy(), and paint(). Although you don't need to override all these
methods, these are the most common methods you'll see repeated in many of the applets you'll create in this book
and in other sample programs.

●   

To run a compiled applet class file, you include it in an HTML Web page by using the <APPLET> tag. When a
Java-capable browser comes across <APPLET>, it loads and runs the applet described in that tag. Note that to
publish Java applets on the World Wide Web alongside HTML files you do not need special server software; any
plain old Web server will do just fine.

●   

Unlike applications, applets do not have a command line on which to pass arguments, so those arguments must be
passed into the applet through the HTML file that contains it. You indicate parameters in an HTML file by using
the <PARAM> tag inside the opening and closing <APPLET> tags. <PARAM> has two attributes: NAME for the
name of the parameter, and VALUE for its value. Inside the body of your applet (usually in init()), you can then
gain access to those parameters using the getParameter() method.

●   

Q&A

Q: In the first part of today's lesson, you say that applets are downloaded from random Web servers and run
on the client's system. What's to stop an applet developer from creating an applet that deletes all the files
on that system, or in some other way compromises the security of the system?

A: Recall that Java applets have several restrictions that make it difficult for all of the more obvious malicious
behavior to take place. For example, because Java applets cannot read or write files on the client system, they
cannot delete files or read system files that might contain private information. Because they cannot run programs
on the client's system without your express permission, they cannot, for example, pretend to be you and run
system programs. Nor can they run so many programs that your system crashes.

In addition, Java's very architecture makes it difficult to circumvent these restrictions. The language itself, the
Java compiler, and the Java interpreter all have checks to make sure that no one has tried to sneak in bogus code
or play games with the system itself. You'll learn more about these checks at the end of this book.

Of course, no system can claim to be 100 percent secure, and the fact that Java applets are run on your system
should make you suspicious-see Day 21 for more on security.

Q: Wait a minute. If I can't read or write files or run programs on the system the applet is running on,
doesn't that mean I basically can't do anything other than simple animation and flashy graphics? How can
I save state in an applet? How can I create, say, a word processor or a spreadsheet as a Java applet?

Day 8 -- Java Applet Basics

file:///G|/ebooks/1575211831/ch8.htm (15 of 17) [11/06/2000 7:45:31 PM]



A: For everyone who doesn't believe that Java is secure enough, there is someone who believes that Java's security
restrictions are too severe for just these reasons. Yes, Java applets are limited because of the security restrictions.
But, given the possibility for abuse, I believe that it's better to err on the side of being more conservative as far as
security is concerned. Consider it a challenge.

Keep in mind, also, that Java applications have none of the restrictions that Java applets do, but because they are
also compiled to bytecode, they are portable across platforms. It may be that the thing you want to create would
make a much better application than an applet.

If the thing you want to create has to be an applet, the only solution you have for saving state or implementing
something like a word processor in a Java applet is to allow your readers to save the state back to your server.

Q: Will applets be like this forever-confined to the sandbox and unable to do anything other than whizzy
animation and simple toys?

A: Sun is working on future models for applet security that will allow applets to break out of the sandbox in some
instances. One of the solutions being discussed is for the applet class file to be digitally signed, which is a way to
identify without a doubt where an applet came from (for example, if an applet is signed by Sun, you can be sure
it was Sun that actually created it, and therefore trust it more than some other random applet need). You'll learn
more about applet security on Day 21.

Q: I have an older version of the HotJava browser. I followed all the examples in this section, but HotJava
cannot read my applets (it seems to ignore them). What's going on?

A: You most likely have an alpha version of HotJava. Recall that significant changes were made to the Java API
and how Java applets are written between alpha and the 1.0 release. The result of these changes is that browsers
that support alpha applets cannot read beta applets, and vice versa. The HTML tags are even different, so an
older browser just skips over newer applets, and vice versa.

By the time you read this, there may be a new version of HotJava with support for 1.0. If not, you can use
Netscape, Internet Explorer, or the JDK's appletviewer to view applets written to the beta specification.

Q: I noticed in my documentation that the <APPLET> tag also has a NAME attribute. You didn't discuss it
here.

A: NAME is used when you have multiple applets on a page that need to communicate with each other. You'll learn
about this on Day 12, "Managing Simple Events and Interactivity."

Q: Lots of the applet examples I've seen on the Web have an init() method that does nothing to call a
resize() method with the same values as in the <APPLET> tag's WIDTH and HEIGHT. I asked a friend
about that and he said that you have to have resize() in there to make sure the applet's the right size.
You don't mention resize().

A: The call to the resize() method in init() is left over from the early days of applets when you did need
resize() to set the initial size of the applet. These days only the WIDTH and HEIGHT attributes do that;
calling resize() isn't necessary.

Q: I have an applet that takes parameters and an HTML file that passes it those parameters. But when my
applet runs, all I get are null values. What's going on here?

A: Do the names of your parameters (in the NAME attribute) match exactly with the names you're testing for in
getParameter()? They must be exact, including case, for the match to be made. Make sure also that your
<PARAM> tags are inside the opening and closing <APPLET> tags, and that you haven't misspelled anything.

Q: Since applets don't have a command line or a stdout stream, how can you do simple debugging output
like System.out.println() in an applet?

A: You can. Depending on your browser or other Java-enabled environment, there may be a console window where
debugging output (the result of System.out.println()) appears, or it may be saved to a log file (Netscape
has a Java Console under the Options menu; Internet Explorer uses a Java log file that you must enable using
Options | Advanced). You can continue to print messages using System.out.println() in your
applets-just remember to remove them once you're done so they don't confuse your actual readers!

Day 8 -- Java Applet Basics

file:///G|/ebooks/1575211831/ch8.htm (16 of 17) [11/06/2000 7:45:31 PM]



   

Day 8 -- Java Applet Basics

file:///G|/ebooks/1575211831/ch8.htm (17 of 17) [11/06/2000 7:45:31 PM]



Day 14

Windows, Networking, and Other Tidbits
by Laura Lemay

CONTENETS
Windows, Menus, and Dialog Boxes

The awt Window Classes❍   

Frames❍   

Closing Windows❍   

Menus❍   

Dialog Boxes❍   

Cursors❍   

Window Events❍   

Standalone awt Applications❍   

●   

Networking in Java

Creating Links Inside Applets❍   

Opening Web Connections❍   

openStream()❍   

Sockets❍   

Changes to Sockets for Java 1.1❍   

●   

Other Applet Hints

The showStatus() Method❍   

Applet Information❍   

Communicating Between Applets❍   

●   

Summary●   

Q&A●   

Here you are on the last day of the second week, and you're just about finished with applets and the awt. With the
information you'll learn today you can create a wide variety of applets and applications using Java. Next week's lessons
provide more of the advanced stuff that you'll need if you start doing really serious work in Java.

Today, to finish up this week, we'll cover three very different topics:

Windows, menus, and dialog boxes-the last of the awt classes that enable you to pop up real windows and dialog
boxes from applets, to add menus to those windows, and to create standalone graphical Java applications that can
use all the awt features you've learned about this week.

●   

Networking-how to load new HTML files from a Java-enabled browser, how to retrieve files from Web sites, and
some basics on how to work with generic sockets in Java.

●   

Extra tidbits-the smaller stuff that didn't fit in anywhere else, but that might be useful to you as you write your Java
applets and applications.

●   

Day 14 -- Windows, Networking, and Other Tidbits

file:///G|/ebooks/1575211831/ch14.htm (1 of 24) [11/06/2000 7:45:35 PM]



Windows, Menus, and Dialog Boxes
Today you'll finish up the last bits of the awt that didn't fit into yesterday's lesson. In addition to all the graphics, events,
user interface, and layout mechanisms that the awt provides, it also provides windows, menus, and dialog boxes, enabling
to you create fully featured applications either as part of your applet or independently for standalone Java applications.

The awt Window Classes

The Java awt classes to produce windows and dialogs inherit from a single class: Window. The Window class, which
itself inherits from Container (and is therefore a standard awt component), provides generic behavior for all
window-like things. Generally you don't use instances of Window, however; you use instances of Frame or Dialog.
Figure 14.1 shows the simple Window class hierarchy.

Figure 14.1 : The Window class hierarchy.

The Frame class provides a window with a title bar, close boxes, and other platform-specific window features. Frames
also let you add menu bars. Dialog is a more limited form of Frame that typically doesn't have a title. FileDialog, a
subclass of Dialog, provides a standard file-picker dialog box (usually only usable from inside Java applications because
of security restrictions on applets).

When you want to add a new window or dialog to your applet or application, you'll create subclasses of the Frame and
Dialog classes.

Frames

Frames are windows that are independent of an applet and of the browser that contains it-they are separate windows with
their own titles, resize handles, close boxes, and menu bars. You can create frames for your own applets to produce
windows, or you can use frames in Java applications to hold the contents of that application.

A frame is a platform-specific window with a title, a menu bar, close boxes, resize handles, and other window features.

To create a frame, use one of the following constructors:

new Frame() creates a basic frame without a title.●   

new Frame(String) creates a basic frame with the given title.●   

Because frames inherit from Window, which inherits from Container, which inherits from Component, frames are
created and used much in the same way that other awt components are created and used. Frames are containers, just like
panels are, so you can add other components to them just as you would regular panels, using the add() method. The
default layout for frames is BorderLayout. Here's a single example that creates a frame, sets its layout, and adds two
buttons:

win = new Frame("My Cool Window");
win.setLayout(new BorderLayout(10, 20));
win.add("North", new Button("Start"));
win.add("Center", new Button("Move"));

To set a size for the new frame, use the resize() method with the width and height of the new frame. So, for example,
this line of code resizes the window to be 100 pixels wide and 200 pixels high:

win.resize(100, 200);

Note that because different systems have different ideas of what a pixel is and different resolutions for those pixels, it's
difficult to create a window that is the "right" size for every platform. Windows that work fine for one may be way too
large or too small for another. One way around this is to use the pack() method instead of resize(). The pack()

Day 14 -- Windows, Networking, and Other Tidbits

file:///G|/ebooks/1575211831/ch14.htm (2 of 24) [11/06/2000 7:45:35 PM]



method, which has no arguments, creates a window of the smallest possible size given the current sizes of all the
components inside that window and the layout manager and insets in use. Here's an example that creates two buttons, and
adds them to a window. The window will then be resized to the smallest possible window that can still hold those buttons:

win = new Frame("My Other Cool Window");
win.setLayout(new FlowLayout()));
win.add("North", new Button("OK"));
win.add("Center", new Button("Cancel"));
win.pack();

When you initially create a window, it's invisible. You need to use the show() method to make the window appear
onscreen (you can use hide() to hide it again):

win.show();

Note that when you pop up windows from inside applets, the browser may indicate in some way that the window is not a
regular browser window-usually with a warning in the window itself. In Netscape, there's a yellow bar at the bottom of
every window that says Untrusted Java Window. This warning is intended to let your users know that your window
comes from the applet and not from the browser itself (remember that the frame class produces windows that look just like
normal system windows). The warning is to prevent you from creating a malicious applet that might, for example, ask the
user for his password. There isn't anything you can do to avoid this warning; it's there to stay as long as you want to use
windows with applets.

Listings14.1 and 14.2 show examples of a simple applet with a pop-up window frame (both the applet and the window are
shown in Figure 14.2). The applet has two buttons: one to show the window, and one to hide the window. The frame itself,
created from a subclass I created called BaseFrame, contains a single label: This is a Window. You'll use this
basic window and applet all through this section, so the more you understand what's going on here the easier it will be
later.

Figure 14.2 : Windows.

Listing 14.1. A pop-up window.

 1:import java.awt.*;
 2:
 3:public class PopupWindow extends java.applet.Applet {
 4:    Frame window;
 5:
 6:    public void init() {
 7:      add(new Button("Open Window"));
 8:      add(new Button("Close Window"));
 9:
10:      window = new BaseFrame("A Popup Window");
11:      window.resize(150,150);
12:      window.show();
13:    }
14:
15:    public boolean action(Event evt, Object arg) {
16:       if (evt.target instanceof Button) {
17:          String label = (String)arg;
18:          if (label.equals("Open Window")) {
19:              if (!window.isShowing()) 
20:                  window.show();
21:          }

Day 14 -- Windows, Networking, and Other Tidbits

file:///G|/ebooks/1575211831/ch14.htm (3 of 24) [11/06/2000 7:45:35 PM]



22:          else if (label.equals("Close Window")) {
23:              if (window.isShowing())
24:                  window.hide();
25:          }
26:          return true;
27:       }  
28:       else return false;
29:    }
30:}

Listing 14.2. The BaseFrame class.

 1:import java.awt.*;
 2:
 3:class BaseFrame extends Frame {
 4:  String message = "This is a Window";
 5:
 6:  BaseFrame1(String title) {
 7:    super(title);
 8:    setFont(new Font("Helvetica", Font.BOLD, 12));
 9:  }
10:
11:  public void paint(Graphics g) {
12:     g.drawString(message, 20, 20);
13:  }
14:}

There are two classes that make up this example: The first, PopupWindow, is the applet class that creates and controls the
pop-up window. In the init() method for that class (lines 6 to 13), we added two control buttons to the applet to control
the window, and then created, resized, and showed the window itself.

The control in this applet occurs when one of the buttons is pressed. Here, the Open Window button simply shows the
window if it's hidden (lines 18 to 21), and hides it if it's showing (lines 22 to 25).

The window itself is a special kind of frame called BaseFrame. In this example, the frame is fairly simple; all it does is
paint a text message near the top of the frame. Because frames are components, just like other components, you could have
just as easily added a layout manager, buttons, text fields, and so on, to this frame.

Closing Windows

You may have noticed, if you started up that pop-up window applet to play with it, that the new window's close box
doesn't work. Nothing happens when you click the mouse on the box. To implement behavior for closing the window-for
pop-up windows as in applets to hide them, or to exit the application altogether for applications-you'll have to use a
handleEvent() method in your Frame class to test for the WINDOW_DESTROY event.

In the pop-up window example, choosing the close box should hide the window (call the hide() method). You can then
show it again using the Open Window button in the applet. This is a very simple fix; just add the following
handleEvent() to your BaseFrame1 class:

public boolean handleEvent(Event evt) {
   if (evt.id == Event.WINDOW_DESTROY) hide();
   return super.handleEvent(evt);
}

Day 14 -- Windows, Networking, and Other Tidbits

file:///G|/ebooks/1575211831/ch14.htm (4 of 24) [11/06/2000 7:45:35 PM]



Menus

Each new window you create can have its own menu bar along the top of that window. Each menu bar can have a number
of menus, and each menu, in turn, can have menu items. The awt provides classes for all these things called, respectively,
MenuBar, Menu, and MenuItem. Figure 14.3 shows the menu classes.

Figure 14.3 : The awt menu classes.

Note that you can have menu bars and individual menus in Java only on components that have title bars-frames in pop-up
windows from applets work just fine, as do Java application windows, but you cannot have a menu bar attached to an
applet itself.

Menus and Menu Bars

To create a menu bar for a given window, create a new instance of the class MenuBar:

MenuBar mbar = new MenuBar();

To set this menu bar as the default menu for the window, use the setMenuBar() method (defined in the Frame class):

window.setMenuBar(mbar);

Add individual menus (File, Edit, and so on) to the menu bar by creating them and then adding them to the menu bar using
add():

Menu myMenu = new Menu("File");
mbar.add(myMenu);

Some systems provide a special help menu, which is drawn on the right side of the menu bar as opposed to somewhere in
the middle. You can indicate that a specific menu is the help menu with the setHelpMenu() method. The given menu
should already be added to the menu itself before being made a help menu:

Menu helpmenu = new Menu("Help");
mbar.add(helpmenu);
mbar.setHelpMenu(helpmenu);

If, for any reason, you want to prevent a user from selecting a menu, you can use the disable() command on that menu
(and the enable() command to make it available again):

myMenu.disable();

Menu Items

There are four kinds of items you can add to individual menus:

Instances of the class MenuItem, for regular menu items●   

Instances of the class CheckBoxMenuItem, for toggled menu items●   

Other menus, with their own menu items●   

Separators, for lines that separate groups of items on menus●   

Regular menu items are added by using the MenuItem class. Add them to a menu using the add() method:

Menu myMenu = new Menu("Tools");
myMenu.add(new MenuItem("Info"));

Day 14 -- Windows, Networking, and Other Tidbits

file:///G|/ebooks/1575211831/ch14.htm (5 of 24) [11/06/2000 7:45:35 PM]



myMenu.add(new MenuItem("Colors"));

Submenus can be added simply by creating a new instance of Menu and adding it to the first menu. You can then add
items to that menu:

Menu submenu = new Menu("Sizes");
myMenu.add(submenu);
submenu.add(new MenuItem("Small"));
submenu.add(new MenuItem("Medium"));
submenu.add(new MenuItem("Large"));

The CheckBoxMenuItem class creates a menu item with a check box on it, enabling the menu state to be toggled on and
off (selecting it once makes the check box appear selected; selecting it again unselects the check box). Create and add a
check box menu item the same way you create and add regular menu items:

CheckboxMenuItem coords =
    new CheckboxMenuItem("Show Coordinates");
myMenu.add(coords);

Finally, to add a separator to a menu (a line used to separate groups of items in a menu), create and add a menu item with a
single dash (-) as the label. That special menu item will be drawn with a separator line. These next two lines of Java code
create a separator menu item and add it to the menu myMenu:

MenuItem msep = new MenuItem("-");
myMenu.add(msep);

Any menu item can be disabled by using the disable() method and enabled again using enable(). Disabled menu
items cannot be selected:

MenuItem item = new MenuItem("Fill");
myMenu.addItem(item);
item.disable();

You'll add a typical menu and menu bar to the pop-up window applet in a bit; but first let's learn about how to activate
menu items when they're selected.

Menu Actions

The act of selecting a menu item causes an action event to be generated. You can handle that action the same way you
handle other action methods-by overriding action(). Both regular menu items and check box menu items have
actions that generate an extra argument representing the label for that menu. You can use that label to determine which
action to take. Note, also, that because CheckBoxMenuItem is a subclass of MenuItem, you don't have to treat that
menu item as a special case. In this example, the Show Coordinates menu item is a CheckBoxMenuItem, and Fill is a
regular menu item:

public boolean action(Event evt, Object arg) {
    if (evt.target instanceof MenuItem) {
        String label = (String)arg;
        if (label.equals("Show Coordinates")) toggleCoords();
        else if (label.equals("Fill")) fillcurrentArea();
        return true;
    }
    else return false;
}

Day 14 -- Windows, Networking, and Other Tidbits

file:///G|/ebooks/1575211831/ch14.htm (6 of 24) [11/06/2000 7:45:35 PM]



A Pop-up Window with Menus

Let's add a menu to the pop-up window you created in the previous section. There are two steps here: creating and adding
the menu, with all its menu items, to the layout, and then adding an action method to deal with the actions. Here we'll
modify the BaseFrame class to include both these things; Listing 14.3 shows the new code. Figure 14.4 shows the menu
in action.

Figure 14.4 : A menu.

Note
In the sample code on the CD, I created a new class called
BaseFrame2 for this part of the example, and a new class
PopupWindowMenu.java to be the applet that owns this window.
Use PopupWindowMenu.html to view it.

Listing 14.3. BaseFrame with a menu.

 1:import java.awt.*;
 2:
 3:class BaseFrame2 extends Frame {
 4:  String message = "This is a Window";
 5:
 6:  BaseFrame2(String title) {
 7:    super(title);
 8:    setFont(new Font("Helvetica", Font.BOLD, 12));
 9:
10:    MenuBar mb = new MenuBar();
11:    Menu m = new Menu("Colors");
12:    m.add(new MenuItem("Red"));
13:    m.add(new MenuItem("Blue"));
14:    m.add(new MenuItem("Green"));
15:    m.add(new MenuItem("-"));
16:    m.add(new CheckboxMenuItem("Reverse Text"));
17:    mb.add(m);
18:    setMenuBar(mb);
19:  }
20:
21:  public boolean action(Event evt, Object arg) {
22:    String label = (String)arg;
23:    if (evt.target instanceof MenuItem) {
24:      if (label.equals("Red")) setBackground(Color.red);
25:      else if (label.equals("Blue")) setBackground(Color.blue);
26:      else if (label.equals("Green")) setBackground(Color.green);
27:      else if (label.equals("Reverse Text")) {
28:         if (getForeground() == Color.black) {
29:            setForeground(Color.white);
30:         } else setForeground(Color.black);
31:      }
32:      repaint();
33:      return true;
34:    } else return false;
35:  }

Day 14 -- Windows, Networking, and Other Tidbits

file:///G|/ebooks/1575211831/ch14.htm (7 of 24) [11/06/2000 7:45:36 PM]



36:  
37:  public void paint(Graphics g) {
38:     g.drawString(message, 20, 20);
39:  }
40:
41:  public boolean handleEvent(Event evt) {
42:     if (evt.id == Event.WINDOW_DESTROY) hide();
43:      return super.handleEvent(evt);
44:  }
45:}

This menu has four items: one each for the colors red, blue, and green (which, when selected, change the background of
the window), and one check box menu item for reversing the color of the text (to white). All are added as part of the
constructor to this class, in lines 6 to 19.

To handle these menu items when they're chosen, you need an action() method. Inside action() you test to see if
the action came from a menu item (which includes the one check box menu item), and if so, test for each of the menu
labels in turn. For the red, blue, and green menu items, all you need to do is set the background. For the Reverse Text
toggle, you need to first find out the current color of the text, and then reverse it.

To finish up, call a repaint() to make sure the background and the text get updated properly and return the appropriate
boolean.

Dialog Boxes

Dialog boxes are functionally similar to frames in that they pop up new windows on the screen. However, dialog boxes are
intended to be used for transient windows-for example, windows that let you know about warnings, windows that ask you
for specific information, and so on. Dialogs don't usually have title bars or many of the more general features that windows
have (although you can create one with a title bar), and they can be made nonresizable or modal (modal dialogs prevent
input to any other windows on the screen until they are dismissed).

Dialogs are transient windows intended to alert the user to some event or to get input from the user. Unlike frames, dialogs
do not generally have a title bar or close boxes.

A modal dialog prevents input to any of the other windows on the screen until that dialog is dismissed. (You won't be able
to bring other windows to the front or iconify a modal dialog window; you must actually dismiss the modal dialog before
being able to do anything else on the system. Warnings and alerts are typically modal dialogs.)

The awt provides two kinds of dialog boxes: the Dialog class, which provides a generic dialog, and FileDialog,
which produces the platform-specific file browser dialog.

Dialog Objects

Dialogs are created and used in much the same way as windows. To create a generic dialog, use one of these constructors:

Dialog(Frame, boolean) creates an initially invisible dialog, attached to the current frame, which is either
modal (true) or not (false).

●   

Dialog(Frame, String, boolean) is the same as the previous constructor, with the addition of a title bar
and a title indicated by the string argument.

●   

The dialog window, like the frame window, is a panel on which you can lay out and draw user interface components and
perform graphics operations, just as you would any other panel. Like other windows, the dialog is initially invisible, but
you can show it with show() and hide it with hide().

Let's add a dialog to that same example with the pop-up window. Here we'll modify the BaseFrame class once again to
include a dialog, and add a new class, TextDialog, which produces a text entry dialog similar to the one shown in

Day 14 -- Windows, Networking, and Other Tidbits

file:///G|/ebooks/1575211831/ch14.htm (8 of 24) [11/06/2000 7:45:36 PM]



Figure 14.5.

Figure 14.5 : The Enter Text dialog.

To add the dialog to the BaseFrame class, the changes are minor. First you'll need an instance variable to hold the dialog,
since you'll be referring to it throughout this class:

TextDialog dl;

Next you'll add a menu item to the BaseFrame class's constructor method to change the text the pop-up window displays.
This new menu item goes just after the Reverse Text item:

...
m.add(new CheckboxMenuItem("Reverse Text"));
m.add(new MenuItem("Set Text..."));
...

In that same constructor method, you can create the dialog (an instance of the new class TextDialog you'll create in a
bit), assign it to the dl instance variable, and resize it (as shown in the next two lines of code). You don't want to show it
yet because it should only appear when the correct menu item is selected:

dl = new TextDialog(this, "Enter Text", true);
dl.resize(150,100);

To get the dialog to appear at the appropriate time, you'll add a line to the action() method so that when the Set Text
menu item is chosen, the dl.show() method is called. You can put this action in the same if-else block as the rest of
the actions:

...
else if (label.equals("Green")) setBackground(Color.green);
else if (label.equals("Set Text...")) dl.show();
else if (label.equals("Reverse Text")) {
...

That's the end of the behavior you have to add to the window to create a dialog; the rest of the behavior goes into the
TextDialog class, the code for which is shown in Listing 14.4.

Listing 14.4. The TextDialog class.

 1:import java.awt.*;
 2:
 3:class TextDialog extends Dialog {
 4:  TextField tf;
 5:  BaseFrame3 theFrame;
 6:
 7:  TextDialog(Frame parent, String title, boolean modal) {
 8:    super(parent, title, modal);
 9:
10:    theFrame = (BaseFrame3)parent;
11:    setLayout(new BorderLayout(10,10));
12:    setBackground(Color.white);
13:    tf = new TextField(theFrame.message,20);
14:    add("Center", tf);
15:    add("South", new Button("OK"));

Day 14 -- Windows, Networking, and Other Tidbits

file:///G|/ebooks/1575211831/ch14.htm (9 of 24) [11/06/2000 7:45:36 PM]



16:    resize(150,75);
17:  }
18:
19:  public Insets insets() {
20:    return new Insets(30,10,10,10);
21:  }
22:
23:  public boolean action(Event evt, Object arg) {
24:    String label = (String)arg;
25:    if (evt.target instanceof Button) {
26:      if (label == "OK") {
27:         hide();
28:         theFrame.message = tf.getText();
29:         theFrame.repaint();
30:      }
31:    }
32:    else return false;
33:    return true;
34:  } 
35:}

In many ways this dialog class is very nearly the same as the BaseFrame class. It has a constructor that sets up the layout
of the components, and an action() method to deal with its behavior. This one also has an insets() method for
more layout information, but that's not a significant difference.

There are a few things to note about this code. First of all, note that the TextDialog class has a reference back up to its
parent frame. It needs to reference this so it can update that frame with the new text information. Why does the dialog need
to update the frame, rather than the frame figuring out when it needs updating? Because only the dialog knows when it's
been dismissed. It's the dialog that deals with the change when the user presses OK, not the frame. So the dialog needs to
be able to reach back to the original frame. Line 5 defines an instance variable to hold that reference.

The text dialog gets a reference to the parent frame through its constructor. This is actually the standard constructor for
dialogs, so nothing new needs to be created here. You can simply call super() to initialize the dialog, and then add other
bits to it. The first argument to the constructor is the frame argument. This is that hookup to the frame. But since you're
getting a frame object, and you want a BaseFrame object, you'll have to cast it before you can assign it to the
theFrame instance variable. Do this in line 10.

The remainder of the constructor for this dialog class simply creates the layout: a text field and a button in a border layout.

The action() method is what tells the dialog to hide itself. Mouse actions are broadcast to the window on which they
occur; they do not percolate across windows, which is why you can't test to see if the OK button in the dialog was pressed
from inside the BaseFrame class. Here you'll create an action() method to do two things when the OK button is
pressed: hide the dialog and update the text message in the frame. Here's where that frame reference is important; in line
28 you're extracting the text that was entered into the dialog's text field and putting it into the frame's message instance
variable. The next time the frame goes to paint (and you tell it to repaint() in line 29), the text message will get
updated.

Attaching Dialogs to Applets

Dialogs can only be attached to frames; to create a dialog you have to pass an instance of the Frame class to one of the
dialog's constructor methods.

This would imply that you cannot create dialog boxes that are attached to applets. Because applets don't have explicit
frames, you cannot give the Dialog class a frame argument. Through a bit of sneaky code, however, you can get ahold of
the frame object that contains that applet (often the browser or applet viewer window itself) and then use that object as the

Day 14 -- Windows, Networking, and Other Tidbits

file:///G|/ebooks/1575211831/ch14.htm (10 of 24) [11/06/2000 7:45:36 PM]



dialog's frame.

This sneaky code makes use of the getParent() method, defined for all awt components. The getParent() method
returns the object that contains this object. The parent of all awt applications, then, must be a frame. Applets behave in this
same way; by calling getParent() repeatedly, eventually you should be able to get ahold of an instance of Frame.
Here's the sneaky code to do this that you can put inside your applet:

Object anchorpoint = getParent()
while (! (anchorpoint instanceof Frame))
   anchorpoint = ((Component)anchorpoint).getParent();

In the first line of this code, you create a local variable, called anchorpoint, to hold the eventual frame for this applet.
The object assigned to anchorpoint may be one of many classes, so we'll declare its type to be Object.

The second two lines of this code are a while loop that calls getParent() on each different object up the chain until it
gets to an actual Frame object. Note here that since the getParent() method is only defined on objects that inherit
from Component, we have to cast the value of anchorpoint to Component each time for the getParent()
method to work.

After the loop exits, the object contained in the anchorpoint variable will be an instance of the Frame class (or one of
its subclasses). You can then create a Dialog object attached to that frame, casting the anchorpoint one more time
to make sure you've got a Frame object:

TextDialog dl = new TextDialog((Frame)anchorpoint, 
   "Enter Text", true);

File Dialog Objects

The FileDialog class provides a basic file open/save dialog box that enables you to access the file system. The
FileDialog class is system-independent, but depending on the platform, the standard Open File or Save File dialog is
brought up.

Note
For applets, whether or not you can even use instances of
FileDialog is dependent on the browser (Netscape simply
produces an error). FileDialog is much more useful in standalone
applications.

To create a file dialog, use the following constructors:

FileDialog(Frame, String) creates an Open File dialog, attached to the given frame, with the given title.
This form creates a dialog to load a file.

●   

FileDialog(Frame, String, int) also creates a file dialog, but that integer argument is used to determine
whether the dialog is for loading a file or saving a file (the only difference is the labels on the buttons; the file dialog
does not actually open or save anything). The possible options for the mode argument are FileDialog.LOAD and
FileDialog.SAVE.

●   

After you create a FileDialog instance, use show() to display it:

FileDialog fd = new FileDialog(this, "FileDialog");
fd.show();

When the reader chooses a file in the File dialog and dismisses it, you can then access the filename they chose by using the
getDirectory() and getFile() methods; both return strings indicating the values the reader chose. You can then
open that file by using the stream and file handling methods (which you'll learn about next week) and then read from or
write to that file.

Day 14 -- Windows, Networking, and Other Tidbits

file:///G|/ebooks/1575211831/ch14.htm (11 of 24) [11/06/2000 7:45:36 PM]



Cursors

If you use frames in your applets or applications, you can also set the cursor's icon at given moments in your program's
execution, to signal wait conditions or other events happening in your program.

The getCursorType() and setCursor() methods are defined in the Frame class. If you can get at a Frame
object, you can set the cursor (you'll typically set cursors for windows, but you can also set cursors for applets using the
getParent() method that I explained in the section "Attaching Dialogs to Applets"). Both of these methods use a set of
predefined cursor types in the Frame class. Table 14.1 shows the cursor types you can use (and test for) in your windows.

Note
Keep in mind that not all platforms use the same cursors. For
example, cursors for resizing windows do not exist on Macintoshes.

Table 14.1. Cursor types.

Class Variable Cursor
Frame.CROSSHAIR_CURSOR A cross-hair (plus-shaped) cursor
Frame.DEFAULT_CURSOR The default cursor (usually a pointer or arrow)
Frame.E_RESIZE_CURSOR A cursor to indicate something is being resized
Frame.HAND_CURSOR A hand-shaped cursor (to move an object or the

background)
Frame.MOVE_CURSOR A cursor to indicate that something is being

moved
Frame.N_RESIZE_CURSOR The top edge of a window is being resized
Frame.NE_RESIZE_CURSOR The top-right corner of a window is being

resized
Frame.NW_RESIZE_CURSOR The top-left corner of a window is being resized
Frame.S_RESIZE_CURSOR The bottom edge of a window is being resized
Frame.SE_RESIZE_CURSOR The bottom-right corner of the window is being

resized
Frame.SW_RESIZE_CURSOR The bottom-left corner of the window is being

resized
Frame.TEXT_CURSOR A text-entry cursor (sometimes called an

I-beam)
Frame.W_RESIZE_CURSOR The left edge of a window is being resized
Frame.WAIT_CURSOR A long operation is taking place (usually an icon

for a watch or an hourglass)

Window Events

Yesterday you learned about writing your own event handler methods, and you noted that the Event class defines many
standard events for which you can test. Window events are part of that list, so if you use windows, these events may be of
interest to you, (for example, to hide a window when it's closed, to stop a thread from running when the window is
iconified, or to perform some operation when a file is loaded or saved).

You can test the id instance variable of the event object in your handleEvent() method to see if any of these events
have occurred:

if (evt.id == Event.WINDOW_DESTROY) hide();

Day 14 -- Windows, Networking, and Other Tidbits

file:///G|/ebooks/1575211831/ch14.htm (12 of 24) [11/06/2000 7:45:36 PM]



Table 14.2. shows the various Window events.

Table 14.2. Window events from the Event class.

WINDOW_DESTROY Generated when a window is destroyed using the close
box or the Close menu item

WINDOW_EXPOSE Generated when the window is brought forward from
behind other windows

WINDOW_ICONIFY Generated when the window is iconified
WINDOW_DEICONIFY Generated when the window is restored from an icon
WINDOW_MOVED Generated when the window is moved

Standalone awt Applications

After all the space and time I've devoted to creating applets up to this point, you may be surprised that I'm sticking a
description of graphical Java applications here at the end, and in a fairly small section at that. The reason for this is that
other than a few simple lines of code and in the environment each runs in, there's not a lot of difference between a Java
applet and a graphical Java application. Everything you've learned up to this point about the awt including the graphics
methods, animation techniques, events, UI components, and windows and dialogs, can be used the same way in Java
applications as they can in applets. And applications have the advantage of being "outside the sandbox"-they have none of
the security restrictions that applets have. You can do just about anything you want to with an application.

So how do you go about creating a graphical Java application? The code to do it is almost trivial. Your main application
class should inherit from Frame. If it uses threads (for animation or other processing), it should also implement
Runnable:

class MyawtApplication extends Frame implements Runnable {
...
}

Inside the main() method for your application, you create a new instance of your class-because your class extends
Frame, that'll give you a new awt window that you can then resize and show as you would any awt window. Inside the
constructor method for your class you'll set up the usual awt features for a window that you might usually do in an
init() method for an applet: Set the title, add a layout manager, create and add components such as a menu bar or other
UI elements, start up a thread, and so on. Here's a simple example:

class MyawtApplication extends Frame implements Runnable {
    
    MyawtApplication(String title) {
       super(title);

       setLayout(new FlowLayout());
       add(new Button("OK"));
       add(new Button("Reset"));
       add(new Button("Cancel"));
    }

    public static void main(String args[]) {
      MyawtApplications app = new MyawtApplication("Hi!  I'm an application");
      app.resize(300,300);
      app.show();
   }
}

Day 14 -- Windows, Networking, and Other Tidbits

file:///G|/ebooks/1575211831/ch14.htm (13 of 24) [11/06/2000 7:45:36 PM]



For the most part, you can use any of the methods you've learned about this week to control and manage your application.
The only methods you cannot use are those specific to applets (that is, those defined in java.applet.Applet, which
includes methods for retrieving URL information and playing audio clips-see the API documentation for that class for
more details).

Networking in Java
Networking is the capability of making connections from your applet or application to a system over the network.
Networking in Java involves classes in the java.net package, which provide cross-platform abstractions for simple
networking operations, including connecting and retrieving files by using common Web protocols and creating basic
UNIX-like sockets. Used in conjunction with input and output streams (which you'll learn much more about next week),
reading and writing files over the network becomes as easy as reading or writing to files on the local disk.

There are restrictions, of course. Java applets usually cannot read or write from the disk on the machine where the browser
is running. Java applets cannot connect to systems other than the one on which they were originally stored. Even given
these restrictions, you can still accomplish a great deal and take advantage of the Web to read and process information over
the Net.

This section describes three ways you can communicate with systems on the Net:

showDocument(), which enables an applet to tell the browser to load and link to another page on the Web●   

openStream(), a method that opens a connection to a URL and enables you to extract data from that connection●   

The socket classes, Socket and ServerSocket, which enable you to open standard socket connections to hosts
and read to and write from those connections

●   

Creating Links Inside Applets

Probably the easiest way to use networking inside an applet is to tell the browser running that applet to load a new page.
You can use this, for example, to create animated image maps that, when clicked, load a new page.

To link to a new page, you create a new instance of the class URL. You saw some of this when you worked with images,
but let's go over it a little more thoroughly here.

The URL class represents a uniform resource locator. To create a new URL, you can use one of four different forms:

URL(String, String, int, String) creates a new URL object, given a protocol (http, ftp, gopher, file),
a hostname (www.lne.com, ftp.netcom.com), a port number (80 for http), and a filename or pathname.

●   

URL(String, String, String) does the same thing as the previous form, minus the port number.●   

URL(URL, String) creates a URL, given a base path and a relative path. For the base, you can use
getDocumentBase() for the URL of the current HTML file, or getCodeBase() for the URL of the Java
applet class file. The relative path will be tacked onto the last directory in those base URLs (just like with images
and sounds).

●   

URL(String) creates a URL object from a URL string (which should include the protocol, hostname, optional
port name, and filename).

●   

For the last one (creating a URL from a string), you have to catch a malformed URL exception, so surround the URL
constructor with a try...catch:

String url = "http://www.yahoo.com/";
try { theURL = new URL(url); }
catch ( MalformedURLException e) {
    System.out.println("Bad URL: " + theURL);
}

Getting a URL object is the hard part. Once you have one, all you have to do is pass it to the browser. Do this by using this

Day 14 -- Windows, Networking, and Other Tidbits

file:///G|/ebooks/1575211831/ch14.htm (14 of 24) [11/06/2000 7:45:36 PM]

http://www.yahoo.com/


single line of code, where theURL is the URL object to link to:

getAppletContext().showDocument(theURL);

The browser that contains the Java applet with this code will then load and display the document at that URL.

Listing 14.5 shows two classes: ButtonLink and its helper class Bookmark. ButtonLink is a simple applet that
displays three buttons that represent important Web locations (the buttons are shown in Figure 14.6). Clicking on the
buttons causes the document to be loaded from the locations to which those buttons refer.

Figure 14.6 : Bookmark buttons.

Listing 14.5. Bookmark buttons.

 1: // Buttonlink.java starts here
 2: import java.awt.*;
 3: import java.net.*;
 4:
 5: public class ButtonLink extends java.applet.Applet {
 6:
 7:    Bookmark bmlist[] = new Bookmark[3];
 8:
 9:    public void init() {
10:        bmlist[0] = new Bookmark("Laura's Home Page",
11:             "http://www.lne.com/lemay/");
12:         bmlist[1] = new Bookmark("Gamelan",
13:             "http://www.gamelan.com");
14:         bmlist[2]= new Bookmark("Java Home Page",
15:             "http://java.sun.com");
16:
17:         setLayout(new GridLayout(bmlist.length,1, 10, 10));
18:         for (int i = 0; i < bmlist.length; i++) {
19:             add(new Button(bmlist[i].name));
20:         }
21:     }
22:
23:     public boolean action(Event evt, Object arg) {
24:         if (evt.target instanceof Button) {
25:             linkTo((String)arg);
26:             return true;
27:         }
28:         else return false;
29:     }
30: 
31:     void linkTo(String name) {
32:         URL theURL = null;
33:         for (int i = 0; i < bmlist.length; i++) {
34:             if (name.equals(bmlist[i].name))
35:                 theURL = bmlist[i].url;
36:         }
37:         if (theURL != null)
38:             getAppletContext().showDocument(theURL);
39:     }

Day 14 -- Windows, Networking, and Other Tidbits

file:///G|/ebooks/1575211831/ch14.htm (15 of 24) [11/06/2000 7:45:36 PM]

http://www.lne.com/lemay/
http://www.gamelan.com/
http://java.sun.com/


40: } //ButtonLink.java ends here
41:
42: //Bookmark.java starts here
43: import java.net.URL;
44: import java.net.MalformedURLException;
45:
46: class Bookmark {
47:     String name;
48:     URL url;
49: 
50:     Bookmark(String name, String theURL) {
51:         this.name = name;
52:         try { this.url = new URL(theURL); }
53:         catch ( MalformedURLException e) {
54:         System.out.println("Bad URL: " + theURL);
55:     }
56: }
57:} //Bookmark.java ends here

Two classes make up this applet: The first, ButtonLink, implements the actual applet itself; the second, Bookmark, is
a class representing a bookmark. Bookmarks have two parts: a name and a URL.

This particular applet creates three bookmark instances (lines 10 through 15) and stores them in an array of bookmarks
(this applet could be easily modified to accept bookmarks as parameters from an HTML file). For each bookmark, a button
is created whose label is the value of the bookmark's name.

When the buttons are pressed, the linkTo() method is called. linkTo(), defined in lines 31 to 38, extracts the name
of the button from the event, uses it to look up the actual URL from the bookmark object, and then tells the browser to load
the URL referenced by that bookmark.

Opening Web Connections

Rather than asking the browser to just load the contents of a file, sometimes you might want to get hold of that file's
contents so that your applet can use them. If the file you want to grab is stored on the Web, and can be accessed using the
more common URL forms (http, ftp, and so on), your applet can use the URL class to get it.

Note that for security reasons, applets can by default connect back only to the same host from which they originally
loaded. This means that if you have your applets stored on a system called www.myhost.com, the only machine your
applet can open a connection to will be that same host (and that same hostname, so be careful with host aliases). If the file
the applet wants to retrieve is on that same system, using URL connections is the easiest way to get it.

This security restriction will change how you've been writing and testing applets up to this point. Because we haven't been
dealing with network connections, we've been able to do all our testing on the local disk simply by opening the HTML
files in a browser or with the appletviewer tool. You cannot do this with applets that open network connections. In
order for those applets to work correctly, you must do one of two things:

Run your browser on the same machine that your Web server is running on. If you don't have access to your Web
server, you can often install and run a Web server on your local machine.

●   

Upload your class and HTML files to your Web server each time you want to test them. Then, instead of using Open
File to test your applets, use the actual URL of the HTML file instead.

●   

You'll know when you're not doing things right in regard to making sure your applet, and the connection it's opening, are
on the same server. If you try to load an applet or a file from different servers, you'll get a security exception along with a
lot of other scary error messages printed to your screen or to the Java console.

Day 14 -- Windows, Networking, and Other Tidbits

file:///G|/ebooks/1575211831/ch14.htm (16 of 24) [11/06/2000 7:45:36 PM]



That said, let's move on to the methods and classes for retrieving files from the Web.

openStream()

The URL class defines a method called openStream(), which opens a network connection using the given URL (an
HTTP connection for Web URLs, an FTP connection for FTP URLs, and so on) and returns an instance of the class
InputStream (part of the java.io package). If you convert that stream to a DataInputStream (with a
BufferedInputStream in the middle for better performance), you can then read characters and lines from that stream
(you'll learn all about streams on Day 19, "Streams and I/O"). For example, these lines open a connection to the URL
stored in the variable theURL, and then read and echo each line of the file to the standard output:

try {
    InputStream in = theURL.openStream();
    DataInputStream data = new DataInputStream(new BufferedInputStream(in);

    String line;
    while ((line = data.readLine()) != null) {
        System.out.println(line);
    }
}
catch (IOException e) {
    System.out.println("IO Error: " + e.getMessage());
}

Note
You need to wrap all those lines in a try...catch statement to
catch IOExceptions generated. You'll learn more about
IOExceptions and the try and catch statements on Day 17,
"Exceptions."

Here's an example of an applet that uses the openStream() method to open a connection to a Web site, reads a file from
that connection (Edgar Allen Poe's poem "The Raven"), and displays the result in a text area. Listing 14.6 shows the code;
Figure 14.7 shows the result after the file has been read.

Figure 14.7 : The GetRaven applet.

An important note: If you compile this code as written, it won't work-you'll get a security exception. The reason is that this
applet opens a connection to the server www.lne.com to get the file raven.txt. When you compile and run this
applet, that applet isn't running on www.lne.com (unless you're me, and I already know about this problem). Before you
compile this applet, make sure you change line 18 to point to a copy of raven.txt on your server, and install your
applet and your HTML files on that same server (you can get raven.txt from the CD or from that very URL).

Alternately, you can use your browser to point to the URL
http://www.lne.com/Web/JavaProf/GetRaven.html. That Web page loads this very applet and downloads
the file correctly. Because both the applet and the text file are on the same server, it works just fine.

Listing 14.6. The GetRaven class.

 1: import java.awt.*;
 2: import java.io.DataInputStream;
 3: import java.io.BufferedInputStream;
 4: import java.io.IOException;
 5: import java.net.URL;

Day 14 -- Windows, Networking, and Other Tidbits

file:///G|/ebooks/1575211831/ch14.htm (17 of 24) [11/06/2000 7:45:36 PM]

http://www.lne.com/Web/JavaProf/GetRaven.html


 6: import java.net.URLConnection;
 7: import java.net.MalformedURLException;
 8:
 9: public class GetRaven extends java.applet.Applet implements Runnable {
10:   URL theURL;
11:  Thread runner;
12:   TextArea ta = new TextArea("Getting text...");
13: 
14:   public void init() {
15:    setLayout(new GridLayout(1,1));
16: 
17:     // chANGE THIS NEXT LINE BEFORE COMPILING!!!
18:     String url = "http://www.lne.com/Web/JavaProf/raven.txt";
19:     try { this.theURL = new URL(url); }
20:     catch ( MalformedURLException e) {
21:       System.out.println("Bad URL: " + theURL);
22:     }
23:     add(ta);
24:  }
25: 
26:   public Insets insets() {
27:     return new Insets(10,10,10,10);
28:  }
29:   
30:   public void start() {
31:     if (runner == null) {
32:       runner = new Thread(this);
33:       runner.start();
34:     }
35:  }
36:   
37:   public void stop() {
38:     if (runner != null) {
39:       runner.stop();
40:       runner = null;
41:     }
42:  }
43: 
44:   public void run() {
45:     URLConnection conn = null;
46:     DataInputStream data = null;
47:     String line;
48:    StringBuffer buf = new StringBuffer();
49: 
50:     try { 
51:       conn = this.theURL.openConnection();
52:       conn.connect();
53:      ta.setText("Connection opened...");
54:       data = new DataInputStream(new BufferedInputStream(
55:          conn.getInputStream()));
56:       ta.setText("Reading data...");
57:      while ((line = data.readLine()) != null) {
58:         buf.append(line + "\n");

Day 14 -- Windows, Networking, and Other Tidbits

file:///G|/ebooks/1575211831/ch14.htm (18 of 24) [11/06/2000 7:45:36 PM]

http://www.lne.com/Web/JavaProf/raven.txt


59:       } 
60:       ta.setText(buf.toString());
61:     }
62:     catch (IOException e) {
63:       System.out.println("IO Error:" + e.getMessage());
64:     }
65:}
66:}

The init() method (lines 14 to 24) sets up the URL and the text area in which that file will be displayed. The URL
could be easily passed into the applet via an HTML parameter; here, it's just hard coded for simplicity.

Because it might take some time to load the file over the network, you put that routine into its own thread and use the
familiar start(), stop(), and run() methods to control that thread.

Inside run() (lines 44 to 64), the work takes place. Here, you initialize a bunch of variables and then open the connection
to the URL (using the openStream() method in line 50). Once the connection is open, you set up an input stream in
lines 51 to 55 and read from it, line by line, putting the result into an instance of StringBuffer (a string buffer is a
modifiable string). I put all this work into a thread because it may take some time for the connection to open and for the
file to be read-particularly across slower connections. There may be other things going on in the applet that need to take
place concurrently to the file loading.

Once all the data has been read, line 60 converts the StringBuffer object into a real string and then puts that result in
the text area.

One other thing to note about this example is that the part of the code that opened a network connection, read from the file,
and created a string is surrounded by a try and catch statement. If any errors occur while you're trying to read or
process the file, these statements enable you to recover from them without the entire program crashing (in this case, the
program exits with an error, because there's little else to be done if the applet can't read the file). try and catch give you
the capability of handling and recovering from errors. You'll learn more about exceptions on Day 17.

Sockets

For networking applications beyond what the URL and URLconnection classes offer (for example, for other protocols
or for more general networking applications), Java provides the Socket and ServerSocket classes as an abstraction
of standard socket programming techniques. You'll learn more about working with Java sockets on Day 26, "Client/Server
Networking in Java," but for now here's a very short rundown of the socket capabilities in Java.

The Socket class provides a client-side socket interface similar to standard UNIX sockets. To open a connection, create a
new instance of Socket (where hostname is the host to connect to, and portnum is the port number):

Socket connection = new Socket(hostname, portnum);

Note
If you use sockets in an applet, you are still subject to the applet
security restrictions that prevent you from connecting to any system
other than the same one the applet came from.

Once the socket is open, you can use input and output streams to read and write from that socket (you'll learn all about
input and output streams on Day 19):

Day 14 -- Windows, Networking, and Other Tidbits

file:///G|/ebooks/1575211831/ch14.htm (19 of 24) [11/06/2000 7:45:36 PM]



DataInputStream in = new DataInputStream(
    new BufferedInputStream(connection.getInputStream()));
DataOutputStream out= new DataOutputStream(
    new BufferedOutputStream(connection.getOutputStream()));

Once you're done with the socket, don't forget to close it (this also closes all the input and output streams you may have set
up for that socket):

connection.close();

Server-side sockets work similarly, with the exception of the accept() method. A server socket listens on a TCP port
for a connection from a client; when a client connects to that port, the accept() method accepts a connection from that
client. By using both client and server sockets, you can create applications that communicate with each other over the
network.

To create a server socket and bind it to a port, create a new instance of ServerSocket with the port number:

ServerSocket sconnection = new ServerSocket(8888);

To listen on that port (and to accept a connection from any clients if one is made), use the accept() method:

sconnection.accept();

Once the socket connection is made, you can use input and output streams to read from and write to the client.

See the java.net package for more information about Java sockets.

Changes to Sockets for Java 1.1

In the 1.0.2 version of Java, the Socket and ServerSocket classes provide a basic abstract socket implementation.
You can create new instances of these classes to make or accept connections and to pass data back and forth from a client
to a server.

The problem comes when you try to extend or change Java's socket behavior. The Socket and ServerSocket classes
in the java.net package are final classes, which means you cannot create subclasses of those classes (you'll learn more
about finalizing classes on Day 15, "Modifiers, Access Control, and Class Design"). To extend the behavior of the socket
classes- for example, to allow network connections to work across a firewall or a proxy, you can use the abstract classes
SocketImpl and the interface SocketImplFactory to create a new transport-layer socket implementation. This
design fits with the original goal of Java's socket classes: to allow those classes to be portable to other systems with
different transport mechanisms.

The problem with this mechanism is that while it works for simple cases, it prevents you from adding other protocols on
top of TCP (for example, to implement an encryption mechanism such as SSL) or for having multiple socket
implementations per Java runtime.

For these reasons, in Java 1.1 sockets will change such that the Socket and ServerSocket classes are nonfinal and
extendable. You will be able to create subclasses of these classes in Java 1.1, which use either the default socket
implementation or one of your own making. This will allow much more flexible network capabilities to Java in 1.1.

In addition, Java 1.1 has added several other new features to the java.net package:

New options for sockets, based on BSD's socket options (for example, TCP_NODELAY, IP_MULTICAST_LOOP,
SO_BINDADDR)

●   

Many new subclasses of the SocketException class, to represent network errors on a finer level of granularity
than in Java 1.0.2 (for example, NoRouteToHostException or ConnectException)

●   

For more information about all the networking changes between Java 1.02 and 1.1, see the pages at

Day 14 -- Windows, Networking, and Other Tidbits

file:///G|/ebooks/1575211831/ch14.htm (20 of 24) [11/06/2000 7:45:36 PM]



http://java.sun.com/products/JDK/1.1/designspecs/net/index.html.

Other Applet Hints
On this, the last section of the last day of the second week, let's finish with some small hints that didn't fit in anywhere
else: using showStatus() to print messages in the browser status window, providing applet information, and
communicating between multiple applets on the same page.

The showStatus() Method

The showStatus() method, available in the Applet class, enables you to display a string in the status bar of the
browser, which contains the applet. You can use this for printing error, link, help, or other status messages:

getAppletContext().showStatus("Change the color");

The getAppletContext() method enables your applet to access features of the browser that contains it. You already
saw a use of this with links, wherein you could use the showDocument() method to tell the browser to load a page.
showStatus() uses that same mechanism to print status messages.

Note
showStatus() may not be supported in all browsers, so do not
depend on it for your applet's functionality or interface. It is a useful
way of communicating optional information to your user-if you need
a more reliable method of communication, set up a label in your
applet and update it to reflect changes in its message.

Applet Information

The awt gives you a mechanism for associating information with your applet. Usually, there is a mechanism in the browser
viewing the applet to view display information. You can use this mechanism to sign your name or your organization to
your applet, or to provide contact information so that users can get hold of you if they want.

To provide information about your applet, override the getAppletInfo() method:

public String getAppletInfo() {
    return "GetRaven copyright 1995 Laura Lemay";
}

Communicating Between Applets

Sometimes you want to have an HTML page that has several different applets on it. To do this, all you have to do is
include several different iterations of the applet tag. The browser will create different instances of your applet for each one
that appears on the HTML page.

What if you want to communicate between those applets? What if you want a change in one applet to affect the other
applets in some way? The best way to do this is to use the applet context to get to different applets on the same page.

Note

Day 14 -- Windows, Networking, and Other Tidbits

file:///G|/ebooks/1575211831/ch14.htm (21 of 24) [11/06/2000 7:45:36 PM]

http://java.sun.com/products/JDK/1.1/designspecs/net/index.html


Be forewarned that before you do extensive work with inter-applet
communication, the mechanism described in this section is
implemented differently (and often unreliably) in different browsers
and different Java environments. If you need to rely on
communicating between applets for your Web pages, make sure you
test those applets extensively in different browsers on different
platforms.

The applet context is defined in a class called, appropriately, AppletContext. To get an instance of this class for you
applet, you use the getAppletContext() method. You've already seen the use of the getAppletContext()
method for other uses; you can also use it to get hold of the other applets on the page. For example, to call a method named
sendMessage() on all the applets on a page (including the current applet), use the getApplets() method and a for
loop that looks something like this:

for (Enumeration e = getAppletContext().getApplets();
        e.hasMoreElements();) {
     Applet current = (MyAppletSubclass)(e.nextElement());
     current.sendMessage();
}

The getApplets() method returns an Enumeration object with a list of the applets on the page. Iterating over the
Enumeration object in this way enables you to access each element in the Enumeration in turn. Note that each
element in the Enumeration object is an instance of the Object class; to get that applet to behave the way you want it
to (and accept messages from other applets), you'll have to cast it to be an instance of your applet subclass (here, the class
MyAppletSubclass).

If you want to call a method in a specific applet, it's slightly more complicated. To do this, you give your applets a name
and then refer to them by name inside the body of code for that applet.

To give an applet a name, use the NAME attribute to <APPLET> in your HTML file:

<P>This applet sends information:
<APPLET CODE="MyApplet.class" WIDTH=100 HEIGHT=150
    NAME="sender"> </APPLET>
<P>This applet receives information from the sender:
<APPLET CODE="MyApplet.class" WIDTH=100 HEIGHT=150
    NAME="receiver"> </APPLET>

To get a reference to another applet on the same page, use the getApplet() method from the applet context with the
name of that applet. This gives you a reference to the applet of that name. You can then refer to that applet as if it were just
another object: call methods, set its instance variables, and so on. Here's some code to do just that:

// get ahold of the receiver applet
Applet receiver = (MyAppletSubclass)getAppletContext().getApplet("receiver");
// tell it to update itself.
receiver.update(text, value);

In this example you use the getApplet() method to get a reference to the applet with the name receiver. Note that
the object returned by getApplet is an instance of the generic Applet class; you'll most likely want to cast that object
to an instance of your subclass. Given the reference to the named applet, you can then call methods in that applet as if it
were just another object in your own environment. Here, for example, if both applets have an update() method, you can
tell receiver to update itself by using the information the current applet has.

Naming your applets and then referring to them by using the methods described in this section enables your applets to
communicate and stay in sync with each other, providing uniform behavior for all the applets on your page.

Day 14 -- Windows, Networking, and Other Tidbits

file:///G|/ebooks/1575211831/ch14.htm (22 of 24) [11/06/2000 7:45:36 PM]



Summary
Congratulations! Take a deep breath-you're finished with Week 2. This week has been full of useful information about
creating applets and using the Java awt classes to display, draw, animate, process input, and create fully fledged interfaces
in your applets.

Today you finished exploring applets and the awt by learning about three concepts.

First, you learned about windows, frames, menus, and dialogs, which enable you to create a framework for your applets-or
enable your Java applications to take advantage of applet features.

Second, you had a brief introduction to Java networking through some of the classes in the java.net package. Applet
networking includes things as simple as pointing the browser to another page from inside your applet, but can also include
retrieving files from the Web by using standard Web protocols (http, ftp, and so on). For more advanced networking
capabilities, Java provides basic socket interfaces that can be used to implement many basic network-oriented
applets-client/server interactions, chat sessions, and so on.

Finally, you finished up with the tidbits-small features of the Java awt and of applets that didn't fit anywhere else,
including showStatus(), providing information about your applet, and communicating between multiple applets on a
single page.

Q&A

Q: When I create pop-up windows, they all show up with this big yellow bar that says Warning: applet
window. What does this mean?

A: The warning is to tell you (and the users of your applet) that the window being displayed was generated by an
applet, and not by the browser itself. This is a security feature to keep an applet programmer from popping up a
window that masquerades as a browser window and, for example, asks users for their passwords.

There's nothing you can do to hide or obscure the warning.
Q: What good is having a file dialog box if you can't read or write files from the local file system?
A: Applets often can't read or write from the local file system (depending on the browser), but because you can use

awt components in Java applications as well as applets, the file dialog box is also very useful for them.
Q: How can I mimic an HTML form submission in a Java applet?
A: Currently, applets make it difficult to do this. The best (and easiest way) is to use GET notation to get the browser

to submit the form contents for you.

http://www.blah.com/cgi-bin/myscript?foo=1&bar=2&name=Laura

Because the form input is encoded in the URL, you can write a Java applet to mimic a form, get input from the
user, and then construct a new URL object with the form data included on the end. Then just pass that URL to the
browser by using getAppletContext().showDocument(), and the browser will submit the form results
itself. For simple forms, this is all you need.

Q: How can I do POST form submissions?

Day 14 -- Windows, Networking, and Other Tidbits

file:///G|/ebooks/1575211831/ch14.htm (23 of 24) [11/06/2000 7:45:36 PM]

http://www.blah.com/cgi-bin/myscript?foo=1&bar=2&name=Laura


A: You'll have to mimic what a browser does to send forms using POST: Open a socket to the server and send the
data, which looks something like this (the exact format is determined by the HTTP protocol; this is only a subset
of it):

POST /cgi-bin/mailto.cgi HTTP/1.0
Content-type: application/x-www-form-urlencoded
Content-length: 36
{your encoded form data here}

If you've done it right, you get the CGI form output back from the server. It's then up to your applet to handle that
output properly. Note that if the output is in HTML, there really isn't a way to pass that output to the browser that
is running your applet yet. This capability may end up in future Java releases. If you get back a URL, however,
you can redirect the browser to that URL.

Q: showStatus() doesn't work in my browser. How can I give my readers status information?
A: As you learned in the section on showStatus(), whether or not a browser supports showStatus() is up to

that browser. If you must have status-like behavior in your applet, consider creating a status label in the applet
itself that is updated with the information you need to present.

Q: I've been trying to communicate between two applets in my Web page using the getAppletContext()
and getApplet() methods. My applets keep crashing with NullPointerException errors. What
does this mean?

A: The mechanism I described for communicating between applets is how Sun and the Java class library says it's
supposed to work. However, like showStatus(), whether or not a browser implements that mechanism, or
implements it correctly, depends on that browser. Version of Netscape before 3.0 and Internet Explorer both have
strange problems with inter-applet communication.

Q: It looks like the openStream() method and the Socket classes implement TCP sockets. Does Java
support UDP (User Datagram Protocol, often just called datagram) sockets?

A: The JDK 1.0 provides two classes, DatagramSocket and DatagramPacket, which implement UDP
sockets. The DatagramSocket class operates similarly to the Socket class. Use instances of
DatagramPacket for each packet you send or receive over the socket.

See the API documentation for the java.net package for more information.

   

Day 14 -- Windows, Networking, and Other Tidbits

file:///G|/ebooks/1575211831/ch14.htm (24 of 24) [11/06/2000 7:45:36 PM]



file:///G|/ebooks/1575211831/f14-1.gif

file:///G|/ebooks/1575211831/f14-1.gif [11/06/2000 7:45:37 PM]



file:///G|/ebooks/1575211831/f14-2.gif

file:///G|/ebooks/1575211831/f14-2.gif [11/06/2000 7:45:37 PM]



file:///G|/ebooks/1575211831/f14-3.gif

file:///G|/ebooks/1575211831/f14-3.gif [11/06/2000 7:45:38 PM]



file:///G|/ebooks/1575211831/f14-4.gif

file:///G|/ebooks/1575211831/f14-4.gif [11/06/2000 7:45:38 PM]



file:///G|/ebooks/1575211831/f14-5.gif

file:///G|/ebooks/1575211831/f14-5.gif [11/06/2000 7:45:38 PM]



file:///G|/ebooks/1575211831/f14-6.gif

file:///G|/ebooks/1575211831/f14-6.gif [11/06/2000 7:45:39 PM]



Day 19

Streams and I/O
by Charles L. Perkins and Laura Lemay

CONTENTS
What Are Streams?●   

The java.io Package●   

Input Streams

The Abstract Class InputStream❍   

ByteArrayInputStream❍   

FileInputStream❍   

FilterInputStream❍   

PipedInputStream❍   

SequenceInputStream❍   

StringBufferInputStream❍   

●   

Output Streams

The Abstract Class OutputStream❍   

ByteArrayOutputStream❍   

FileOutputStream❍   

FilterOutputStream❍   

PipedOutputStream❍   

●   

Related Classes●   

Object Serialization (Java 1.1)●   

Summary●   

Q&A●   

The package java.io, part of the standard Java class library, provides a large number of classes designed for handling
input and output to files, network connections, and other sources. These I/O classes are known as streams, and provide
functionality for reading and writing data in various ways. You got a glimpse of these classes on Day 14, "Windows,
Networking, and Other Tidbits," when we opened a network connection to a file and read the contents into an applet.

Today you'll explore Java's input and output classes:

Input streams-and how to create, use, and detect the end of them-and filtered input streams, which can be nested to
great effect

●   

Output streams, which are mostly analogous to (but the inverse of) input streams●   

You'll also learn about two stream interfaces that make the reading and writing of typed streams much easier (as well as
about several utility classes used to access the file system).

Day 19 -- Streams and I/O

file:///G|/ebooks/1575211831/ch19.htm (1 of 24) [11/06/2000 7:45:43 PM]



What Are Streams?
A stream is a path of communication between the source of some information and its destination. This information can
come from a file, the computer's memory, or even from the Internet. In fact, the source and destination of a stream are
completely arbitrary producers and consumers of bytes, respectively-you don't need to know about the source of the
information when reading from a stream, and you don't need to know about the final destination when writing to one.

A stream is a path of communication between a source of information and its destination. For example, an input stream
allows you to read data from a source, and an output stream allows you to write data to a destination.

General-purpose methods that can read from any source accept a stream argument to specify that source; general-purpose
methods for writing accept a stream to specify the destination. Arbitrary processors of data commonly have two stream
arguments. They read from the first, process the data, and write the results to the second. These processors have no idea
of either the source or the destination of the data they are processing. Sources and destinations can vary widely: from two
memory buffers on the same local computer, to the ELF (extremely low frequency) transmissions to and from a
submarine at sea, to the real-time data streams of a NASA probe in deep space.

By decoupling the consuming, processing, or producing of data from the sources and destinations of that data, you can
mix and match any combination of them at will as you write your program. In the future, when new, previously
nonexistent forms of source or destination (or consumer, processor, or producer) appear, they can be used within the
same framework, with no changes to your classes. In addition, new stream abstractions, supporting higher levels of
interpretation "on top of" the bytes, can be written completely independently of the underlying transport mechanisms for
the bytes themselves.

The java.io Package
All the classes you will learn about today are part of the package java.io. To use any of these classes in your own
programs, you will need to import each individual class or to import the entire java.io package, like this:

import java.io.InputStream;
import java.io.FilteredInputStream;
import java.io.FileOutputStream;

import java.io.*;

All the methods you will explore today are declared to throw IOExceptions. This new subclass of Exception
conceptually embodies all the possible I/O errors that might occur while using streams. Several subclasses of it define a
few, more specific exceptions that can be thrown as well. For now, it is enough to know that you must either catch an
IOException, or be in a method that can "pass it along," to be a well-behaved user of streams.

The foundations of this stream framework in the Java class hierarchy are the two abstract classes, InputStream and
OutputStream. Inheriting from these classes is a virtual cornucopia of categorized subclasses, demonstrating the wide
range of streams in the system, but also demonstrating an extremely well-designed hierarchy of relationships between
these streams-one well worth learning from. Let's begin with the parents, InputStream and OutputStream, and
then work our way down this bushy tree.

Input Streams
Input streams are streams that allow you to read data from a source. These include the root abstract class
InputStream, filtered streams, buffered streams, and streams that read from files, strings, and byte arrays.

Day 19 -- Streams and I/O

file:///G|/ebooks/1575211831/ch19.htm (2 of 24) [11/06/2000 7:45:43 PM]



The Abstract Class InputStream

InputStream is an abstract class that defines the fundamental ways in which a destination (consumer) reads a stream
of bytes from some source. The identity of the source, and the manner of the creation and transport of the bytes, is
irrelevant. When using an input stream, you are the destination of those bytes, and that's all you need to know.

Note
All input streams descend from InputStream. All share in
common the few methods described in this section. Thus, the streams
used in these examples can be any of the more complex input streams
described in the next few sections.

read()

The most important method to the consumer of an input stream is the one that reads bytes from the source. This method,
read(), comes in many flavors, and each is demonstrated in an example in today's lesson.

Each of these read() methods is defined to "block" (wait) until all the input requested becomes available. Don't worry
about this limitation; because of multithreading, you can do as many other things as you like while this one thread is
waiting for input. In fact, it is a common idiom to assign a thread to each stream of input (and for each stream of output)
that is solely responsible for reading from it (or writing to it). These input threads might then "hand off" the information
to other threads for processing. This naturally overlaps the I/O time of your program with its compute time.

Here's the first form of read():

InputStream  s      = getAnInputStreamFromSomewhere();
byte[]       buffer = new byte[1024];   // any size will do

if (s.read(buffer) != buffer.length)
    System.out.println("I got less than I expected.");

Note
Here and throughout the rest of today's lesson, assume that either an
import java.io.* appears before all the examples or that you
mentally prefix all references to java.io classes with the prefix
java.io.

This form of read() attempts to fill the entire buffer given. If it cannot (usually due to reaching the end of the input
stream), it returns the actual number of bytes that were read into the buffer. After that, any further calls to read() return
-1, indicating that you are at the end of the stream. Note that the if statement still works even in this case, because -1
!= 1024 (this corresponds to an input stream with no bytes in it at all).

Note
Don't forget that, unlike in C, the -1 case in Java is not used to
indicate an error. Any I/O errors throw instances of IOException
(which you're not catching yet). You learned on Day 17,
"Exceptions," that all uses of distinguished values can be replaced by
the use of exceptions, and so they should. The -1 in the last example
is a bit of a historical anachronism. You'll soon see a better approach
to indicating the end of the stream using the class
DataInputStream.

Day 19 -- Streams and I/O

file:///G|/ebooks/1575211831/ch19.htm (3 of 24) [11/06/2000 7:45:43 PM]



You can also read into a "slice" of your buffer by specifying the offset into the buffer, and the length desired, as
arguments to read():

s.read(buffer, 100, 300);

This example tries to fill in bytes 100 through 399 and behaves otherwise exactly the same as the previous read()
method.

Finally, you can read in bytes one at a time:

InputStream  s = getAnInputStreamFromSomewhere(); 
byte         b;
int          byteOrMinus1;

while ((byteOrMinus1 = s.read()) != -1) {
     b = (byte) byteOrMinus1;
     . . .    // process the byte b
}
. . .    // reached end of stream

Note
Because of the nature of integer promotion in Java in general, and
because in this case the read() method returns an int, using the
byte type in your code may be a little frustrating. You'll find
yourself constantly having to explicitly cast the result of arithmetic
expressions, or of int return values, back to your size. Because
read() really should be returning a byte in this case, we feel
justified in declaring and using it as such (despite the pain)-it makes
the size of the data being read clearer. In cases where you feel that the
range of a variable is naturally limited to a byte (or a short) rather
than an int, please take the time to declare it that way and pay the
small price necessary to gain the added clarity. By the way, a lot of
the Java class library code simply stores the result of read() in an
int.

skip()

What if you want to skip over some of the bytes in a stream, or start reading a stream from other than its beginning? A
method similar to read() does the trick:

if (s.skip(1024) != 1024)
    System.out.println("I skipped less than I expected.");

This example skips over the next 1024 bytes in the input stream. However, the implementation of skip() in
InputStream may skip fewer bytes than the given argument, and so it returns a long integer representing the number
of bytes it actually skipped. In this example, therefore, a message is printed if the actual number of bytes skipped is less
than 1024.

Note

Day 19 -- Streams and I/O

file:///G|/ebooks/1575211831/ch19.htm (4 of 24) [11/06/2000 7:45:43 PM]



The API documentation for skip() in the InputStream class
says that skip() behaves this way for "a variety of reasons."
Subclasses of InputStream should override this default
implementation of skip() if they want to handle skipping more
properly.

available()

If for some reason you would like to know how many bytes are in the stream right now, you can ask the following:

if (s.available() < 1024)
    System.out.println("Too little is available right now.");

This tells you the number of bytes that you can read without blocking. Because of the abstract nature of the source of
these bytes, streams may or may not be able to tell you a reasonable answer to this question. For example, some streams
always return 0. Unless you use specific subclasses of InputStream that you know provide a reasonable answer to
this question, it's not a good idea to rely on this method. Remember that multithreading eliminates many of the problems
associated with blocking while waiting for a stream to fill again. Thus, one of the strongest rationales for the use of
available() goes away.

mark() and reset()

Some streams support the notion of marking a position in the stream and then later resetting the stream to that position to
reread the bytes there. Clearly, the stream would have to "remember" all those bytes, so there is a limitation on how far
apart in a stream the mark and its subsequent reset can occur. There's also a method that asks whether the stream supports
the notion of marking at all. Here's an example:

InputStream  s = getAnInputStreamFromSomewhere();

if (s.markSupported()) {    // does s support the notion?
    . . .        // read the stream for a while
    s.mark(1024);
    . . .        // read less than 1024 more bytes
    s.reset();
    . . .        // we can now re-read those bytes
} else {
    . . .                   // no, perform some alternative
}

When marking a stream, you specify the maximum number of bytes you intend to allow to pass before resetting it. This
allows the stream to limit the size of its byte "memory." If this number of bytes goes by and you have not yet used
reset(), the mark becomes invalid, and attempting to use reset() will throw an exception.

Marking and resetting a stream is most valuable when you are attempting to identify the type of the stream (or the next
part of the stream), but to do so, you must consume a significant piece of it in the process. Often, this is because you have
several black-box parsers that you can hand the stream to, but they will consume some (unknown to you) number of
bytes before making up their mind about whether the stream is of their type. Set a large size for the limit in mark(), and
let each parser run until it either throws an error or completes a successful parse. If an error is thrown, use reset() and
try the next parser.

close()

Because you don't know what resources an open stream represents, nor how to deal with them properly when you're

Day 19 -- Streams and I/O

file:///G|/ebooks/1575211831/ch19.htm (5 of 24) [11/06/2000 7:45:43 PM]



finished reading the stream, you should (usually) explicitly close down a stream so that it can release these resources. Of
course, garbage collection and a finalization method can do this for you, but what if you need to reopen that stream or
those resources before they have been freed by this asynchronous process? At best, this is annoying or confusing; at
worst, it introduces an unexpected, obscure, and difficult-to-track-down bug. Because you're interacting with the outside
world of external resources, it's safer to be explicit about when you're finished using them:

InputStream  s = alwaysMakesANewInputStream();

try {
    . . .     // use s to your heart's content
} finally {
    s.close();
}

Get used to this idiom (using finally); it's a useful way to be sure something (such as closing the stream) always gets
done. Of course, you're assuming that the stream is always successfully created. If this is not always the case, and null
is sometimes returned instead, here's the correct way to be safe:

InputStream  s = tryToMakeANewInputStream();

if (s != null) {
    try {
        . . .
    } finally {
        s.close();
    }
}

ByteArrayInputStream

The "inverse" of some of the previous examples would be to create an input stream from an array of bytes. This is exactly
what ByteArrayInputStream does:

byte[]  buffer = new byte[1024];

fillWithUsefulData(buffer);

InputStream  s = new ByteArrayInputStream(buffer);

Readers of the new stream s see a stream 1024 bytes long, containing the bytes in the array buffer. Just as read()
has a form that takes an offset and a length, so does this class's constructor:

InputStream  s = new ByteArrayInputStream(buffer, 100, 300);

Here the stream is 300 bytes long and consists of bytes 100-399 from the array buffer.

Note
Finally, you've seen your first examples of the creation of a stream.
These new streams are attached to the simplest of all possible sources
of data: an array of bytes in the memory of the local computer.

ByteArrayInputStreams simply implement the standard set of methods that all input streams do. Here, however,
the available() method has a particularly simple job-it returns 1024 and 300, respectively, for the two instances of

Day 19 -- Streams and I/O

file:///G|/ebooks/1575211831/ch19.htm (6 of 24) [11/06/2000 7:45:43 PM]



ByteArrayInputStream you created previously, because it knows exactly how many bytes are available. Finally,
calling reset() on a ByteArrayInputStream resets it to the beginning of the stream (buffer), no matter where the
mark is set.

FileInputStream

One of the most common uses of streams, and historically the earliest, is to attach them to files in the file system. Here,
for example, is the creation of such an input stream on a UNIX system:

InputStream  s = new FileInputStream("/some/path/and/fileName");

Warning
Applets attempting to open, read, or write streams based on files in
the file system will usually cause security exceptions to be thrown
from the browser. If you're developing applets, you won't be able to
depend on files at all, and you'll have to use your server to hold
shared information. (Standalone Java programs have none of these
problems, of course.)

You also can create the stream from a previously opened file descriptor (an instance of the FileDescriptor class).
Usually, you get file descriptors using the getFD() method on FileInputStream or FileOutputStream
classes, so, for example, you could use the same file descriptor to open a file for reading and then reopen it for writing:

FileDescriptor       fd = someFileStream.getFD();
InputStream  s  = new FileInputStream(fd);

In either case, because it's based on an actual (finite length) file, the input stream created can implement available()
precisely and can skip like a champ (just as ByteArrayInputStream can, by the way). In addition,
FileInputStream knows a few more tricks:

FileInputStream  aFIS = new FileInputStream("aFileName");

FileDescriptor  myFD = aFIS.getFD(); // get a file descriptor

 aFIS.finalize();   // will call close() when automatically called by GC

Tip
To call these new methods, you must declare the stream variable
aFIS to be of type FileInputStream, because plain
InputStreams don't know about them.

The first is obvious: getFD() returns the file descriptor of the file on which the stream is based. The second, though, is
an interesting shortcut that allows you to create FileInputStreams without worrying about closing them later.
FileInputStream's implementation of finalize(), a protected method, closes the stream. Unlike in the
contrived call in comments, you almost never can nor should call a finalize() method directly. The garbage
collector calls it after noticing that the stream is no longer in use, but before actually destroying the stream. Thus, you can
go merrily along using the stream, never closing it, and all will be well. The system takes care of closing it (eventually).

You can get away with this because streams based on files tie up very few resources, and these resources cannot be

Day 19 -- Streams and I/O

file:///G|/ebooks/1575211831/ch19.htm (7 of 24) [11/06/2000 7:45:43 PM]



accidentally reused before garbage collection (these were the things worried about in the previous discussion of
finalization and close()). Of course, if you were also writing to the file, you would have to be more careful.
(Reopening the file too soon after writing might make it appear in an inconsistent state because the finalize()-and
thus the close()-might not have happened yet.) Just because you don't have to close the stream doesn't mean you
might not want to do so anyway. For clarity, or if you don't know precisely what type of an InputStream you were
handed, you might choose to call close() yourself.

FilterInputStream

This "abstract" class simply provides a "pass-through" for all the standard methods of InputStream. (It's "abstract," in
quotes, because it's not technically an abstract class; you can create instances of it. In most cases, however, you'll use
one of the more useful subclasses of FilterInputStream instead of FilterInputStream itself.)
FilterInputStream holds inside itself another stream, by definition one further "down" the chain of filters, to
which it forwards all method calls. It implements nothing new but allows itself to be nested:

InputStream        s  = getAnInputStreamFromSomewhere();
FilterInputStream  s1 = new FilterInputStream(s);
FilterInputStream  s2 = new FilterInputStream(s1);
FilterInputStream  s3 = new FilterInputStream(s2);

... s3.read() ...

Whenever a read is performed on the filtered stream s3, it passes along the request to s2, then s2 does the same to s1,
and finally s is asked to provide the bytes. Subclasses of FilterInputStream will, of course, do some nontrivial
processing of the bytes as they flow past. The rather verbose form of "chaining" in the previous example can be made
more elegant:

s3 = new FilterInputStream(new FilterInputStream(new FilterInputStream(s)));

You should use this idiom in your code whenever you can. It clearly expresses the nesting of chained filters, and can
easily be parsed and "read aloud" by starting at the innermost stream s and reading outward-each filter stream applying
to the one within-until you reach the outermost stream s3.

Now let's examine each of the subclasses of FilterInputStream in turn.

BufferedInputStream

This is one of the most valuable of all streams. It implements the full complement of InputStream's methods, but it
does so by using a buffered array of bytes that acts as a cache for future reading. This decouples the rate and the size of
the "chunks" you're reading from the more regular, larger block sizes in which streams are most efficiently read (from,
for example, peripheral devices, files in the file system, or the network). It also allows smart streams to read ahead when
they expect that you will want more data soon.

Because the buffering of BufferedInputStream is so valuable, and it's also the only class to handle mark() and
reset() properly, you might wish that every input stream could somehow share its valuable capabilities. Normally,
because those stream classes do not implement them, you would be out of luck. Fortunately, you already saw a way that
filter streams can wrap themselves "around" other streams. Suppose that you would like a buffered FileInputStream
that can handle marking and resetting correctly. Et voilà:

InputStream  s = new BufferedInputStream(new FileInputStream("foo"));

You have a buffered input stream based on the file foo that can use mark() and reset().

Now you can begin to see the power of nesting streams. Any capability provided by a filter input stream (or output

Day 19 -- Streams and I/O

file:///G|/ebooks/1575211831/ch19.htm (8 of 24) [11/06/2000 7:45:43 PM]



stream, as you'll see soon) can be used by any other basic stream via nesting. Of course, any combination of these
capabilities, and in any order, can be as easily accomplished by nesting the filter streams themselves.

DataInputStream

All the methods that instances of this class understand are defined in a separate interface, which both
DataInputStream and RandomAccessFile (another class in java.io) implement. This interface is
general-purpose enough that you might want to use it yourself in the classes you create. It is called DataInput.

The DataInput Interface

When you begin using streams to any degree, you'll quickly discover that byte streams are not a really helpful format into
which to force all data. In particular, the primitive types of the Java language embody a rather nice way of looking at
data, but with the streams you've been defining thus far in this book, you could not read data of these types. The
DataInput interface specifies a higher-level set of methods that, when used for both reading and writing, can support a
more complex, typed stream of data. Here are the methods this interface defines:

void  readFully(byte[]  buffer)                           throws IOException;
void  readFully(byte[]  buffer, int  offset, int  length) throws IOException;
int   skipBytes(int n)                                    throws IOException;

boolean  readBoolean()       throws IOException;
byte     readByte()          throws IOException;
int      readUnsignedByte()  throws IOException;
short    readShort()         throws IOException;
int      readUnsignedShort() throws IOException;
char     readChar()          throws IOException;
int      readInt()           throws IOException;
long     readLong()          throws IOException;
float    readFloat()         throws IOException;
double   readDouble()        throws IOException;

String   readLine()          throws IOException;
String   readUTF()           throws IOException;

The first three methods are simply new names for skip() and the two forms of read() you've seen previously. Each
of the next 10 methods reads in a primitive type or its unsigned counterpart (useful for using every bit efficiently in a
binary stream). These latter methods must return an integer of a wider size than you might think; because integers are
signed in Java, the unsigned value does not fit in anything smaller. The final two methods read a newline ('\r', '\n',
or "\r\n") terminated string of characters from the stream-the first in ASCII, and the second in Unicode.

Now that you know what the interface that DataInputStream implements looks like, let's see it in action:

DataInputStream  s = new DataInputStream(myRecordInputStream());

long  size = s.readLong();    // the number of items in the stream

while (size-- > 0) {
    if (s.readBoolean()) {    // should I process this item?
        int     anInteger     = s.readInt();
        int     magicBitFlags = s.readUnsignedShort();
        double  aDouble       = s.readDouble();

Day 19 -- Streams and I/O

file:///G|/ebooks/1575211831/ch19.htm (9 of 24) [11/06/2000 7:45:43 PM]



        if ((magicBitFlags & 0100000) != 0) {
            . . .    // high bit set, do something special
        }
        . . .    // process anInteger and aDouble
    }
}

Because the class implements an interface for all its methods, you can also use the following interface:

DataInput  d = new DataInputStream(new FileInputStream("anything"));
String     line;

while ((line = d.readLine()) != null) {
    . . .     // process the line
}

EOFException

One final point about most of DataInputStream's methods: When the end of the stream is reached, the methods
throw an EOFException. This is tremendously useful and, in fact, allows you to rewrite all the kludgey uses of -1 you
saw earlier today in a much nicer fashion:

DataInputStream  s = new DataInputStream(getAnInputStreamFromSomewhere());

try {
    while (true) {
        byte  b = (byte) s.readByte();
        . . .    // process the byte b
    }
} catch (EOFException e) {
    . . .    // reached end of stream
} finally {
  s.close();
}

This works just as well for all but the last two of the read methods of DataInputStream.

Warning
skipBytes() does nothing at all on end of stream, readLine()
returns null, and readUTF() might throw a
UTFDataFormatException, if it notices the problem at all.

LineNumberInputStream

In an editor or a debugger, line numbering is crucial. To add this valuable capability to your programs, use the filter
stream LineNumberInputStream, which keeps track of line numbers as its stream "flows through" it. It's even smart
enough to remember a line number and later restore it, during a mark() and reset(). You might use this class as
follows:

LineNumberInputStream  aLNIS;
aLNIS = new LineNumberInputStream(new FileInputStream("source"));

DataInputStream  s = new DataInputStream(aLNIS);

Day 19 -- Streams and I/O

file:///G|/ebooks/1575211831/ch19.htm (10 of 24) [11/06/2000 7:45:43 PM]



String           line;

while ((line = s.readLine()) != null) {
    . . .    // process the line
    System.out.println("Did line number: " + aLNIS.getLineNumber());
}

Here, two filter streams are nested around the FileInputStream actually providing the data-the first to read lines one
at a time and the second to keep track of the line numbers of these lines as they go by. You must explicitly name the
intermediate filter stream, aLNIS, because if you did not, you couldn't call getLineNumber() later. Note that if you
invert the order of the nested streams, reading from DataInputStream does not cause LineNumberInputStream
to "see" the lines.

You must put any filter streams acting as "monitors" in the middle of the chain and "pull" the data from the outermost
filter stream so that the data will pass through each of the monitors in turn. In the same way, buffering should occur as far
inside the chain as possible, because the buffered stream won't be able to do its job properly unless most of the streams
that need buffering come after it in the flow. For example, here's a silly order:

new BufferedInputStream(new LineNumberInputStream(
            _new DataInputStream(new FileInputStream("foo"));

and here's a much better order:

new DataInputStream(new LineNumberInputStream(
            _new BufferedInputStream(new FileInputStream("foo"));

LineNumberInputStreams can also be told setLineNumber(), for those few times when you know more than
they do.

PushbackInputStream

The filter stream class PushbackInputStream is commonly used in parsers, to "push back" a single character in the
input (after reading it) while trying to determine what to do next-a simplified version of the mark() and reset()
utility you learned about earlier. Its only addition to the standard set of InputStream methods is unread(), which,
as you might guess, pretends that it never read the byte passed in as its argument, and then gives that byte back as the
return value of the next read().

Listing 19.1 shows a simple implementation of readLine() using this class:

Listing 19.1. A simple line reader.

 1:import java.io;
 2:
 3:public class  SimpleLineReader {
 4:    private FilterInputStream  s;
 5:
 6:    public  SimpleLineReader(InputStream  anIS) {
 7:        s = new DataInputStream(anIS);
 8:    }
 9:
10:    . . .    // other read() methods using stream s
11:
12:    public String  readLine() throws IOException {
13:        char[]  buffer = new char[100];

Day 19 -- Streams and I/O

file:///G|/ebooks/1575211831/ch19.htm (11 of 24) [11/06/2000 7:45:43 PM]



14:        int     offset = 0;
15:        byte    thisByte;
16:
17:        try {
18:loop:        while (offset < buffer.length) {
19:                switch (thisByte = (byte) s.read()) {
20:                    case '\n':
21:                        break loop;
22:                    case '\r':
23:                        byte  nextByte = (byte) s.read();
24:
25:                        if (nextByte != '\n') {
26:                            if (!(s instanceof PushbackInputStream)) {
27:                                s = new PushbackInputStream(s);
28:                            }
29:                            ((PushbackInputStream) s).unread(nextByte);
30:                        }
31:                        break loop;
32:                    default:
33:                        buffer[offset++] = (char) thisByte;
34:                        break;
35:                }
36:            }
37:        } catch (EOFException e) {
38:            if (offset == 0)
39:                return null;
40:        }
41:          return String.copyValueOf(buffer, 0, offset);
42:     }
43:}

This example demonstrates numerous things. For the purpose of this example, the readLine() method is restricted to
reading the first 100 characters of the line. In this respect, it demonstrates how not to write a general-purpose line
processor (you should be able to read a line of any size). This example does, however, show you how to break out of an
outer loop (using the loop label in line 18 and the break statements in lines 21 and 31), and how to produce a String
from an array of characters (in this case, from a "slice" of the array of characters). This example also includes standard
uses of InputStream's read() for reading bytes one at a time, and of determining the end of the stream by enclosing
it in a DataInputStream and catching EOFException.

One of the more unusual aspects of the example is the way PushbackInputStream is used. To be sure that '\n' is
ignored following '\r', you have to "look ahead" one character; but if it is not a '\n', you must push back that
character. Look at the lines 26 through 29 as if you didn't know much about the stream s. The general technique used is
instructive. First, you see whether s is already an instance of some kind of PushbackInputStream. If so, you can
simply use it. If not, you enclose the current stream (whatever it is) inside a new PushbackInputStream and use this
new stream. Now, let's jump back into the context of the example.

Line 29 following that if statement in line 26 wants to call the method unread(). The problem is that s has a
compile-time type of FilterInputStream, and thus doesn't understand that method. The previous three lines (26)
have guaranteed, however, that the runtime type of the stream in s is PushbackInputStream, so you can safely cast
it to that type and then safely call unread().

Note

Day 19 -- Streams and I/O

file:///G|/ebooks/1575211831/ch19.htm (12 of 24) [11/06/2000 7:45:43 PM]



This example was done in an unusual way for demonstration
purposes. You could have simply declared a
PushbackInputStream variable and always enclosed the
DataInputStream in it. (Conversely, SimpleLineReader's
constructor could have checked whether its argument was already of
the right class, the way PushbackInputStream did, before
creating a new DataInputStream.) The interesting thing about
this approach of wrapping a class only when needed is that it works
for any InputStream that you hand it, and it does additional work
only if it needs to. Both of these are good general design principles.

All the subclasses of FilterInputStream have now been described. It's time to return to the direct subclasses of
InputStream.

PipedInputStream

This class, along with its brother class PipedOutputStream, are covered later today (they need to be understood and
demonstrated together). For now, all you need to know is that together they create a simple, two-way communication
conduit between threads.

SequenceInputStream

Suppose you have two separate streams and you would like to make a composite stream that consists of one stream
followed by the other (like appending two Strings together). This is exactly what SequenceInputStream was
created for:

InputStream  s1 = new FileInputStream("theFirstPart");
InputStream  s2 = new FileInputStream("theRest");

InputStream  s  = new SequenceInputStream(s1, s2);

... s.read() ...   // reads from each stream in turn

You could have "faked" this example by reading each file in turn-but what if you had to hand the composite stream s to
some other method that was expecting only a single InputStream? Here's an example (using s) that line-numbers the
two previous files with a common numbering scheme:

LineNumberInputStream  aLNIS = new LineNumberInputStream(s);

... aLNIS.getLineNumber() ...

Note
Stringing together streams this way is especially useful when the
streams are of unknown length and origin and were just handed to
you by someone else.

What if you want to string together more than two streams? You could try the following:

Vector  v = new Vector();
. . .   // set up all the streams and add each to the Vector
InputStream  s1 = new SequenceInputStream(v.elementAt(0), v.elementAt(1));

Day 19 -- Streams and I/O

file:///G|/ebooks/1575211831/ch19.htm (13 of 24) [11/06/2000 7:45:43 PM]



InputStream  s2 = new SequenceInputStream(s1, v.elementAt(2));
InputStream  s3 = new SequenceInputStream(s2, v.elementAt(3));
. . .

Note
A Vector is a growable array of objects that can be filled,
referenced (with elementAt()), and enumerated.

However, it's much easier to use a different constructor that SequenceInputStream provides:

InputStream  s  = new SequenceInputStream(v.elements());

This constructor takes one argument-an object of type Enumeration (in this example, we got that object using
Vector's elements() method). The resulting SequenceInputStream object contains all the streams you want to
combine and returns a single stream that reads through the data of each in turn.

StringBufferInputStream

StringBufferInputStream is exactly like ByteArrayInputStream, but instead of being based on a byte
array, it's based on an array of characters (a String):

String       buffer = "Now is the time for all good men to come...";
InputStream  s      = new StringBufferInputStream(buffer);

All comments that were made about ByteArrayInputStream apply here as well.

Note
StringBufferInputStream is a bit of a misnomer because this
input stream is actually based on a String. It should really be called
StringInputStream.

Output Streams
An output stream is the reverse of an input stream; whereas with an input stream you read data from the stream, with
output streams you write data to the stream. Most of the InputStream subclasses you've already seen have their
equivalent OutputStream brother classes. If an InputStream performs a certain operation, the brother
OutputStream performs the inverse operation. You'll see more of what this means soon.

The Abstract Class OutputStream

OutputStream is the abstract class that defines the fundamental ways in which a source (producer) writes a stream of
bytes to some destination. The identity of the destination, and the manner of the transport and storage of the bytes, is
irrelevant. When using an output stream, you are the source of those bytes, and that's all you need to know.

write()

The most important method to the producer of an output stream is the one that writes bytes to the destination. This
method, write(), comes in many flavors, each demonstrated in the following examples:

Note

Day 19 -- Streams and I/O

file:///G|/ebooks/1575211831/ch19.htm (14 of 24) [11/06/2000 7:45:43 PM]



Every one of these write() methods is defined to block until all the
output requested has been written. You don't need to worry about this
limitation-see the note under InputStream's read() method if
you don't remember why.

OutputStream  s      = getAnOutputStreamFromSomewhere();
byte[]        buffer = new byte[1024];    // any size will do

fillInData(buffer);    // the data we want to output
s.write(buffer);

You also can write a "slice" of your buffer by specifying the offset into the buffer, and the length desired, as arguments to
write():

s.write(buffer, 100, 300);

This example writes out bytes 100 through 399 and behaves otherwise exactly the same as the previous write()
method.

Finally, you can write out bytes one at a time:

while (thereAreMoreBytesToOutput()) {
    byte  b = getNextByteForOutput();

    s.write(b);
}

flush()

Because you don't know what an output stream is connected to, you might be required to "flush" your output through
some buffered cache to get it to be written (in a timely manner, or at all). OutputStream's version of this method does
nothing, but it is expected that subclasses that require flushing (for example, BufferedOutputStream and
PrintStream) will override this version to do something nontrivial.

close()

Just like for an InputStream, you should (usually) explicitly close down an OutputStream so that it can release
any resources it may have reserved on your behalf. (All the same notes and examples from InputStream's close()
method apply here, with the prefix In replaced everywhere by Out.)

All output streams descend from the abstract class OutputStream. All share the previous few methods in common.

ByteArrayOutputStream

The inverse of ByteArrayInputStream, which creates an input stream from an array of bytes, is
ByteArrayOutputStream, which directs an output stream into an array of bytes:

OutputStream  s = new ByteArrayOutputStream();

s.write(123);
. . .

The size of the (internal) byte array grows as needed to store a stream of any length. You can provide an initial capacity

Day 19 -- Streams and I/O

file:///G|/ebooks/1575211831/ch19.htm (15 of 24) [11/06/2000 7:45:43 PM]



as an aid to the class, if you like:

OutputStream  s = new ByteArrayOutputStream(1024 * 1024);  // 1 Megabyte

Note
You've just seen your first examples of the creation of an output
stream. These new streams were attached to the simplest of all
possible destinations of data, an array of bytes in the memory of the
local computer.

Once the ByteArrayOutputStream object, stored in the variable s, has been "filled," it can be output to another
output stream:

OutputStream           anotherOutputStream = getTheOtherOutputStream(); 
ByteArrayOutputStream  s = new ByteArrayOutputStream();

fillWithUsefulData(s);
s.writeTo(anotherOutputStream);

It also can be extracted as a byte array or converted to a String:

byte[]  buffer              = s.toByteArray();
String  bufferString        = s.toString();
String  bufferUnicodeString = s.toString(upperByteValue);

Note
The last method allows you to "fake" Unicode (16-bit) characters by
filling in their lower bytes with ASCII and then specifying a common
upper byte (usually 0) to create a Unicode String result.

ByteArrayOutputStreams have two utility methods: One simply returns the current number of bytes stored in the
internal byte array, and the other resets the array so that the stream can be rewritten from the beginning:

int  sizeOfMyByteArray = s.size();

s.reset();     // s.size() would now return 0
s.write(123);
. . .

FileOutputStream

One of the most common uses of streams is to attach them to files in the file system. Here, for example, is the creation of
such an output stream on a UNIX system:

OutputStream  s = new FileOutputStream("/some/path/and/fileName");

Warning

Day 19 -- Streams and I/O

file:///G|/ebooks/1575211831/ch19.htm (16 of 24) [11/06/2000 7:45:43 PM]



Applets attempting to open, read, or write streams based on files in
the file system will cause security violations. See the note under
FileInputStream for more details.

As with FileInputStream, you also can create the stream from a previously opened file descriptor:

FileDescriptor           fd = someFileStream.getFD();
OutputStream  s  = new FileOutputStream(fd);

FileOutputStream is the inverse of FileInputStream, and it knows the same tricks:

FileOutputStream  aFOS = new FileOutputStream("aFileName");

FileDescriptor  myFD = aFOS.getFD(); // get a file descriptor

aFOS.finalize();  // will call close() when automatically called by GC

Note
To call the new methods, you must declare the stream variable aFOS
to be of type FileOutputStream, because plain
OutputStreams don't know about them.

The first is obvious: getFD() simply returns the file descriptor for the file on which the stream is based. The second,
commented, contrived call to finalize() is there to remind you that you may not have to worry about closing this
type of stream-it is done for you automatically.

FilterOutputStream

This abstract class simply provides a "pass-through" for all the standard methods of OutputStream. It holds inside
itself another stream, by definition one further "down" the chain of filters, to which it forwards all method calls. It
implements nothing new but allows itself to be nested:

OutputStream        s  = getAnOutputStreamFromSomewhere();
FilterOutputStream  s1 = new FilterOutputStream(s);
FilterOutputStream  s2 = new FilterOutputStream(s1);
FilterOutputStream  s3 = new FilterOutputStream(s2);

... s3.write(123) ...

Whenever a write is performed on the filtered stream s3, it passes along the request to s2. Then s2 does the same to s1,
and finally s is asked to output the bytes. Subclasses of FilterOutputStream, of course, do some nontrivial
processing of the bytes as they flow past. This chain can be tightly nested-see its brother class, FilterInputStream,
for more.

Now let's examine each of the subclasses of FilterOutputStream in turn.

BufferedOutputStream

BufferedOutputStream is one of the most valuable of all streams. All it does is implement the full complement of
OutputStream's methods, but it does so by using a buffered array of bytes that acts as a cache for writing. This
decouples the rate and the size of the "chunks" you're writing from the more regular, larger block sizes in which streams

Day 19 -- Streams and I/O

file:///G|/ebooks/1575211831/ch19.htm (17 of 24) [11/06/2000 7:45:43 PM]



are most efficiently written (to peripheral devices, files in the file system, or the network, for example).

BufferedOutputStream is one of two classes in the Java library to implement flush(), which pushes the bytes
you've written through the buffer and out the other side. Because buffering is so valuable, you might wish that every
output stream could somehow be buffered. Fortunately, you can surround any output stream in such a way as to achieve
just that:

OutputStream  s = new BufferedOutputStream(new FileOutputStream("foo"));

You now have a buffered output stream based on the file foo that can be flushed.

Just as for filter input streams, any capability provided by a filter output stream can be used by any other basic stream via
nesting, and any combination of these capabilities, in any order, can be as easily accomplished by nesting the filter
streams themselves.

DataOutputStream

All the methods that instances of this class understand are defined in a separate interface, which both
DataOutputStream and RandomAccessFile implement. This interface is general-purpose enough that you might
want to use it yourself in the classes you create. It is called DataOutput.

The DataOutput Interface

In cooperation with its brother inverse interface, DataInput, DataOutput provides a higher-level, typed-stream
approach to the reading and writing of data. Rather than dealing with bytes, this interface deals with writing the primitive
types of the Java language directly:

void  write(int i)                                    throws IOException;
void  write(byte[]  buffer)                           throws IOException;
void  write(byte[]  buffer, int  offset, int  length) throws IOException;

void  writeBoolean(boolean b) throws IOException;
void  writeByte(int i)        throws IOException;
void  writeShort(int i)       throws IOException;
void  writeChar(int i)        throws IOException;
void  writeInt(int i)         throws IOException;
void  writeLong(long l)       throws IOException;
void  writeFloat(float f)     throws IOException;
void  writeDouble(double d)   throws IOException;

void  writeBytes(String s) throws IOException;
void  writeChars(String s) throws IOException;
void  writeUTF(String s)   throws IOException;

Most of these methods have counterparts in the interface DataInput.

The first three methods mirror the three forms of write() you saw previously. Each of the next eight methods writes
out a primitive type. The final three methods write out a string of bytes or characters to the stream: the first one as 8-bit
bytes; the second, as 16-bit Unicode characters; and the last, as a special Unicode stream (readable by DataInput's
readUTF()).

Note

Day 19 -- Streams and I/O

file:///G|/ebooks/1575211831/ch19.htm (18 of 24) [11/06/2000 7:45:43 PM]



The unsigned read methods in DataInput have no counterparts
here. You can write out the data they need via DataOutput's signed
methods because they accept int arguments and also because they
write out the correct number of bits for the unsigned integer of a
given size as a side effect of writing out the signed integer of that
same size. It is the method that reads this integer that must interpret
the sign bit correctly; the writer's job is easy.

Now that you know what the interface that DataOutputStream implements looks like, let's see it in action:

DataOutputStream  s    = new DataOutputStream(myRecordOutputStream());
long              size = getNumberOfItemsInNumericStream();

s.writeLong(size);

for (int  i = 0;  i < size;  ++i) {
    if (shouldProcessNumber(i)) {
        s.writeBoolean(true);     // should process this item
        s.writeInt(theIntegerForItemNumber(i));
        s.writeShort(theMagicBitFlagsForItemNumber(i));
        s.writeDouble(theDoubleForItemNumber(i));
    } else
        s.writeBoolean(false);
}

This is the exact inverse of the example that was given for DataInput. Together, they form a pair that can
communicate a particular array of structured primitive types across any stream (or "transport layer"). Use this pair as a
jumping-off point whenever you need to do something similar.

In addition to the preceding interface, the class itself implements one (self-explanatory) utility method:

int  theNumberOfBytesWrittenSoFar = s.size();

Processing a File

One of the most common idioms in file I/O is to open a file, read and process it line-by-line, and output it again to
another file. Here's a prototypical example of how that would be done in Java:

DataInput   aDI = new DataInputStream(new FileInputStream("source"));
DataOutput  aDO = new DataOutputStream(new FileOutputStream("dest"));
String      line;

while ((line = aDI.readLine()) != null) {
    StringBuffer  modifiedLine = new StringBuffer(line);

    . . .      // process modifiedLine in place
    aDO.writeBytes(modifiedLine.toString());
}
aDI.close();
aDO.close();

If you want to process it byte-by-byte, use this:

Day 19 -- Streams and I/O

file:///G|/ebooks/1575211831/ch19.htm (19 of 24) [11/06/2000 7:45:43 PM]



try {
    while (true) {
        byte  b = (byte) aDI.readByte();

        . . .      // process b in place
        aDO.writeByte(b);
    }
} finally {
    aDI.close();
    aDO.close();
}

Here's a cute two-liner that just copies the file:

try { while (true) aDO.writeByte(aDI.readByte()); }
finally { aDI.close(); aDO.close(); }

Warning
Many of the examples in today's lesson (as well as the last two) are
assumed to appear inside a method that has IOException in its
throws clause, so they don't have to worry about catching those
exceptions and handling them more reasonably. Your code should be
a little less cavalier.

PrintStream

You may not realize it, but you're already intimately familiar with the use of two methods of the PrintStream class.
That's because whenever you use these method calls:

System.out.print(. . .)
System.out.println(. . .)

you are actually using a PrintStream instance located in System's class variable out to perform the output.
System.err is also a PrintStream, and System.in is an InputStream.

Note
On UNIX systems, these three streams will be attached to standard
output, standard error, and standard input, respectively.

PrintStream is uniquely an output stream class (it has no brother class). Because it is usually attached to a screen
output device of some kind, it provides an implementation of flush(). It also provides the familiar close() and
write() methods, as well as a plethora of choices for outputting the primitive types and Strings of Java:

public void  write(int b);
public void  write(byte[]  buffer, int  offset, int  length);
public void  flush();
public void  close();

public void  print(Object o);
public void  print(String s);
public void  print(char[]  buffer);
public void  print(char c);

Day 19 -- Streams and I/O

file:///G|/ebooks/1575211831/ch19.htm (20 of 24) [11/06/2000 7:45:43 PM]



public void  print(int i);
public void  print(long l);
public void  print(float f);
public void  print(double d);
public void  print(boolean b);

public void  println(Object o);
public void  println(String s);
public void  println(char[]  buffer);
public void  println(char c);
public void  println(int i);
public void  println(long l);
public void  println(float f);
public void  println(double d);
public void  println(boolean b);

public void  println();   // output a blank line

PrintStream can also be wrapped around any output stream, just like a filter class:

PrintStream  s = new PrintStream(new FileOutputStream("foo"));

s.println("Here's the first line of text in the file foo.");

If you provide a second argument to the constructor for PrintStream, that second argument is a boolean that specifies
whether the stream should auto-flush. If true, a flush() is sent after each newline character is written.

Here's a simple sample program that operates like the UNIX command cat, taking the standard input, line-by-line, and
outputting it to the standard output:

import java.io.*;   // the one time in the chapter we'll say this

public class  Cat {
    public static void  main(String argv[]) {
        DataInput  d = new DataInputStream(System.in);
        String     line;

     try {  while ((line = d.readLine()) != null)
            System.out.println(line);
        } catch (IOException  ignored) { }
    }
}

PipedOutputStream

Along with PipedInputStream, this pair of classes supports a UNIX-pipe-like connection between two threads,
implementing all the careful synchronization that allows this sort of "shared queue" to operate safely. Use the following
to set up the connection:

PipedInputStream   sIn  = PipedInputStream();
PipedOutputStream  sOut = PipedOutputStream(sIn);

One thread writes to sOut; the other reads from sIn. By setting up two such pairs, the threads can communicate safely

Day 19 -- Streams and I/O

file:///G|/ebooks/1575211831/ch19.htm (21 of 24) [11/06/2000 7:45:43 PM]



in both directions.

Related Classes
The other classes and interfaces in java.io supplement the streams to provide a complete I/O system. Three of them
are described here.

The File class abstracts files in a platform-independent way. Given a filename, it can respond to queries about the type,
status, and properties of a file or directory in the file system.

A RandomAccessFile is created given a file, a filename, or a file descriptor. It combines in one class
implementations of the DataInput and DataOutput interfaces, both tuned for "random access" to a file in the file
system. In addition to these interfaces, RandomAccessFile provides certain traditional UNIX-like facilities, such as
seeking to a random point in the file.

Finally, the StreamTokenizer class takes an input stream and produces a sequence of tokens. By overriding its
various methods in your own subclasses, you can create powerful lexical parsers.

You can learn more about any and all of these other classes from the full (online) API descriptions in your Java release.

Object Serialization (Java 1.1)
A topic to streams, and one that will be available in the core Java library with Java 1.1, is object serialization.
Serialization is the ability to write a Java object to a stream such as a file or a network connection, and then read it and
reconstruct that object on the other side. Object serialization is crucial for the ability to save Java objects to a file (what's
called object persistence), or to be able to accomplish network-based applications that make use of Remote Method
Invocation (RMI)-a capability you'll learn more of on Day 27, "The Standard Extension APIs."

At the heart of object serialization are two streams classes: ObjectInputStream, which inherits from
DataInputStream, and ObjectOutputStream, which inherits from DataOutputStream. Both of these
classes will be part of the java.io package and will be used much in the same way as the standard input and output
streams are. In addition, two interfaces, ObjectOutput and ObjectInput, which inherit from DataInput and
DataOutput, respectively, will provide abstract behavior for reading and writing objects.

To use the ObjectInputStream and ObjectOutputStream classes, you create new instances much in the same
way you do ordinary streams, and then use the readObject() and writeObject() methods to read and write
objects to and from those streams.

ObjectOutputStream's writeObject() method, which takes a single object argument, serializes that object as
well as any object it has references to. Other objects written to the same stream are serialized as well, with references to
already-serialized objects kept track of and circular references preserved.

ObjectInputStream's readObject() method takes no arguments and reads an object from the stream (you'll
need to cast that object to an object of the appropriate class). Objects are read from the stream in the same order in which
they are written.

Here's a simple example from the object serialization specification that writes a date to a file (actually, it writes a string
label, "Today", and then a Date object):

FileOutputStream f = new FileOutputStream("tmp");
ObjectOutput  s  =  new  ObjectOutputStream(f);
s.writeObject("Today");
s.writeObject(new Date());
s.flush();

Day 19 -- Streams and I/O

file:///G|/ebooks/1575211831/ch19.htm (22 of 24) [11/06/2000 7:45:43 PM]



To deserialize the object (read it back in again), use this code:

FileInputStream in = new FileInputStream("tmp");
ObjectInputStream s = new ObjectInputStream(in);
String today = (String)s.readObject();
Date date = (Date)s.readObject();

One other feature of object serialization to note is the transient modifier. Used in instance variable declarations as
other modifiers are, the transient modifier means that the value of that object should not be stored when the object is
serialized-that its value is temporary or will need to be re-created from scratch once the object is reconstructed. Use
transient variables for environment-specific information (such as file handles that may be different from one side of the
serialization to the other) or for values that can be easily recalculated to save space in the final serialized object.

To declare a transient variable, use the transient modifier the way you do other modifiers such as public,
private, or abstract:

public transient int transientValue = 4;

At the time of this writing, object serialization is available as an additional package for Java 1.0.2 as part of the RMI
package. You can find out more about it, including full specifications and downloadable software, from the Java RMI
Web site at http://chatsubo.javasoft.com/current/.

Summary
Today you have learned about the general idea of streams and have met input streams based on byte arrays, files, pipes,
sequences of other streams, and string buffers, as well as input filters for buffering, typed data, line numbering, and
pushing-back characters.

You have also met the analogous brother output streams for byte arrays, files, and pipes, output filters for buffering and
typed data, and the unique output filter used for printing.

Along the way, you have become familiar with the fundamental methods all streams understand (such as read() and
write()), as well as the unique methods many streams add to this repertoire. You have learned about catching
IOExceptions-especially the most useful of them, EOFException.

Finally, the twice-useful DataInput and DataOutput interfaces formed the heart of RandomAccessFile, one of
the several utility classes that round out Java's I/O facilities.

Java streams provide a powerful base on which you can build multithreaded, streaming interfaces of the most complex
kinds, and the programs (such as HotJava) to interpret them. The higher-level Internet protocols and services of the future
that your applets can build on this base are really limited only by your imagination.

Q&A

Q: In an early read() example, you did something with the variable byteOrMinus1 that seemed a little
clumsy. Isn't there a better way? If not, why recommend the cast later?

Day 19 -- Streams and I/O

file:///G|/ebooks/1575211831/ch19.htm (23 of 24) [11/06/2000 7:45:44 PM]

http://chatsubo.javasoft.com/current/


A: Yes, there is something a little odd about those statements. You might be tempted to try something like this
instead:

while ((b = (byte) s.read()) != -1) {
    . . .    // process the byte b
}

The problem with this shortcut occurs if read() returns the value 0xFF (0377). Because of the way values
are cast, it will appear to be identical to the integer value -1 that indicates end of stream. Only saving that value
in a separate integer variable, and then casting it later, will accomplish the desired result. The cast to byte is
recommended in the note for slightly different reasons than this, however-storing integer values in correctly
sized variables is always good style (and besides, read() really should be returning something of byte size
here and throwing an exception for end of stream).

Q: What input streams in java.io actually implement mark(), reset(), and markSupported()?
A: InputStream itself does-and in their default implementations, markSupported() returns false,

mark() does nothing, and reset() throws an exception. The only input stream in the current release that
correctly supports marking is BufferedInputStream, which overrides these defaults.
LineNumberInputStream actually implements mark() and reset(), but in the current release, it doesn't
answer markSupported() correctly, so it looks as if it does not.

Q: Why is available() useful, if it sometimes gives the wrong answer?
A: First, for many streams, it gives the right answer. Second, for some network streams, its implementation might

be sending a special query to discover some information you couldn't get any other way (for example, the size of
a file being transferred by ftp). If you are displaying a "progress bar" for network or file transfers, for example,
available() will often give you the total size of the transfer, and when it does not-usually by returning 0-it
will be obvious to you (and your users).

Q: What's a good example of the use of the DataInput/DataOutput pair of interfaces?
A: One common use of such a pair is when objects want to "pickle" themselves for storage or movement over a

network. Each object implements read and write methods using these interfaces, effectively converting itself to a
stream that can later be reconstituted "on the other end" into a copy of the original object.

   

Day 19 -- Streams and I/O

file:///G|/ebooks/1575211831/ch19.htm (24 of 24) [11/06/2000 7:45:44 PM]



Day 17

Exceptions
by Charles L. Perkins and Laura Lemay

CONTENTS
Exceptions, the Old and Confusing Way●   

Java Exceptions●   

Managing Exceptions

Exception Consistency Checking❍   

Protecting Code and Catching Exceptions❍   

The finally Clause❍   

●   

Declaring Methods That Might Throw Exceptions

The throws Clause❍   

Which Exceptions Should You Throw?❍   

Passing On Exceptions❍   

throws and Inheritance❍   

●   

Creating and Throwing Your Own Exceptions

Throwing Exceptions❍   

Creating Your Own Exceptions❍   

Doing It All: Combining throws, try, and throw❍   

●   

When and When Not to Use Exceptions

When to Use Exceptions❍   

When Not to Use Exceptions❍   

Bad Style Using Exceptions❍   

●   

Summary●   

Q&A●   

Programmers in any language endeavor to write bug-free programs, programs that never crash, programs that
can handle any situation with grace and that can recover from unusual situations without causing the user any
undue stress. Good intentions aside, programs like this don't exist.

In real programs, errors occur, either because the programmer didn't anticipate every situation your code would
get into (or didn't have the time to test the program enough), or because of situations out of the programmer's
control-bad data from users, corrupt files that don't have the right data in them, network connections that don't

Day 17 -- Exceptions

file:///G|/ebooks/1575211831/ch17.htm (1 of 16) [11/06/2000 7:45:46 PM]



connect, hardware devices that don't respond, sun spots, gremlins, whatever.

In Java, these sorts of strange events that may cause a program to fail are called exceptions. And Java defines a
number of language features to deal with exceptions, including

How to handle them in your code and recover gracefully from potential problems●   

How to tell Java and users of your methods that you're expecting a potential exception●   

How to create an exception if you detect one●   

How your code is limited, yet made more robust by them●   

Exceptions are unusual things that can happen in your Java programs outside the normal or desired behavior of
that program. Exceptions include errors that could be fatal to your program but also include other unusual
situations. By managing exceptions, you can manage errors and possibly work around them.

Exceptions, the Old and Confusing Way
Programming languages have long labored to solve the following common problem:

int  status = callSomethingThatAlmostAlwaysWorks();

if (status == FUNNY_RETURN_VALUE) {
    . . .      // something unusual happened, handle it
    switch(someGlobalErrorIndicator) {
        . . . // handle more specific problems
    }
} else {
    . . .     // all is well, go your merry way
}

What this bit of code is attempting to do is to run a method that should work, but might not for some unusual
reason. The status might end up being some unusual return value, in which case the code attempts to figure out
what happened and work around it. Somehow this seems like a lot of work to do to handle a rare case. And if
the function you called returns an int as part of its normal answer, you'll have to distinguish one special
integer (FUNNY_RETURN_VALUE) as an error. Alternatively, you could pass in a special return value pointer,
or use a global variable to store those errors, but then problems arise with keeping track of multiple errors with
the same bit of code, or of the original error stored in the global being overwritten by a new error before you
have a chance to deal with it.

Once you start creating larger systems, error management can become a major problem. Different
programmers may use different special values for handling errors, and may not document them overly well, if
at all. You may inconsistently use errors in your own programs. Code to manage these kinds of errors can
often obscure the original intent of the program, making that code difficult to read and to maintain. And,
finally, if you try dealing with errors in this kludgey way, there's no easy way for the compiler to check for
consistency the way it can check to make sure you called a method with the right arguments.

For all these reasons, Java has exceptions to deal with managing, creating, and expecting errors and other
unusual situations. Through a combination of special language features, consistency checking at compile time
and a set of extensible exception classes, errors and other unusual conditions in Java programs can be much
more easily managed. Given these features, you can now add a whole new dimension to the behavior and

Day 17 -- Exceptions

file:///G|/ebooks/1575211831/ch17.htm (2 of 16) [11/06/2000 7:45:46 PM]



design of your classes, of your class hierarchy, and of your overall system. Your class and interface definitions
describe how your program is supposed to behave given the best circumstances. By integrating exception
handling into your program design, you can consistently describe how the program will behave when
circumstances are not quite as good, and allow people who use your classes to know what to expect in those
cases.

Java Exceptions
At this point in the book, chances are you've run into at least one Java exception-perhaps you mistyped a
method name or made a mistake in your code that caused a problem. And chances are that your program quit
and spewed a bunch of mysterious errors to the screen. Those mysterious errors are exceptions. When your
program quits, it's because an exception was "thrown." Exceptions can be thrown by the system or thrown by
you, and they can be caught as well (catching an exception involves dealing with it so your program doesn't
crash. You'll learn more about this later). "An exception was thrown" is the proper Java terminology for "an
error happened."

Exceptions don't occur, they are thrown. Java throws an exception in response to an unusual situation. You can
also throw your own exceptions, or catch an exception to gracefully manage errors.

The heart of the Java exception system is the exception itself. Exceptions in Java are actual objects, instances
of classes that inherit from the class Throwable. When an exception is thrown, an instance of a
Throwable class is created. Figure 17.1 shows a partial class hierarchy for exceptions.

Figure 17.1 : The exception class hierarchy.

Throwable has two subclasses: Error and Exception. Instances of Error are internal errors in the Java
runtime environment (the virtual machine). These errors are rare and usually fatal; there's not much you can do
about them (either to catch them or to throw them yourself), but they exist so that Java can use them if it needs
to.

The class Exception is more interesting. Subclasses of Exception fall into two general groups:

Runtime exceptions (subclasses of the class RuntimeException) such as
ArrayIndexOutofBounds, SecurityException, or NullPointerException.

●   

Other exceptions such as EOFException and MalformedURLException.●   

Runtime exceptions usually occur because of code that isn't very robust. An ArrayIndexOutofBounds
exception, for example, should never be thrown if you're properly checking to make sure your code doesn't
extend past the end of an array. NullPointerException exceptions won't happen if you don't try to
reference the values of a variable that doesn't actually hold an object. If your program is causing runtime
exceptions under any circumstances whatsoever, you should be fixing those problems before you even begin to
deal with exception management.

The final group of exceptions is the most interesting because these are the exceptions that indicate that
something very strange and out of control is happening. EOFExceptions, for example, happen when you're
reading from a file and the file ends before you expect it to. MalformedURLExceptions happen when a
URL isn't in the right format (perhaps your user typed it wrong). This group includes exceptions that you
yourself create to signal unusual cases that may occur in your own programs.

Exceptions are arranged in a hierarchy like other classes, where the Exception superclasses are more
general errors, and subclasses are more specific errors. This organization will become more important to you

Day 17 -- Exceptions

file:///G|/ebooks/1575211831/ch17.htm (3 of 16) [11/06/2000 7:45:46 PM]



as you deal with exceptions in your own code.

Most of the exception classes are part of the java.lang package (including Throwable, Exception,
and RuntimeException). But many of the other packages define other exceptions, and those exceptions
are used throughout the class library. For example, the java.io package defines a general exception class
called IOException, which is subclassed not only in the java.io package for input and output exceptions
(EOFException, FileNotFoundException), but also in the java.net classes for networking
exceptions such as MalFormedURLException.

Managing Exceptions
So now that you know what an exception is, how do you deal with them in your own code? In many cases, the
Java compiler enforces exception management when you try to use methods that use exceptions; you'll need to
deal with those exceptions in your own code or it simply won't compile. In this section you'll learn about that
consistency checking and how to use the try, catch, and finally language keywords to deal with
exceptions that may or may not occur.

Exception Consistency Checking

The more you work with the Java class libraries, the more likely it is that you'll run into a compiler error (an
exception!) similar to this one:

TestProg.java:32: Exception java.lang.InterruptedException 
must be caught or it must be declared in the throws clause
of this method.

What on earth does that mean? In Java, a method can indicate the kinds of errors it might possibly throw. For
example, methods that read from files might potentially throw IOException errors, so those methods are
declared with a special modifier that indicates potential errors. When you use those methods in your own Java
programs, you have to protect your code against those exceptions. This rule is enforced by the compiler itself,
the same way that the compiler checks to make sure that you're using methods with the right number of
arguments and that all your variable types match the thing you're assigning to them.

Why is this check in place? By having methods declare the exceptions they throw, and by forcing you to
handle those exceptions in some way, the potential for fatal errors in a program occurring because you simply
didn't know they could occur is minimized. You no longer have to carefully read the documentation or the
code of an object you're going to use to make sure you've dealt with all the potential problems-Java does the
checking for you. And, on the other side, if you define your methods so that they indicate the exceptions they
can throw, then Java can tell users of your objects to handle those errors.

Protecting Code and Catching Exceptions

Let's assume that you've been happily coding and during a test compile you ran into that exception message.
According to the message, you have to either catch the error or declare that your method throws it. Let's deal
with the first case: catching potential exceptions.

To catch an exception, you do two things:

You protect the code that contains the method that might throw an exception inside a try block.●   

Day 17 -- Exceptions

file:///G|/ebooks/1575211831/ch17.htm (4 of 16) [11/06/2000 7:45:46 PM]



You test for and deal with an exception inside a catch block.●   

What try and catch effectively mean is "try this bit of code that might cause an exception. If it executes
okay, go on with the program. If it doesn't, catch the exception and deal with it."

You've seen try and catch once before, when we dealt with threads. On Day 10, "Simple Animation and
Threads," you learned about an applet that created a digital clock, and the animation paused once a second
using this bit of code:

try { Thread.sleep(1000) }
catch (InterruptedException e) {}

While this example uses try and catch, it's not a very good use of it. Here, the Thread.sleep() class
method could potentially throw an exception of type InterruptedException (for when the thread is
interrupted from running). So we've put the call to sleep() inside the try clause to catch that exception if it
happens. And inside catch (inside the parentheses), we indicate that we're specifically looking for
InterruptedException exceptions. The problem here is that there isn't anything inside the catch
clause-in other words, we'll catch the exception if it happens, but then we'll drop it on the floor and pretend we
didn't see it. In all but the simplest cases (such as this one, where the exception really doesn't matter), you're
going to want to put something inside the braces after catch to try to do something responsible to clean up
after the exception happens.

The part of the catch clause inside the parentheses is similar to the parameter list of a method definition; it
contains the class of the exception to be caught and a variable name (e is very commonly used). Inside the
body of the catch clause, you can then refer to the exception object, for example, to get to the detailed error
message contained in the getMessage() method:

catch (InterruptedException e) {
    System.out.println("Ooops.  Error: " + e.getMessage());
} 

Here's another example. Say you have a program that reads from a file. This program most likely uses one of
the streams classes you'll learn about on Day 19, "Streams and I/O," but the basic idea here is that you open a
connection to a file and then use the read() method to get data from it. What if some strange disk error
happens and the read() method can't read anything? What if the file is truncated and has fewer bytes in it
than you expected? In either of these instances, the read() method will throw an IOException which, if
you didn't catch it, would cause your program to stop executing and possibly crash. By putting your read()
method inside a try clause, you can then deal gracefully with that error inside catch to clean up after the
error and return to some safe state, to patch things up enough to be able to proceed, or, if all else fails, to save
as much of the current program's state as possible and to exit. This example does just that; it tries to read from
the file, and catches exceptions if they happen:

try {
    while (numbytes <= mybuffer.length) {
        myinputstream.read(mybuffer);
        numbytes;++
    }
} catch (IOException e) {
  System.out.println("Ooops, IO Exception.  Only read " + numbytes.");

Day 17 -- Exceptions

file:///G|/ebooks/1575211831/ch17.htm (5 of 16) [11/06/2000 7:45:46 PM]



  // other cleanup code
}

Here, the "other cleanup code" can be anything you want it to be; perhaps you can go on with the program
using the partial information you got from the file, or perhaps you want to put up a dialog saying that the file is
corrupt and to let the user try to select another file or do some other operation.

Note that because the Exception classes are organized into hierarchies as other classes are, and because of
the rule that you can use a subclass anywhere a superclass is expected, you can catch "groups" of exceptions
and handle them with the same catch code. For example, although there are several different types of
IOExceptions (EOFException, FileNotFoundException, and so on-see the java.io package
for examples), by catching IOException you also catch instances of any subclass of IOException.

What if you do want to catch very different kinds of exceptions that aren't related by inheritance? You can use
multiple catch clauses for a given try, like this:

try {
   // protected code
} catch (OneKindOfException e) {
  ...
} catch (AnotherKindOfException e2) {
  ....
} catch (YetAnotherException e3) {
  ...
} catch (StilMoreException e4) {
 ....
}

Note that because the scope of local variables inside catch is the same as the scope of the outer block (the
method definition or a loop if you're inside one), you'll have to use different local variables for each individual
catch.

Because the first catch clause that matches is executed, you can build chains such as the following:

try {
    someReallyExceptionalMethod();
} catch (NullPointerException n) {  // a subclass of RuntimeException
    . . .
} catch (RuntimeException r) {      // a subclass of Exception
    . . .
} catch (IOException i) {           // a subclass of Exception
    . . .
} catch (MyFirstException m) {      // our subclass of Exception
    . . .
} catch (Exception e) {             // a subclass of Throwable
    . . .
} catch (Throwable t) {
    . . .  // Errors, plus anything not caught above are caught here
}

Day 17 -- Exceptions

file:///G|/ebooks/1575211831/ch17.htm (6 of 16) [11/06/2000 7:45:46 PM]



By listing subclasses before their parent classes, the parent catches anything it would normally catch that's also
not one of the subclasses above it. By juggling chains like these, you can express almost any combination of
tests.

The finally Clause

Suppose there is some action in your code that you absolutely must do, no matter what happens, whether an
exception is thrown or not. Usually, this is to free some external resource after acquiring it, to close a file after
opening it, or something similar. While you could put that action both inside a catch and outside it, that
would be duplicating the same code in two different places. Instead, put one copy of that code inside a special
optional part of the try...catch clause, called finally:

SomeFileClass  f = new SomeFileClass();

if (f.open("/a/file/name/path")) {
    try {
        someReallyExceptionalMethod();
    { catch (IOException e) {
        // deal with errors
    } finally {
        f.close();
    }
}

The finally clause is actually useful outside exceptions; you can also use it to execute cleanup code after a
return, a break, or a continue inside loops. For the latter cases, you can use a try clause with a finally but
without a catch clause.

Here's a fairly complex example of how this might work:

int  mysteriousState = getContext();

while (true) {
    System.out.print("Who ");
    try {
        System.out.print("is ");
        if (mysteriousState == 1)
            return;
        System.out.print("that ");
        if (mysteriousState == 2)
            break;
        System.out.print("strange ");
        if (mysteriousState == 3)
            continue;
        System.out.print("but kindly ");
        if (mysteriousState == 4)
            throw new UncaughtException();
        System.out.print("not at all ");

Day 17 -- Exceptions

file:///G|/ebooks/1575211831/ch17.htm (7 of 16) [11/06/2000 7:45:46 PM]



    } finally {
        System.out.print("amusing man?\n");
    }
    System.out.print("I'd like to meet the man");
}
System.out.print("Please tell me.\n");

Here is the output produced depending on the value of mysteriousState:

1     Who is amusing man? Please tell me.
2     Who is that amusing man? Please tell me.
3     Who is that strange amusing man? Who is that strange ....
4     Who is that strange but kindly amusing man? Please tell me.
5     Who is that strange but kindly not at all amusing man?
      I'd like to meet that man. Who is that strange ...

Note
In cases 3 and 5, the output never ends until you quit the program. In
4, an error message generated by the UncaughtException is also
printed.

Declaring Methods That Might Throw Exceptions
In the previous example you learned how to deal with methods that might possibly throw exceptions by
protecting code and catching any exceptions that occur. The Java compiler will check to make sure you've
somehow dealt with a method's exceptions-but how did it know which exceptions to tell you about in the first
place?

The answer is that the original method indicated in its signature the exceptions that it might possibly throw.
You can use this mechanism in your own methods-in fact, it's good style to do so to make sure that other users
of your classes are alerted to the errors your methods may come across.

To indicate that a method may possibly throw an exception, you use a special clause in the method definition
called throws.

The throws Clause

To indicate that some code in the body of your method may throw an exception, simply add the throws
keyword after the signature for the method (before the opening brace) with the name or names of the exception
that your method throws:

public boolean myMethod (int x, int y) throws AnException {
   ...
}

If your method may possibly throw multiple kinds of exceptions, you can put all of them in the throws
clause, separated by commas:

Day 17 -- Exceptions

file:///G|/ebooks/1575211831/ch17.htm (8 of 16) [11/06/2000 7:45:46 PM]



public boolean myOtherMethod (int x, int y) 
  throws AnException, AnotherExeption, AThirdException {
   ...
}

Note that as with catch you can use a superclass of a group of exceptions to indicate that your method may
throw any subclass of that exception:

public void YetAnotherMethod() throws IOException { 
...
}

Keep in mind that adding a throws method to your method definition simply means that the method might
throw an exception if something goes wrong, not that it actually will. The throws clause simply provides
extra information to your method definition about potential exceptions and allows Java to make sure that your
method is being used correctly by other people.

Think of a method's overall description as a contract between the designer of that method (or class) and the
caller of the method (you can be either side of that contract, of course). Usually, the description indicates the
types of a method's arguments, what it returns, and the general semantics of what it normally does. Using
throws, you add information about the abnormal things it can do as well. This new part of the contract helps
to separate and make explicit all the places where exceptional conditions should be handled in your program,
and that makes large-scale design easier.

Which Exceptions Should You Throw?

Once you decide to declare that your method might throw an exception, you have to decide which exceptions it
might throw (and actually throw them or call a method that will throw them-you'll learn about throwing your
own exceptions in the next section). In many instances, this will be apparent from the operation of the method
itself. Perhaps you're creating and throwing your own exceptions, in which case you'll know exactly which
exceptions to throw.

You don't really have to list all the possible exceptions that your method could throw; some exceptions are
handled by the runtime itself and are so common (well, not common, but ubiquitous) that you don't have to
deal with them. In particular, exceptions of either class Error or RuntimeException (or any of their
subclasses) do not have to be listed in your throws clause. They get special treatment because they can occur
anywhere within a Java program and are usually conditions that you, as the programmer, did not directly
cause. One good example is OutOfMemoryError, which can happen anywhere, at any time, and for any
number of reasons. These two kinds of exceptions are called implicit exceptions, and you don't have to worry
about them.

Implicit exceptions are exceptions that are subclasses of the classes RuntimeException and Error.
Implicit exceptions are usually thrown by the Java runtime itself. You do not have to declare that your method
throws them.

Note

Day 17 -- Exceptions

file:///G|/ebooks/1575211831/ch17.htm (9 of 16) [11/06/2000 7:45:47 PM]



You can, of course, choose to list these errors and runtime exceptions
in your throws clause if you like, but the callers of your methods
will not be forced to handle them; only non-runtime exceptions must
be handled.

All other exceptions are called explicit exceptions and are potential candidates of a throws clause in your
method.

Passing On Exceptions

In addition to declaring methods that throw exceptions, there's one other instance in which your method
definition may include a throws clause. In this case, you want to use a method that throws an exception, but
you don't want to catch that exception or deal with it. In many cases, it might make more sense for the method
that calls your method to deal with that exception rather than for you to deal with it. There's nothing wrong
with this; it's a fairly common occurrence that you won't actually deal with an exception, but will pass it back
to the method that calls yours. At any rate, it's a better idea to pass on exceptions to calling methods than to
catch them and ignore them.

Rather than using the try and catch clauses in the body of your method, you can declare your method with
a throws clause such that it, too, might possibly throw the appropriate exception. Then it's the responsibility
of the method that calls your method to deal with that exception. This is the other case that will satisfy the Java
compiler that you have done something with a given method. Here's another way of implementing an example
that reads characters from a stream:

public void readTheFile(String filename) throws IO Exception {
    // open the file, init the stream, etc.
    while (numbytes <= mybuffer.length) {
        myinputstream.read(mybuffer);
        numbytes;++
    }

This example is similar to the example used previously today; remember that the read() method was
declared to throw an IOException, so you had to use try and catch to use it. Once you declare your
method to throw an exception, however, you can use other methods that also throw those exceptions inside the
body of this method, without needing to protect the code or catch the exception.

Note
You can, of course, deal with other exceptions using try and catch
in the body of your method in addition to passing on the exceptions
you listed in the throws clause. You can also both deal with the
exception in some way and then re-throw it so that your method's
calling method has to deal with it anyhow. You'll learn how to throw
methods in the next section.

throws and Inheritance

If your method definition overrides a method in a superclass that includes a throws clause, there are special
rules for how your overridden method deals with throws. Unlike with the other parts of the method

Day 17 -- Exceptions

file:///G|/ebooks/1575211831/ch17.htm (10 of 16) [11/06/2000 7:45:47 PM]



signature, your new method does not have to have the same set of exceptions listed in the throws clause.
Because there's a potential that your new method may deal better with exceptions, rather than just throwing
them, your subclass's method can potentially throw fewer types of exceptions than its superclass's method
definition, up to and including throwing no exceptions at all. That means that you can have the following two
class definitions and things will work just fine:

public class Fruit {
    public void ripen() throws RotException {
       ...
    }
}

public class WaxFruit extends Fruit {
    public void ripen() {
       ...
    }
}

The converse of this rule is not true; a subclass's method cannot throw more exceptions (either exceptions of
different types or more general exception classes) than its superclass's method.

Creating and Throwing Your Own Exceptions
There are two sides to every exception: the side that throws the exception and the side that catches it. An
exception can be tossed around a number of times to a number of methods before it's caught, but eventually
it'll be caught and dealt with.

But who does the actual throwing? Where do exceptions come from? Many exceptions are thrown by the Java
runtime, or by methods inside the Java classes themselves. You can also throw any of the standard exceptions
that the Java class libraries define, or you can create and throw your own exceptions. This section describes all
these things.

Throwing Exceptions

Declaring that your method throws an exception is useful only to users of your method and to the Java
compiler, which checks to make sure all your exceptions are being dealt with. But the declaration itself doesn't
do anything to actually throw that exception should it occur; you have to do that yourself in the body of the
method.

Remember that exceptions are all instances of some exception class, of which there are many defined in the
standard Java class libraries. In order to throw an exception, therefore, you'll need to create a new instance of
an exception class. Once you have that instance, use the throw statement to throw it (could this be any
easier?). The simplest way to throw an exception is simply like this:

throw new ServiceNOteAvailableException();

Technical Note

Day 17 -- Exceptions

file:///G|/ebooks/1575211831/ch17.htm (11 of 16) [11/06/2000 7:45:47 PM]



You can only throw objects that are instances of subclasses of
Throwable. This is different from C++'s exceptions, which allow
you to throw objects of any type.

Depending on the exception class you're using, the exception may also have arguments to its constructor that
you can use. The most common of these is a string argument, which lets you describe the actual problem in
greater detail (which can be very useful for debugging purposes). Here's an example:

throw new ServiceNotAvailableException("Exception: 
   service not available, database is offline.");

Once an exception is thrown, the method exits immediately, without executing any other code (other than the
code inside finally, if that clause exists) and without returning a value. If the calling method does not have
a try or catch surrounding the call to your method, the program may very well exit based on the exception
you threw.

Creating Your Own Exceptions

Exceptions are simply classes, just like any other classes in the Java hierarchy. Although there are a fair
number of exceptions in the Java class library that you can use in your own methods, there is a strong
possibility that you may want to create your own exceptions to handle different kinds of errors your programs
might run into. Fortunately, creating new exceptions is easy.

Your new exception should inherit from some other exception in the Java hierarchy. Look for an exception
that's close to the one you're creating; for example, an exception for a bad file format would logically be an
IOException. If you can't find a closely related exception for your new exception, consider inheriting from
Exception, which forms the "top" of the exception hierarchy for explicit exceptions (remember that implicit
exceptions, which include subclasses of Error and RuntimeException, inherit from Throwable).

Exception classes typically have two constructors: The first takes no arguments and the second takes a single
string as an argument. In the latter case you'll want to call super() in that constructor to make sure the string
is applied to the right place in the exception.

Beyond those three rules, exception classes look just like other classes. You can put them in their own source
files and compile them just as you would other classes:

public class SunSpotException extends Exception {
   public SunSpotException() {}
   public SunSpotExceotion(String msg) {
      super(msg);
   }
}

Doing It All: Combining throws, try, and throw

What if you want to combine all the approaches shown so far? In your method, you'd like to handle incoming
exceptions yourself, but also you'd like to pass the exception up to your caller. Simply using try and catch
doesn't pass on the exception, and simply adding a throws clause doesn't give you a chance to deal with the
exception. If you want to both manage the exception and pass it on to the caller, use all three mechanisms: the

Day 17 -- Exceptions

file:///G|/ebooks/1575211831/ch17.htm (12 of 16) [11/06/2000 7:45:47 PM]



throws clause, the try statement, and by explicitly rethrowing the exception:

public void  responsibleExceptionalMethod() throws MyFirstException {
    MyFirstExceptionalClass  aMFEC = new MyFirstExceptionalClass();

    try {
        aMFEC.anExceptionalMethod();
    } catch (MyFirstException m) {
        . . .        // do something responsible
        throw m;     // re-throw the exception
    }
}

This works because exception handlers can be nested. You handle the exception by doing something
responsible with it, but decide that it is too important to not give an exception handler that might be in your
caller a chance to handle it as well. Exceptions float all the way up the chain of method callers this way
(usually not being handled by most of them) until at last the system itself handles any uncaught ones by
aborting your program and printing an error message. In a standalone program, this is not such a bad idea; but
in an applet, it can cause the browser to crash. Most browsers protect themselves from this disaster by catching
all exceptions themselves whenever they run an applet, but you can never tell. If it's possible for you to catch
an exception and do something intelligent with it, you should.

When and When Not to Use Exceptions
To finish up today's lesson, here's a quick summary and some advice on when to use exceptions…and when
not to use them.

When to Use Exceptions

Because throwing, catching, and declaring exceptions are interrelated concepts and can be very confusing,
here's a quick summary of when to do what.

If your method uses someone else's method, and that method has a throws clause, you can do one of three
things:

Deal with the exception using try and catch statements.●   

Pass the exception up the calling chain by adding your own throws clause to your method definition.●   

Do both of the above by catching the exception using catch and then explicitly rethrowing it using
throw.

●   

In cases where a method throws more than one exception, you can, of course, handle each of those exceptions
differently. For example, you might catch some of those exceptions while allowing others to pass up the
calling chain.

If your method throws its own exceptions, you should declare that it throws those methods using the throws
clause. If your method overrides a superclass's method that has a throws clause, you can throw the same
types of exceptions or subclasses of those exceptions; you cannot throw any different types of exceptions.

And, finally, if your method has been declared with a throws clause, don't forget to actually throw the

Day 17 -- Exceptions

file:///G|/ebooks/1575211831/ch17.htm (13 of 16) [11/06/2000 7:45:47 PM]



exception in the body of your method using throw.

When Not to Use Exceptions

Exceptions are cool. But they aren't that cool. There are several cases in which you should not use exceptions,
even though they may seem appropriate at the time.

First, you should not use exceptions if the exception is something that you expect and a simple test to avoid
that exceptional condition would make much more sense. For example, although you can rely on an
ArrayIndexOutofBounds exception to tell you when you've gone past the end of the array, a simple test
of the length of the array in your code to make sure you don't get that exception in the first place is a much
better idea. Or if your users are going to enter data that you need to be a letter, testing to make sure that data is
a letter is a much better idea than throwing an exception and dealing with it somewhere else.

Exceptions take up a lot of processing time for your Java program. Whereas you may find exceptions
stylistically interesting for your own code, a simple test or series of tests will run much faster and make your
program that much more efficient. Exceptions, as I mentioned earlier, should only be used for truly exceptional
cases that are out of your control.

It's also easy to get carried away with exceptions and to try to make sure that all your methods have been
declared to throw all the possible exceptions that they can possibly throw. In addition to making your code
more complex in general, if other people will be using your code, they'll have to deal with handling all the
exceptions that your methods might throw. You're making more work for everyone involved when you get
carried away with exceptions. Declaring a method to throw either few or lots of exceptions is a trade-off; the
more exceptions your method potentially throws, the more complex that method is to use. Declare only the
exceptions that have a reasonably fair chance of happening and that make sense for the overall design of your
classes.

Bad Style Using Exceptions

When you first start using exceptions, it might be appealing to work around the compiler errors that result
when you use a method that declared a throws clause. While it is legal to add an empty catch clause or to add
a throws clause to your own method (and there are appropriate reasons for doing both of these things),
intentionally dropping exceptions on the floor and subverting the checks the Java compiler does for you is very
bad style.

The Java exception system was designed so that if a potential error can occur, you're warned about it. Ignoring
those warnings and working around them makes it possible for fatal errors to occur in your program-errors that
you could have avoided with a few lines of code. And, even worse, adding throws clauses to your methods
to avoid exceptions means that the users of your methods (objects further up in the calling chain) will have to
deal with them. You've just made more work for someone else and made your methods more difficult to use
for other people.

Compiler errors regarding exceptions are there to remind you to reflect on these issues. Take the time to deal
with the exceptions that may affect your code. This extra care will richly reward you as you reuse your classes
in later projects and in larger and larger programs. Of course, the Java class library has been written with
exactly this degree of care, and that's one of the reasons it's robust enough to be used in constructing all your
Java projects.

Day 17 -- Exceptions

file:///G|/ebooks/1575211831/ch17.htm (14 of 16) [11/06/2000 7:45:47 PM]



Summary
Today you have learned about how exceptions aid your program's design and robustness. Exceptions give you
a way of managing potential errors in your programs and of alerting users of your programs that potential
errors can occur. The Java class library has a vast array of exceptions defined and thrown, and also allows you
to define and throw your own exceptions. Using try, catch, and finally you can protect code that may
result in exceptions, catch and handle those exceptions if they occur, and execute code whether or not an
exception was generated.

Handling exceptions is only half of the equation; the other half is generating and throwing exceptions yourself.
Today you have learned about the throws clause, which tells users of your method that the method might
throw an exception. throws can also be used to "pass on" an exception from a method call in the body of
your method.

In addition to the information given by the throws clause, you learned how to actually create and throw your
own methods be defining new exception classes and by throwing instances of any exception classes using
throw.

And, finally, Java's reliance on strict exception handling does place some restrictions on the programmer, but
you have learned that these restrictions are light compared to the rewards.

Q&A

Q: I'm still not sure I understand the differences between exceptions, errors, and runtime
exceptions. Is there another way of looking at them?

A: Errors are caused by dynamic linking, or virtual machine problems, and are thus too low-level for
most programs to care about-or be able to handle even if they did care about them. Runtime
exceptions are generated by the normal execution of Java code, and although they occasionally reflect
a condition you will want to handle explicitly, more often they reflect a coding mistake by the
programmer and thus simply need to print an error to help flag that mistake. Exceptions that are not
runtime exceptions (IOException exceptions, for example) are conditions that, because of their
nature, should be explicitly handled by any robust and well-thought-out code. The Java class library
has been written using only a few of these, but those few are extremely important to using the system
safely and correctly. The compiler helps you handle these exceptions properly via its throws clause
checks and restrictions.

Q: Is there any way to "get around" the strict restrictions placed on methods by the throws
clause?

A: Yes. Suppose you have thought long and hard and have decided that you need to circumvent this
restriction. This is almost never the case, because the right solution is to go back and redesign your
methods to reflect the exceptions that you need to throw. Imagine, however, that for some reason a
system class has you in a straitjacket. Your first solution is to subclass RuntimeException to
make up a new, exempt exception of your own. Now you can throw it to your heart's content, because
the throws clause that was annoying you does not need to include this new exception. If you need a
lot of such exceptions, an elegant approach is to mix in some novel exception interfaces to your new
Runtime classes. You're free to choose whatever subset of these new interfaces you want to catch
(none of the normal Runtime exceptions need be caught), while any leftover (new) Runtime
exceptions are (legally) allowed to go through that otherwise annoying standard method in the library.

Day 17 -- Exceptions

file:///G|/ebooks/1575211831/ch17.htm (15 of 16) [11/06/2000 7:45:47 PM]



Q: I'm still a little confused by long chains of catch clauses. Can you label the previous example
with which exceptions are handled by each line of code?

A: Certainly. Here it is:

try {
    someReallyExceptionalMethod();
} catch (NullPointerException n) {  
    . . .  // handles NullPointerExceptions
} catch (RuntimeException r) {
    . . .  // handles RuntimeExceptions
           //that are not NullPointerExceptions
} catch (IOException I) {
    . . .  // handles IOExceptions
} catch (MyFirstException m) {
    . . .  // handles MyFirstExceptions
} catch (Exception e) {  
     . . . // handles Exceptions that are not
           // RuntimeExceptions nor IOExceptions
           // nor MyFirstExceptions
} catch (Throwable t) {
    . . .  // handles Throwables that
           // are not Exceptions (i.e., Errors)
}

Q: Given how annoying it can sometimes be to handle exceptional conditions properly, what's
stopping me from surrounding any method as follows:

try { thatAnnoyingMethod(); } catch (Throwable t) { }

and simply ignoring all exceptions?
A: Nothing, other than your own conscience. In some cases, you should do nothing, because it is the

correct thing to do for your method's implementation. Otherwise, you should struggle through the
annoyance and gain experience. Good style is a struggle even for the best of programmers, but the
rewards are rich indeed.

   

Day 17 -- Exceptions

file:///G|/ebooks/1575211831/ch17.htm (16 of 16) [11/06/2000 7:45:47 PM]



file:///G|/ebooks/1575211831/f17-1.gif

file:///G|/ebooks/1575211831/f17-1.gif [11/06/2000 7:45:47 PM]



Day 10

Simple Animation and Threads
by Laura Lemay

CONTENTS
Creating Animation in Java

Painting and Repainting❍   

Starting and Stopping an Applet's Execution❍   

The Missing Link: Threads❍   

Putting It Together❍   

●   

Threads: What They Are and Why You Need Them

Writing Applets with Threads❍   

Another Look at the Digital Clock❍   

●   

Reducing Animation Flicker

Flicker and How to Avoid It❍   

How to Override update()❍   

Solution One: Don't Clear the Screen❍   

Solution Two: Redraw Only What You Have To❍   

●   

Summary●   

Q&A●   

The first thing I ever saw Java do was an animation: a large red Hi there! that ran across the screen from the right to
left. Even that simple form of animation was enough to make me stop and think, "this is really cool."

That sort of simple animation takes only a few methods to implement in Java, but those few methods are the basis for
any Java applet that you want to update the screen dynamically-for something as simple as flashy animation applets, or
for more complex applets that may need to be updated based on data they get from the user, from databases connected
to over the network, or from any other source.

Animation in Java is accomplished through various interrelated parts of the Java Abstract Windowing Toolkit (awt).
Today you'll learn the fundamentals of animation in Java: how the various parts of the system all work together so that
you can create moving figures and dynamically updatable applets. Specifically, you'll explore the following:

How to create animation in Java-the paint() and repaint() methods, starting and stopping dynamic
applets, and how to use and override these methods in your own applets

●   

Threads-what they are and how they can make your applets more well-behaved with other applets and with other
parts of the awt

●   

Reducing animation flicker, which is a common problem with animation in Java●   

Throughout today, you'll also work with lots of examples of real applets that create animation or perform some kind of
dynamic movement.

Day 10 -- Simple Animation and Threads

file:///G|/ebooks/1575211831/ch10.htm (1 of 18) [11/06/2000 7:45:50 PM]



Creating Animation in Java
Animation in Java involves two basic steps: constructing a frame of animation, and then asking Java to paint that frame.
You repeat these steps as necessary to create the illusion of movement. The basic, static graphical applets that you
created yesterday taught you how to accomplish the first part; all that's left is how to tell Java to paint a frame.

Painting and Repainting

The paint() method, as you learned yesterday, is called whenever an applet needs to be painted-when the applet is
initially drawn, when the window containing it is moved, or when another window is moved from over it. You can also,
however, ask Java to repaint the applet at a time you choose. So, to change the appearance of what is on the screen, you
construct the image or "frame" you want to paint, and then ask Java to paint this frame. If you do this repeatedly, and
fast enough, you get animation inside your Java applet. That's all there is to it.

Where does all this take place? Not in the paint() method itself. All paint() does is put dots on the screen.
paint(), in other words, is responsible only for the current frame of the animation. The real work of changing what
paint() does, of modifying the frame for an animation, actually occurs somewhere else in the definition of your
applet.

In that "somewhere else," you construct the frame (set variables for paint() to use, create Color or Font or other
objects that paint() will need), and then call the repaint() method. repaint() is the trigger that causes Java to
call paint() and causes your frame to get drawn.

Technical Note
Because a Java applet can contain many different components that all
need to be painted (as you'll learn later this week), and in fact, applets
can be embedded inside a larger Java application that also paints to
the screen in similar ways, when you call repaint() (and therefore
paint()) you're not actually immediately drawing to the screen as
you do in other window or graphics toolkits. Instead, repaint() is
a request for Java to repaint your applet as soon as it can. Also, if too
many repaint() requests are made in a short amount of time, the
system may only call repaint() once for all of them. Much of the
time, the delay between the call and the actual repaint is negligible.
However, for very tight loops, the awt may collapse several calls to
repaint() into one. Keep this in mind as you create your own
animation.

Starting and Stopping an Applet's Execution

Remember start() and stop() from Day 8, "Java Applet Basics"? These are the methods that trigger your applet
to start and stop running. You didn't use start() and stop() yesterday because the applets on that day did nothing
except paint once. With animation and other Java applets that are actually processing and running over time, you'll need
to make use of start() and stop() to trigger the start of your applet's execution, and to stop it from running when
you leave the page that contains that applet. For many applets, you'll want to override start() and stop() for just
this reason.

The start() method triggers the execution of the applet. You can either do all the applet's work inside that method,
or you can call other object's methods in order to do so. Usually, start() is used to create and begin execution of a
thread so the applet can run in its own time.

stop(), on the other hand, suspends an applet's execution so when you move off the page on which the applet is
displaying, it doesn't keep running and using up system resources. Most of the time when you create a start()

Day 10 -- Simple Animation and Threads

file:///G|/ebooks/1575211831/ch10.htm (2 of 18) [11/06/2000 7:45:50 PM]



method, you should also create a corresponding stop().

The Missing Link: Threads

There's one more part to the animation mix that you'll have to know about, and that's threads. I'm going to discuss
threads in a lot greater detail later on in this lesson (and in even more detail on Day 18, "Multithreading") but for now
here's the basic idea: Anything you do in a Java program that runs continually and takes up a lot of processing time
should run in its own thread. Animation is one of these things. To accomplish animation in Java, therefore, you use the
start() method to start a thread, and then do all your animation processing inside the thread's run() method. This
allows the animation to run on its own without interfering with any other parts of the program.

Putting It Together

Explaining how to do Java animation is more of a task than actually showing you how it works in code. An example
will help make the relationship between all these methods clearer.

Listing 10.1 shows a sample applet that uses basic applet animation techniques to display the date and time and
constantly updates it every second, creating a very simple animated digital clock (a frame from that clock is shown in
Figure 10.1).

Figure 10.1 : The digital clock.

This applet uses the paint(), repaint(), start(), and stop() methods. It also uses threads. For this
discussion, we'll focus on the animation parts of the applet and won't worry so much about how the threads work. We'll
take another look at this applet later, after we've discussed threads in greater detail.

Listing 10.1. The DigitalClock applet.

 1: import java.awt.Graphics;
 2: import java.awt.Font;
 3: import java.util.Date;
 4:
 5: public class DigitalClock extends java.applet.Applet 
 6:   implements Runnable {
 7: 
 8:   Font theFont = new Font("TimesRoman",Font.BOLD,24);
 9:  Date theDate;
10:   Thread runner;
11: 
12:   public void start() {
13:     if (runner == null) {
14:       runner = new Thread(this);
15:       runner.start();
16:     }
17:   }
18:
19:   public void stop() {
20:     if (runner != null) {
21:       runner.stop();
21:       runner = null;
22:     }
23:   }
24:  

Day 10 -- Simple Animation and Threads

file:///G|/ebooks/1575211831/ch10.htm (3 of 18) [11/06/2000 7:45:50 PM]



25:   public void run() {
26:     while (true) {
27:       theDate = new Date();
28:       repaint();
29:      try { Thread.sleep(1000); }
30:       catch (InterruptedException e) { }
31:     }
32:   }
33: 
34:   public void paint(Graphics g) {
35:     g.setFont(theFont);
36:     g.drawString(theDate.toString(),10,50);
37:   }
38:}

Analysis
We'll look at this applet from the perspective of the actual animation
parts in this section, and deal with the parts that manage threads later
on.

Lines 7 and 8 define two basic instance variables: theFont and theDate, which hold objects representing the
current font and the current date, respectively. You'll learn more about these later.

The start() and stop() methods here start and stop a thread; the bulk of the applet's work goes on in the run()
methods (lines 25 to 32).

Inside run() is where the animation actually takes place. Note the while loop inside this method (line 26); given that
the test (true) always returns true, the loop never exits. A single animation frame is constructed inside that while
loop, with the following steps:

The Date class represents a date and time (Date is part of the java.util package-note that it was
specifically imported in line 3). Line 27 creates a new instance of the Date class, which holds the current date
and time, and assigns it to the theDate instance variable.

●   

The repaint() method is called (line 28) to repaint the applet.●   

Lines 14 and 15, as complicated as they look, do nothing except pause for 1000 milliseconds (1 second) before
the loop repeats. The sleep() method there, part of the Thread class, is what causes the applet to pause.
Without a specific sleep() method, the applet would run as fast as it possibly could, which, for most computer
systems, would be too fast for the eye to see. The sleep() method controls exactly how fast the animation
takes place. The try and catch stuff around it enables Java to manage errors if they occur. try and catch
handle exceptions and are described on Day 17, "Exceptions."

●   

On to the paint() method in lines 34 through 37. Here, inside paint(), all that happens is that the current font (in
the variable theFont) is set, and the date itself is printed to the screen (note that you have to call the toString()
method to convert the date to a string). Because paint() is called repeatedly with whatever value happens to be in
theDate, the string is updated every second to reflect the new date.

There are a few things to note about this example. First, you might think it would be easier to create the new Date
object inside the paint() method. That way you could use a local variable and not need an instance variable to pass
the Date object around. Although doing things that way creates cleaner code, it also results in a less efficient program.
The paint() method is called every time a frame needs to be changed. In this case, it's not that important, but in an
animation that needs to change frames very quickly, the paint() method has to pause to create that new object every
time. By leaving paint() to do what it does best-painting the screen-and calculating new objects beforehand, you can
make painting as efficient as possible. This is precisely the same reason why the Font object is also in an instance

Day 10 -- Simple Animation and Threads

file:///G|/ebooks/1575211831/ch10.htm (4 of 18) [11/06/2000 7:45:50 PM]



variable.

Threads: What They Are and Why You Need Them
So what are these threads all about? Why are they important to animation?

Threads are a very important part of Java and of programming Java. The larger your Java programs get and the more
things they do, the more likely it is that you'll want to use threads. Depending on your experience with operating
systems and with environments within those systems, you may or may not have run into the concept of threads, so let's
start from the beginning.

First, the analogy. A group of students is on a bus, on a field trip somewhere. To pass the time, the teachers are leading
a sing-along. As the trip progresses, the students sing one song, then when that song is done, they sing another song.
While different parts of the bus could sing different songs, it wouldn't sound very good, so the singing of one song
monopolizes the time until its done, at which time another song can start.

Now let's say you have two busses; both are on the same route to the field trip, both are going at the same speed, and
both are full of students singing songs. But the songs being sung by the students in the second bus don't interfere with
the songs being sung in the first bus; in this way you can get twice as many songs sung in the same amount of time by
singing them in parallel.

Threads are like that. In a regular single-threaded program, the program starts executing, runs its initialization code,
calls methods or procedures, and continues running and processing until it's complete or until the program is exited.
That program runs in a single thread-it's the one bus with all the students.

Multithreading, as in Java, means that several different parts of the same program can run at the same time, in parallel,
without interfering with each other. Multiple threads, each running by itself, are like multiple busses with different
things going on in each bus.

Here's a simple example. Suppose you have a long computation near the start of a program's execution. This long
computation may not be needed until later in the program's execution-it's actually tangential to the main point of the
program, but it needs to get done eventually. In a single-threaded program, you have to wait for that computation to
finish before the rest of the program can continue running. In a multithreaded system, you can put that computation into
its own thread, and the rest of the program can continue to run independently.

Animation is an example of the kind of task that needs its own thread. Take, for example, that digital clock applet,
which has an endless while() loop. If you didn't use threads, while() would run in the default Java system thread,
which is also responsible for handling painting the screen, dealing with user input like mouse clicks, and keeping
everything internally up- to-date. Unfortunately, however, if you run that while() loop in the main system thread, it
will monopolize all Java's resources and prevent anything else-including painting-from happening. You'd never actually
see anything on the screen because Java would be sitting and waiting for the while() loop to finish before it did
anything else. And that's not what you want.

Using threads in Java, you can create parts of an applet (or application) that run in their own threads, and those parts
will happily run all by themselves without interfering with anything else. Depending on how many threads you have,
you may eventually tax the system so that all of them will run slower, but all of them will still run independently.

Even if you don't use lots of them, using threads in your applets is a good Java programming practice. The general rule
of thumb for well-behaved applets: Whenever you have any bit of processing that is likely to continue for a long time
(such as an animation loop, or a bit of code that takes a long time to execute), put it in a thread.

Day 10 -- Simple Animation and Threads

file:///G|/ebooks/1575211831/ch10.htm (5 of 18) [11/06/2000 7:45:50 PM]



Writing Applets with Threads

Creating applets that use threads is very easy. In fact, many of the basic things you need to do to use threads are just
boilerplate code that you can copy and paste from one applet to another. Because it's so easy, there's almost no reason
not to use threads in your applets, given the benefits.

There are four modifications you need to make to create an applet that uses threads:

Change the signature of your applet class to include the words implements Runnable.●   

Include an instance variable to hold the applet's thread object.●   

Create a start() method that does nothing but create a thread and start it running.●   

Create a stop() method that stops the thread.●   

Create a run() method that contains the actual code that controls the applet.●   

The first change is to the first line of your class definition. You've already got something like this:

public class MyAppletClass extends java.applet.Applet {
...
}

You need to change it to the following:

public class MyAppletClass extends java.applet.Applet  implements Runnable {
...
}

What does this do? It includes support for the Runnable interface in your applet. If you think way back to Day 2,
"Object-Oriented Programming and Java," you'll remember that interfaces are a way to collect method names common
to different classes, which can then be mixed in and implemented inside different classes that need to implement that
behavior. Here, the Runnable interface defines the behavior your applet needs to run a thread; in particular, it gives
you a default definition for the run() method. By implementing Runnable, you tell others that they can call the
Run() method on your instances.

The second step is to add an instance variable to hold this applet's thread. Call it anything you like; it's a variable of the
type Thread (Thread is a class in java.lang, so you don't have to import it):

Thread runner;

Third, add a start() method or modify the existing one so that it does nothing but create a new thread and start it
running. Here's a typical example of a start() method:

public void start() {
   if (runner == null) {
       runner = new Thread(this);
       runner.start();
   }
}

If you modify start() to do nothing but spawn a thread, where does the code that drives your applet go? It goes into
a new method, run(), which looks like this:

public void run() {
    // what your applet actually does

Day 10 -- Simple Animation and Threads

file:///G|/ebooks/1575211831/ch10.htm (6 of 18) [11/06/2000 7:45:50 PM]



}

Your run() method actually overrides the default version of run(), which you get when you include the Runnable
interface with your applet. run() is one of those standard methods, like start() and paint(), that you override in
your own classes to get standard behavior.

run() can contain anything you want to run in the separate thread: initialization code, the actual loop for your applet,
or anything else that needs to run in its own thread. You also can create new objects and call methods from inside
run(), and they'll also run inside that thread. The run() method is the real heart of your applet.

Finally, now that you've got threads running and a start() method to start them, you should add a stop() method
to suspend execution of that thread (and therefore whatever the applet is doing at the time) when the reader leaves the
page. stop(), like start(), is usually something along these lines:

public void stop() {
  if (runner != null) {
      runner.stop();
      runner = null;
  }
}

The stop() method here does two things: It stops the thread from executing and also sets the thread's variable
runner to null. Setting the variable to null makes the Thread object it previously contained available for garbage
collection so that the applet can be removed from memory after a certain amount of time. If the reader comes back to
this page and this applet, the start() method creates a new thread and starts up the applet once again.

And that's it! Four basic modifications, and now you have a well-behaved applet that runs in its own thread.

Another Look at the Digital Clock

Let's take another look at that DigitalClock applet, this time from the standpoint of threads. Listing 10.2 shows that
applet's code once again.

Listing 10.2. The DigitalClock applet, revisited.

 1: import java.awt.Graphics;
 2: import java.awt.Font;
 3: import java.util.Date;
 4:
 5: public class DigitalClock extends java.applet.Applet 
 6:   implements Runnable {
 7: 
 8:   Font theFont = new Font("TimesRoman",Font.BOLD,24);
 9:  Date theDate;
10:   Thread runner;
11: 
12:   public void start() {
13:     if (runner == null) {
14:       runner = new Thread(this);
15:       runner.start();
16:     }
17:   }
18:

Day 10 -- Simple Animation and Threads

file:///G|/ebooks/1575211831/ch10.htm (7 of 18) [11/06/2000 7:45:50 PM]



19:   public void stop() {
20:     if (runner != null) {
21:       runner.stop();
21:       runner = null;
22:     }
23:   }
24:  
25:   public void run() {
26:     while (true) {
27:       theDate = new Date();
28:       repaint();
29:      try { Thread.sleep(1000); }
30:       catch (InterruptedException e) { }
31:     }
32:   }
33: 
34:   public void paint(Graphics g) {
35:     g.setFont(theFont);
36:     g.drawString(theDate.toString(),10,50);
37:   }
38:}

Analysis
Let's look at the lines of this applet that create and manage threads.
First, look at the class definition itself in lines 5 and 6; note that the
class definition includes the Runnable interface. Any classes you
create that use threads must include Runnable.

Line 10 defines a third instance variable for this class called runner of type Thread, which will hold the thread
object for this applet.

Lines 12 through 23 define the boilerplate start() and stop() methods that do nothing except create and destroy
threads. These method definitions can essentially be exactly the same from class to class because all they do is set up
the infrastructure for the thread itself.

And, finally, the bulk of your applet's work goes on inside the run() method in lines 25 through 32, as we already
discussed the last time we looked at this applet. Inside this method is the endless while loop, the calls to
repaint(), and the sleep() method, which pauses things so they only run once a second.

Reducing Animation Flicker
If you've been following along with this lesson and trying the examples as you go, rather than reading this book on an
airplane or in the bathtub, you may have noticed that when the digital clock program runs, every once in a while there's
an annoying flicker in the animation. (Not that there's anything wrong with reading this book in the bathtub, but you
won't see the flicker if you do that, so just trust me-there's a flicker.) This isn't a mistake or an error in the program; in
fact, that flicker is a side effect of creating animation in Java. Because it is really annoying, you'll learn how to reduce
flicker in this part of today's lesson so that your animations run cleaner and look better on the screen.

Day 10 -- Simple Animation and Threads

file:///G|/ebooks/1575211831/ch10.htm (8 of 18) [11/06/2000 7:45:50 PM]



Flicker and How to Avoid It

Flicker is caused by the way Java paints and repaints each frame of an applet. At the beginning of today's lesson, you
learned that when you call the repaint() method, repaint() calls paint(). That's not precisely true. A call to
paint() does indeed occur in response to a repaint(), but what actually happens are the following steps:

The call to repaint() results in a call to the method update().1.  

The update() method clears the screen of any existing contents (in essence, fills it with the current background
color), and then calls paint().

2.  

The paint() method then draws the contents of the current frame.3.  

It's step 2, the call to update(), that causes animation flicker. Because the screen is cleared between frames, the parts
of the screen that don't change alternate rapidly between being painted and being cleared. Hence, flickering.

There are two major ways to avoid flicker in your Java applets:

Override update() either not to clear the screen at all, or to clear only the parts of the screen you've changed.●   

Override both update() and paint(), and use double-buffering.●   

If the second way sounds complicated, that's because it is. Double-buffering involves drawing to an offscreen graphics
surface and then copying that entire surface to the screen. Because it's more complicated, you'll explore that one
tomorrow. Today let's cover the easier solution: overriding update().

How to Override update()

The cause of flickering lies in the update() method. To reduce flickering, therefore, override update(). Here's
what the default version of update() does (comes from the Component class, is part of the awt, and is one of the
superclasses of the applet class. You'll learn more about it on Day 13, "Creating User Interfaces with the awt"):

public void update(Graphics g) {
    g.setColor(getBackground());
    g.fillRect(0, 0, width, height);
    g.setColor(getForeground());
    paint(g);
}

Basically, update() clears the screen (or, to be exact, fills the applet's bounding rectangle with the background
color), sets things back to normal, and then calls paint(). When you override update(), you have to keep these
two things in mind and make sure that your version of update() does something similar. In the next two sections,
you'll work through some examples of overriding update() in different cases to reduce flicker.

Solution One: Don't Clear the Screen

The first solution to reducing flicker is not to clear the screen at all. This works only for some applets, of course. Here's
an example of an applet of this type. The ColorSwirl applet prints a single string to the screen ("All the
Swirly Colors"), but that string is presented in different colors that fade into each other dynamically. This applet
flickers terribly when it's run. Listing 10.3 shows the initial source for this applet, and Figure 10.2 shows the result.

Figure 10.2 : The ColorSwirl applet.

Listing 10.3. The ColorSwirl applet.

 1:  import java.awt.Graphics;
 2:  import java.awt.Color;

Day 10 -- Simple Animation and Threads

file:///G|/ebooks/1575211831/ch10.htm (9 of 18) [11/06/2000 7:45:50 PM]



 3:  import java.awt.Font;
 4: 
 5: public class ColorSwirl extends java.applet.Applet
 6:     implements Runnable {
 7:
 8:    Font f = new Font("TimesRoman",Font.BOLD,48);
 9:    Color colors[] = new Color[50];
10:    Thread runThread;
11:
12:    public void start() {
13:        if (runThread == null) {
14:            runThread = new Thread(this);
15:            runThread.start();
16:        }
17:    }
18:
19:    public void stop() {
20:        if (runThread != null) {
21:            runThread.stop();
22:            runThread = null;
23:        }
24:    }
25:
26:    public void run() {
27:
28:        // initialize the color array
29:        float c = 0;
30:        for (int i = 0; i < colors.length; i++) {
31:            colors[i] =
32:            Color.getHSBColor(c, (float)1.0,(float)1.0);
33:            c += .02;
34:        }
35:
36:        // cycle through the colors
37:        int i = 0;
38:        while (true) {
39:            setForeground(colors[i]);
40:            repaint();
41:            i++;
42:            try { Thread.sleep(50); }
43:            catch (InterruptedException e) { }
44:            if (i == colors.length ) i = 0;
45:        }
46:    }
47:
48:    public void paint(Graphics g) {
49:        g.setFont(f);
50:        g.drawString("All the Swirly Colors", 15, 50);
51:    }
52: }]

Day 10 -- Simple Animation and Threads

file:///G|/ebooks/1575211831/ch10.htm (10 of 18) [11/06/2000 7:45:50 PM]



Analysis
There are three new things to note about this applet that might look
strange to you:

Line 9 defines an instance variable Colors, which is an array of 50 elements. When the applet starts, the first
thing you do in the run() method (in lines 28 through 34) is to fill up that array with color objects. By creating
all the colors beforehand, you can then jusxt draw text in that color, one at a time; it's easier to precompute all the
colors at once (and, in fact, this for loop might make more sense in an init() method because it only needs to
happen once). Note that I arbitrarily picked the number 50 for the number of colors we'll be using; we could just
as easily cycle through 20 or 250 colors.

●   

To create the different color objects, we used a method in the Color class called getHSBColor(), rather than
just using new with various RGB values. The getHSBColor() class method creates a color object based on
values for hue, saturation, and brightness, rather than the standard red, green, and blue. HSB is simply a different
way of looking at colors, and by incrementing the hue value and keeping saturation and brightness constant, you
can create a range of colors without having to know the RGB for each one. If you don't understand this, don't
worry about it; it's just a quick and easy way to create the color array.

●   

To create the animation, the applet cycles through the array of colors, setting the foreground color to each color
object in turn and calling repaint(). When it gets to the end of the array, it starts over again (line 44), so the
process repeats over and over ad infinitum.

●   

Now that you understand what the applet does, let's fix the flicker. Flicker here results because each time the applet is
painted, there's a moment where the screen is cleared. Instead of the text cycling neatly from red to a nice pink to
purple, it's going from red to gray, to pink to gray, to purple to gray, and so on-not very nice looking at all.

Because the screen clearing is all that's causing the problem, the solution is easy: Override update() and remove the
part where the screen gets cleared. It doesn't really need to get cleared anyhow, because nothing is changing except the
color of the text. With the screen clearing behavior removed from update(), all update needs to do is call paint().
Here's what the update() method looks like in this applet (you'll want to add it after the paint() method after line
51):

public void update(Graphics g) {
   paint(g);
}

With that-with one small three-line addition-no more flicker. Wasn't that easy?

Note
If you're following along with the examples on the CD, the
ColorSwirl.java file contains the original applet with the
flicker; ColorSwirl2.java has the fixed version.

Solution Two: Redraw Only What You Have To

For some applets, it won't be quite as easy as just not clearing the screen. With some kinds of animation, clearing the
screen is necessary for the animation to work properly. Here's another example. In this applet, called Checkers, a red
oval (a checker piece) moves from a black square to a white square, as if on a checkerboard. Listing 10.4 shows the
code for this applet, and Figure 10.3 shows the applet itself.

Figure 10.3 : The Checkers applet.

Listing 10.4. The Checkers applet.

Day 10 -- Simple Animation and Threads

file:///G|/ebooks/1575211831/ch10.htm (11 of 18) [11/06/2000 7:45:50 PM]



 1:   import java.awt.Graphics;
 2:     import java.awt.Color;
 3: 
 4:   public class Checkers extends java.applet.Applet
 5:       implements Runnable {
 6: 
 7:       Thread runner;
 8:       int xpos;
 9: 
10:       public void start() {
11:          if (runner == null) {
12:              runner = new Thread(this);
13:              runner.start();
14:          }
15:      }
16: 
17:      public void stop() {
18:          if (runner != null) {
19:              runner.stop();
20:              runner = null;
21:          }
22:      }
23:  
24:  public void run() {
25:      setBackground(Color.blue);
26:      while (true) {
27:          for (xpos = 5; xpos <= 105; xpos+=4) {
28:              repaint();
29:              try { Thread.sleep(100); }
30:              catch (InterruptedException e) { }
31:          }
32:          xpos = 5;
33:      }
34:  }
35: 
36:      public void paint(Graphics g) {
37:          // Draw background
38:          g.setColor(Color.black);
39:         g.fillRect(0, 0, 100, 100);
40:          g.setColor(Color.white);
41:          g.fillRect(101, 0, 100, 100);
42: 
43:          // Draw checker
44:          g.setColor(Color.red);
45:          g.fillOval(xpos, 5, 90, 90);
46:     }
47:  }

Analysis

Day 10 -- Simple Animation and Threads

file:///G|/ebooks/1575211831/ch10.htm (12 of 18) [11/06/2000 7:45:50 PM]



Here's a quick run-through of what this applet does: An instance
variable, xpos, keeps track of the current starting position of the
checker (because it moves horizontally, the y stays constant and only
the x changes; we don't need to keep track of the y position). In the
run() method, you change the value of x and repaint, waiting 100
milliseconds between each move. The checker then appears to move
from the left side of the screen to the right, resetting back at its
original position once it hits the right side of the screen.

In the actual paint() method, the background squares are painted (one black and one white), and then the checker is
drawn at its current position.

This applet, like the ColorSwirl applet, also has a terrible flicker. (In line 25, I changed the background color to blue
to emphasize it, so if you run this applet, you'll definitely see the flicker.)

However, the solution to solving the flicker problem for this applet is more difficult than for the last one, because you
actually do want to clear the screen before the next frame is drawn. Otherwise, the red checker won't have the
appearance of leaving one position and moving to another; it'll just leave a red smear from one side of the checkerboard
to the other.

How do you get around this? You still clear the screen, in order to get the animation effect, but, rather than clearing the
entire screen each time, you clear only the part that has actually changed from one frame to the next. By limiting the
redraw to only a small area, you can eliminate some of the flicker you get from redrawing the entire screen.

To limit what gets redrawn, you need a couple things. First, you need a way to restrict the drawing area so that each
time paint() is called, only the part that needs to get redrawn actually gets redrawn. Fortunately, this is easy by using
a mechanism called clipping. Clipping, part of the graphics class, enables you to restrict the drawing area to a small
portion of the full screen; although the entire screen may get instructions to redraw, only the portions inside the clipping
area are actually drawn.

New Term
Clipping restricts the drawing area to some smaller portion of the
screen.

The second thing you need is a way to keep track of the actual area to redraw. Both the left and right edges of the
drawing area change for each frame of the animation (one side to draw the new oval, the other to erase the bit of the
oval left over from the previous frame), so to keep track of those two x values, you need instance variables for both the
left side and the right.

With those two concepts in mind, let's start modifying the Checkers applet to redraw only what needs to be redrawn.
First, you'll add instance variables for the left and right edges of the drawing area. Let's call those instance variables
ux1 and ux2 (u for update), where ux1 is the left side of the area to draw and ux2 the right:

int ux1,ux2;

Now let's modify the run() method so that it keeps track of the actual area to be drawn, which you would think is
easy-just update each side for each iteration of the animation. Here, however, things can get complicated because of the
way Java uses paint() and repaint().

The problem with updating the edges of the drawing area with each frame of the animation is that for every call to
repaint() there may not be an individual corresponding paint(). If system resources get tight (because of other
programs running on the system or for any other reason), paint() may not get executed immediately and several calls
to paint() may queue up waiting for their turn to change the pixels on the screen. In this case, rather than trying to
make all those calls to paint() in order (and be potentially behind all the time), Java catches up by executing only the
most recent call to paint() and skips all the others.

Day 10 -- Simple Animation and Threads

file:///G|/ebooks/1575211831/ch10.htm (13 of 18) [11/06/2000 7:45:50 PM]



This poses a difficult problem in the Checkers applet. If you update the edges of the drawing area with each call to
repaint(), and a couple calls to paint() are skipped, you end up with bits of the drawing surface not being
updated at all or bits of the oval (colloquially called "turds") left behind. Because of how repaint() and paint()
work in Java, you cannot guarantee that every single clipping region will eventually get painted-some may be skipped.
The way to solve this is not to reset the clipping region to something new every single pass, but instead to reset the
region only if that region was indeed updated. This way, if a couple of calls to paint() get skipped, the area to be
updated will get larger for each frame, and when paint() finally gets caught up, everything will get repainted
correctly.

Yes, this is horrifyingly complex. If I could have written this applet more simply, I would have (and, in fact, I did make
it as simple as I could after much rewriting), but without this mechanism the applet will not get repainted correctly (my
first try at this applet left turds all over the place). Let's step through it slowly in the code so you can get a better grasp
of what's going on at each step.

Let's start with run(), where each frame of the animation takes place. Here's where you calculate each side of the
clipping area based on the old position of the oval and the new position of the oval. The value of ux1 (the left side of
the drawing area) is the previous oval's x position (xpos), and the value of ux2 is the x position of the current oval
plus the width of that oval (90 pixels in this example).

Here's what the old run() method looked like:

public void run() {
    setBackground(Color.blue);
    while (true) {
        for (xpos = 5; xpos <= 105; xpos += 4) {
            repaint();
            try { Thread.sleep(100); }
            catch (InterruptedException e) { }
        }
        xpos = 5;
    }
}

For each step in which the oval moves toward the right, you first update ux2 (the right edge of the drawing area):

ux2 = xpos + 90;

Then, after the repaint() has occurred, you can update ux1 to reflect the old x position of the oval. However, you
want to update this value only if the paint actually happened, so you don't end up skipping bits of the screen. How can
you tell if the paint actually happened? You can reset ux1 in paint() to a given value (say 0), and then test inside
run() to see whether you can update that value or whether you have to wait for the paint() to occur:

if (ux1 == 0) ux1 = xpos;

Finally, there's one other change to make. When the oval reaches the right side of the screen and resets back to its
original position, there's one frame where you want to redraw the whole screen rather than create a clipping region
(otherwise, the image of the oval would remain on the right side of the screen). So, in this one case, you want to set
ux2 to be the full width of the applet. Here we'll modify the line we just put in to set the value of ux2, using an if
statement to test to see if the oval is at the left side of the screen:

if (xpos == 5) ux2 = size().width;
else ux2 = xpos + 90;

Day 10 -- Simple Animation and Threads

file:///G|/ebooks/1575211831/ch10.htm (14 of 18) [11/06/2000 7:45:50 PM]



The size() method is used to get the dimensions of the applet; size().width gives the full width of the applet so
that the entire drawing surface will be updated.

Here's the new version of run() with those changes in place:

public void run() {
    setBackground(Color.blue);
    while (true) {
      for (xpos = 5; xpos <= 105; xpos+=4) {
         if (xpos == 5) ux2 = size().width;
         else ux2 = xpos + 90;
         repaint();
         try { Thread.sleep(100); }
         catch (InterruptedException e) { }
         if (ux1 == 0) ux1 = xpos;
      }
      xpos = 5;
    }
  }

Those are the only modifications run() needs. Let's override update() to limit the region that is being painted to
the left and right edges of the drawing area that you set inside run(). To clip the drawing area to a specific rectangle,
use the clipRect() method. clipRect(), like drawRect(), fillRect(), and clearRect(), is defined
for Graphics objects and takes four arguments: x and y starting positions, and the width and height of the region.

Here's where ux1 and ux2 come into play. ux1 is the x point of the top corner of the region; then use ux2 to get the
width of the region by subtracting ux1 from that value. The y values are the standard y values for the oval, which don't
vary at all (the oval starts at y position 5 and ends at 95). Finally, to finish update(), you call paint():

public void update(Graphics g) {
   g.clipRect(ux1, 5, ux2 - ux1, 95);
   paint(g);
 }

Note that with the clipping region in place, you don't have to do anything to the actual paint() method. paint()
goes ahead and draws to the entire screen each time, but only the areas inside the clipping region actually get changed
onscreen.

You will need to make one change to paint(), however. You need to update the trailing edge of each drawing area
inside paint() in case several calls to paint() were skipped. Because you are testing for a value of 0 inside
run(), inside paint() you can merely reset ux1 and ux2 to 0 after drawing everything:

ux1 = ux2 = 0;

Those are the only changes you have to make to this applet in order to draw only the parts of the applet that changed
(and to manage the case where some frames don't get updated immediately). Although this doesn't totally eliminate
flickering in the animation, it does reduce it a great deal. Try it and see. Listing 10.5 shows the final code for the
Checkers applet (called Checkers2.java).

Listing 10.5. The final Checkers applet.

 1: import java.awt.Graphics;
 2: import java.awt.Color;

Day 10 -- Simple Animation and Threads

file:///G|/ebooks/1575211831/ch10.htm (15 of 18) [11/06/2000 7:45:51 PM]



 3: 
 4: public class Checkers2 extends java.applet.Applet implements Runnable {
 5: 
 6:     Thread runner;
 7:     int xpos;
 8:     int ux1,ux2;
 9: 
10:     public void start() {
11:         if (runner == null) {
12:             runner = new Thread(this);
13:             runner.start();
14:         }
15:     }
16:
17:     public void stop() {
18:         if (runner != null) {
19:             runner.stop();
20:             runner = null;
21:         }
22:     }
23:
24:     public void run() {
25:        setBackground(Color.blue);
26:        while (true) {
27:          for (xpos = 5; xpos <= 105; xpos+=4) {
28:             if (xpos == 5) ux2 = size().width;
29:             else ux2 = xpos + 90;
30:             repaint();
31:             try { Thread.sleep(100); }
32:             catch (InterruptedException e) { }
33:             if (ux1 == 0) ux1 = xpos;
34:          }
35:          xpos = 5;
36:        }
37:    }
38: 
39:     public void update(Graphics g) {
40:         g.clipRect(ux1, 5, ux2 - ux1, 95);
41:         paint(g);
42:     }
43: 
44:     public void paint(Graphics g) {
45:         // Draw background
46:         g.setColor(Color.black);
47:         g.fillRect(0, 0, 100, 100);
48:         g.setColor(Color.white);
49:         g.fillRect(101, 0, 100, 100);
50: 
51:         // Draw checker
52:         g.setColor(Color.red);
53:         g.fillOval(xpos, 5, 90, 90);
54:

Day 10 -- Simple Animation and Threads

file:///G|/ebooks/1575211831/ch10.htm (16 of 18) [11/06/2000 7:45:51 PM]



55:         // reset the drawing area
56:         ux1 = ux2 = 0;
57:     }
58:}

Summary
Congratulations on getting through Day 10! This day was a bit rough; you've learned a lot, and it all might seem
overwhelming. You learned about a plethora of methods to use and override-start(), stop(), paint(),
repaint(), run(), and update()-and you got a basic foundation in creating and using threads. Other than
handling bitmap images, which you'll learn about tomorrow, you now have the basic background to create just about
any animation you want in Java.

Q&A

Q: Why all the indirection with paint(), repaint(), update(), and all that? Why not have a simple
paint method that puts stuff on the screen when you want it there?

A: The Java awt enables you to nest drawable surfaces within other drawable surfaces. When a paint() takes
place, all the parts of the system are redrawn, starting from the outermost surface and moving downward into
the most nested one. Because the drawing of your applet takes place at the same time everything else is drawn,
your applet doesn't get any special treatment. Your applet will be painted when everything else is painted.
Although with this system you sacrifice some of the immediacy of instant painting, it enables your applet to
coexist with the rest of the system more cleanly.

Q: Are Java threads like threads on other systems?
A: Java threads have been influenced by other thread systems, and if you're used to working with threads, many of

the concepts in Java threads will be very familiar to you. You learned the basics today; you'll learn more next
week on Day 18.

Q: When an applet uses threads, I just have to tell the thread to start and it starts, and tell it to stop and it
stops? That's it? I don't have to test anything in my loops or keep track of its state? It just stops?

A: It just stops. When you put your applet into a thread, Java can control the execution of your applet much more
readily. By causing the thread to stop, your applet just stops running, and then resumes when the thread starts
up again. Yes, it's all automatic. Neat, isn't it?

Q: The ColorSwirl applet seems to display only five or six colors, which isn't very swirly. What's going
on here?

A: This is the same problem you ran into yesterday. On some systems, there might not be enough colors available
to be able to display all of them reliably. If you're running into this problem, besides upgrading your hardware,
you might try quitting other applications running on your system that use color. Other browsers or color tools in
particular might be hogging colors that Java wants to be able to use.

Q: Even with the changes you made, the Checkers applet still flickers.
A: And, unfortunately, it will continue to do so. Reducing the size of the drawing area by using clipping does

reduce the flickering, but it doesn't stop it entirely. For many applets, using either of the methods described
today may be enough to reduce animation flicker to the point where your applet looks good. To get totally
flicker-free animation, you'll need to use a technique called double-buffering, which you'll learn about
tomorrow.

Day 10 -- Simple Animation and Threads

file:///G|/ebooks/1575211831/ch10.htm (17 of 18) [11/06/2000 7:45:51 PM]



   

Day 10 -- Simple Animation and Threads

file:///G|/ebooks/1575211831/ch10.htm (18 of 18) [11/06/2000 7:45:51 PM]



Day 18

Multithreading
by Charles L. Perkins and Michael Morrison

CONTENTS
Thread Fundamentals●   

The Problem with Parallelism●   

Thinking Multithreaded

Points About Points❍   

Protecting a Class Variable❍   

●   

Creating and Using Threads

The Runnable Interface❍   

ThreadTester❍   

NamedThreadTester❍   

●   

Knowing When a Thread Has Stopped●   

Thread Scheduling

Preemptive Versus Nonpreemptive❍   

Testing Your Scheduler❍   

●   

Summary●   

Q&A●   

One of the major features in the Java programming environment and runtime system is the multithreaded architecture
shared by both. Multithreading, which is a fairly recent construct in the computer science world, is a very powerful means
of enhancing and controlling program execution. Today's lesson takes a look at how the Java language supports
multithreading through the use of threads. You'll learn all about the different classes that enable Java to be a threaded
language, along with many of the issues surrounding the effective use of threads.

To better understand the importance of threads, imagine that you're using your favorite text editor on a large file. When it
starts up, does it need to examine the entire file before it lets you begin editing? Does it need to make a copy of the file? If
the file is huge, this can be a nightmare. Wouldn't it be nicer for it to show you the first page, allowing you to begin
editing, and somehow (in the background) complete the slower tasks necessary for initialization? Threads allow exactly
this kind of within-the-program parallelism.

Perhaps the best example of threading (or lack of it) is a Web browser. Can your browser download an indefinite number
of files and Web pages at once while still enabling you to continue browsing? While these pages are downloading, can
your browser download all the pictures, sounds, and so forth in parallel, interleaving the fast and slow download times of
multiple Internet servers? Multithreaded browsers can do all these things by virtue of their internal usage of threads.

Today you'll learn about the following primary issues surrounding threads:

Thread fundamentals●   

How to "think multithreaded"●   

How to protect your methods and variables from unintended thread conflicts●   

Day 18 -- Multithreading

file:///G|/ebooks/1575211831/ch18.htm (1 of 17) [11/06/2000 7:45:53 PM]



How to create, start, and stop threads and threaded classes●   

How the scheduler works in Java●   

Let's begin today's lesson by defining what a thread is.

Thread Fundamentals
The multithreading support in Java revolves around the concept of a thread. So what exactly is a thread? Put simply, a
thread is a single stream of execution within a process. Okay, maybe that wasn't so simple. It might be better to start off by
explaining exactly what a process is. A process is a program executing within its own address space. Java is a
multiprocessing system, meaning that it supports many processes running concurrently in their own address spaces. You
may be more familiar with the term multitasking, which describes a scenario very similar to multiprocessing. As an
example, consider the variety of applications typically running at once in a graphical environment. Most Windows 95 users
typically run a variety of applications together at once, such as Microsoft Word, CD Player, Windows Messaging, Volume
Control, and of course Solitaire. These applications are all processes executing within the Windows 95 environment. So
you can think of processes as being analogous to applications, or standalone programs; each process in a system is given
its own space in memory to execute.

A process is a program executing within its own address space.●   

A thread is a single stream of execution within a process.●   

A thread is a sequence of code executing within the context of a process. As a matter of fact, threads cannot execute on
their own; they require the overhead of a parent process to run. Within each of the processes typically running, there are no
doubt a variety of threads executing. For example, Word may have a thread in the background automatically checking the
spelling of what is being written, while another thread may be automatically saving changes to the document. Like Word,
each application (process) can be running many threads that are performing any number of tasks. The significance here is
that threads are always associated with a particular process.

Judging by the fact that I've described threads and processes using Windows 95 as an example, you've probably guessed
that Java isn't the first system to employ the use of threads. That's true, but Java is the first major programming language to
incorporate threads at the heart of the language itself. Typically, threads are implemented at the system level, requiring a
platform-specific programming interface separate from the core programming language. Since Java is presented as both a
language and a runtime system, the Sun architects were able to integrate threads into both. The end result is that you are
able to make use of Java threads in a standard, cross-platform fashion.

The Problem with Parallelism
If threading is so wonderful, why doesn't every system have it? Many modern operating systems have the basic primitives
needed to create and run threads, but they are missing a key ingredient: The rest of their environment is not thread safe. A
thread-safe environment is one that allows threads to safely coexist with each other peacefully. Imagine that you are in a
thread, one of many, and each of you is sharing some important data managed by the system. If you were managing that
data, you could take steps to protect it (as you'll see later today), but the system is managing it. Now visualize a piece of
code in the system that reads some crucial value, thinks about it for a while, and then adds 1 to the value:

if (crucialValue > 0) {
    . . .                 // think about what to do
    crucialValue += 1;
}

Remember that any number of threads may be calling on this part of the system at once. The disaster occurs when two
threads have both executed the if test before either has incremented crucialValue. In that case, the value is clobbered
by them both with the same crucialValue += 1, and one of the increments has been lost. This may not seem so bad
on the surface, but imagine if the crucial value affects the state of the screen as it is being displayed. Now, unfortunate

Day 18 -- Multithreading

file:///G|/ebooks/1575211831/ch18.htm (2 of 17) [11/06/2000 7:45:53 PM]



ordering of the threads can cause the screen to be updated incorrectly. In the same way, mouse or keyboard events can be
lost, databases can be inaccurately updated, and general havoc can ensue.

This disaster is inescapable if any significant part of the system has not been written with threads in mind. Therein lies the
reason why there are few mainstream threaded environments-the large effort required to rewrite existing libraries for
thread safety. Luckily, Java was written from scratch with this is mind, and every Java class in its library is thread safe.
Thus, you now have to worry only about your own synchronization and thread-ordering problems because you can assume
that the Java system will do the right thing.

Synchronized sections of code are called critical sections, implying that access to them is critical to the successful threaded
execution of the program. Critical sections are also sometimes referred to as atomic operations, meaning that they appear
to other threads as if they occur at once. In other words, just as an atom is a discrete unit of matter, atomic operations
effectively act like a discrete operation to other threads, even though they may really contain many operations inside.

Critical sections, or atomic operations, are synchronized sections of code that appear to happen "all at once"-exactly at the
same time-to other threads. This results in only one thread being able to access code in a critical section at a time.

Note
Some readers may wonder what the fundamental problem really is.
Can't you just make the ... area in the previous example smaller and
smaller to reduce or eliminate the problem? Without atomic
operations, the answer is no. Even if the ... took zero time, you
must first look at the value of some variable to make any decision and
then change something to reflect that decision. These two steps can
never be made to happen at the same time without an atomic
operation. Unless you're given one by the system, it's literally
impossible to create your own.

Even the one line crucialValue += 1 involves three steps: get
the current value, add one to it, and store it back. (Using
++crucialValue doesn't help either.) All three steps need to
happen "all at once" (atomically) to be safe. Special Java primitives,
at the lowest levels of the language, provide you with the basic
atomic operations you need to build safe, threaded programs.

Thinking Multithreaded
Getting used to threads takes a little while and a new way of thinking. Rather than imagining that you always know exactly
what's happening when you look at a method you've written, you have to ask yourself some additional questions. What
will happen if more than one thread calls into this method at the same time? Do you need to protect it in some way? What
about your class as a whole? Are you assuming that only one of its methods is running at the same time?

Often you make such assumptions, and a local instance variable will be messed up as a result. Since common wisdom
dictates that we learn from our mistakes, let's make a few mistakes and then try to correct them. First, here's the simplest
case:

public class ThreadCounter {
    int crucialValue;

    public void countMe() {
        crucialValue += 1;
    }

    public int howMany() {
        return crucialValue;

Day 18 -- Multithreading

file:///G|/ebooks/1575211831/ch18.htm (3 of 17) [11/06/2000 7:45:53 PM]



    }
}

This code shows a class used to count threads that suffers from the most pure form of the "synchronization problem": The
+= takes more than one step, and you may miscount the number of threads as a result. (Don't worry about how threads are
created yet; just imagine that a whole bunch of them are able to call countMe(), at once, but at slightly different times.)
Java allows you to fix this situation:

public class SafeThreadCounter {
    int crucialValue;

    public synchronized void countMe() {
        crucialValue += 1;
    }

    public int howMany() {
        return crucialValue;
    }
}

The synchronized keyword tells Java to make the block of code in the method thread safe. This means that only one
thread will be allowed inside this method at once, and others will have to wait until the currently running thread is finished
with it before they can begin running it. This implies that synchronizing a large, long-running method is almost always a
bad idea. All your threads would end up stuck at this bottleneck, waiting single file to get their turn at this one slow
method.

It's even worse than you might think for unsynchronized variables. Because the compiler can keep them around in CPU
registers during computations, and a thread's registers can't be seen by other threads, a variable can be updated in such a
way that no possible order of thread updates could have produced the result. This is completely incomprehensible to the
programmer, but it can happen. To avoid this bizarre case, you can label a variable volatile, meaning that you know it
will be updated asynchronously by multiprocessor-like threads. Java then loads and stores it each time it's needed and does
not use CPU registers.

Note
All variables are assumed to be thread safe unless you specifically
mark them as volatile. Keep in mind that using volatile is an
extremely rare event. In fact, in the 1.0.2 release, the Java API does
not use volatile anywhere.

Points About Points

The method howMany() in the last example doesn't need to be synchronized because it simply returns the current value
of an instance variable. A method higher in the call chain-one that uses the value returned from howMany()- may need to
be synchronized, though. Listing 18.1 contains an example of a thread in need of this type of synchronization.

Listing 18.1. The Point class.

 1: public class Point {      //redefines class Point from package java.awt
 2:     private float x, y;   //OK since we're in a different package here
 3: 
 4:     public float x() {        // needs no synchronization
 5:         return x;
 6:     }
 7: 

Day 18 -- Multithreading

file:///G|/ebooks/1575211831/ch18.htm (4 of 17) [11/06/2000 7:45:53 PM]



 8:     public float y() {        // ditto
 9:         return y;
10:     }
11:     . . .    // methods to set and change x and y
12: }
13: 
14: public class UnsafePointPrinter {
15:     public void print(Point p) {
16:         System.out.println("The point's x is " + p.x()
17:                                 + " and y is " + p.y() + ".");
18:     }
19: }

The methods analogous to howMany() are x() and y(). They need no synchronization because they just return the
values of member variables. It is the responsibility of the caller of x() and y() to decide whether it needs to synchronize
itself-and in this case, it does. Although the method print() simply reads values and prints them out, it reads two values.
This means that there is a chance that some other thread, running between the call to p.x() and the call to p.y(), could
have changed the value of x and y stored inside the Point p. Remember, you don't know how many other threads have
a way to reach and call methods in this Point object! "Thinking multithreaded" comes down to being careful any time
you make an assumption that something has not happened between two parts of your program (even two parts of the same
line, or the same expression, such as the string + expression in this example).

TryAgainPointPrinter

You could try to make a safe version of print() by simply adding the synchronized keyword modifier to it, but
instead, let's try a slightly different approach:

public class TryAgainPointPrinter {
    public void print(Point p) {
        float safeX, safeY;

        synchronized(this) {
            safeX = p.x();     // these two lines now
            safeY = p.y();     // happen atomically
        }
        System.out.print("The point's x is " + safeX
                                  + " y is " + safeY);
    }
}

The synchronized statement takes an argument that says what object you would like to lock to prevent more than one
thread from executing the enclosed block of code at the same time. Here, you use this (the instance itself), which is
exactly the object that would have been locked by the synchronized method as a whole if you had changed print()
to be like your safe countMe() method. You have an added bonus with this new form of synchronization: You can
specify exactly what part of a method needs to be safe, and the rest can be left unsafe.

Notice how you took advantage of this freedom to make the protected part of the method as small as possible, while
leaving the String creations, concatenations, and printing (which together take a small but finite amount of time) outside
the "protected" area. This is both good style (as a guide to the reader of your code) and more efficient, because fewer
threads get stuck waiting to get into protected areas.

SafePointPrinter

The astute reader, though, may still be worried by the last example. It seems as if you made sure that no one executes your

Day 18 -- Multithreading

file:///G|/ebooks/1575211831/ch18.htm (5 of 17) [11/06/2000 7:45:54 PM]



calls to x() and y() out of order, but have you prevented the Point p from changing out from under you? If the
answer is no, you still have not completely solved the problem. It turns out that you really do need the full power of the
synchronized statement:

public class SafePointPrinter {
    public void print(Point p) {
        float safeX, safeY;

        synchronized(p) {     // no one can change p
            safeX = p.x();    // while these two lines
            safeY = p.y();    // are happening atomically
        }
        System.out.print("The point's x is " + safeX
                                  + " y is " + safeY);
    }
}

Now you've got it! You actually needed to protect the Point p from changes, so you lock it by providing it as the
argument to your synchronized statement. Now when x() and y() are called together, they can be sure to get the
current x and y of the Point p, without any other thread being able to call a modifying method between. You're still
assuming, however, that the Point p has properly protected itself. You can always assume this about system classes-but
you wrote this Point class. You can make sure it's okay by writing the only method that can change x and y inside p
yourself:

public class  Point {
    private float x, y;

    . . .        // the x() and y() methods

    public synchronized void setXAndY(float  newX,  float  newY) {
        x = newX;
        y = newY;
    }
}

By making synchronized the only "set" method in Point, you guarantee that any other thread trying to grab the
Point p and change it out from under you has to wait. You've locked the Point p with your synchronized(p)
statement, and any other thread has to lock the same Point p via the implicit synchronized(this) statement that is
executed when p enters setXAndY(). So at last you are thread safe.

Note
By the way, if Java had some way of returning more than one value at
once, you could write a synchronized getXAndY() method for
Point that returns both values safely. In the current Java language,
such a method could return a new, unique Point to guarantee to its
callers that no one else has a copy that might be changed. This sort of
trick can be used to minimize the parts of the system that need to
worry about synchronization.

Protecting a Class Variable

Suppose you want a class variable to collect some information across all a class's instances:

Day 18 -- Multithreading

file:///G|/ebooks/1575211831/ch18.htm (6 of 17) [11/06/2000 7:45:54 PM]



public class StaticCounter {
    private static int crucialValue;

    public synchronized void countMe() {
        crucialValue += 1;
    }
}

Is this safe? If crucialValue were an instance variable, it would be. Because it's a class variable, however, and there is
only one copy of it for all instances; you can still have multiple threads modifying it by using different instances of the
class. (Remember that the synchronized modifier locks the this object-an instance.) Luckily, you now know the
technique required to solve this:

public class StaticCounter {
    private static int crucialValue;

    public void countMe() {
        synchronized(getClass()) {   // can't directly name StaticCounter
            crucialValue += 1;       // the (shared) class is now locked
        }
    }
}

The trick is to "lock" on a different object-not on an instance of the class, but on the class itself. Because a class variable is
"inside" a class, just as an instance variable is inside an instance, this shouldn't be all that unexpected. In a similar way,
classes can provide global resources that any instance (or other class) can access directly by using the class name and lock
by using that same class name. In the last example, crucialValue was used from within an instance of
StaticCounter, but if crucialValue were declared public instead, from anywhere in the program, it would be
safe to say the following:

synchronized(Class.forName("StaticCounter")) {
    StaticCounter.crucialValue += 1;
}

Note
The direct use of another class's (object's) member variable is really
bad style-it's used here simply to demonstrate a point quickly.
StaticCounter would normally provide a countMe()-like class
method of its own to do this sort of dirty work.

You can now begin to appreciate how much work the Java team has done for you by thinking all these hard thoughts for
each and every class (and method!) in the Java class library.

Creating and Using Threads
Now that you understand the power (and the dangers) of having many threads running at once, how are those threads
actually created?

Warning

Day 18 -- Multithreading

file:///G|/ebooks/1575211831/ch18.htm (7 of 17) [11/06/2000 7:45:54 PM]



The system itself always has a few daemon threads running, one of
which is constantly doing the tedious task of garbage collection for
you in the background. There is also a main user thread that listens
for events from your mouse and keyboard. If you're not careful, you
can sometimes lock up this main thread. If you do, no events are sent
to your program and it appears to be dead. A good rule of thumb is
that whenever you're doing something that can be done in a separate
thread, it probably should be. Threads in Java are relatively cheap to
create, run, and destroy, so don't use them too sparingly.

Because there is a class java.lang.Thread, you might guess that you could create a thread of your own by
subclassing it-and you are right:

public class MyFirstThread extends Thread { // a.k.a., java.lang.Thread
    public void run() {
        . . .              // do something useful
    }
}

You now have a new type of thread called MyFirstThread, which does something useful when its run() method is
called. Of course, no one has created this thread or called its run() method, so at this point it is just a class eager to
become a thread. To actually create and run an instance of your new thread class, you write the following:

MyFirstThread aMFT = new MyFirstThread();
aMFT.start();    // calls our run() method

What could be simpler? You create a new instance of your thread class and then ask it to start running. Whenever you want
to stop the thread, you do this:

aMFT.stop();

Besides responding to start() and stop(), a thread can also be temporarily suspended and later resumed:

Thread  t = new Thread();
t.suspend();
. . .         // do something special while t isn't running
t.resume();

A thread will automatically suspend() and then resume() when it's first blocked at a synchronized point and then
later unblocked (when it's that thread's "turn" to run).

The Runnable Interface

This is all well and good if every time you want to create a thread you have the luxury of being able to place it under the
Thread class in the single-inheritance Java class tree. But what if it more naturally belongs under some other class, from
which it needs to inherit most of its implementation? The interfaces you learned about on Day 16, "Packages and
Interfaces," come to the rescue:

public class MySecondThread extends ImportantClass implements Runnable {
    public void run() {
        . . .              // do something useful
    }
}

Day 18 -- Multithreading

file:///G|/ebooks/1575211831/ch18.htm (8 of 17) [11/06/2000 7:45:54 PM]



By implementing the interface Runnable, you declare your intention to run in a separate thread. In fact, the Thread
class is itself an implementation of this interface, as you might expect from the design discussions on Day 16. As you also
might guess from the example, the Runnable interface defines only one method: run(). As in MyFirstThread, you
expect someone to create an instance of a thread and somehow call your run() method. Here's how this is accomplished
using the interface approach to thread creation:

MySecondThread  aMST = new MySecondThread();
Thread          aThread = new Thread(aMST);
aThread.start();   // calls our run() method, indirectly

First, you create an instance of MySecondThread. Then, by passing this instance to the constructor creating the new
thread, you make it the target of that thread. Whenever that new thread starts up, its run() method calls the run()
method of the target it was given (assumed by the thread to be an object that implements the Runnable interface). When
start() is called on aThread, your run() method is indirectly called. You can stop aThread with stop(). If you
don't need to use the Thread object or instance of MySecondThread explicitly, here's a one-line shortcut:

new Thread(new MySecondThread()).start();

Note
As you can see, the class name MySecondThread is a bit of a
misnomer-it does not descend from Thread, nor is it actually the
thread that you start() and stop(). It could have been called
MySecondThreadedClass or ImportantRunnableClass
to be more clear on this point.

ThreadTester

Listing 18.2 contains a longer example of creating and using threads.

Listing 18.2. The SimpleRunnable class.

 1: public class SimpleRunnable implements Runnable {
 2:     public void run() {
 3:         System.out.println("in thread named '"
 4:                              + Thread.currentThread().getName() + "'");
 5:     }  // any other methods run() calls are in current thread as well
 6: }
 7: 
 8: public class ThreadTester {
 9:     public static void main(String argv[]) {
10:         SimpleRunnable aSR = new SimpleRunnable();
11: 
12:         while (true) {
13:             Thread t = new Thread(aSR);
14: 
15:             System.out.println("new Thread() " + (t == null ?
16:                                              "fail" : "succeed") + "ed.");
17:             t.start();
18:             try { t.join(); } catch (InterruptedException ignored) { }
19:                          // waits for thread to finish its run() method
20:         }
21:     }

Day 18 -- Multithreading

file:///G|/ebooks/1575211831/ch18.htm (9 of 17) [11/06/2000 7:45:54 PM]



22: }

Note
You may be worried that only one instance of the class
SimpleRunnable is created, but many new threads are using it.
Don't they get confused? Remember to separate in your mind the aSR
instance (and the methods it understands) from the various threads of
execution that can pass through it. aSR's methods provide a template
for execution, and the multiple threads created are sharing that
template. Each remembers where it is executing and whatever else it
needs to make it distinct from the other running threads. They all
share the same instance and the same methods. That's why you need
to be so careful, when adding synchronization, to imagine numerous
threads running rampant over each of your methods.

The class method currentThread() can be called to get the thread in which a method is currently executing. If the
SimpleRunnable class were a subclass of Thread, its methods would know the answer already (it is the thread
running). Because SimpleRunnable simply implements the interface Runnable, however, and counts on someone
else (ThreadTester's main()) to create the thread, its run() method needs another way to get its hands on that
thread. Often, you'll be deep inside methods called by your run() method when suddenly you need to get the current
thread. The class method shown in the example works, no matter where you are.

The example then calls getName() on the current thread to get the thread's name (usually something helpful, such as
Thread-23) so it can tell the world in which thread run() is running. The final thing to note is the use of the method
join(), which, when sent to a thread, means "I'm planning to wait forever for you to finish your run() method." You
don't want to use this approach without good reason: If you have anything else important you need to get done in your
thread any time soon, you can't count on how long the joined thread might take to finish. In the example, the run()
method is short and finishes quickly, so each loop can safely wait for the previous thread to die before creating the next
one. Here's the output produced:

new Thread() succeeded.
in thread named 'Thread-1'
new Thread() succeeded.
in thread named 'Thread-2'
new Thread() succeeded.
in thread named 'Thread-3'
^C

Incidentally, Ctrl+C was pressed to interrupt the program, because it otherwise would continue on forever.

Warning
You can do some reasonably disastrous things with your knowledge
of threads. For example, if you're running in the main thread of the
system and, because you think you are in a different thread, you
accidentally say the following:

Thread.currentThread().stop();

it has unfortunate consequences for your (soon-to-be-dead) program!

NamedThreadTester

If you want your threads to have particular names, you can assign them yourself by using another form of Thread's
constructor:

Day 18 -- Multithreading

file:///G|/ebooks/1575211831/ch18.htm (10 of 17) [11/06/2000 7:45:54 PM]



public class NamedThreadTester {
    public static void main(String argv[]) {
        SimpleRunnable aSR = new SimpleRunnable();

        for (int i = 1; true; ++i) {
            Thread t = new Thread(aSR, "" + (100 - i) 
                                           + " threads on the wall...");

            System.out.println("new Thread() " + (t == null ?
                                             "fail" : "succeed") + "ed.");
            t.start();
            try { t.join(); } catch (InterruptedException ignored) { }
        }
    }
}

This version of Thread's constructor takes a target object, as before, and a string, which names the new thread. Here's the
output:

new Thread() succeeded.
in thread named '99 threads on the wall...'
new Thread() succeeded.
in thread named '98 threads on the wall...'
new Thread() succeeded.
in thread named '97 threads on the wall...'
^C

Naming a thread is one easy way to pass it some information. This information flows from the parent thread to its new
child. It's also useful, for debugging purposes, to give threads meaningful names (such as network input) so that when
they appear during an error-in a stack trace, for example-you can easily identify which thread caused the problem. You
might also think of using names to help group or organize your threads, but Java actually provides you with a
ThreadGroup class to perform this function.

The ThreadGroup class is used to manage a group of threads as a single unit. This provides you with a means to finely
control thread execution for a series of threads. For example, the ThreadGroup class provides stop, suspend, and
resume methods for controlling the execution of all the threads in the group. Thread groups can also contain other thread
groups, allowing for a nested hierarchy of threads. Another benefit to using thread groups is that they can keep threads
from being able to affect other threads, which is useful for security.

Knowing When a Thread Has Stopped
Let's imagine a different version of the last example, one that creates a thread and then hands the thread off to other parts
of the program. Suppose the program would then like to know when that thread dies so that it can perform some cleanup
operation. If SimpleRunnable were a subclass of Thread, you might try to catch stop() whenever it's sent-but look
at Thread's declaration of the stop() method:

public final void stop() { . . . }

The final here means that you can't override this method in a subclass. In any case, SimpleRunnable is not a
subclass of Thread, so how can this imagined example possibly catch the death of its thread? The answer is to use the
following magic:

Day 18 -- Multithreading

file:///G|/ebooks/1575211831/ch18.htm (11 of 17) [11/06/2000 7:45:54 PM]



public class SingleThreadTester {
    public static void main(String argv[]) {
        Thread t = new Thread(new SimpleRunnable());

        try {
            t.start();
            someMethodThatMightStopTheThread(t);
        } catch (ThreadDeath aTD) {
            . . .          // do some required cleanup
            throw aTD;     // re-throw the error
        }
    }
}

You understand most of this magic from yesterday's lesson. All you need to know is that if the thread created in the
example dies, it throws an error of class ThreadDeath. The code catches that error and performs the required cleanup. It
then rethrows the error, allowing the thread to die. The cleanup code is not called if the thread exits normally (its run()
method completes), but that's fine; you posited that the cleanup was needed only when stop() was used on the thread.

Note
Threads can die in other ways-for example, by throwing exceptions
that no one catches. In these cases, stop() is never called and the
previous code is not sufficient. Because unexpected exceptions can
come out of nowhere to kill a thread, multithreaded programs that
carefully catch and handle all their exceptions are more predictable
and robust, and they're easier to debug.

Thread Scheduling
You might be wondering how any software system can be truly threaded when running on a machine with a single CPU. If
there is only one physical CPU in a computer system, it's impossible for more than one machine code instruction to be
executed at a time. This means that no matter how hard you try to rationalize the behavior of a multithreaded system, only
one thread is really being executed at a particular time. The reality is that multithreading on a single CPU system, like the
systems most of us use, is at best a good illusion. The good news is that the illusion works so well most of the time that we
feel pretty comfortable in the fact that multiple threads are really running in parallel.

The illusion of parallel thread execution on a system with a single CPU is often managed by giving each thread an
opportunity to execute a little bit of code at regular intervals. This approach is known as timeslicing, which refers to the
way each thread gets a little of the CPU's time to execute code. When you speed up this whole scenario to millions of
instructions per second, the whole effect of parallel execution comes across pretty well.

The general task of managing and executing multiple threads in an environment such as this is known as scheduling.
Likewise, the part of the system that decides the real-time ordering of threads is called the scheduler.

Preemptive Versus Nonpreemptive

Normally, any scheduler has two fundamentally different ways of looking at its job: nonpreemptive scheduling and
preemptive time slicing.

With nonpreemptive scheduling, the scheduler runs the current thread forever, requiring that thread to explicitly tell it
when it is safe to start a different thread. With preemptive time slicing, the scheduler runs the current thread until it has
used up a certain tiny fraction of a second, and then "preempts" it, suspends it, and resumes another thread for the next tiny
fraction of a second.

Day 18 -- Multithreading

file:///G|/ebooks/1575211831/ch18.htm (12 of 17) [11/06/2000 7:45:54 PM]



Nonpreemptive scheduling is very courtly, always asking for permission to schedule, and is quite valuable in extremely
time-critical real-time applications where being interrupted at the wrong moment, or for too long, could mean crashing an
airplane.

However, most modern schedulers use preemptive time slicing because it generally has made writing multithreaded
programs much easier. For one thing, it does not force each thread to decide exactly when it should "yield" control to
another thread. Instead, every thread can just run blindly on, knowing that the scheduler will be fair about giving all the
other threads their chance to run.

However, it turns out that this approach is still not the ideal way to schedule threads; you've given up a little too much
control to the scheduler. The final touch many modern schedulers add is to allow you to assign each thread a priority. This
creates a total ordering of all threads, making some threads more "important" than others. Being higher priority often
means that a thread gets run more often or for a longer period of time, but it always means that it can interrupt other,
lower-priority threads, even before their "time slice" has expired.

A good example of a low-priority thread is the garbage collection thread in the Java runtime system. Even though garbage
collection is a very important function, it is not something you want hogging the CPU. Since the garbage collection thread
is a low-priority thread, it chugs along in the background, freeing up memory as the processor allows it. This may result in
memory being freed a little slower, but it allows more time-critical threads, such as the user input handling thread, full
access to the CPU. You may be wondering what happens if the CPU stays busy and the garbage collector never gets to
clean up memory. Does the runtime system run out of memory and crash? No. This brings up one of the neat aspects of
threads and how they work. If a high-priority thread can't access a resource it needs, such as memory, it enters a wait state
until memory becomes available. When all memory is gone, all the threads running will eventually go into a wait state,
thereby freeing up the CPU to execute the garbage collection thread, which in turn frees up memory. And the circle of
threaded life continues!

The current Java release (1.0.2) does not precisely specify the behavior of its scheduler. Threads can be assigned priorities,
and when a choice is made between several threads that all want to run, the highest-priority thread wins. However, among
threads that are all the same priority, the behavior is not well defined. In fact, the different platforms on which Java
currently runs have different behaviors-some behaving more like a preemptive scheduler, and some more like a
nonpreemptive scheduler.

Note
This incomplete specification of the scheduler is terribly annoying
and, presumably, will be corrected in a later release. Not knowing the
fine details of how scheduling occurs is perfectly all right, but not
knowing whether equal-priority threads must explicitly yield or face
running forever is not all right. For example, all the threads you have
created so far are equal-priority threads so you don't know their basic
scheduling behavior!

Testing Your Scheduler

To find out what kind of scheduler you have on your system, try out the following code:

public class RunnablePotato implements Runnable {
    public void run() {
        while (true)
            System.out.println(Thread.currentThread().getName());
    }
}

public class PotatoThreadTester {
    public static void main(String argv[]) {

Day 18 -- Multithreading

file:///G|/ebooks/1575211831/ch18.htm (13 of 17) [11/06/2000 7:45:54 PM]



        RunnablePotato aRP = new RunnablePotato();

        new Thread(aRP, "one potato").start();
        new Thread(aRP, "two potato").start();
    }
}

If your system employs a nonpreemptive scheduler, this code results in the following output:

one potato
one potato
one potato
. . .

This output will go on forever or until you interrupt the program. For a preemptive scheduler that uses time slicing, this
code will repeat the line one potato a few times, followed by the same number of two potato lines, over and over:

one potato
one potato
...
one potato
two potato
two potato
...
two potato
. . .

This output will also go on forever or until you interrupt the program. What if you want to be sure the two threads will take
turns, regardless of the type of system scheduler? You rewrite RunnablePotato as follows:

public class RunnablePotato implements Runnable {
    public void run() {
        while (true) {
            System.out.println(Thread.currentThread().getName());
            Thread.yield();  // let another thread run for a while
        }
    }
}

Tip
Normally you would have to use
Thread.currentThread().yield() to get your hands on the
current thread, and then call yield(). Because this pattern is so
common, however, the Thread class can be used as a shortcut.

The yield() method explicitly gives any other threads that want to run a chance to begin running. (If there are no
threads waiting to run, the thread that made the yield() simply continues.) In our example, there's another thread that's
just dying to run, so when you now execute the class ThreadTester, it should output the following:

one potato
two potato
one potato
two potato

Day 18 -- Multithreading

file:///G|/ebooks/1575211831/ch18.htm (14 of 17) [11/06/2000 7:45:54 PM]



one potato
two potato
. . .

This output will be the same regardless of the type of scheduler you have.

To see whether thread priorities are working on your system, try this code:

public class PriorityThreadTester {
    public static void main(String argv[]) {
        RunnablePotato aRP = new RunnablePotato();
        Thread         t1  = new Thread(aRP, "one potato");
        Thread         t2  = new Thread(aRP, "two potato");

        t2.setPriority(t1.getPriority() + 1);
        t1.start();
        t2.start();   // at priority Thread.NORM_PRIORITY + 1
    }
}

Tip
The values representing the lowest, normal, and highest priorities that
threads can be assigned are stored in constant class members of the
Thread class: Thread.MIN_PRIORITY,
Thread.NORM_PRIORITY, and Thread.MAX_PRIORITY. The
system assigns new threads, by default, the priority
Thread.NORM_PRIORITY. Priorities in Java are currently defined
in a range from 1 to 10, with 5 being normal, but you shouldn't
depend on these values; use the class variables or tricks like the one
shown in this example.

If one potato is the first line of output, your system does not preempt using thread priorities. Why? Imagine that the
first thread (t1) has just begun to run. Even before it has a chance to print anything, along comes a higher-priority thread
(t2) that wants to run as well. That higher-priority thread should preempt (interrupt) the first and get a chance to print two
potato before t1 finishes printing anything. In fact, if you use the RunnablePotato class that never yield()s, t2
stays in control forever, printing two potato lines, because it's a higher priority than t1 and it never yields control. If
you use the latest RunnablePotato class (with yield()), the output is alternating lines of one potato and two
potato as before, but starting with two potato.

Listing 18.3 contains a good, illustrative example of how complex threads behave.

Listing 18.3. The ComplexThread class.

 1: public class ComplexThread extends Thread {
 2:     private int delay;
 3: 
 4:     ComplexThread(String name, float seconds) {
 5:         super(name);
 6:         delay = (int) seconds * 1000;   // delays are in milliseconds
 7:         start();                        // start up ourself!
 8:     }
 9: 
10:     public void run() {

Day 18 -- Multithreading

file:///G|/ebooks/1575211831/ch18.htm (15 of 17) [11/06/2000 7:45:54 PM]



11:         while (true) {
12:             System.out.println(Thread.currentThread().getName());
13:             try {
14:                 Thread.sleep(delay);
15:             } catch (InterruptedException e) {
16:                 return;
17:             }
18:         }
19:     }
20: 
21:     public static void main(String argv[]) {
22:         new ComplexThread("one potato",   1.1F);
23:         new ComplexThread("two potato",   1.3F);
24:         new ComplexThread("three potato", 0.5F);
25:         new ComplexThread("four",         0.7F);
26:     }
27: }

This example combines the thread and its tester into a single class. Its constructor takes care of naming and starting itself
because it is now a thread. The main() method creates new instances of its own class because the class is a subclass of
Thread. The run() method is also more complicated because it now uses, for the first time, a method that can throw an
unexpected exception.

The Thread.sleep() method forces the current thread to yield() and then waits for at least the specified amount of
time to elapse before allowing the thread to run again. It might be interrupted by another thread, however, while it's
sleeping. In such a case, it throws an InterruptedException. Now, because run() is not defined as throwing this
exception, you must "hide" the fact by catching and handling it yourself. Because interruptions are usually requests to stop,
you should exit the thread, which you can do by simply returning from the run() method.

This program should output a repeating but complex pattern of four different lines, where every once in a great while you
see the following:

. . .
one potato
two potato
three potato
four
. . .

You should study the pattern output to prove to yourself that true parallelism is going on inside Java programs. You may
also begin to appreciate that, if even this simple set of four threads can produce such complex behavior, many more
threads must be capable of producing near chaos if not carefully controlled. Luckily, Java provides the synchronization and
thread-safe libraries you need to control that chaos.

Summary
Today you have learned that multithreading is desirable and powerful, but introduces many new problems-methods and
variables now need to be protected from thread conflicts-that can lead to chaos if not carefully controlled. By "thinking
multithreaded," you can detect the places in your programs that require synchronized statements (or modifiers) to
make them thread safe. A series of Point examples demonstrates the various levels of safety you can achieve, and
ThreadTesters shows how subclasses of Thread, or classes that implement the Runnable interface, are created and
run to generate multithreaded programs.

Day 18 -- Multithreading

file:///G|/ebooks/1575211831/ch18.htm (16 of 17) [11/06/2000 7:45:54 PM]



You have also learned today how to use yield(), start(), stop(), suspend(), and resume() on your threads,
and how to catch ThreadDeath whenever it happens. You have learned about preemptive and nonpreemptive
scheduling, both with and without priorities, and how to test your Java system to see which of them your scheduler is
using.

You are now armed with enough information to write the most complex of programs: multithreaded ones. As you get more
comfortable with threads, you may begin to use the ThreadGroup class or the enumeration methods of Thread to get
your hands on all the threads in the system and manipulate them. Don't be afraid to experiment; you can't permanently
break anything, and you only learn by trying.

Q&A

Q: If they're so important to Java, why haven't threads appeared throughout the entire book?
A: Actually, they have. Every standalone program written so far has "created" at least one thread, the one in which it

is running. (Of course the system created that thread for it automatically.)
Q: How exactly do these threads get created and run? What about applets?
A: When a simple standalone Java program starts up, the system creates a main thread, and its run() method calls

your main() method to start your program-you do nothing to get that thread. Likewise, when a simple applet
loads into a Java-enabled browser, a thread has already been created by the browser, and its run() method calls
your init() and start() methods to start your program. In either case, a new thread of some kind was
created somewhere by the Java environment itself.

Q: I know the current Java release is still a little fuzzy about the scheduler's behavior, but what's the word
from Sun?

A: Here's the scoop, as relayed by Arthur van Hoff at Sun: The way Java schedules threads "…depends on the
platform. It is usually preemptive, but not always time sliced. Priorities are not always observed, depending on the
underlying implementation." This final clause gives you a hint that all this confusion is an implementation
problem, and that in some future release, the design and implementation will both be clear about scheduling
behavior.

Q: My parallel friends tell me I should worry about something called "deadlock." Should I?
A: Not for simple multithreaded programs. However, in more complicated programs, one of the biggest worries does

become one of avoiding a situation in which one thread has locked an object and is waiting for another thread to
finish, while that other thread is waiting for the first thread to release that same object before it can finish. That's a
deadlock-both threads will be stuck forever. Mutual dependencies like this involving more than two threads can be
quite intricate, convoluted, and difficult to locate, much less rectify. They are one of the main challenges in
writing complex multithreaded programs.

   

Day 18 -- Multithreading

file:///G|/ebooks/1575211831/ch18.htm (17 of 17) [11/06/2000 7:45:54 PM]



Day 16

Packages and Interfaces
by Laura Lemay and Charles L. Perkins

CONTENTS
Programming in the Large and Programming in the Small●   

What Are Packages?●   

Using Packages

Full Package and Class Names❍   

The import Command❍   

Name Conflicts❍   

A Note About CLASSPATH and Where Classes Are Located❍   

●   

Creating Your Own Packages

Pick a Package Name❍   

Create the Directory Structure❍   

Use package to Add Your Class to a Package❍   

Packages and Class Protection❍   

●   

What Are Interfaces?

The Problem of Single Inheritance❍   

Abstract Design and Concrete Implementation❍   

Interfaces and Classes❍   

●   

Implementing and Using Interfaces

The implements Keyword❍   

Implementing Multiple Interfaces❍   

Other Uses of Interfaces❍   

●   

Creating and Extending Interfaces

New Interfaces❍   

Methods Inside Interfaces❍   

Extending Interfaces❍   

An Example: Enumerating Linked Lists❍   

●   

Summary●   

Q&A●   

Packages and interfaces are two capabilities that allow you greater control and flexibility in designing sets of interrelated classes.
Packages allow you to combine groups of classes and control which of those classes are available to the outside world; interfaces
provide a way of grouping abstract method definitions and sharing them among classes that may not necessarily acquire those
methods through inheritance.

Today you'll learn how to design with, use, and create your own packages and interfaces. Specific topics you'll learn about today
include

Day 16 -- Packages and Interfaces

file:///G|/ebooks/1575211831/ch16.htm (1 of 16) [11/06/2000 7:45:57 PM]



A discussion of designing classes versus coding classes and how to approach each●   

What packages are and why they are useful for class design●   

Using other people's packages in your own classes●   

Creating your own packages●   

What interfaces buy you in terms of code reuse and design●   

Designing and working with interfaces●   

Programming in the Large and Programming in the Small
When you examine a new language feature, you should ask yourself two questions:

How can I use it to better organize the methods and classes of my Java program?●   

How can I use it while writing the actual Java code?●   

The first is often called programming in the large, and the second, programming in the small. Bill Joy, a founder of Sun
Microsystems, likes to say that Java feels like C when programming in the small and like Smalltalk when programming in the
large. What he means by that is that Java is familiar and powerful like any C-like language while you're coding individual lines,
but has the extensibility and expressive power of a pure object-oriented language like Smalltalk while you're designing.

The separation of "designing" from "coding" was one of the most fundamental advances in programming in the past few
decades, and object-oriented languages such as Java implement a strong form of this separation. The first part of this separation
has already been described on previous days: When you develop a Java program, first you design the classes and decide on the
relationships between these classes, and then you implement the Java code needed for each of the methods in your design. If you
are careful enough with both these processes, you can change your mind about aspects of the design without affecting anything
but small, local pieces of your Java code, and you can change the implementation of any method without affecting the rest of the
design.

As you begin to explore more advanced Java programming, however, you'll find that this simple model becomes too limiting.
Today you'll explore these limitations, for programming in the large and in the small, to motivate the need for packages and
interfaces. Let's start with packages.

What Are Packages?
Packages, as mentioned a number of times in this book so far, are a way of organizing groups of classes. A package contains any
number of classes that are related in purpose, in scope, or by inheritance.

Why bother with packages? If your programs are small and use a limited number of classes, you may find that you don't need to
explore packages at all. But the more Java programming you do, the more classes you'll find you have. And although those
classes may be individually well designed, reusable, encapsulated, and with specific interfaces to other classes, you may find the
need for a bigger organizational entity that allows you to group your packages.

Packages are useful for several broad reasons:

They allow you to organize your classes into units. Just as you have folders or directories on your hard disk to organize
your files and applications, packages allow you to organize your classes into groups so that you only use what you need
for each program.

●   

They reduce problems with conflicts in names. As the number of Java classes grows, so does the likelihood that you'll use
the same class name as someone else, opening up the possibility of naming clashes and errors if you try to integrate groups
of classes into a single program. Packages allow you to "hide" classes so that conflicts can be avoided.

●   

They allow you to protect classes, variables, and methods in larger ways than on a class-by-class basis, as you learned
yesterday. You'll learn more about protections with packages later today.

●   

They can be used to identify your classes. For example, if you implemented a set of classes to perform some purpose, you
could name a package of those classes with a unique identifier that identifies you or your organization.

●   

Although a package is most typically a collection of classes, packages can also contain other packages, forming yet another level
of organization somewhat analogous to the inheritance hierarchy. Each "level" usually represents a smaller, more specific

Day 16 -- Packages and Interfaces

file:///G|/ebooks/1575211831/ch16.htm (2 of 16) [11/06/2000 7:45:57 PM]



grouping of classes. The Java class library itself is organized along these lines. The top level is called java; the next level
includes names such as io, net, util, and awt. The last of these has an even lower level, which includes the package image.

Note
By convention, the first level of the hierarchy specifies the (globally
unique) name to identify the author or owner of those packages. For
example, Sun Microsystems's classes, which are not part of the
standard Java environment, all begin with the prefix sun. Classes
that Netscape includes with its implementation are contained in the
netscape package. The standard package, java, is an exception to
this rule because it is so fundamental and because it might someday
be implemented by multiple companies.

I'll tell you more about package-naming conventions later when you
create your own packages.

Using Packages
You've been using packages all along in this book. Every time you use the import command, and every time you refer to a
class by its full package name (java.awt.Color, for example), you've used packages. Let's go over the specifics of how to
use classes from other packages in your own programs to make sure you've got it and to go into greater depth than we have in
previous lessons.

To use a class contained in a package, you can use one of three mechanisms:

If the class you want to use is in the package java.lang (for example, System or Date), you can simply use the class
name to refer to that class. The java.lang classes are automatically available to you in all your programs.

●   

If the class you want to use is in some other package, you can refer to that class by its full name, including any package
names (for example, java.awt.Font).

●   

For classes that you use frequently from other packages, you can import individual classes or a whole package of classes.
After a class or a package has been imported, you can refer to that class by its class name.

●   

What about your own classes in your own programs that don't belong to any package? The rule is that if you don't specifically
define your classes to belong to a package, they're put into an unnamed default package. You can refer to those classes simply by
class name from anywhere in your code.

Full Package and Class Names

To refer to a class in some other package, you can use its full name: the class name preceded by any package names. You do not
have to import the class or the package to use it this way:

java.awt.Font f = new java.awt.Font()

For classes that you use only once or twice in your program, using the full name makes the most sense. If, however, you use that
class multiple times, or if the package name is really long with lots of subpackages, you'll want to import that class instead to
save yourself some typing.

The import Command

To import classes from a package, use the import command, as you've used throughout the examples in this book. You can
either import an individual class, like this:

import java.util.Vector;

or you can import an entire package of classes, using an asterisk (*) to replace the individual class names:

import java.awt.*

Day 16 -- Packages and Interfaces

file:///G|/ebooks/1575211831/ch16.htm (3 of 16) [11/06/2000 7:45:57 PM]



Note
Actually, to be technically correct, this command doesn't import all
the classes in a package-it only imports the classes that have been
declared public, and even then only imports those classes that the
code itself refers to. You'll learn more on this in the section titled
"Packages and Class Protection."

Note that the asterisk (*) in this example is not like the one you might use at a command prompt to specify the contents of a
directory or to indicate multiple files. For example, if you ask to list the contents of the directory classes/java/awt/*, that
list includes all the .class files and subdirectories, such as image and peer. Writing import java.awt.* imports all
the public classes in that package, but does not import subpackages such as image and peer. To import all the classes in a
complex package hierarchy, you must explicitly import each level of the hierarchy by hand. Also, you cannot indicate partial
class names (for example, L* to import all the classes that begin with L). It's all the classes in a package or a single class.

The import statements in your class definition go at the top of the file, before any class definitions (but after the package
definition, as you'll see in the next section).

So should you take the time to import classes individually or just import them as a group? It depends on how specific you want
to be. Importing a group of classes does not slow down your program or make it any larger; only the classes you actually use in
your code are loaded as they are needed. But importing a package does make it a little more confusing for readers of your code
to figure out where your classes are coming from. Using individual imports or importing packages is mostly a question of your
own coding style.

Technical Note
Java's import command is not at all similar to the #include
command in C-like languages, although they accomplish similar
functions. The C preprocessor takes the contents of all the included
files (and, in turn, the files they include, and so on) and stuffs them in
at the spot where the #include was. The result is an enormous
hunk of code that has far more lines than the original program did.
Java's import behaves more like a linker; it tells the Java compiler
and interpreter where (in which files) to find classes, variables,
method names, and method definitions. It doesn't bring anything into
the current Java program.

Name Conflicts

After you have imported a class or a package of classes, you can usually refer to a class name simply by its name, without the
package identifier. I say "usually" because there's one case where you may have to be more explicit: when there are multiple
classes with the same name from different packages.

Here's an example. Let's say you import the classes from two packages from two different programmers (Joe and Eleanor):

import joesclasses.*;
import eleanorsclasses.*;

Inside Joe's package is a class called Name. Unfortunately, inside Eleanor's package there is also a class called Name that has an
entirely different meaning and implementation. You would wonder whose version of Name would end up getting used if you
referred to the Name class in your own program like this:

Name myName = new Name("Susan");

The answer is neither; the Java compiler will complain about a naming conflict and refuse to compile your program. In this case,
despite the fact that you imported both classes, you still have to refer to the appropriate Name class by full package name:

Day 16 -- Packages and Interfaces

file:///G|/ebooks/1575211831/ch16.htm (4 of 16) [11/06/2000 7:45:57 PM]



joesclasses.Name myName = new joesclasses.Name("Susan");

A Note About CLASSPATH and Where Classes Are Located

Before I go on to explain how to create your own packages of classes, I'd like to make a note about how Java finds packages and
classes when it's compiling and running your classes.

For Java to be able to use a class, it has to be able to find it on the file system. Otherwise, you'll get an error that the class does
not exist. Java uses two things to find classes: the package name itself and the directories listed in your CLASSPATH variable.

First, the package names. Package names map to directory names on the file system, so the class java.applet.Applet will
actually be found in the applet directory, which in turn will be inside the java directory
(java/applet/Applet.class, in other words).

Java looks for those directories, in turn, inside the directories listed in your CLASSPATH variable. If you remember back to Day
1, "An Introduction to Java Programming," when you installed the JDK, you had to set up a CLASSPATH variable to point to the
various places where your Java classes live. CLASSPATH usually points to the java/lib directory in your JDK release, a
class directory in your development environment if you have one, perhaps some browser-specific classes, and to the current
directory. When Java looks for a class you've referenced in your source, it looks for the package and class name in each of those
directories and returns an error if it can't find the class file. Most "cannot load class" errors result because of missed
CLASSPATH variables.

Note
If you're using the Macintosh version of the JDK, you're probably
wondering what I'm talking about. The Mac JDK doesn't use a
CLASSPATH variable; it knows enough to be able to find the default
classes and those contained in the current directory. However, if you
do a lot of Java development, you may end up with classes and
packages in other directories. The Java compiler contains a
Preferences dialog box that lets you add directories to Java's search
path.

Creating Your Own Packages
Creating your own packages is a difficult, complex process, involving many lines of code, long hours late at night with lots of
coffee, and the ritual sacrifice of many goats. Just kidding. To create a package of classes, you have three basic steps to follow,
which I'll explain in the following sections.

Pick a Package Name

The first step is to decide what the name of your package is going to be. The name you choose for your package depends on how
you are going to be using those classes. Perhaps your package will be named after you, or perhaps after the part of the Java
system you're working on (like graphics or hardware_interfaces). If you're intending your package to be distributed
to the Net at large, or as part of a commercial product, you'll want to use a package name (or set of package names) that uniquely
identifies you or your organization or both.

One convention for naming packages that has been recommended by Sun is to use your Internet domain name with the elements
reversed. So, for example, if Sun were following its own recommendation, its packages would be referred to using the name
com.sun.java rather than just java. If your Internet domain name is fooblitzky.eng.nonsense.edu, your package
name might be edu.nonsense.eng.fooblitzky (and you might add another package name onto the end of that to refer
to the product or to you, specifically).

The idea is to make sure your package name is unique. Although packages can hide conflicting class names, the protection stops
there. There's no way to make sure your package won't conflict with someone else's package if you both use the same package
name.

By convention, package names tend to begin with a lowercase letter to distinguish them from class names. Thus, for example, in

Day 16 -- Packages and Interfaces

file:///G|/ebooks/1575211831/ch16.htm (5 of 16) [11/06/2000 7:45:57 PM]



the full name of the built-in String class, java.lang.String, it's easier to separate the package name from the class name
visually. This convention helps reduce name conflicts.

Create the Directory Structure

Step two in creating packages is to create a directory structure on your disk that matches the package name. If your package has
just one name (mypackage), you'll only have to create a directory for that one name. If the package name has several parts,
however, you'll have to create directories within directories. For the package name edu.nonsense.eng.fooblitzky,
you'll need to create an edu directory and then create a nonsense directory inside edu, an eng directory inside nonsense,
and a fooblitzky directory inside eng. Your classes and source files can then go inside the fooblitzky directory.

Use package to Add Your Class to a Package

The final step to putting your class inside packages is to add the package command to your source files. The package
command says "this class goes inside this package," and is used like this:

package myclasses;
package edu.nonsense.eng.fooblitzky;
package java.awt;

The single package command, if any, must be the first line of code in your source file, after any comments or blank lines and
before any import commands.

As mentioned before, if your class doesn't have a package command in it, that class is contained in the default package and can
be used by any other class. But once you start using packages, you should make sure all your classes belong to some package to
reduce the chance of confusion about where your classes belong.

Packages and Class Protection

Yesterday you learned all about the four Ps of protection and how they apply (primarily) to methods and variables and their
relationship to other classes. When referring to classes and their relationship to other classes in other packages, you only have
two Ps to worry about: package and public.

By default, classes have package protection, which means that the class is available to all the other classes in the same package
but is not visible or available outside that package-not even to subpackages. It cannot be imported or referred to by name; classes
with package protection are hidden inside the package in which they are contained.

Package protection comes about when you define a class as you have throughout this book, like this:

class TheHiddenClass extends AnotherHiddenClass {
...
}

To allow a class to be visible and importable outside your package, you'll want to give it public protection by adding the
public modifier to its definition:

public class TheVisibleClass {
...
}

Classes declared as public can be imported by other classes outside the package.

Note that when you use an import statement with an asterisk, you import only the public classes inside that package. Hidden
classes remain hidden and can be used only by the other classes in that package.

Why would you want to hide a class inside a package? For the same reason you want to hide variables and methods inside a
class: so you can have utility classes and behavior that are useful only to your implementation, or so you can limit the interface
of your program to minimize the effect of larger changes. As you design your classes, you'll want to take the whole package into

Day 16 -- Packages and Interfaces

file:///G|/ebooks/1575211831/ch16.htm (6 of 16) [11/06/2000 7:45:57 PM]



consideration and decide which classes will be declared public and which will be hidden.

Listing 16.1 shows two classes that illustrate this point. The first is a public class that implements a linked list; the second is a
private node of that list.

Listing 16.1. The public class LinkedList.

 1: package  collections;
 2: 
 3: public class  LinkedList {
 4:     private Node  root;
 5: 
 6:     public  void  add(Object o) {
 7:         root = new Node(o, root);
 8:     }
 9:     . . .
10: }
11: 
12: class  Node {   // not public
13:     private Object  contents;
14:     private Node    next;
15: 
16:     Node(Object o, Node n) {
17:         contents = o;
18:         next     = n;
19:     }
20:     . . .
21: }

Note
Notice here that I'm including two class definitions in one file. I
mentioned this briefly on Day 13, "Creating User Interfaces with the
awt," and it bears mentioning here as well: You can include as many
class definitions per file as you want, but only one of them can be
declared public, and that filename must have the same name as the
one public class. When Java compiles the file, it'll create separate
.class files for each class definition inside the file. In reality, I find
the one-to-one correspondence of class definition to file much more
easily maintained because I don't have to go searching around for the
definition of a class.

The public LinkedList class provides a set of useful public methods (such as add()) to any other classes that might want to
use them. These other classes don't need to know about any support classes LinkedList needs to get its job done. Node,
which is one of those support classes, is therefore declared without a public modifier and will not appear as part of the public
interface to the collections package.

Note
Just because Node isn't public doesn't mean LinkedList won't
have access to it once it's been imported into some other class. Think
of protections not as hiding classes entirely, but more as checking the
permissions of a given class to use other classes, variables, and
methods. When you import and use LinkedList, the Node class
will also be loaded into the system, but only instances of
LinkedList will have permission to use it.

One of the great powers of hidden classes is that even if you use them to introduce a great deal of complexity into the

Day 16 -- Packages and Interfaces

file:///G|/ebooks/1575211831/ch16.htm (7 of 16) [11/06/2000 7:45:57 PM]



implementation of some public class, all the complexity is hidden when that class is imported or used. Thus, creating a good
package consists of defining a small, clean set of public classes and methods for other classes to use, and then implementing
them by using any number of hidden (package) support classes. You'll see another use for hidden classes later today.

What Are Interfaces?
Interfaces, like the abstract classes and methods you saw yesterday, provide templates of behavior that other classes are expected
to implement. Interfaces, however, provide far more functionality to Java and to class and object design than do simple abstract
classes and methods. The rest of this lesson explores interfaces: what they are, why they're crucial to getting the most out of the
Java language for your own classes, and how to use and implement them.

The Problem of Single Inheritance

When you first begin to design object-oriented programs, the concept of the class hierarchy can seem almost miraculous. Within
that single tree you can express a hierarchy of different types of objects, many simple to moderately complex relationships
between objects and processes in the world, and any number of points along the axis from abstract/general to concrete/specific.
The strict hierarchy of classes appears, at first glance, to be simple, elegant, and easy to use.

After some deeper thought or more complex design experience, however, you may discover that the pure simplicity of the class
hierarchy is restrictive, particularly when you have some behavior that needs to be used by classes in different branches of the
same tree.

Let's look at a few examples that will make the problems clearer. Way back on Day 2, "Object-Oriented Programming and Java,"
when you first learned about class hierarchies, we discussed the Vehicle hierarchy, as shown in Figure 16.1.

Figure 16.1 : The Vechicle hierarchy.

Now let's add to that hierarchy and create the classes BritishCar and BritishMotorcycle underneath Car and
Motorcycle, respectively. The behavior that makes a car or motorcycle British (which might include methods for
leakOil() or electricalSystemFailure()) is common to both these classes, but because they are in very different
parts of the class hierarchy, you can't create a common superclass for both of them. And you can't put the British behavior
further up in the hierarchy because that behavior isn't common to all motorcycles and cars. Other than physically copying the
behavior between the two classes (which breaks the object-oriented programming [OOP] rules of code reuse and shared
behavior), how can you create a hierarchy like this?

Let's look at an even thornier example. Say you have a biological hierarchy with Animal at the top, and the classes Mammal
and Bird underneath. Things that define a mammal include bearing live young and having fur. Behavior or features of birds
include having a beak and laying eggs. So far, so good, right? So how do you go about creating a class for the platypus, which
has fur, has a beak, and lays eggs? You'd need to combine behavior from two classes to form the Platypus class. And,
because classes can have only one immediate superclass in Java, this sort of problem simply cannot be solved elegantly.

Other OOP languages include the concept of multiple inheritance, which solves this problem. With multiple inheritance, a class
can inherit from more than one superclass and get behavior and attributes from all its superclasses at once. Using multiple
inheritance, you could simply factor the common behavior of BritishCar and BritishMotorcycle into a single class
(BritishThing) and then create new classes that inherit from both their primary superclass and the British class.

The problem with multiple inheritance is that it makes a programming language far more complex to learn, to use, and to
implement. Questions of method invocation and how the class hierarchy is organized become far more complicated with
multiple inheritance, and more open to confusion and ambiguity. And because one of the goals for Java was that it be simple,
multiple inheritance was rejected in favor of the simpler single inheritance.

So how do you solve the problem of needing common behavior that doesn't fit into the strict class hierarchy? Java, borrowing
from Objective-C, has another hierarchy altogether separate from the main class hierarchy, a hierarchy of mixable behavior
classes. Then, when you create a new class, that class has only one primary superclass, but it can pick and choose different
common behaviors from the other hierarchy.

This other hierarchy is the interface hierarchy. A Java interface is a collection of abstract behavior that can be mixed into any
class to add to that class behavior that is not supplied by its superclasses. Specifically, a Java interface contains nothing but

Day 16 -- Packages and Interfaces

file:///G|/ebooks/1575211831/ch16.htm (8 of 16) [11/06/2000 7:45:57 PM]



abstract method definitions and constants-no instance variables and no method implementations.

Interfaces are implemented and used throughout the Java class library whenever a behavior is expected to be implemented by a
number of disparate classes. The Java class hierarchy, for example, defines and uses the interfaces java.lang.Runnable,
java.util.Enumeration, java.util.Observable, java.awt.image.ImageConsumer, and
java.awt.image.ImageProducer. Some of these interfaces you've seen before; others you'll see later in this book. Still
others may be useful to you in your own programs, so be sure to examine the API to see what's available to you.

Abstract Design and Concrete Implementation

Throughout this book you've gotten a taste of the difference between design and implementation in object-oriented
programming, where the design of a thing is its abstract representation and its implementation is the concrete counterpart of the
design. You saw this with methods, where a method's signature defines how it's used, but the method implementation can occur
anywhere in the class hierarchy. You saw this with abstract classes, where the class's design provides a template for behavior,
but that behavior isn't implemented until further down in the hierarchy.

This distinction between the design and the implementation of a class or a method is a crucial part of object-oriented
programming theory. Thinking in terms of design when you organize your classes allows you to get the big picture without being
bogged down in implementation details. And having the overall design already defined when you actually start implementing
allows you to concentrate on those details solely for the class you're working on. This programming version of "think globally,
act locally" provides a powerful way of thinking about how your classes and your programs and your overall designs are
organized and how they interrelate.

An interface is made up of a set of method signatures with no implementations, making it the embodiment of pure design. By
mixing an interface in with your class, you're encompassing that design into your implementation. That design can then be safely
included anywhere in the class hierarchy because there are no class-specific details of how an interface behaves-nothing to
override, nothing to keep track of, just the name and arguments for a method.

What about abstract classes? Don't abstract classes provide this same behavior? Yes and no. Abstract classes and the abstract
methods inside them do provide a separation of design and implementation, allowing you to factor common behavior into an
abstract superclass. But abstract classes can, and often do, contain some concrete data (such as instance variables), and you can
have an abstract superclass with both abstract and regular methods, thereby confusing the distinction.

Even a pure abstract class with only abstract methods isn't as powerful as an interface. An abstract class is simply another class;
it inherits from some other class and has its place in the hierarchy. Abstract classes cannot be shared across different parts of the
class hierarchy the way interfaces can, nor can they be mixed into other classes that need their behavior. To attain the sort of
flexibility of shared behavior across the class hierarchy, you need an interface.

You can think of the difference between the design and the implementation of any Java class as the difference between the
interface hierarchy and the design hierarchy. The singly inherited class hierarchy contains the implementations where the
relationships between classes and behavior are rigidly defined. The multiply inherited mixable interface hierarchy, however,
contains the design and can be freely used anywhere it's needed in the implementation. This is a powerful way of thinking about
the organization of your program, and although it takes a little getting used to, it's also a highly recommended one.

Interfaces and Classes

Classes and interfaces, despite their different definitions, have an awful lot in common. Interfaces, like classes, are declared in
source files, one interface to a file. Like classes, they also are compiled using the Java compiler into .class files. And, in most
cases, anywhere you can use a class (as a data type for a variable, as the result of a cast, and so on), you can also use an interface.

Almost everywhere that this book has a class name in any of its examples or discussions, you can substitute an interface name.
Java programmers often say "class" when they actually mean "class or interface." Interfaces complement and extend the power
of classes, and the two can be treated almost exactly the same. One of the few differences between them is that an interface
cannot be instantiated: new can only create an instance of a class.

Day 16 -- Packages and Interfaces

file:///G|/ebooks/1575211831/ch16.htm (9 of 16) [11/06/2000 7:45:57 PM]



Implementing and Using Interfaces
Now that you've grasped what interfaces are and why they're powerful (the "programming in the large" part), let's move on to
actual bits of code ("programming in the small"). There are two things you can do with interfaces: use them in your own classes
and define your own. Let's start with the former.

The implements Keyword

To use an interface, you include the implements keyword as part of your class definition. You did this back on Day 11, "More
Animation, Images, and Sound," when you learned about threads and included the Runnable interface in your applet
definition:

// java.applet.Applet is the superclass 
public class Neko extends java.applet.Applet
    implements Runnable {  // but it also has Runnable behavior
...
}

Because interfaces provide nothing but abstract method definitions, you then have to implement those methods in your own
classes, using the same method signatures from the interface. Note that once you include an interface, you have to implement all
the methods in that interface-you can't pick and choose the methods you need. By implementing an interface you're telling users
of your class that you support all of that interface. (Note that this is another difference between interfaces and abstract
classes-subclasses of the latter can pick which methods to implement or override and can ignore others.)

After your class implements an interface, subclasses of your class will inherit those new methods (and can override or overload
them) just as if your superclass had actually defined them. If your class inherits from a superclass that implements a given
interface, you don't have to include the implements keyword in your own class definition.

Let's examine one simple example-creating the new class Orange. Suppose you already have a good implementation of the
class Fruit and an interface, Fruitlike, that represents what Fruits are expected to be able to do. You want an orange to
be a fruit, but you also want it to be a spherical object that can be tossed, rotated, and so on. Here's how to express it all (don't
worry about the definitions of these interfaces for now; you'll learn more about them later today):

interface  Fruitlike {
    void  decay();
    void  squish();
    . . .
}

class  Fruit implements Fruitlike {
    private Color  myColor;
    private int    daysTilIRot;
    . . .
}

interface  Spherelike {
    void  toss();
    void  rotate();
    . . .
}

class  Orange extends Fruit implements Spherelike {
    . . .  // toss()ing may squish() me (unique to me)
}

Note that the class Orange doesn't have to say implements Fruitlike because, by extending Fruit, it already has! One

Day 16 -- Packages and Interfaces

file:///G|/ebooks/1575211831/ch16.htm (10 of 16) [11/06/2000 7:45:57 PM]



of the nice things about this structure is that you can change your mind about what class Orange extends (if a really great
Sphere class is suddenly implemented, for example), yet class Orange will still understand the same two interfaces:

class  Sphere implements Spherelike {   // extends Object
    private float  radius;
    . . .
}

class  Orange extends Sphere implements Fruitlike {
    . . .     // users of Orange never need know about the change!
}

Implementing Multiple Interfaces

Unlike the singly inherited class hierarchy, you can include as many interfaces as you need in your own classes, and your class
will implement the combined behavior of all the included interfaces. To include multiple interfaces in a class, just separate their
names with commas:

public class Neko extends java.applet.Applet 
    implements Runnable, Eatable, Sortable, Observable {
...
}

Note that complications may arise from implementing multiple interfaces-what happens if two different interfaces both define
the same method? There are three ways to solve this:

If the methods in each of the interfaces have identical signatures, you implement one method in your class and that
definition satisfies both interfaces.

●   

If the methods have different parameter lists, it is a simple case of method overloading; you implement both method
signatures, and each definition satisfies its respective interface definition.

●   

If the methods have the same parameter lists but differ in return type, you cannot create a method that satisfies both
(remember, method overloading is triggered by parameter lists, not by return type). In this case, trying to compile a class
that implements both interfaces will produce a compiler error. Running across this problem suggests that your interfaces
have some design flaws that might need re-examining.

●   

Other Uses of Interfaces

Remember that almost everywhere that you can use a class, you can use an interface instead. So, for example, you can declare a
variable to be of an interface type:

Runnable aRunnableObject = new MyAnimationClass()

When a variable is declared to be of an interface type, it simply means that any object the variable refers to is expected to have
implemented that interface-that is, it is expected to understand all the methods that interface specifies. It assumes that a promise
made between the designer of the interface and its eventual implementors has been kept. In this case, because
aRunnableObject contains an object of the type Runnable, the assumption is that you can call
aRunnableObject.run().

The important thing to realize here is that although aRunnableObject is expected to be able to have the run() method, you
could write this code long before any classes that qualify are actually implemented (or even created!). In traditional
object-oriented programming, you are forced to create a class with "stub" implementations (empty methods, or methods that
print silly messages) to get the same effect.

You can also cast objects to an interface, just as you can cast objects to other classes. So, for example, let's go back to that
definition of the Orange class, which implemented both the Fruitlike interface (through its superclass, Fruit) and the
Spherelike interface. Here we'll cast instances of Orange to both classes and interfaces:

Day 16 -- Packages and Interfaces

file:///G|/ebooks/1575211831/ch16.htm (11 of 16) [11/06/2000 7:45:57 PM]



Orange      anOrange    = new Orange();
Fruit       aFruit      = (Fruit)anOrange;
Fruitlike   aFruitlike  = (Fruitlike)anOrange;
Spherelike  aSpherelike = (Spherelike)anOrange;

aFruit.decay();          // fruits decay
aFruitlike.squish();     //  and squish

aFruitlike.toss();       // things that are fruitlike do not toss
aSpherelike.toss();      // but things that are spherelike do

anOrange.decay();        // oranges can do it all
anOrange.squish();
anOrange.toss();
anOrange.rotate();

Declarations and casts are used in this example to restrict an orange's behavior to acting more like a mere fruit or sphere.

Finally, note that although interfaces are usually used to mix in behavior to other classes (method signatures), interfaces can also
be used to mix in generally useful constants. So, for example, if an interface defined a set of constants, and then multiple classes
used those constants, the values of those constants could be globally changed without having to modify multiple classes. This is
yet another example of where the use of interfaces to separate design from implementation can make your code more general and
more easily maintainable.

Creating and Extending Interfaces
After using interfaces for a while, the next step is to define your own interfaces. Interfaces look a lot like classes; they are
declared in much the same way and can be arranged into a hierarchy, but there are rules for declaring interfaces that must be
followed.

New Interfaces

To create a new interface, you declare it like this:

public interface Growable {
...
}

This is, effectively, the same as a class definition, with the word interface replacing the word class. Inside the interface
definition you have methods and constants. The method definitions inside the interface are public and abstract methods;
you can either declare them explicitly as such, or they will be turned into public and abstract methods if you do not
include those modifiers. You cannot declare a method inside an interface to be either private or protected. So, for
example, here's a Growable interface with one method explicitly declared public and abstract (growIt()) and one
implicitly declared as such (growItBigger()).

public interface Growable {
    public abstract void growIt(); //explicity public and abstract
    void growItBigger();          // effectively public and abstract
}

Note that, as with abstract methods in classes, methods inside interfaces do not have bodies. Remember, an interface is pure
design; there is no implementation involved.

In addition to methods, interfaces can also have variables, but those variables must be declared public, static, and final

Day 16 -- Packages and Interfaces

file:///G|/ebooks/1575211831/ch16.htm (12 of 16) [11/06/2000 7:45:57 PM]



(making them constant). As with methods, you can explicitly define a variable to be public, static, and final, or it will
be implicitly defined as such if you don't use those modifiers. Here's that same Growable definition with two new variables:

public interface Growable {
    public static final int increment = 10;
    long maxnum = 1000000;  // becomes public static and final

    public abstract void growIt(); //explicitly public and abstract
    void growItBigger();          // effectively public and abstract
}

Interfaces must have either public or package protection, just like classes. Note, however, that interfaces without the public
modifier do not automatically convert their methods to public and abstract nor their constants to public. A
non-public interface also has non-public methods and constants that can be used only by classes and other interfaces in the
same package.

Interfaces, like classes, can belong to a package by adding a package statement to the first line of the class file. Interfaces can
also import other interfaces and classes from other packages, just as classes can.

Methods Inside Interfaces

One trick to note about methods inside interfaces: Those methods are supposed to be abstract and apply to any kind of class, but
how can you define parameters to those methods? You don't know what class will be using them!

The answer lies in the fact that you use an interface name anywhere a class name can be used, as you learned earlier. By defining
your method parameters to be interface types, you can create generic parameters that apply to any class that might use this
interface.

So, for example, take the interface Fruitlike, which defines methods (with no arguments) for decay() and squish().
There might also be a method for germinateSeeds(), which has one argument: the fruit itself. Of what type is that
argument going to be? It can't be simply Fruit, because there may be a class that's Fruitlike (that is, implements the
Fruitlike interface) without actually being a fruit. The solution is to declare the argument as simply Fruitlike in the
interface:

public interface Fruitlike {
    public abstract germinate(Fruitlike self) {
       ...
    }
}

Then, in an actual implementation for this method in a class, you can take the generic Fruitlike argument and cast it to the
appropriate object:

public class Orange extends Fruit {

    public germinate(Fruitlike self) {
       Orange theOrange = (Orange)self;
       ...
    }
}

Extending Interfaces

As with classes, interfaces can be organized into a hierarchy. When one interface inherits from another interface, that
"subinterface" acquires all the method definitions and constants that its "superinterface" defined. To extend an interface, you use
the extends keyword just as you do in a class definition:

Day 16 -- Packages and Interfaces

file:///G|/ebooks/1575211831/ch16.htm (13 of 16) [11/06/2000 7:45:57 PM]



public interface Fruitlike extends Foodlike { 
...
}

Note that, unlike classes, the interface hierarchy has no equivalent of the Object class; this hierarchy is not rooted at any one
point. Interfaces can either exist entirely on their own or inherit from another interface.

Note also that, unlike the class hierarchy, the inheritance hierarchy is multiply inherited. So, for example, a single interface can
extend as many classes as it needs to (separated by commas in the extends part of the definition), and the new interface will
contain a combination of all its parent's methods and constants. Here's an interface definition for an interface called
BusyInterface that inherits from a whole lot of other interfaces:

public interface BusyInterface extends Runnable, Growable, Fruitlike, Observable {
...}

In multiply inherited interfaces, the rules for managing method name conflicts are the same as for classes that use multiple
interfaces; methods that differ only in return type will result in a compiler error.

An Example: Enumerating Linked Lists

To finish up today's lesson, here's an example that uses packages, package protection, and defines a class that implements the
Enumeration interface (part of the java.util package). Listing 16.2 shows the code.

Listing 16.2. Packages, classes, and interfaces.

 1: package  collections;
 2:
 3: public class  LinkedList {
 4:       private Node  root;
 5:
 6:       . . .
 7:       public Enumeration  enumerate() {
 8:           return new LinkedListEnumerator(root);
 9:     }
10: }
11: 
12: class  Node {
13:     private Object  contents;
14:     private Node    next;
15:
16:     . . .
17:     public  Object  contents() {
18:         return contents;
19:     }
20:
21:     public  Node    next() {
22:         return next;
23:     }
24: }
25: 
26: class  LinkedListEnumerator implements Enumeration {
27:     private Node  currentNode;
28: 
29:      LinkedListEnumerator(Node  root) {
30:         currentNode = root;
31:     }

Day 16 -- Packages and Interfaces

file:///G|/ebooks/1575211831/ch16.htm (14 of 16) [11/06/2000 7:45:58 PM]



32:  
33:     public boolean  hasMoreElements() {
34:         return currentNode != null;
35:     }
36:  
37:     public Object   nextElement() {
38:        Object  anObject = currentNode.contents();
39:  
40:         currentNode = currentNode.next();
41:        return  anObject;
42:    }
43: }

Here is a typical use of the enumerator:

collections.LinkedList aLinkedList = createLinkedList();
java.util.Enumeration e = aLinkedList.enumerate();

while (e.hasMoreElements()) {
    Object  anObject = e.nextElement();
    // do something useful with anObject
}

Notice that, although you are using the Enumeration e as though you know what it is, you actually do not. In fact, it is an
instance of a hidden class (LinkedListEnumerator) that you cannot see or use directly. By using a combination of
packages and interfaces, the LinkedList class has managed to provide a transparent public interface to some of its most
important behavior (via the already defined interface java.util.Enumeration) while still encapsulating (hiding) its two
implementation (support) classes.

Handing out an object like this is sometimes called vending. Often the "vendor" gives out an object that a receiver can't create
itself but that it knows how to use. By giving it back to the vendor, the receiver can prove it has a certain capability, authenticate
itself, or do any number of useful tasks-all without knowing much about the vended object. This is a powerful metaphor that can
be applied in a broad range of situations.

Summary
Today you have learned how packages can be used to collect and categorize classes into meaningful groups. Packages are
arranged in a hierarchy, which not only better organizes your programs but allows you and the millions of Java programmers out
on the Net to name and share their projects uniquely with one another.

You have also learned how to use packages, both your own and the many preexisting ones in the Java class library.

You then discovered how to declare and use interfaces, a powerful mechanism for extending the traditional single inheritance of
Java's classes and for separating design inheritance from implementation inheritance in your programs. Interfaces are often used
to call common (shared) methods when the exact class involved is not known. You'll see further uses of interfaces tomorrow and
the day after.

Finally, you learned that packages and interfaces can be combined to provide useful abstractions, such as LinkedList, that
appear simple yet are actually hiding almost all their (complex) implementation from their users. This is a powerful technique.

Q&A

Q: Can you use import some.package.B* to import all the classes in that package that begin with B?
A: No, the import asterisk (*) does not act like a command-line asterisk.
Q: Then what exactly does importing with an * mean?

Day 16 -- Packages and Interfaces

file:///G|/ebooks/1575211831/ch16.htm (15 of 16) [11/06/2000 7:45:58 PM]



A: Combining everything said previously, this precise definition emerges: It imports all the public classes you use in your
Java code that are directly inside the package named, and not inside one of its subpackages. (You can only import
exactly this set of classes, or exactly one explicitly named class, from a given package.) By the way, Java only "loads"
the information for a class when you actually refer to that class in your code, so the * form of import is no less
efficient than naming each class individually.

Q: Why is full multiple inheritance so complex that Java abandoned it?
A: It's not so much that it is too complex, but that it makes the language overly complicated-and as you'll learn on Day 21,

"Under the Hood," this can cause larger systems to be less trustworthy and thus less secure. For example, if you were to
inherit from two different parents, each having an instance variable with the same name, you would be forced to allow
the conflict and explain how the exact same reference to that variable name in each of your superclasses, and in you (all
three), are now different. Instead of being able to call "super" methods to get more abstract behavior accomplished, you
would always need to worry about which of the (possibly many) identical methods you actually wished to call in which
parent. Java's run-time method dispatching would have to be more complex as well. Finally, because so many people
would be providing classes for reuse on the Net, the normally manageable conflicts that would arise in your own
program would be confounded by millions of users mixing and matching these fully multiply inherited classes at will. In
the future, if all these issues are resolved, more powerful inheritance may be added to Java, but its current capabilities
are already sufficient for 99 percent of your programs.

Q: abstract classes don't have to implement all the methods in an interface themselves, but don't all their
subclasses have to?

A: Actually, no. Because of inheritance, the precise rule is that an implementation must be provided by some class for each
method, but it doesn't have to be your class. This is analogous to when you are the subclass of a class that implements an
interface for you. Whatever the abstract class doesn't implement, the first non-abstract class below it must
implement. Then, any further subclasses need do nothing further.

Q: You didn't mention callbacks. Aren't they an important use of interfaces?
A: Yes, but I didn't mention them because a good example would be too bulky. Callbacks are often used in user interfaces

(such as window systems) to specify what set of methods is going to be sent whenever the user does a certain set of
things (such as clicking the mouse somewhere, typing, and so forth). Because the user interface classes should not
"know" anything about the classes using them, an interface's ability to specify a set of methods separate from the class
tree is crucial in this case. Callbacks using interfaces are not as general as using, for example, the perform: method of
Smalltalk, however, because a given object can only request that a user interface object "call it back" using a single
method name. Suppose that object wanted two user interface objects of the same class to call it back, using different
names to tell them apart? It cannot do this in Java, and it is forced to use special state and tests to tell them apart. (I
warned you that it was complicated!) So although interfaces are quite valuable in this case, they are not the ideal
callback facility.

   

Day 16 -- Packages and Interfaces

file:///G|/ebooks/1575211831/ch16.htm (16 of 16) [11/06/2000 7:45:58 PM]



Day 13

Creating User Interfaces with the awt
by Laura Lemay

CONTENTS
An awt Overview●   

The Basic User Interface Components

Labels❍   

Buttons❍   

Check Boxes❍   

Radio Buttons❍   

Choice Menus❍   

Text Fields❍   

●   

Panels and Layout

Layout Managers: An Overview❍   

The FlowLayout Class❍   

Grid Layouts❍   

Border Layouts❍   

Card Layouts❍   

Grid Bag Layouts❍   

Insets❍   

●   

Handling UI Actions and Events●   

Nesting Panels and Components

Nested Panels❍   

Events and Nested Panels❍   

●   

More UI Components

Text Areas❍   

Scrolling Lists❍   

Scrollbars and Sliders❍   

Canvases❍   

●   

More UI Events●   

Fun with Components●   

A Complete Example: RGB-to-HSB Converter

Designing and Creating the Applet Layout❍   

Defining the Subpanels❍   

Handling the Actions❍   

Updating the Result❍   

The Complete Source Code❍   

●   

Up and Coming in Java 1.1●   

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (1 of 39) [11/06/2000 7:46:05 PM]



Summary●   

Q&A●   

For the past five days you've concentrated on creating applets that do very simple things: display text, play an animation or a sound,
or interact with the user. When you get past that point, however, you may want to start creating more complex applets that behave
like real applications embedded in a Web page-applets that start to look like real GUI applications with buttons, menus, text fields,
and other elements.

It's this sort of real work in Java applets and applications for which Java's Abstract Windowing Toolkit, or awt, was designed. You've
actually been using the awt all along, as you might have guessed from the classes you've been importing. The Applet class and
most of the classes you've been using this week are all integral parts of the awt.

The awt provides the following:

A full set of user interface (UI) widgets and other components, including windows, menus, buttons, check boxes, text fields,
scrollbars, and scrolling lists

●   

Support for UI containers, which can contain other embedded containers or UI widgets●   

An event system for managing system and user events among parts of the awt●   

Mechanisms for laying out components in a way that enables platform-
independent UI design

●   

Today you'll learn about how to use all these things in your Java applets. Tomorrow you'll learn about creating windows, menus, and
dialog boxes, which enable you to pop up separate windows from the browser window. In addition, you can use the awt in standalone
applications, so everything you've learned so far this week can still be used. If you find the framework of the Web browser too
limiting, you can take your awt background and start writing full-fledged Java applications.

Today, however, you'll continue focusing on applets.

Note
This is by far the most complex lesson so far, and it's a long chapter
as well. There's a lot to cover and a lot of code to go through today,
so if it starts becoming overwhelming, you might want to take two
days (or more) for this one.

An awt Overview
The basic idea behind the awt is that a graphical Java program is a set of nested components, starting from the outermost window all
the way down to the smallest UI component. Components can include things you can actually see on the screen, such as windows,
menu bars, buttons, and text fields, and they can also include containers, which in turn can contain other components. Figure 13.1
shows how a sample page in a Java browser might include several different components, all of which are managed through the awt.

Figure 13.1 : awt components.

This nesting of components within containers within other components creates a hierarchy of components, from the smallest check
box inside an applet to the overall window on the screen. The hierarchy of components determines the arrangement of items on the
screen and inside other items, the order in which they are painted, and how events are passed from one component to another.

These are the major components you can work with in the awt:

Containers. Containers are generic awt components that can contain other components, including other containers. The most
common form of container is the panel, which represents a container that can be displayed onscreen. Applets are a form of
panel (in fact, the Applet class is a subclass of the Panel class).

●   

Canvases. A canvas is a simple drawing surface. Although you can draw on panels (as you've been doing all along), canvases
are good for painting images or performing other graphics operations.

●   

UI components. These can include buttons, lists, simple pop-up menus, check boxes, test fields, and other typical elements of a
user interface.

●   

Window construction components. These include windows, frames, menu bars, and dialog boxes. They are listed separately
from the other UI components because you'll use these less often-particularly in applets. In applets, the browser provides the
main window and menu bar, so you don't have to use these. Your applet may create a new window, however, or you may want

●   

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (2 of 39) [11/06/2000 7:46:05 PM]



to write your own Java application that uses these components. (You'll learn about these tomorrow.)

The classes inside the java.awt package are written and organized to mirror the abstract structure of containers, components, and
individual UI components. Figure 13.2 shows some of the class hierarchy that makes up the main classes in the awt. The root of most
of the awt components is the class Component, which provides basic display and event-handling features. The classes
Container, Canvas, TextComponent, and many of the other UI components inherit from Component. Inheriting from the
Container class are objects that can contain other awt components-the Panel and Window classes, in particular. Note that the
java.applet.Applet class, even though it lives in its own package, inherits from Panel, so your applets are an integral part of
the hierarchy of components in the awt system.

Figure 13.2 : A Partial awt class Hierarchy.

A graphical user interface-based application that you write by using the awt can be as complex as you like, with dozens of nested
containers and components inside each other. The awt was designed so that each component can play its part in the overall awt
system without needing to duplicate or keep track of the behavior of other parts in the system.

In addition to the components themselves, the awt also includes a set of layout managers. Layout managers determine how the
various components are arranged when they are displayed onscreen, and their various sizes relative to each other. Because Java
applets and applications that use the awt can run on different systems with different displays, different fonts, and different
resolutions, you cannot just stick a particular component at a particular spot on the window. Layout managers help you create UI
layouts that are dynamically arranged and can be displayed anywhere the applet or application might be run.

The Basic User Interface Components
The simplest form of awt component is the basic UI component. You can create and add these to your applet without needing to
know anything about creating containers or panels-your applet, even before you start painting and drawing and handling events, is
already an awt container. Because an applet is a container, you can put other awt components-such as UI components or other
containers-into it.

In this section, you'll learn about the basic UI components: labels, buttons, check boxes, choice menus, and text fields. In each case,
the procedure for creating the component is the same-you first create the component and then add it to the panel that holds it, at
which point it is displayed on the screen. To add a component to a panel (such as your applet, for example), use the add() method:

public void init() {
    Button b = new Button("OK");
    add(b);
}

Here the add() method refers to the current applet-in other words, it means "add this element to me." You can also add elements to
other containers, as you'll learn later.

Note that where the component appears in the panel depends on the layout manager that panel is defined to have. In these examples
I've used both flow layouts and grid layouts, depending on which makes the applet look better. You'll learn more about panels and
layouts in the next section.

Note also that each of these components has an action associated with it-that is, something that component does when it's activated.
Actions generally trigger events or other activities in your applet (they are often called callbacks in other window toolkits). In this
section, you'll focus on creating the components themselves; you'll learn about adding actions to them later in today's lesson.

On to the components!

Labels

The simplest form of UI component is the label, which is, effectively, a text string that you can use to label other UI components.
Labels are not editable; they just label other components on the screen.

The advantages that a label has over an ordinary text string (that you'd draw using drawString() in the paint() method) are

You don't have to redraw labels yourself. Labels are an awt element, and the awt keeps track of drawing them.●   

Labels follow the layout of the panel in which they're contained and can be aligned with other UI components. Panel layout is
determined by the layout manager, which you'll learn about later, in the section "Panels and Layout."

●   

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (3 of 39) [11/06/2000 7:46:05 PM]



A label is an uneditable text string that acts as a description for other awt components.

To create a label, use one of the following constructors:

Label() creates an empty label, with its text aligned left.●   

Label(String) creates a label with the given text string, also aligned left.●   

Label(String, int) creates a label with the given text string and the given alignment. The available alignment numbers
are stored in class variables in Label, making them easier to remember: Label.RIGHT, Label.LEFT, and
Label.CENTER.

●   

You can change the label's font with the setFont() method, either called on the label itself to change the individual label, or on
the enclosing component to change all the labels. Here's some simple code to create a few labels in Helvetica Bold (Figure 13.3
shows how this looks onscreen):

Figure 13.3 : Three labels with various alignments.

Note
This code uses the setLayout method to create a new layout
manager. Don't worry about that line right now; you'll learn more
about layout managers in the next section.

import java.awt.*;

public class LabelTest extends java.applet.Applet {

  public void init() {
    setFont(new Font ("Helvetica", Font.BOLD, 14));
    setLayout(new GridLayout(3,1));
    add(new Label("aligned left", Label.LEFT));
    add(new Label("aligned center", Label.CENTER));
    add(new Label("aligned right", Label.RIGHT));
  }
}

When you have a Label object, you can use methods defined in the Label class to get and set the values of the text, as shown in
Table 13.1.

Table 13.1. Label methods.

Method Action
getText() Returns a string containing this label's text
setText(String) Changes the text of this label
getAlignment() Returns an integer representing the alignment of this

label:

0    is Label.LEFT
1    is Label.CENTER
2    is Label.RIGHT

setAlignment(int) Changes the alignment of this label to the given
integer-use the class variables listed in the
getAlignment() method

Buttons

The second user interface component to explore is the button. Buttons are simple UI components that trigger some action in your
interface when they are pressed. For example, a calculator applet might have buttons for each number and operator, or a dialog box
might have buttons for OK and Cancel.

A button is a UI component that, when "pressed" (selected) with the mouse, triggers some action.

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (4 of 39) [11/06/2000 7:46:05 PM]



To create a button, use one of the following constructors:

Button() creates an empty button with no label.●   

Button(String) creates a button with the given string as a label.●   

Once you have a Button object, you can get the value of the button's label by using the getLabel() method and set the label
using the setLabel(String) method.

Figure 13.4 shows some simple buttons, created using the following code:

Figure 13.4 : Four buttons in Netscape.

public class ButtonTest extends java.applet.Applet {

  public void init() {
    add(new Button("Rewind"));
    add(new Button("Play"));
    add(new Button("Fast Forward"));
    add(new Button("Stop"));
  }
}

Check Boxes

Check boxes are user-interface components that have two states: on and off (or checked and unchecked, selected and unselected, true
and false, and so on). Unlike buttons, check boxes usually don't trigger direct actions in a UI, but instead are used to indicate optional
features of some other action.

Check boxes can be used in two ways:

Nonexclusive: Given a series of check boxes, any of them can be selected.●   

Exclusive: Given a series, only one check box can be selected at a time.●   

The latter kind of check boxes are called radio buttons or check box groups, and are described in the next section.

Check boxes are UI components that can be selected or deselected (checked or unchecked) to provide options. Nonexclusive check
boxes can be checked or unchecked independently of other check boxes.

Exclusive check boxes, sometimes called radio buttons, exist in groups; only one in the group can be checked at one time.

Nonexclusive check boxes can be created by using the Checkbox class. You can create a check box using one of the following
constructors:

Checkbox() creates an empty check box, unselected.●   

Checkbox(String) creates a check box with the given string as a label.●   

Checkbox(String, null, boolean) creates a check box that is either selected or deselected based on whether the
boolean argument is true or false, respectively. (The null is used as a placeholder for a group argument. Only radio
buttons have groups, as you'll learn in the next section.)

●   

Figure 13.5 shows a few simple check boxes (only Underwear is selected) generated using the following code:

Figure 13.5 : Five check boxes, one selected.

import java.awt.*;

public class CheckboxTest extends java.applet.Applet {

  public void init() {
    setLayout(new FlowLayout(FlowLayout.LEFT));
    add(new Checkbox("Shoes"));
    add(new Checkbox("Socks"));
    add(new Checkbox("Pants"));

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (5 of 39) [11/06/2000 7:46:05 PM]



    add(new Checkbox("Underwear", null, true));
    add(new Checkbox("Shirt"));
  }

}

Table 13.2 lists some of the check box methods.

Table 13.2. Check box methods.

Method Action
getLabel() Returns a string containing this check box's label
setLabel(String) Changes the text of the check box's label
getState() Returns true or false, based on whether the check

box is selected
setState(boolean) Changes the check box's state to selected (true) or

unselected (false)

Radio Buttons

Radio buttons have the same appearance as check boxes, but only one in a series can be selected at a time. To create a series of radio
buttons, first create an instance of CheckboxGroup:

CheckboxGroup cbg = new CheckboxGroup();

Then create and add the individual check boxes using the constructor with three arguments (the first is the label, the second is the
group, and the third is whether that check box is selected). Note that because radio buttons, by definition, have only one in the group
selected at a time, the last true to be added will be the one selected by default:

add(new Checkbox("Yes", cbg, true);
add(new Checkbox("No", cbg, false);

Here's a simple example (the results of which are shown in Figure 13.6):

Figure 13.6 : Six radio buttons (exclusive check boxes), one selected.

import java.awt.*;

public class CheckboxGroupTest extends java.applet.Applet {

  public void init() {
    setLayout(new FlowLayout(FlowLayout.LEFT));
    CheckboxGroup cbg = new CheckboxGroup();

    add(new Checkbox("Red", cbg, false));
    add(new Checkbox("Blue", cbg, false));
    add(new Checkbox("Yellow", cbg, false));
    add(new Checkbox("Green", cbg, true));
    add(new Checkbox("Orange", cbg, false));
    add(new Checkbox("Purple", cbg, false));
  }

}  

All the check box methods shown in Table 13.2 in the previous section can be used with
the check boxes in the group. In addition, you can use the getCheckboxGroup() and setCheckboxGroup() methods
(defined in the Checkbox() class) to access and change the group of any given check box.

Finally, the getCurrent() and setCurrent(Checkbox) methods, defined in CheckboxGroup, can be used to get or set

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (6 of 39) [11/06/2000 7:46:05 PM]



the currently selected check box.

Choice Menus

The choice menu is a more complex UI component than labels, buttons, or check boxes. Choice menus are pop-up (or pull-down)
menus from which you can select an item. The menu then displays that choice on the screen. The function of a choice menu is the
same across platforms, but its actual appearance may vary from platform to platform.

Note that choice menus can have only one item selected at a time. If you want to be able to choose multiple items from the menu, use
a scrolling list instead (you'll learn more about scrolling lists later today, in the section "More UI Components").

Choice menus are pop-up menus of items from which you can choose one item.

To create a choice menu, create an instance of the Choice class and then use the addItem() method to add individual items to it
in the order in which they should appear. Finally, add the entire choice menu to the panel in the usual way. Here's a simple program
that builds a choice menu of fruits; Figure 13.7 shows the result (with the menu pulled down):

Figure 13.7 : A choice menu.

import java.awt.*;

public class ChoiceTest extends java.applet.Applet {

  public void init() {
    Choice c = new Choice();

    c.addItem("Apples");
    c.addItem("Oranges");
    c.addItem("Strawberries");
    c.addItem("Blueberries");
    c.addItem("Bananas");

    add(c);
  }
}

Even after your choice menu has been added to a panel, you can continue to add items to that menu with the addItem() method.
Table 13.3 shows some other methods that may be useful in working with choice menus.

Table 13.3. Choice menu methods.

Method Action
getItem(int) Returns the string item at the given position (items

inside a choice begin at 0, just like arrays)
countItems() Returns the number of items in the menu
getSelectedIndex() Returns the index position of the item that's selected
getSelectedItem() Returns the currently selected item as a string
select(int) Selects the item at the given position
select(String) Selects the item with the given string

Text Fields

Unlike the UI components up to this point, which only enable you to select among several options to perform an action, text fields
allow you to enter and edit text. Text fields are generally only a single line and do not have scrollbars; text areas, which you'll learn
about later today, are better for larger amounts of text.

Text fields are different from labels in that they can be edited; labels are good for just displaying text, text fields for getting text input
from the user.

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (7 of 39) [11/06/2000 7:46:05 PM]



Text fields provide an area where you can enter and edit a single line of text.

To create a text field, use one of the following constructors:

TextField() creates an empty TextField that is 0 characters wide (it will be resized by the current layout manager).●   

TextField(int) creates an empty text field. The integer argument indicates the minimum number of characters to display.●   

TextField(String) creates a text field initialized with the given string. The field will be automatically resized by the
current layout manager.

●   

TextField(String, int) creates a text field some number of characters wide (the integer argument) containing the
given string. If the string is longer than the width, you can select and drag portions of the text within the field, and the box will
scroll left or right.

●   

For example, the following line creates a text field 30 characters wide with the string "Enter Your Name" as its initial contents:

TextField tf = new TextField("Enter Your Name", 30);
add(tf);

Tip
Text fields include only the editable field itself. You usually need to
include a label with a text field to indicate what belongs in that text
field.

You can also create a text field that obscures the characters typed into it-for example, for password fields. To do this, first create the
text field itself; then use the setEchoCharacter() method to set the character that is echoed on the screen. Here is an example:

TextField tf = new TextField(30);
tf.setEchoCharacter('*');

Figure 13.8 shows three text boxes (and labels) that were created using the following code:

Figure 13.8 : Three text fields to allow input from the user.

add(new Label("Enter your Name"));
add(new TextField("your name here", 45));
add(new Label("Enter your phone number"));
add(new TextField(12));
add(new Label("Enter your password"));
TextField t = new TextField(20);
t.setEchoCharacter('*');
add(t);

The text in the first field (your name here) was initialized in the code; I typed the text in the remaining two boxes just before
taking the snapshot.

Text fields inherit from the class TextComponent and have a whole suite of methods, both inherited from that class and defined in
their own class, that may be useful to you in your Java programs. Table 13.4 shows a selection of those methods.

Table 13.4. Text field methods.

Method Action
getText() Returns the text this text field contains (as a string)
setText(String) Puts the given text string into the field
getColumns() Returns the width of this text field
select(int, int) Selects the text between the two integer positions

(positions start from 0)
selectAll() Selects all the text in the field
isEditable() Returns true or false based on whether the text

is editable

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (8 of 39) [11/06/2000 7:46:05 PM]



setEditable(boolean) true (the default) enables text to be edited;
false freezes the text

getEchoChar() Returns the character used for masking input
echoCharIsSet() Returns true or false based on whether the field

has a masking character

Note
The descriptions of the getEchoChar() and
echoCharIsSet() methods refer to masking user input. User
input masking is a technique of limiting user input to a specific type,
such as a number. Other types of user input masking include dates
and phone numbers, where there are a specific number of numeric
digits arranged in a constant format.

Panels and Layout
awt panels can contain UI components or other panels. The question now is how those components are actually arranged and
displayed onscreen.

In other windowing systems, UI components are often arranged using hard-coded pixel measurements-put a text field at the position
10,30, for example-the same way you used the graphics operations to paint squares and ovals on the screen. In the awt, your UI
design may be displayed on many different window systems on many different screens and with many different kinds of fonts with
different font metrics. Therefore, you need a more flexible method of arranging components on the screen so that a layout that looks
nice on one platform isn't a jumbled, unusable mess on another.

For just this purpose, Java has layout managers, insets, and hints that each component can provide to help dynamically lay out the
screen.

Note that the nice thing about awt components and user-interface items is that you don't have to paint them-the awt system manages
all that for you. If you have graphical components or images, or you want to create animation inside panels, you still have to do that
by hand, but for most of the basic components, all you have to do is put them on the screen and Java will handle the rest.

Layout Managers: An Overview

The actual appearance of the awt components on the screen is usually determined by two things: how those components are added to
the panel that holds them (either the order or through arguments to add()) and the layout manager that panel is currently using to
lay out the screen. The layout manager determines how portions of the screen will be sectioned and how components within that
panel will be placed.

The layout manager determines how awt components are dynamically arranged on the screen.

Each panel on the screen can have its own layout manager. By nesting panels within panels, and using the appropriate layout
manager for each one, you can often arrange your UI to group and arrange components in a way that is functionally useful and that
looks good on a variety of platforms and windowing systems. You'll learn about nesting panels in a later section.

The awt provides five basic layout managers: FlowLayout, GridLayout, BorderLayout, CardLayout, and
GridBagLayout. To create a layout manager for a given panel, create an instance of that layout manager and then use the
setLayout() method for that panel. This example sets the layout manager of the entire enclosing applet panel:

public void init() {
    setLayout(new FlowLayout());
}

Setting the default layout manager, like creating user-interface components, is best done during the applet's initialization, which is
why it's included here.

After the layout manager is set, you can start adding components to the panel. The order in which components are added or the
arguments you use to add those components is often significant, depending on which layout manager is currently active. Read on for
information about the specific layout managers and how they present components within the panel to which they apply.

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (9 of 39) [11/06/2000 7:46:05 PM]



The following sections describe the five basic Java awt layout managers.

The FlowLayout Class

The FlowLayout class is the most basic of layouts. Using flow layout, components are added to the panel one at a time, row by
row. If a component doesn't fit onto a row, it's wrapped onto the next row. The flow layout also has an alignment, which determines
the alignment of each row. By default, each row is centered.

Flow layout arranges components from left to right in rows. The rows are aligned left, right, or centered.

To create a basic flow layout with a centered alignment, use the following line of code in your panel's initialization (because this is
the default pane layout, you don't need to include this line if that is your intent):

setLayout(new FlowLayout());

With the layout set, the order in which you add elements to the layout determines their position. The following code creates a simple
row of six buttons in a centered flow layout (Figure 13.9 shows the result):

Figure 13.9 : Six buttons, arranged using a flow layout manager.

import java.awt.*;

public class FlowLayoutTest extends java.applet.Applet {

  public void init() {
    setLayout(new FlowLayout());
    add(new Button("One"));
    add(new Button("Two"));
    add(new Button("Three"));
    add(new Button("Four"));
    add(new Button("Five"));
    add(new Button("Six"));
  }
}

To create a flow layout with an alignment other than centered, add the FlowLayout.RIGHT or FlowLayout.LEFT class
variable as an argument:

setLayout(new FlowLayout(FlowLayout.LEFT));

You can also set horizontal and vertical gap values by using flow layouts. The gap is the number of pixels between components in a
panel; by default, the horizontal and vertical gap values are three pixels, which can be very close indeed. Horizontal gap spreads out
components to the left and to the right; vertical gap spreads them to the top and bottom of each component. Add integer arguments to
the flow layout constructor to increase the gap. Figure 13.10 shows the result of adding a gap of 30 points in the horizontal and 10 in
the vertical directions, like this:

Figure 13.10: Flow layout with a gap of 10 points.

setLayout(new FlowLayout(FlowLayout.LEFT, 30, 10));

Grid Layouts

Grid layouts offer more control over the placement of components inside a panel. Using a grid layout, you portion off the display
area of the panel into rows and columns. Each component you then add to the panel is placed in a cell of the grid, starting from the
top row and progressing through each row from left to right (here's where the order of calls to the add() method are very relevant to
how the screen is laid out).

To create a grid layout, indicate the number of rows and columns you want the grid to have when you create a new instance of the
GridLayout class. Here's a grid layout with three rows and two columns (Figure 13.11 shows the result):

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (10 of 39) [11/06/2000 7:46:05 PM]



Figure 13.11: Six buttons displayed using a grid layout of three rows and two columns.

import java.awt.*;

public class GridLayoutTest extends java.applet.Applet {

  public void init() {
    setLayout(new GridLayout(3,2);
    add(new Button("One"));
    add(new Button("Two"));
    add(new Button("Three"));
    add(new Button("Four"));
    add(new Button("Five"));
    add(new Button("Six"));
  }
}

Grid layouts can also have a horizontal and vertical gap between components. To create gaps, add those pixel values:

setLayout(new GridLayout(3, 3, 10, 30));

Figure 13.12 shows a grid layout with a 10-pixel horizontal gap and a 30-pixel vertical gap.

Figure 13.12: A grid layout with horizontal and vertical gaps.

Border Layouts

Border layouts behave differently from flow and grid layouts. When you add a component to a panel that uses a border layout, you
indicate its placement as a geographic direction: north, south, east, west, or center. (See Figure 13.13.) The components around all
the edges are laid out with as much size as they need; the component in the center, if any, gets any space left over.

Figure 13.13: Where components go in a border layout.

To use a border layout, you create it as you do the other layouts; then you add the individual components with a special add()
method that has two arguments. The first argument is a string indicating the position of the component within the layout, and the
second is the component to add:

add("North", new TextField("Title", 50));

You can also use this form of add() for the other layout managers; the string argument will just be ignored if it's not needed.

Here's the code to generate the border layout shown in Figure 13.13:

import java.awt.*;

public class BorderLayoutTest extends java.applet.Applet {

  public void init() {
    setLayout(new BorderLayout());
    add("North", new Button("One"));
    add("East", new Button("Two"));
    add("South", new Button("Three"));
    add("West", new Button("Four"));
    add("Center", new Button("Five"));
    add(new Button("Six"));
  }
}

Border layouts can also have horizontal and vertical gaps. Note that the north and south components extend all the way to the edge of

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (11 of 39) [11/06/2000 7:46:05 PM]



the panel, so the gap will result in less vertical space for the east, right, and center components. To add gaps to a border layout,
include those pixel values in the constructor as with the other layout managers:

setLayout(new BorderLayout(10, 10));

Card Layouts

Card layouts behave much differently from the other layouts. When you add components to one of the other layout managers, all
those components appear on the screen at once. Card layouts are used to produce slide shows of components, one at a time. If you've
ever used the HyperCard program on the Macintosh, or seen dialog boxes on windows with several different tabbed pages, you've
worked with the same basic idea.

When you create a card layout, the components you add to the outer panel will be other container components-usually other panels.
You can then use different layouts for those individual cards so that each screen has its own look.

Cards, in a card layout, are different panels added one at a time and displayed one at a time. If you think of a card file, you'll get the
idea; only one card can be displayed at once, but you can switch between cards.

When you add each card to the panel, you can give it a name. Then, to flip between the container cards, you can use methods defined
in the CardLayout class to move to a named card, move forward or back, or move to the first card or to the last card. Typically
you'll have a set of buttons that call these methods to make navigating the card layout easier.

Here's a simple snippet of code that creates a card layout containing three cards:

setLayout(new CardLayout());
//add the cards
Panel one = new Panel()
add("first", one);
Panel two = new Panel()
add("second", two);
Panel three = new Panel()
add("third", three);

// move around
show(this, "second"); //go to the card named "second"
show(this, "third");   //go to the card named "third"
previous(this);       //go back to the second card
first(this);          // got to the first card

Grid Bag Layouts

I've saved grid bag layouts for last because although they are the most powerful way of managing awt layout, they are also extremely
complicated.

Using one of the other four layout managers, it can sometimes be difficult to get the exact layout you want without doing a lot of
nesting of panels within panels. Grid bags provide a more general-purpose solution. Like grid layouts, grid bag layouts allow you to
arrange your components in a grid-like layout. However, grid bag layouts also allow you to control the span of individual cells in the
grid, the proportions between the rows and columns, and the arrangement of components inside cells in the grid.

To create a grid bag layout, you actually use two classes: GridBagLayout, which provides the overall layout manager, and
GridBagConstraints, which defines the properties of each component in the grid-its placement, dimensions, alignment, and so
on. It's the relationship between the grid bag, the constraints, and each component that defines the overall layout.

In its most general form, creating a grid bag layout involves the following steps:

Creating a GridBagLayout object and defining it as the current layout manager, as you would any other layout manager●   

Creating a new instance of GridBagConstraints●   

Setting up the constraints for a component●   

Telling the layout manager about the component and its constraints●   

Adding the component to the panel●   

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (12 of 39) [11/06/2000 7:46:05 PM]



Here's some simple code that sets up the layout and then creates constraints for a single button (don't worry about the various values
for the constraints; I'll cover these later on in this section):

// set up layout
GridBagLayout gridbag = new GridBagLayout();
GridBagConstraints constraints = new GridBagConstraints();
setLayout(gridbag);

// define constraints for the button
Button b = new Button("Save");
constraints.gridx = 0;
constraints.gridy = 0;
constraints.gridwidth = 1;
constraints.gridheight = 1;
constraints.weightx = 30;
constraints.weighty = 30;
constraints.fill = GridBagConstraints.NONE;
constraints.anchor = GridBagConstraints.CENTER;

// attach constraints to layout, add button
gridbag.setConstraints(b, constraints);
add(b);

By far, the most tedious part of this process is setting up the constraints for each component (as you can see from this example, you
have to set all those constraints for every component you want to add to the panel). In addition to the tedium, constraints aren't all
that easy to understand; they have many different values, many of which are interrelated, which means that changing one may have
strange effects on others.

Given the numerous constraints, it helps to have a plan and to deal with each kind of constraint one at a time. There are four steps I
like to follow in this process. Let's walk through each of them.

Step One: Design the Grid

The first place to start in the grid bag layout is on paper. Sketching out your UI design beforehand-before you write even a single line
of code-will help enormously in the long run with trying to figure out where everything goes. So put your editor aside for a second,
pick up a piece of paper and a pencil, and let's build the grid.

Figure 13.14 shows the panel layout we'll be building in this example. Figure 13.15 shows the same layout with a grid imposed on
top of it. Your layout will have a grid similar to this one, with rows and columns forming individual cells.

Figure 13.14: A grid bag layout.

Figure 13.15: The grid bag layout from Figure 13.14, with grid imposed.

Keep in mind as you draw your grid that each component must have its own cell. You cannot put more than one component into the
same cell. The reverse is not true, however; one component can span multiple cells in the x or y directions (as in the OK button in the
bottom row, which spans two columns). Note in Figure 13.15 that the labels and text fields have their own grids and that the button
spans two column cells.

While you're still working on paper, something that will help you later is to label the cells with their x and y coordinates. These aren't
pixel coordinates; rather, they're cell coordinates. The top-left cell is 0,0. The next cell to the right of that in the top row is 1,0. The
cell to the right of that is 2,0. Moving to the next row, the leftmost cell is 1,0, the next cell in the row is 1,1, and so on. Label
your cells on the paper with these numbers; you'll need them later when we do the code for this example. Figure 13.16 shows the
numbers for each of the cells in this example.

Figure 13.16: The grid bag layout from Figure 13.14, with cell coordinates.

Step Two: Create the Grid in Java

Let's go back to Java and start implementing the layout you've just drawn on paper. Initially we're going to focus exclusively on the

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (13 of 39) [11/06/2000 7:46:05 PM]



layout-getting the grid and the proportions right. For that, it helps to not work with actual UI elements. I like to use buttons as
placeholders for the actual elements in the layout until I can get everything set up right, and then change the buttons to the right
elements.

To cut down on the amount of typing we have to do to set up all those constraints, I'm going to start by defining a helper method that
takes several values and sets the constraints for those values. buildConstraints() takes seven arguments: a
GridBagConstraints object and six integers representing the GridBagConstraints instance variables gridx, gridy,
gridwidth, gridheight, weightx, and weighty. You'll learn what these actually do soon; for now, here's the code to the
helper method that we'll use further on in this example:

void buildConstraints(GridBagConstraints gbc, int gx, int gy, 
  int gw, int gh, int wx, int wy) {
    gbc.gridx = gx;
    gbc.gridy = gy;
    gbc.gridwidth = gw;
    gbc.gridheight = gh;
    gbc.weightx = wx;
    gbc.weighty = wy;
  }

Now let's move on to the init() method, where all the layout actually occurs. Here's the basic method definition, where we'll
define the GridBagLayout to be the initial layout manager and create a constraints object (an instance of
GridBagConstraints):

public void init() {
    GridBagLayout gridbag = new GridBagLayout();
    GridBagConstraints constraints = new GridBagConstraints(); 
    setLayout(gridbag);

    constraints.fill = GridBagConstraints.BOTH;
}

One more small note of explanation: That last line, which sets the value of constraints.fill, will be removed (and explained)
later. It's there so that the components will fill the entire cell in which they're contained, which makes it easier to see what's going on.
Add it for now and you'll get a clearer idea of what it's for later.

Now we'll add the button placeholders to the layout (remember, we're focusing on basic grid organization at the moment, so we'll use
buttons as placeholders for the actual UI elements you'll add later). Let's start with a single button so you can get a feel for setting its
constraints. This code will go into the init() method just after the setLayout line:

// Name label
buildConstraints(constraints, 0, 0, 1, 1, 100, 100);
Button label1 = new Button("Name:");
gridbag.setConstraints(label1, constraints);
add(label1);

These four lines set up the constraints for an object, create a new button, attach those constraints to that button, and then add it to the
panel. Note that constraints for a component are stored in the GridBagConstraints object, so the component doesn't even have
to exist to set up its constraints.

Now let's get down to details: Just what are the values for the constraints that we've plugged into the helper method
buildConstraints?

The first two integer arguments are the gridx and gridy values of the constraints. These are the cell coordinates of the cell that
contains this component. Remember how you wrote these down on the paper in step one? With the cells nearly numbered on paper,
all you have to do is plug in the right values. Note that if you have a component that spans multiple cells, the cell coordinates are
those of the cell in the top-left corner.

Here this button is in the top-left corner, so its gridx and gridy (the first two arguments to buildConstraints()) are 0 and
0, respectively.

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (14 of 39) [11/06/2000 7:46:05 PM]



The second two integer arguments are the gridwidth and gridheight. These are not the pixel widths and heights of the cells;
rather, they are the number of cells this component spans: gridwidth for the columns and gridheight for the rows. Here this
component spans only one cell, so the values for both are 1.

The last two integer arguments are for weightx and weighty. These are used to set up the proportions of the rows and
columns-that is, how wide or deep they will be. Weights can become very confusing, so for now just set both values to 100. You'll
deal with weights in step three.

After the constraints have been built, you can attach them to an object using the setConstraints() method.
setConstraints90, which is a method defined in GridBagLayout, takes two arguments: the component (here a button) and
the constraints for that button. Finally, you can add the button to the panel.

After you've set and assigned the constraints to one component, you can reuse that GridBagConstraints object to set up the
constraints for the next object. This effectively means duplicating those four lines for each component in the grid, with different
values for the buildConstraints() method. To save space, I'm just going to show you the buildConstraints() methods
for the last four cells.

The second cell we'll add is the one that will hold the text box for the name. The cell coordinates for this one are 1,0 (second
column, first row); it too spans only one cell, and the weights (for now) are also both 100:

buildConstraints(constraints, 1, 0, 1, 1, 100, 100);

The next two components, which will be a label and a text field, are nearly exactly the same as the previous two; the only difference
is in their cell coordinates. The password label is at 0,1 (first column, second row), and the password text field is at 1,1 (second
column, second row):

buildConstraints(constraints, 0, 1, 1, 1, 100, 100);
buildConstraints(constraints, 1, 1, 1, 1, 100, 100);

And, finally, there is the OK button, which is a component that spans two cells in the bottom row of the panel. Here the cell
coordinates are the left and topmost cell where the span starts (0,2). Here, unlike the previous components, we'll set gridwidth
and gridheight to be something other than 1 because this cell spans multiple columns. The gridweight is 2 (it spans two
cells), and the gridheight is 1 (it spans only one row):

buildConstraints(constraints, 0, 2, 2, 1, 100, 100);

Got it? Those are the placement constraints for all the components that you'll add to the grid layout. You will also need to assign each
component's constraints to the layout manager and then add each component to the panel. Figure 13.17 shows the result so far. Note
that you're not concerned about exact proportions here, or about making sure everything lines up. What you should keep track of at
this point is making sure the grid is working, that there are the right number of rows and columns, that the spans are correct, and that
nothing strange is going on (cells in the wrong place, cells overlapping, that kind of thing).

Figure 13.17: Grid bag layout, first pass.

Step Three: Determine the Proportions

The next step is to determine the proportions of the rows and columns in relation to other rows and columns. For example, in this
case you'll want the labels (name and password) to take up less space than the text boxes. And you might want the OK button at the
bottom to be only half the height of the two text boxes above it. You arrange the proportions of the cells within your layout using the
weightx and weighty constraints.

The easiest way to think of weightx and weighty is that their values are either percentages of the total width and height of the
panel, or 0 if the weight or height has been set by some other cell. The values of weightx and weighty for all your components,
therefore, should sum to 100.

Technical Note

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (15 of 39) [11/06/2000 7:46:06 PM]



Actually, the weightx and weighty values are not percentages;
they're simply proportions-they can have any value whatsoever.
When the proportions are calculated, all the values in a direction are
summed so that each individual value is in proportion to that total (in
other words, divided into the total to actually get a percentage).
Because this is incredibly non-intuitive, I find it far easier to look at
the weights as percentages and to make sure they all sum up to 100 to
make sure it's all coming out right.

So which cells get values and which cells get 0? Cells that span multiple rows or columns should always be 0 in the direction they
span. Beyond that, it's simply a question of picking a cell to have a value, and then all the other cells in that row or columns should be
0.

Let's look at the five calls to buildConstraints() we made in the last step:

buildConstraints(constraints, 0, 0, 1, 1, 100, 100); //name
buildConstraints(constraints, 1, 0, 1, 1, 100, 100); //name text
buildConstraints(constraints, 0, 1, 1, 1, 100, 100); //password
buildConstraints(constraints, 1, 1, 1, 1, 100, 100); //password text
buildConstraints(constraints, 0, 2, 2, 1, 100, 100); //OK button

We'll be changing those last two arguments in each call to buildConstraints to be either a value or 0. Let's start with the x
direction (the proportions of the columns), which is the second-to-last argument in that list.

If you look back to Figure 13.15 (the picture of the panel with the grid imposed), you'll note that the second column is much larger
than the first. If you were going to pick theoretical percentages for those columns, you might say that the first is 10 percent and the
second is 90 percent (I'm making a guess here; that's all you need to do as well). With those two guesses, let's assign them to cells.
We don't want to assign any values to the cell with the OK button because that cell spans both columns, and percentages there
wouldn't work. So let's add them to the first two cells, the name label and the name text field:

buildConstraints(constraints, 0, 0, 1, 1, 10, 100); //name
buildConstraints(constraints, 1, 0, 1, 1, 90, 100); //name text

And what about the values of the remaining two cells, the password label and text field? Because the proportions of the columns have
already been set up by the name label and field, we don't have to reset them here. We'll give both of these cells and the one for the
OK box 0 values:

buildConstraints(constraints, 0, 1, 1, 1, 0, 100); //password
buildConstraints(constraints, 1, 1, 1, 1, 0, 100); //password text
buildConstraints(constraints, 0, 2, 2, 1, 0, 100); //OK button

Note here that a 0 value does not mean that the cell has 0 width. These are proportions, not pixel values. A 0 simply means that the
proportion has been set somewhere else; all 0 says is "stretch it to fit."

Now that the totals of all the weightx constraints are 100, let's move onto the weightys. Here there are three rows; glancing over
the grid we drew, it looks like the button has about 20 percent and the text fields have the rest (40 percent each). As with the x values,
we only have to set the value of one cell per row (the two labels and the button), with all the other cells having a weightx of 0.

Here are the final five calls to buildConstraints() with the weights in place:

buildConstraints(constraints, 0, 0, 1, 1, 10, 40); //name
buildConstraints(constraints, 1, 0, 1, 1, 90, 0); //name text
buildConstraints(constraints, 0, 1, 1, 1, 0, 40); //password
buildConstraints(constraints, 1, 1, 1, 1, 0, 0); //password text
buildConstraints(constraints, 0, 2, 2, 1, 0, 20); //OK button

Figure 13.18 shows the result with the correct proportions.

Figure 13.18: Grid bag layout second pass.

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (16 of 39) [11/06/2000 7:46:06 PM]



At this step, the goal here is to try to come up with some basic proportions for how the rows and cells will be spaced on the screen.
You can make some basic estimates based on how big you expect the various components to be, but chances are you're going to use a
lot of trial and error in this part of the process.

Step Four: Add and Arrange the Components

With the layout and the proportions in place, now you can replace the button placeholders with actual labels and text fields. And
because you set everything up already, it should all work perfectly, right? Well, almost. Figure 13.19 shows what you get if you use
the same constraints as before and replace the buttons with actual components.

Figure 13.19: Grid bag layout, almost there.

It's close, but it's weird. The text boxes are too tall, and the OK button stretches the width of the cell.

What's missing are the constraints that arrange the components inside the cell. There are two of them: fill and anchor.

The fill constraint determines, for components that can stretch in either direction (like text boxes and buttons), in which direction
to stretch. fill can have one of four values, defined as class variables in the GridBagConstraints class:

GridBagConstraints.BOTH, which stretches the component to fill the cell in both directions.●   

GridBagConstraints.NONE, which causes the component to be displayed in its smallest size.●   

GridBagConstraints.HORIZONTAL, which stretches the component in the horizontal direction.●   

GridBagConstraints.VERTICAL, which stretches the component in the vertical direction.●   

Note
Keep in mind that this is dynamic layout. You're not going to set up
the actual pixel dimensions of any components; rather, you're telling
these elements in which direction they can grow given a panel that
can be of any size.

By default, the fill constraint for all components is NONE. So why are those text fields and labels filling the cells? If you
remember way back to the start of the code for this example, I added this line to the init() method:

constraints.fill = GridBagConstraints.BOTH;

Now you know what it does. For the final version of this applet, you'll want to remove that line and add fill values for each
independent component.

The second constraint that affects how a component appears in the cell is anchor. This constraint applies only to components that
aren't filling the whole cell, and it tells the awt where inside the cell to place the component. The possible values for the anchor
constraint are GridBagConstraints.CENTER, which aligns the component both vertically and horizontally inside the cell, or
one of eight direction values: GridBagConstraints.NORTH, GridBagConstraints.NORTHEAST,
GridBagConstraints.EAST, GridBagConstraints.SOUTHEAST, GridBagConstraints.SOUTH,
GridBagConstraints.SOUTHWEST, GridBagConstraints.WEST, or GridBagConstraints.NORTHWEST. The
default value of anchor is GridBagConstraints.CENTER.

You set these constraints in the same way you did all the other ones: by changing instance variables in the GridBagConstraints
object. Here you can change the definition of buildConstraints() to take two more arguments (they're ints), or you could
just set them in the body of the init() method. I prefer the latter way.

Be careful with defaults. Keep in mind that because you're reusing the same GridBagConstraints object for each component,
there may be some values left over after you're done with one component. On the other hand, if a fill or anchor from one object
is the same as the one before it, you don't have to reset that object.

For this example, I'm going to make three changes to the fills and anchors of the components:

The labels will have no fill and will be aligned east (so they hug the right side of the cell)●   

The text fields will be filled horizontally (so they start one line high, but stretch to the width of the cell)●   

The button will have no fill and will be center aligned●   

I'm not going to show you all the code for this here; the full code for the example is at the end of this section. You can see the
changes I've made there.

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (17 of 39) [11/06/2000 7:46:06 PM]



Step Five: Futz with It

I added this step to the list because in my own experimentation with grid bag layouts, I found that even by following all the steps,
usually the resulting layout wasn't quite right, and I needed to do a considerable amount of tinkering and playing with various values
of the constraints in order to get it to come out right (that's what futzing means) There's nothing wrong with that; the goal of the
previous three steps was to get things fairly close to their final positions, not to come out with a perfect layout each and every time.

The Code

Listing 13.1 shows the complete code for the panel layout we've been building up in this section. If you had trouble following the
discussion up to this point, you might find it useful to go through this code line by line to make sure you understand the various bits.

Listing 13.1. The panel with the final grid bag layout.

 1:import java.awt.*;
 2:
 3:public class GridBagTestFinal extends java.applet.Applet {
 4:
 5:  void buildConstraints(GridBagConstraints gbc, int gx, int gy, 
 6:      int gw, int gh,
 7:      int wx, int wy) {
 8:      gbc.gridx = gx;
 9:      gbc.gridy = gy;
10:      gbc.gridwidth = gw;
11:      gbc.gridheight = gh;
12:      gbc.weightx = wx;
13:      gbc.weighty = wy;
14:  }
15:
16:  public void init() {
17:      GridBagLayout gridbag = new GridBagLayout();
18:      GridBagConstraints constraints = new GridBagConstraints();
19:      setLayout(gridbag);
20:      
21:      // Name label
22:      buildConstraints(constraints, 0, 0, 1, 1, 10, 40);
23:      constraints.fill = GridBagConstraints.NONE;
24:      constraints.anchor = GridBagConstraints.EAST;
25:      Label label1 = new Label("Name:", Label.LEFT);
26:      gridbag.setConstraints(label1, constraints);
27:      add(label1);
28:
29:      // Name text field
30:      buildConstraints(constraints, 1, 0, 1, 1, 90, 0);
31:      constraints.fill = GridBagConstraints.HORIZONTAL;
32:      TextField tfname = new TextField();
33:      gridbag.setConstraints(tfname, constraints);
34:      add(tfname);
35:
36:      // password label
37:      buildConstraints(constraints, 0, 1, 1, 1, 0, 40);
38:      constraints.fill = GridBagConstraints.NONE;
39:      constraints.anchor = GridBagConstraints.EAST;
40:      Label label2 = new Label("Password:", Label.LEFT);
41:      gridbag.setConstraints(label2, constraints);
42:      add(label2);
43:

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (18 of 39) [11/06/2000 7:46:06 PM]



44:      // password text field
45:      buildConstraints(constraints, 1, 1, 1, 1, 0, 0);
46:      constraints.fill = GridBagConstraints.HORIZONTAL;
47:      TextField tfpass = new TextField();
48:      tfpass.setEchoCharacter('*');
49:      gridbag.setConstraints(tfpass, constraints);
50:      add(tfpass);
51:
52:      // OK Button
53:      buildConstraints(constraints, 0, 2, 2, 1, 0, 20);
54:      constraints.fill = GridBagConstraints.NONE;
55:      constraints.anchor = GridBagConstraints.CENTER;
56:      Button okb = new Button("OK");
57:      gridbag.setConstraints(okb, constraints);
58:      add(okb);
59:  }
60:}

ipadx and ipady

Before finishing up with grid bag layouts (isn't it over yet?), there are a two more constraints that deserve mentioning: ipadx and
ipady. These two constraints control the padding-that is, the extra space around an individual component. By default, no
components have extra space around them (which is easiest to see in components that fill their cells).

ipadx adds space to either side of the component, and ipady adds it above and below.

Insets

Horizontal and vertical gap, created when you create a new layout manager (using ipadx and ipady in grid bag layouts), are used
to determine the amount of space between components in a panel. Insets, however, are used to determine the amount of space around
the panel itself. The Insets class includes values for the top, bottom, left, and right insets, which are then used when the panel
itself is drawn.

Insets determine the amount of space between the edges of a panel and that panel's components.

To include an inset, override the insets() method in your class (your Applet class or other class that serves as a panel). Inside
the insets() method, create a new Insets object, where the constructor to the Insets class takes four integer values
representing the insets on the top, left, bottom, and right of the panel. The insets() method should then return that Insets
object. Here's some code to add insets for a grid layout, 10 to the top and bottom, and 30 to the left and right. (Figure 13.20 shows
the inset):

Figure 13.20: A panel with insets of 10 pixels on the top and bottom and 30 pixels to the left and right.

public Insets insets() {
   return new Insets(10, 30, 10, 30);
}

The arguments to the Insets constructor provide pixel insets for the top, bottom, left, and right edges of the panel, respectively.
This particular example provides an inset of 10 pixels on all four sides of the panel.

Handling UI Actions and Events
If you stopped reading today's lesson right now, you could go out and create an applet that had lots of little UI components, nicely
laid out on the screen with the proper layout manager, gap, and insets. If you did stop right here, however, your applet would be
really dull, because none of your UI components would actually do anything when they were pressed, typed into, or selected.

For your UI components to do something when they are activated, you need to hook up the UI's action with an operation. Actions are
a form of event, and testing for an action by a UI component involves event management. Everything you learned yesterday about

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (19 of 39) [11/06/2000 7:46:06 PM]



events will come in handy here.

UI actions are events that occur when a UI component is activated-pressed, selected, typed into, and so on.

To intercept an action event generated by any UI component, you define an action() method in your applet or class:

public boolean action(Event evt, Object arg) {
    ...
}

The action() method should look similar to the basic mouse and keyboard event methods. Like those methods, it gets passed the
event object that represents this event. It also gets an extra object (in this code, the parameter arg), which can be of any class type.

What kind of object that second argument to the action method is depends on the UI component that's generating the action. The
basic definition is that it's any arbitrary argument-when a component generates an event, it can pass along any extra information that
might be useful for you to use in processing that action.

All the basic UI components (except for labels, which have no action) have different actions and arguments:

Buttons create actions when they are pressed and released with the mouse, and a button's extra argument is the label string of
that button.

●   

Check boxes, both exclusive and nonexclusive, generate actions when a box is checked. The extra argument is always true.●   

Choice menus generate an action when a menu item is selected, and the extra argument is the label string of that item.●   

Text fields create actions when the user presses Return or Enter inside that text field. Note that if the user tabs to a different
text field or uses the mouse to change the input focus, an action is not generated. Pressing Return or Enter is the only thing that
triggers the action.

●   

Note that with actions, unlike with ordinary events, you can have many different kinds of objects generating the action event, as
opposed to a single movement (a mouse press) generating a single event (such as a mouseDown). To deal with those different UI
components and the actions they generate, you have to test for the type of object that sent/created the event in the first place inside
the body of your action() method. That object is stored in the event's target instance variable, and you can use the
instanceof operator to find out what kind of UI component sent it:

public boolean action(Event evt, Object arg) {
    if (evt.target instanceof TextField)
        return handleText(evt.target);
    else if (evt.target instanceof Choice)
        return handleChoice(arg);
...
}

Although you can handle UI actions in the body of the action() method, it's much more common simply to define a special
method in your action() method and call that method instead. Here, there are two special methods: one to handle the action on the
text field (handleText()) and one to handle the action on the choice menu (handleChoice()). Depending on the action you
want to handle, you may also want to pass on the argument from the action, the UI component that sent it, or any other information
that the event might contain.

As with the other event methods, action() returns a boolean value. As with all the event methods, you should return true if
action() itself deals with the method, or false if it passes the method on somewhere else (or ignores it).

Listing 13.2 shows a simple applet that has five buttons labeled with colors. The action() method tests for a button action and
then passes control to a method called changeColor(), which changes the background color of the applet based on which button
was pressed (see Figure 13.21 to see the applet in action).

Figure 13.21: The ButtonAction applet.

Listing 13.2. The ButtonActionsTest applet.

 1:import java.awt.*;
 2:
 3:public class ButtonActionsTest extends java.applet.Applet {

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (20 of 39) [11/06/2000 7:46:06 PM]



 4:
 5:  public void init() {
 6:    setBackground(Color.white);
 7:
 8:    add(new Button("Red"));
 9:    add(new Button("Blue"));
10:    add(new Button("Green"));
11:    add(new Button("White"));
12:    add(new Button("Black"));
13:  }
14:
15:  public boolean action(Event evt, Object arg) {
16:    if (evt.target instanceof Button) {
17:      changeColor((String)arg);
18:      return true;
19:    } else return false;
20:  }
21:
22:  void changeColor(String bname) {
23:    if (bname.equals("Red")) setBackground(Color.red);
24:    else if (bname.equals("Blue")) setBackground(Color.blue);
25:    else if (bname.equals("Green")) setBackground(Color.green);
26:    else if (bname.equals("White")) setBackground(Color.white);
27:    else setBackground(Color.black);
28:
29:    repaint();
30:  }
31:}

As with most awt-based applets, this one starts with an init() method that initializes the applet's state and creates and adds
components to the layout. The init() method defined in lines 8 through 13 here sets the applet's background color to white and
creates five new buttons with color labels. Here we'll use the default layout manager, which is a FlowLayout. The buttons will
appear all in a row at the top of the screen.

With the buttons in place, the second step is to attach actions to those buttons. The action() method, defined in lines 15 through
20, does this. The first thing to check is to make sure it's a button action that's been generated (line 16) and, if so, to pass the extra
argument (cast to a string) to the changeColor() method, which will do all the work to change the color. If the event is indeed a
button action, we'll return true to intercept that event. Otherwise, we'll return false and let some other component handle the
event.

The changeColor() method is where all the work goes on. Here we test for each of the button labels in turn to see which button it
was that was pressed and to set the background to the appropriate color. A final repaint at the end does the actual change (setting the
background color does not automatically trigger a repaint; you'll have to do it yourself).

Nesting Panels and Components
Adding UI components to individual panels or applets is fun, but working with the awt begins to turn into lots of fun when you start
working with nested panels. By nesting different panels inside your applet, and panels inside those panels, you can create different
layouts for different parts of the overall applet area, isolate background and foreground colors and fonts to individual parts of an
applet, and manage the design of your UI components individually and in distinct groups. The more complex the layout of your
applet, the more likely you're going to want to use nested panels.

Nested Panels

Panels, as you've already learned, are components that can be actually displayed onscreen; Panel's superclass Container
provides the generic behavior for holding other components inside it. The Applet class, from which your applets all inherit, is a
subclass of Panel. To nest other panels inside an applet, you merely create a new panel and add it to the applet, just as you would

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (21 of 39) [11/06/2000 7:46:06 PM]



add any other UI component:

setLayout(new GridLayout(1, 2, 10, 10));
Panel panel1 = new Panel();
Panel panel2 = new Panel();
add(panel1);
add(panel2);

You can then set up an independent layout for those subpanels and add awt components to them (including still more subpanels) by
calling the add() method in the appropriate panel:

panel1.setLayout(new FlowLayout());
panel1.add(new Button("Up"));
panel1.add(new Button("Down"));

Although you can do all this in a single class, it's common in graphical applets and applications that make heavy use of subpanels to
factor out the layout and behavior of the subpanels into separate classes and to communicate between the panels by using methods.
You'll look at an extensive example of this later in today's lesson in the section "A Complete Example: RGB-to-HSB Converter."

Events and Nested Panels

When you create applets with nested panels, those panels form a hierarchy from the outermost panel (the applet, usually) to the
innermost UI component. This hierarchy is important to how each component in the interface interacts with other components; for
example, the component hierarchy determines the order in which those components are painted to the screen.

More importantly, however, the hierarchy also affects event handling, particularly for user-input events such as mouse and keyboard
events.

Events are received by the innermost component in the component hierarchy and passed up the chain to the applet's panel (or to the
root window in Java applications). Suppose, for example, that you have an applet with a subpanel that can handle mouse events
(using the mouseDown() and mouseUp() methods), and that panel contains a button. Clicking the button means that the button
receives the event before the panel does; if the button isn't interested in that mouseDown(), the event gets passed to the panel,
which can then process it or pass it further up the hierarchy.

Remember the discussion about the basic event methods yesterday? You learned that the basic event methods all return boolean
values. Those boolean values become important when you're talking about handling events or passing them on.

An event-handling method, whether it is the set of basic event methods or the more generic handleEvent(), can do one of three
things, given any random event:

Ignore the event entirely, if the event doesn't match whatever criteria the event-handling method set-for example, the
mouseDown wasn't in the right area, or the action wasn't a button action. If this is the case, the event handler should return
false so the event is passed up the hierarchy until a component processes it (or it is ignored altogether).

●   

Intercept the event, process it, and return true. In this case, the event stops with that event method.●   

Intercept the method, process it, and pass it on to another, more specific event handler-for example, as handleEvent passes
events onto mouseDown().

●   

More UI Components
After you master the basic UI components and how to add them to panels, organize their layout, and manage their events, you can
add more UI components. In this section, you'll learn about text areas, scrolling lists, scrollbars, and canvases.

Note that most of the components in this section do not produce actions, so you can't use the action() method to handle their
behavior. Instead, you have to use a generic handleEvent() method to test for specific events that these UI components generate.
You'll learn more about this in the next section.

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (22 of 39) [11/06/2000 7:46:06 PM]



Text Areas

Text areas are like text fields, except they have more functionality for handling large amounts of text. Because text fields are limited
in size and don't scroll, they are better for one-line responses and simple data entry; text areas can be any given width and height and
have scrollbars by default, so you can deal with larger amounts of text more easily.

Text areas are larger, scrollable text-entry components. Whereas text fields only provide one line of text, text areas can hold any
amount of editable text.

To create a text area, use one of the following constructors:

TextArea() creates an empty text area 0 rows long and 0 characters wide (the text area will be automatically resized based
on the layout manager).

●   

TextArea(int, int) creates an empty text area with the given number of rows and columns (characters).●   

TextArea(String) creates a text area displaying the given string, which will be sized according to the current layout
manager.

●   

TextArea(String, int, int) creates a text area displaying the given string and with the given dimensions.●   

Figure 13.22 shows a simple text area generated from the following code:

Figure 13.22: A text area.

import java.awt.*;

public class TextAreaTest extends java.applet.Applet {

  public void init() {
    String str = "Once upon a midnight dreary, while I pondered, weak and weary,\n" +
     "Over many a quaint and curious volume of forgotten lore,\n" +
     "While I nodded, nearly napping, suddenly there came a tapping,\n" +
     "As of some one gently rapping, rapping at my chamber door.\n" +
     "\"'Tis some visitor,\" I muttered, \"tapping at my chamber door-\n" +
     "Only this, and nothing more.\"\n\n";
     // more text deleted for space

     add(new TextArea(str,10,50));
  } 
}

Both text areas and text fields inherit from the TextComponent class, so a lot of the behavior for text fields (particularly getting
and setting text and selections) is usable on text areas as well (refer to Table 13.4). Text areas also have a number of their own
methods that you may find useful. Table 13.5 shows a sampling of those methods.

Table 13.5. Text area methods.

Method Action
getColumns() Returns the width of the text area, in characters

or columns
getRows() Returns the number of rows in the text area

(not the number of rows of text that the text
area contains)

insertText(String, int) Inserts the string at the given position in the
text (text positions start at 0)

replaceText(String,
int, int)

Replaces the text between the given integer
positions with the new string

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (23 of 39) [11/06/2000 7:46:06 PM]



Scrolling Lists

Remember the choice menu, with which you could choose one of several different options? A scrolling list is functionally similar to a
choice menu in that it lets you pick several options from a list, but scrolling lists differ in two significant ways:

Scrolling lists are not pop-up menus. They're displayed as a list of items from which you can choose one or more items. If the
number of items is larger than the list box, a scrollbar is automatically provided so that you can see the other items.

●   

You can choose more than one item in the list (if the list has been defined to allow it).●   

Scrolling lists provide a menu of items that can be selected or deselected. Unlike choice menus, scrolling lists are not pop-up menus
and can be defined to allow multiple selections.

To create a scrolling list, create an instance of the List class and then add individual items to that list. The List class has two
constructors:

List() creates an empty scrolling list that enables only one selection at a time.●   

List(int, boolean) creates a scrolling list with the given number of visible lines on the screen (you're unlimited as to
the number of actual items you can add to the list). The boolean argument indicates whether this list enables multiple
selections (true) or not (false).

●   

After creating a List object, add items to it using the addItem() method and then add the list itself to the panel that contains it.
Here's an example that creates a list five items high that allows multiple selections (the result of this code is shown in Figure 13.23):

Figure 13.23: A scrolling list.

import java.awt.*;

public class ListsTest extends java.applet.Applet {

  public void init() {
    List lst = new List(5, true);

    lst.addItem("Hamlet");
    lst.addItem("Claudius");
    lst.addItem("Gertrude");
    lst.addItem("Polonius");
    lst.addItem("Horatio");
    lst.addItem("Laertes");
    lst.addItem("Ophelia");
    
    add(lst);
  }
}

Scrolling lists generate actions when the user double-clicks a list item (single-clicking generates a LIST_SELECT or
LIST_DESELECT event ID; you'll learn more about these in the section "More UI Events"). A scrolling list action has the argument
of the string of the item that was double-clicked.

Table 13.6 shows some of the methods available to scrolling lists. See the API documentation for a complete set.

Table 13.6. Scrolling list methods.

Method Action
getItem(int) Returns the string item at the given position
countItems() Returns the number of items in the menu
getSelectedIndex() Returns the index position of the item that's

selected (used for lists that allow only single
selections)

getSelectedIndexes() Returns an array of index positions (used for lists
that allow multiple selections)

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (24 of 39) [11/06/2000 7:46:06 PM]



getSelectedItem() Returns the currently selected item as a string
getSelectedItems() Returns an array of strings containing all the

selected items
select(int) Selects the item at the given position
select(String) Selects the item with that string

Scrollbars and Sliders

Text areas and scrolling lists come with their own scrollbars, which are built into those UI components and enable you to manage
both the body of the area or the list and its scrollbar as a single unit. You can also create individual scrollbars, or sliders, to
manipulate a range of values.

Scrollbars are used to select a value between a maximum and a minimum value. To change the current value of that scrollbar, you
can use three different parts of the scrollbar (seeFigure 13.24):

Figure 13.24: Scrollbar parts.

Arrows on either end, which increment or decrement the values by some small unit (1 by default).●   

A range in the middle, which increments or decrements the value by a larger amount (10 by default).●   

A box in the middle, often called an elevator or thumb, whose position shows where in the range of values the current value is
located. Moving this box with the mouse causes an absolute change in the value, based on the position of the box within the
scrollbar.

●   

Choosing any of these visual elements causes a change in the scrollbar's value; you don't have to update anything or handle any
events. All you have to do is give the scrollbar a maximum and minimum, and Java will handle the rest.

A scrollbar is a visual UI element that allows you to choose a value between some minimum and some maximum. Scrollbars are
sometimes called sliders.

To create a scrollbar, you can use one of three constructors:

Scrollbar() creates a scrollbar with its initial maximum and minimum values both 0, in a vertical orientation.●   

Scrollbar(int) creates a scrollbar with its initial maximum and minimum values both 0. The argument represents an
orientation, for which you can use the class variables Scrollbar.HORIZONTAL and Scrollbar.VERTICAL.

●   

Scrollbar(int, int, int, int, int) creates a scrollbar with the following arguments (each one is an integer,
and they must be presented in this order):

●   

The first argument is the orientation of the scrollbar: Scrollbar.HORIZONTAL and Scrollbar.VERTICAL.●   

The second argument is the initial value of the scrollbar, which should be a value between the scrollbar's maximum and
minimum values.

●   

The third argument is the overall width (or height, depending on the orientation) of the scrollbar's box. In user-interface design,
a larger box implies that a larger amount of the total range is currently showing (applies best to things such as windows and
text areas).

●   

The fourth and fifth arguments are the minimum and maximum values for the scrollbar.●   

Here's a simple example of a scrollbar that increments a single value (see Figure 13.25). The label to the left of the scrollbar is
updated each time the scrollbar's value changes:

Figure 13.25: A scrollbar.

import java.awt.*;

public class SliderTest extends java.applet.Applet {
  Label l;

  public void init() {
    setLayout(new GridLayout(1,2));
    l = new Label("0", Label.CENTER);
    add(l);

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (25 of 39) [11/06/2000 7:46:06 PM]



    add(new Scrollbar(Scrollbar.HORIZONTAL,0,0,1,100));
  }

  public Insets insets() {
    return new Insets(15,15,15,15);
  }

  public boolean handleEvent(Event evt) {
    if (evt.target instanceof Scrollbar) {
      int v = ((Scrollbar)evt.target).getValue();
      l.setText(String.valueOf(v));
      repaint();
      return true;
    } else return false;
  }

}

The Scrollbar class provides several methods for managing the values within scrollbars. (See Table 13.7.)

Table 13.7. Scrollbar methods.

Method Action
getMaximum() Returns the maximum value.
getMinimum() Returns the minimum value.
getOrientation() Returns the orientation of this scrollbar:

0 is Scrollbar.HORIZONTAL; 1 is
Scrollbar.VERTICAL.

getValue() Returns the scrollbar's current value.
setValue(int) Sets the current value of the scrollbar.
setLineIncrement(int
inc)

Change the increment for how far to scroll when
the endpoints of the scrollbar are selected. The
default is 1.

getLineIncrement() Returns the increment for how far to scroll when
the endpoints of the scrollbar are selected.

setPageIncrement(int
inc)

Change the increment for how far to scroll when
the inside range of the scrollbar is selected. The
default is 10.

getPageIncrement() Returns the increment for how far to scroll when
the inside range of the scrollbar is selected.

Canvases

Although you can draw on most awt components such as panels using the graphics methods you learned about on Day 11, "More
Animation, Images, and Sound," canvases do little except let you draw on them. They can't contain other components, but they can
accept events, and you can create animation and display images on them. If you have a panel that doesn't need to do anything except
display images or animation, a canvas would make a lighter-weight surface than a panel would.

A canvas is a component that you can draw on.

To create a canvas, use the Canvas class and add it to a panel as you would any other component:

Canvas can = new Canvas();
add(can);

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (26 of 39) [11/06/2000 7:46:06 PM]



More UI Events
Yesterday, you learned about some basic event types that are generated from user input to the mouse or the keyboard. These event
types are stored in the Event object as the event ID, and can be tested for in the body of a handleEvent() method by using class
variables defined in Event. For many basic events, such as mouseDown() and keyDown(), you can define methods for those
events to handle the event directly. You learned a similar mechanism today for UI actions where creating an action() method
handled a specific action generated by a UI component.

The most general way of managing events, however, continues to be the handleEvent() method. For events relating to scrollbars
and scrolling lists, the only way to intercept these events is to override handleEvent().

To intercept a specific event, test for that event's ID. The available IDs are defined as class variables in the Event class, so you can
test them by name. You learned about some of the basic events yesterday; Table 13.8 shows additional events that may be useful to
you for the components you've learned about today (or that you might find useful in general).

Table 13.8. Additional events.

Event ID What It Represents
ACTION_EVENT Generated when a UI component action occurs
GOT_FOCUS Generated when the user clicks inside a text area
LOST_FOCUS Generated when the user clicks anywhere outside a text

area (after being inside one)
LIST_DESELECT Generated when an item in a scrolling list is deselected
LIST_SELECT Generated when an item in a scrolling list is selected
SCROLL_ABSOLUTE Generated when a scrollbar's box has been moved
SCROLL_LINE_DOWN Generated when a scrollbar's bottom or left endpoint

(button) is selected
SCROLL_LINE_UP Generated when a scrollbar's top or right endpoint

(button) is selected
SCROLL_PAGE_DOWN Generated when the scrollbar's field below (or to the left

of) the box is selected
SCROLL_PAGE_UP Generated when the scrollbar's field above (or to the

right of) the box is selected

Fun with Components
The Component class is the root of all the awt objects: all the UI elements, panels, canvases, even applets. Just about everything
you can display, lay out, change the color of, draw to, or interact with using events in the awt is a component.

Components have a set of methods that allow you to modify their appearance or change their behavior. You've seen the use of a few
of these methods already (setBackground(), setFont, size()), applied specifically to applets. But the methods defined in
Component can be used with any component, allowing you to modify the appearance or the behavior of just about any element in
your program. You can also create custom components (classes that inherit from Panel or Canvas) to make your own special awt
elements or user interface widgets.

Table 13.9 summarizes some of the methods you can use with individual components. For more methods, check out the Java API
documentation for the class Component. The JDK 1.0.2 documentation is online at

http://java.sun.com:80/products/JDK/CurrentRelease/api/

Table 13.9. Component methods.

getBackground() Returns a Color object representing the
component's background color.

setBackground(Color) Sets the component's background color.

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (27 of 39) [11/06/2000 7:46:06 PM]

http://java.sun.com/products/JDK/CurrentRelease/api/


getForeground() Returns a Color object representing the
component's current foreground color.

setForeground(Color) Sets the component's foreground color
getFont() Returns a Font object representing the

component's current font.
setFont(Font) Changes the component's current font.
size() Returns a Dimension object representing the

component's current size. You can then get to the
individual width and height using
size().width() and size().height().

minimumSize() The component's smallest possible size as a
Dimension object. minimumSize() is usually
only used by layout managers to determine how
small it can draw a component; if you create a
custom component you'll want to override this
method to return the minimum size of that
component.

preferredSize() The component's preferred size (usually equal to or
larger than the component's minimumSize()) as
a Dimension object.

resize(Dimension) Changes the size of the applet to be the current size.
For custom components you'll want to also call
validate() after resizing the applet so that the
layout can be redrawn.

inside(x, y) Returns true if the given x and y coordinates are
inside the component.

hide() Hides the component. Hidden components do not
show up onscreen.

show() Shows a component previously hidden.
isVisible() Returns true or false depending on whether

this component is visible (not hidden).
disable() Disables the component-that is, stops generating

events. Disabled components cannot be pressed,
selected from, typed into, and so on.

enable() Enables a previously disabled object.
isEnabled() Returns true or false depending on whether the

component is enabled.

A Complete Example: RGB-to-HSB Converter
Let's take a break here from theory and smaller examples to create a larger example that puts together much of what you've learned
so far. The following applet example demonstrates layouts, nesting panels, creating user-interface components, and catching and
handling actions, as well as using multiple classes to put together a single applet. In short, it's the most complex applet you've created
so far.

Figure 13.26 shows the applet you'll be creating in this example. The ColorTest applet enables you to pick colors based on RGB
(red, green, and blue) and HSB (hue, saturation, and brightness) values.

Figure 13.26: The ColorTest applet.

Note

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (28 of 39) [11/06/2000 7:46:06 PM]



A very quick summary in case you're not familiar with basic color
theory: RGB color defines a color by its red, green, and blue values;
some combination of these values can produce any color in the
spectrum (red, green, and blue are called additive colors; that's how
your monitor and your TV represent different colors).

HSB stands for hue, saturation, and brightness and is a different way
of indicating color. Hue is the actual color in the spectrum you're
representing (think of it as values along a color wheel). Saturation is
the amount of that color; low saturation results in pastels;
high-saturation colors are more vibrant and "colorful." Brightness,
finally, is the lightness or darkness of the color. No brightness is
black; full brightness is white.

A single color can be represented either by its RGB values or by its
HSB values, and there are mathematical algorithms to convert
between them. The ColorTest applet provides a graphical
converter between the two.

The ColorTest applet has three main parts: a colored box on the left side and two groups of text fields on the right. The first group
indicates RGB values; the right, HSB. By changing any of the values in any of the text boxes, the colored box is updated to the new
color, as are the values in the other group of text boxes.

Note
If you try this applet, be aware that you have to press Enter or Return
after changing a number for the updating to occur. Using the Tab key
to move between text fields or clicking with the mouse will not cause
the applet to update.

This applet uses two classes:

ColorTest, which inherits from Applet. This is the controlling class for the applet itself.●   

ColorControls, which inherits from Panel. You'll create this class to represent a group of three text fields and to handle
actions from those text fields. Two instances of this class, one for the RGB values and one for the HSB ones, will be created
and added to the applet.

●   

Let's work through this step by step, because it's very complicated and can get confusing. All the code for this applet will be shown at
the end of this section.

Designing and Creating the Applet Layout

The best way to start creating an applet that uses awt components is to worry about the layout first and then worry about the
functionality. When dealing with the layout, you should start with the outermost panel first and work inward.

Making a sketch of your UI design can help you figure out how to organize the panels inside your applet or window to best take
advantage of layout and space. Paper designs are helpful even when you're not using grid bag layouts, but doubly so when you are
(we'll be using a simple grid layout for this applet).

Figure 13.27 shows the ColorTest applet with a grid drawn over it so that you can get an idea of how the panels and embedded
panels work.

Figure 13.27: The ColorTest applet panels and components.

Let's start with the outermost panel-the applet itself. This panel has three parts: the color box on the left, the RGB text fields in the
middle, and the HSB fields on the right.

Because the outermost panel is the applet itself, your ColorTest class will be the applet class and will inherit from Applet.
You'll also import the awt classes here (note that because you use so many of them in this program, it's easiest to just import the
entire package):

import java.awt.*;

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (29 of 39) [11/06/2000 7:46:06 PM]



public class ColorTest extends java.applet.Applet {
    ...
}

This applet has three main things to keep track of: the color box and the two subpanels. The two subpanels each refer to different
things, but they're essentially the same panel and behave in the same ways. Rather than duplicate a lot of code here in this class, this
is a perfect opportunity to create another class just for the subpanels, use instances of that class here in the applet, and communicate
between everything using methods. In a bit we'll define that new class, called ColorControls.

For now, however, we know we need to keep a handle to all three parts of the applet so you can update them when they change. So
let's create three instance variables: one of type Canvas for the color box, and the other two of type ColorControls for the
control panels:

ColorControls RGBcontrols, HSBcontrols;
Canvas swatch;

Now we'll move onto the init() method, where all the basic initialization and layout of the applet takes place. There are three
steps to initializing this applet:

Create the layout for the big parts of the panel. Although a flow layout would work, a grid layout with one row and three
columns is a much better idea.

1.  

Create and initialize the three components of this applet: a canvas for the color box and two subpanels for the text fields.2.  

Add those components to the applet.3.  

Step one is the layout. Let's use a grid layout and a gap of 10 points to separate each of the components:

setLayout(new GridLayout(1, 3, 5, 15));

Step two is creating the components-the canvas first. You have an instance variable to hold that one. Here we'll create the canvas and
initialize its background to black:

swatch = new Canvas();
swatch.setBackground(Color.black);

You need to create two instances of your as-of-yet nonexistent ColorControls panels here as well, but because we haven't
created the class yet we don't know what the constructors to that class will look like. Let's put in some placeholder constructors here;
we'll fill in the details later:

RGBcontrols = new ColorControls(...)
HSBcontrols = new ColorControls(...);

Step three is adding all three components to the applet panel:

add(swatch);
add(RGBcontrols);
add(HSBcontrols);

While you're working on layout, let's add insets for the applet: 10 points along all the edges:

public Insets insets() {
    return new Insets(10, 10, 10, 10);
}

Got it so far? At this point you have three instance variables, an init() method with two incomplete constructors, and an
insets() method in your ColorTest class. Let's move on now to creating the subpanel layout in the ColorControls class so
we can fill in those constructors and finish up the layout.

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (30 of 39) [11/06/2000 7:46:06 PM]



Defining the Subpanels

The ColorControls class will have behavior for laying out and handling the subpanels that represent the RGB and HSB values
for the color. ColorControls doesn't need to be a subclass of Applet because it isn't actually an applet; it's just a panel. Define
it to inherit from Panel:

import java.awt.*

class ColorControls extends Panel {
    ...
}

Note
I've put the ColorControls source code into its own file, called
ColorControls.java. However, you can put the
ColorControls class in the same file as the ColorTest class.
Up to this point, you've only defined one class per file, with the
filename the same name as the class. In Java you can have multiple
class definitions in a file as long as only one of those classes is
declared public (and the name of the source file is the same as that
public class). In this case, the ColorTest class is public (it's an
applet, so it has to be), but the ColorControls class isn't public,
so it can be in the same source file. When you compile the file, Java
will create the appropriate multiple class files for each class
definition. You'll learn more about public classes on Day 15,
"Modifiers, Access Control, and Class Design," and Day 16,
"Packages and Interfaces."

In general, however, I prefer to use separate source files for my
classes. It makes it easier for me to find the source for a particular
class because I don't have to remember which file I defined it in.

The ColorControls class will need a number of instance variables so that information from the panel can get back to the applet.
The first of these instance variables is a hook back up to the applet class that contains this panel. Because it's the outer applet class
that controls the updating of each panel, this panel will need a way to tell the applet that something has changed. And to call a
method in that applet, you need a reference to that object. So, instance variable number one is a reference an instance of the class
ColorTest:

ColorTest applet;

If you figure that the applet class is the one that's going to be updating everything, that class if going to be interested in the individual
text fields in this subpanel. We'll create instance variables for those text fields:

TextField tfield1, tfield2, tfield3;

Now let's move on to the constructor for this class. Because this class isn't an applet, we won't use init() to initialize it; instead
we'll use a constructor method.

Inside the constructor you'll do much of what you did inside init(): create the layout for the subpanel, create the text fields, and
add them to the panel.

The goal here is to make the ColorControls class generic enough so that you can use it for both the RGB fields and the HSB
fields. Those two panels differ in only one respect: the labels for the text. That's three values to get before you can create the object.
You can pass those three values in through the constructors in ColorTest. You also need one more: that reference to the enclosing
applet, which you can get from the constructor as well.

You now have four arguments to the basic constructor for the ColorControls class. Here's the signature for that constructor:

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (31 of 39) [11/06/2000 7:46:06 PM]



ColorControls(ColorTest parent,
        String l1, String l2, String l3) {
}

Let's start this constructor by first setting the value of parent to the applet instance variable:

applet = parent;

Next, create the layout for this panel. You can also use a grid layout for these subpanels, as you did for the applet panel, but this time
the grid will have three rows (one for each of the text field and label pairs) and two columns (one for the labels and one for the
fields). We'll also define a 10-point gap between the components in the grid:

setLayout(new GridLayout(3,2,10,10));

Now we can create and add the components to the panel. First, we'll create the text field objects (initialized to the string "0"), and
assign them to the appropriate instance variables:

tfield1 = new TextField("0");
tfield2 = new TextField("0");  
tfield3 = new TextField("0");

Now we'll add those fields and the appropriate labels to the panel, using the remaining three parameters to the constructor as the text
for the labels:

add(new Label(l1, Label.RIGHT));
add(tfield1);
add(new Label(l2, Label.RIGHT));
add(tfield2);
add(new Label(l3, Label.RIGHT));
add(tfield3);

That finishes up the constructor for the subpanel class ColorControls. Are we done with the layout? Not quite. We'll also add an
inset around the subpanel-only on the top and bottom edges-to tinker the layout. Add the inset here as you did in the ColorTest
class, using the insets() method:

public Insets insets() {
        return new Insets(10, 10, 0, 0);
 }

You're almost there. You have 98 percent of the basic structure in place and ready to go, but there's one step left: going back to
ColorTest and fixing those placeholder constructors for the subpanel so they match the actual constructors for
ColorControls.

The constructor for ColorControls that we just created now has four arguments: the ColorTest object and three labels
(strings). Remember back to when we created the init() method for ColorTest: We added two placeholders for creating new
ColorControls objects; we'll replace those placeholders with the correct versions now. Make sure you add the four arguments
that constructor needs to work: the ColorTest object and three strings. To pass the ColorTest object to those constructors, we
can use the this keyword:

RGBcontrols = new ColorControls(this, "Red", "Green", "Blue");
HSBcontrols = new ColorControls(this, "Hue", "Saturation", "Brightness");

Note

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (32 of 39) [11/06/2000 7:46:06 PM]



For the initial values of all the text fields in this example, I used the
number 0 (actually, the string "0"). For the color black, both the
RGB and the HSB values are 0, which is why I can make this
assumption. If you wanted to initialize the applet to be some other
color, you might want to rewrite the ColorControls class to use
initializer values as well as to initialize labels. This way made for a
shorter example.

Handling the Actions

With the layout done, its time to set up event handling and updating between the various components so that when the user interacts
with the applet, the applet can respond.

The action of this applet occurs when the user changes a value in any of the text fields and presses Enter. By causing an action in a
text field, the color changes, the color box updates to the new color, and the values of the fields in the opposite subpanel change to
reflect the new color.

The ColorTest class is responsible for actually doing the updating because it keeps track of all the subpanels. Because the actual
event occurs in the subpanel, however, you'll need to track and intercept those events in that subpanel using the action() method
in the ColorControls class:

public boolean action(Event evt, Object arg) {
    if (evt.target instanceof TextField) {
      applet.update(this);
      return true;
    }
    else return false;
}

In the action() method, you test to make sure the action was indeed generated by a text field (because there are only text fields
available, that's the only action you'll get, but it's a good idea to test for it anyhow). If there was indeed a text field action, we'll call a
method to update all the subpanels. That method, which we'll call update(), is defined in the enclosing class, so we'll call it using
the object stored in the applet instance variable (and pass along a reference to the panel so that the applet can get at our values). And,
finally, we'll return either true or false so that other actions that might occur on this applet can be passed along to enclosing
panels or components.

Updating the Result

Now comes the hard part: actually doing the updating based on the new values of whatever text field was changed. For this, you
define the update() method in the ColorTest class. This update() method takes a single argument-the ColorControls
instance that contains the changed value (you get that argument from the action() method in the ColorControls object).

Note
Won't this update() method interfere with the system's
update() method? Nope. Remember, methods can have the same
name, but different signatures and definitions. Because this
update() has a single argument of type ColorControls, it
doesn't interfere with the other version of update(). Normally, all
methods called update() should mean basically the same thing; it's
not true here, but it's only an example.

The update() method is responsible for updating all the panels in the applet. To know which panel to update, you need to know
which panel changed. You can find out by testing to see whether the argument you got passed from the panel is the same as the
subpanels you have stored in the RGBcontrols and HSBcontrols instance variables:

void update(ColorControls controlPanel) {

    if (controlPanel == RGBcontrols) {  // RGB has changed, update HSB

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (33 of 39) [11/06/2000 7:46:06 PM]



       ...
    } else {  // HSB has changed, update RGB
       ...
    }
}

This test is the heart of the update() method. Let's start with that first case-a number has been changed in the RGB text fields. So
now, based on those new RGB values, you have to generate a new Color object and update the values on the HSB panel. To reduce
some typing, you create a few local variables to hold some basic values. In particular, the values of the text fields are strings whose
values you can get to using the getText() method defined in the TextField objects of the ColorControls object. Because
most of the time in this method we'll want to deal with those values as integers, we'll get those string values, convert them to integers,
and store them in local variables (value1, value2, value3). Here's the code to do this (it looks more complicated than it actually
is):

int value1 = Integer.parseInt(controlPanel.tfield1.getText());
int value2 = Integer.parseInt(controlPanel.tfield2.getText());
int value3 = Integer.parseInt(controlPanel.tfield3.getText());

While we're here defining local variables, we'll also need one for the new Color object:

Color c;

OK. Let's assume one of the text fields in the RGB side of the applet has changed and add the code to the if part of the update()
method. We'll need to create a new Color object and update the HSB side of the panel. That first part is easy; given the three RGB
values, you can create a new Color object using those as arguments to the constructor:

c = new Color(value1, value2, value3);

Note
This part of the example isn't very robust; it assumes that the user has
indeed entered integers from 0 to 255 into the text fields. A better
version of this would test to make sure that no data-entry errors had
occurred (I was trying to keep this example small).

Now we'll convert the RGB values to HSB. There are standard algorithms to convert an RGB-based color to an HSB color, but we
don't have to go look them up. The Color class has a class method we can use called RGBtoHSB() that will do the work for us-or,
at least, most of it. There are two problems with the RGBtoHSB() method, however:

The RGBtoHSB() method returns an array of the three HSB values, so we'll have to extract those values from the array.●   

The HSB values are measured in floating-point values from 0.0 to 1.0. I prefer to think of HSB values as integers, where the
hue is a degree value around a color wheel (0 through 360), and saturation and brightness are percentages from 0 to 100.

●   

Neither of these problems is insurmountable; it just means some extra lines of code. Let's start by calling RGBtoHSB() with the new
RGB values we have. The return type of that method is an array of floats, so we'll create a local variable (HSB) to store the results of
the RBGtoHSB() method. (Note that you'll also need to create and pass in an empty array of floats as the fourth argument to
RGBtoHSB()):

float[] HSB = Color.RGBtoHSB(value1, value2, value3, (new float[3]));

Now we'll convert those floating-point values that range from 0.0 to 1.0 to values that range from 0 and 100 (for the saturation
and brightness) and 0 to 360 for the hue by multiplying the appropriate numbers and reassigning the value back to the array:

HSB[0] *= 360;
HSB[1] *= 100;
HSB[2] *= 100;

Now we have the numbers we want. The last part of the update is to put those values back into the text fields. Of course, those values
are still floating-point numbers, so we'll have to cast them to ints before turning them into strings and storing them:

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (34 of 39) [11/06/2000 7:46:06 PM]



HSBcontrols.tfield1.setText(String.valueOf((int)HSB[0]));
HSBcontrols.tfield2.setText(String.valueOf((int)HSB[1]));
HSBcontrols.tfield3.setText(String.valueOf((int)HSB[2]));

You're halfway there. The next part of the applet is that part that updates the RGB values where a text field on the HSB side has
changed. This is the else in the big if-else that defines this method and determines what to update, given a change.

It's actually easier to generate values from HSB values than it is to do it the other way around. There's a class method in the Color
class, called getHSBColor(), that creates a new Color object from three HSB values, and once you have a Color object you
can easily pull the RGB values out of there. The catch, of course, is that getHSBColor takes three floating-point arguments, and
the values we have are the integer values I prefer to use. So in the call to getHSBColor, we'll have to cast the integer values from
the text fields to floats and divide them by the proper conversion factor. The result of getHSBColor is a Color object, so we can
simply assign that object to our c local variable so we can use it again later:

c = Color.getHSBColor((float)value1 / 360, 
    (float)value2 / 100, (float)value3 / 100);

With the Color object all set, updating the RGB values involves extracting those values from that Color object. The getRed(),
getGreen() and getBlue() methods, defined in the Color class, will do just that:

RGBcontrols.tfield1.setText(String.valueOf(c.getRed()));
RGBcontrols.tfield2.setText(String.valueOf(c.getGreen()));
RGBcontrols.tfield3.setText(String.valueOf(c.getBlue()));

And finally, regardless of whether the RGB or HSB value has changed, you'll need to update the color box on the left to reflect the
new color. Because we have a new Color object stored in the variable c, we can use the setBackground method to change that
color. Also note that setBackground doesn't automatically repaint the screen, so you'll want to fire off a repaint() as well:

swatch.setBackground(c);
swatch.repaint();

That's it! You're done. Compile both the ColorTest and ColorControls classes, create an HTML file to load the ColorTest
applet, and check it out.

The Complete Source Code

Listing 13.3 shows the complete source code for the applet class ColorTest, and Listing 13.4 shows the source for the helper class
ColorControls. Often it's easier to figure out what's going on in an applet when it's all in one place and you can follow the
method calls and how values are passed back and forth. Start with the init() method in the ColorTest applet and go from there.

Listing 13.3. The ColorTest applet.

 1:import java.awt.*;
 2:
 3:public class ColorTest extends java.applet.Applet {
 4:  ColorControls RGBcontrols, HSBcontrols;
 5:  Canvas swatch;
 6:
 7:  public void init() {   
 8:    setLayout(new GridLayout(1,3,5,15));
 9:    
10:    // The color swatch
11:    swatch = new Canvas();
12:    swatch.setBackground(Color.black);
13:    
14:    // the subpanels for the controls
15:    RGBcontrols = new ColorControls(this, "Red", "Green", "Blue");
16:    HSBcontrols = new ColorControls(this, "Hue", "Saturation", "Brightness");

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (35 of 39) [11/06/2000 7:46:06 PM]



17:
18:    //add it all to the layout
19:    add(swatch);
20:    add(RGBcontrols);
21:    add(HSBcontrols);
22:  }
23:
24:  public Insets insets() {
25:    return new Insets(10,10,10,10);
26:  }
27:
28:  void update(ColorControls controlPanel) {
29:    Color c;
30:    // get string values from text fields, convert to ints
31:    int value1 = Integer.parseInt(controlPanel.tfield1.getText());
32:    int value2 = Integer.parseInt(controlPanel.tfield2.getText());
33:    int value3 = Integer.parseInt(controlPanel.tfield3.getText());
34:
35:    if (controlPanel == RGBcontrols) {  // RGB has changed, update HSB
36:      c = new Color(value1, value2, value3);
37:
38:      // convert RGB values to HSB values
39:      float[] HSB = Color.RGBtoHSB(value1, value2, value3, (new float[3]));
40:      HSB[0] *= 360;
41:      HSB[1] *= 100;
42:      HSB[2] *= 100;
43:
44:      // reset HSB fields
45:      HSBcontrols.tfield1.setText(String.valueOf((int)HSB[0]));
46:      HSBcontrols.tfield2.setText(String.valueOf((int)HSB[1]));
47:      HSBcontrols.tfield3.setText(String.valueOf((int)HSB[2]));
48:   
49:    } else {  // HSB has changed, update RGB
50:      c = Color.getHSBColor((float)value1 / 360, 
51:        (float)value2 / 100, (float)value3 / 100);
52:
53:      // reset RGB fields
54:      RGBcontrols.tfield1.setText(String.valueOf(c.getRed()));
55:      RGBcontrols.tfield2.setText(String.valueOf(c.getGreen()));
56:      RGBcontrols.tfield3.setText(String.valueOf(c.getBlue()));
57:    }
58:
59:    //update swatch
60:    swatch.setBackground(c);
61: swatch.repaint();
62:}
63:}

Listing 13.4. The ColorControls class.

 1:import java.awt.*;
 2:
 3:class ColorControls extends Panel {
 4:  TextField tfield1, tfield2, tfield3;
 5:  ColorTest applet;
 6:
 7:  ColorControls(ColorTest parent,

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (36 of 39) [11/06/2000 7:46:06 PM]



 8:        String l1, String l2, String l3) {
 9:
10:    // get hook to outer applet parent
11:    applet = parent;
12:
13:    //do layouts
14:    setLayout(new GridLayout(3,2,10,10));
15:    
16:    tfield1 = new TextField("0");
17:    tfield2 = new TextField("0");    
18:    tfield3 = new TextField("0");    
19:
20:    add(new Label(l1, Label.RIGHT));
21:    add(tfield1);
22:    add(new Label(l2, Label.RIGHT));
23:    add(tfield2);
24:    add(new Label(l3, Label.RIGHT));
25:    add(tfield3);
26:  }
27: 
28: public Insets insets() {
29:    return new Insets(10,10,0,0);
30:  }
31:
32:  public boolean action(Event evt, Object arg) {
33:    if (evt.target instanceof TextField) {
34:      applet.update(this);
35:      return true;
36:    } else return false;
37:  }
38:}

Up and Coming in Java 1.1
Everything you've learned up to this point is available in the 1.0.2 Java API. Java 1.1, however, will add many more features to the
awt, as well as improve performance and robustness across platforms. The goal for the awt is to move beyond the basics that 1.0.2
provided and make the awt more suitable for large-scale application development. Note, also, that the 1.1 API will be
backward-compatible with the 1.0.2 features; none of the code you write after reading this chapter will be obsolete in 1.1.

Explicit details about the changes to the awt for 1.1 were not available at the time this book was being written. Sun has announced
the following teasers, however for new features in 1.1:

New components for pop-up menus, buttons with images on top of them, and menu accelerators●   

Support for clipboard operations (copy and paste), drag and drop, and printing●   

The ability to set a cursor for each component (currently you can have only one cursor per window; you'll learn about this on
Day 14, "Windows, Networking, and Other Tidbits")

●   

A new set of graphics primitives as part of the new 2D graphics model; you'll learn more about this on Day 27, "The Standard
Extension APIs"

●   

A new event model that delegates event actions to other objects, as opposed to requiring special methods (mouseDown(),
action(), handleEvent(), and so on) to be overridden in the component classes themselves. Those action objects are
often called callbacks in other event-driven programming systems.

●   

Performance enhancements: a complete rewrite for Windows 95 and NT, improvements in how components are laid out and
painted, better scrolling of components, and a "number of bug fixes."

●   

For more information about the Java 1.1 changes to the awt, check out the 1.1 preview page at
http://java.sun.com/products/JDK/1.1/designspecs/.

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (37 of 39) [11/06/2000 7:46:06 PM]

http://java.sun.com/products/JDK/1.1/designspecs/


Summary
The Java awt, or Abstract Windowing Toolkit, is a package of Java classes and interfaces for creating full-fledged access to a
window-based graphical user interface system, with mechanisms for graphics display, event management, text and graphics
primitives, user-interface components, and cross-platform layout. Applets are also an integral part of the awt.

Today has been a big day; the lesson has brought together everything you've learned up to this point about simple applet management
and added a lot more about creating applets, panels, and user-interface components and managing the interactions between all of
them. With the information you got today and the few bits you'll learn tomorrow, you can create cross-platform Java applications that
do just about anything you want.

Q&A

Q: I really dislike working with layout managers; they're either too simplistic or too complicated (grid bag layout). Even
with a whole lot of tinkering, I can never get my applets to look like I want them to. All I want to do is define the sizes
of my components and put them at an x and y position on the screen. Can I do this?

A: I'm going to tell you how to do this, but not without a lecture.
Java applications and the awt were designed such that the same graphical user interface could run equally well on different
platforms and with different resolutions, different fonts, different screen sizes, and so on. Relying on pixel coordinates in this
case is a really bad idea; variations from one platform to another or even from one Java environment to another on the same
platform can mess up your careful layouts such that you can easily have components overlapping or obscuring each other,
the edges of your applet cut off, or other layout disasters. Just as an example-I found significant differences in the layout of
the same applet running in the JDK's appletviewer and in Netscape, both on Windows 95, side by side. Can you
guarantee that your applet will always be run in precisely the same environment as the one in which you designed it? Layout
managers, by dynamically placing elements on the screen, get around these problems. This does mean that your applet may
end up looking not quite right on any platform-but at least it's usable on any platform. New versions of the awt promise to
offer better layout and UI design controls.
Still not convinced? Well, then. To make a component a specific size and to place it at a particular position, use a null layout
manager and the reshape() method:

setLayout(null);
Button myButton (new Button("OK");
mybutton.reshape(10, 10, 30, 15);

You can find out more about reshape() in the Component class.
Q: I was exploring the awt classes, and I saw this subpackage called peer. There are also references to the peer classes

sprinkled throughout the API documentation. What do peers do?
A: Peers are responsible for the platform-specific parts of the awt. For example, when you create a Java awt window, you have

an instance of the Window class that provides generic window behavior, and then you have an instance of a class
implementing WindowPeer that creates the very specific window for that platform-a motif window under X Window, a
Macintosh-style window under the Macintosh, or a Windows 95 window under Windows 95. These "peer" classes also
handle communication between the window system and the Java window itself. By separating the generic component
behavior (the awt classes) from the actual system implementation and appearance (the peer classes), you can focus on
providing behavior in your Java application and let the Java implementation deal with the platform-specific details.

Q: There's a whole lot of functionality in the awt that you haven't talked about here. Why?
A: Given that even a basic introduction took this long, I figured that if I put in even more detail than I already have, this book

would turn into Teach Yourself Java in 21 Days Plus a Few Extra for the awt Stuff.
 As it is, I've left windows, menus, and dialog boxes until tomorrow, so you'll have to wait for those. But you can find out

about a lot of the other features of awt merely by exploring the API documentation. Start with the Applet class and
examine the sorts of methods you can call. Then look at Panel, from which Applet inherits-you have all that class's
functionality as well. The superclass of Panel is Container, which provides still more interesting detail. Component
comes next. Explore the API and see what you can do with it. You might find something interesting.

Q: I have a new button class I defined to look different from the standard awt button objects. I'd like to implement
callbacks on this button (that is, to execute an arbitrary function when the button is pressed), but I can't figure out
how to get Java to execute an arbitrary method. In C++ I'd just have a pointer to a function. In Smalltalk I'd use
perform:. How can I do this in Java?

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (38 of 39) [11/06/2000 7:46:06 PM]



A: You can't; Java doesn't have this facility. This is why normal button actions are executed from the generic action()
method rather than using a mechanism for actions attached to the button itself (which would be more object-oriented, easier
to extend, and wouldn't require a whole lot of if...elses inside action()).

   

Day 13 -- Creating User Interfaces with the awt

file:///G|/ebooks/1575211831/ch13.htm (39 of 39) [11/06/2000 7:46:06 PM]



file:///G|/ebooks/1575211831/f13-1.gif

file:///G|/ebooks/1575211831/f13-1.gif [11/06/2000 7:46:07 PM]



file:///G|/ebooks/1575211831/f13-2.gif

file:///G|/ebooks/1575211831/f13-2.gif [11/06/2000 7:46:08 PM]



file:///G|/ebooks/1575211831/f13-3.gif

file:///G|/ebooks/1575211831/f13-3.gif [11/06/2000 7:46:08 PM]



file:///G|/ebooks/1575211831/f13-4.gif

file:///G|/ebooks/1575211831/f13-4.gif [11/06/2000 7:46:08 PM]



file:///G|/ebooks/1575211831/f13-5.gif

file:///G|/ebooks/1575211831/f13-5.gif [11/06/2000 7:46:09 PM]



file:///G|/ebooks/1575211831/f13-6.gif

file:///G|/ebooks/1575211831/f13-6.gif [11/06/2000 7:46:09 PM]



file:///G|/ebooks/1575211831/f13-7.gif

file:///G|/ebooks/1575211831/f13-7.gif [11/06/2000 7:46:09 PM]



file:///G|/ebooks/1575211831/f13-8.gif

file:///G|/ebooks/1575211831/f13-8.gif [11/06/2000 7:46:10 PM]



file:///G|/ebooks/1575211831/f13-9.gif

file:///G|/ebooks/1575211831/f13-9.gif [11/06/2000 7:46:10 PM]



file:///G|/ebooks/1575211831/f13-10.gif

file:///G|/ebooks/1575211831/f13-10.gif [11/06/2000 7:46:11 PM]



file:///G|/ebooks/1575211831/f13-11.gif

file:///G|/ebooks/1575211831/f13-11.gif [11/06/2000 7:46:11 PM]



file:///G|/ebooks/1575211831/f13-12.gif

file:///G|/ebooks/1575211831/f13-12.gif [11/06/2000 7:46:11 PM]



file:///G|/ebooks/1575211831/f13-13.gif

file:///G|/ebooks/1575211831/f13-13.gif [11/06/2000 7:46:12 PM]



file:///G|/ebooks/1575211831/f13-14.gif

file:///G|/ebooks/1575211831/f13-14.gif [11/06/2000 7:46:12 PM]



file:///G|/ebooks/1575211831/f13-15.gif

file:///G|/ebooks/1575211831/f13-15.gif [11/06/2000 7:46:12 PM]



file:///G|/ebooks/1575211831/f13-16.gif

file:///G|/ebooks/1575211831/f13-16.gif [11/06/2000 7:46:12 PM]



file:///G|/ebooks/1575211831/f13-17.gif

file:///G|/ebooks/1575211831/f13-17.gif [11/06/2000 7:46:13 PM]



file:///G|/ebooks/1575211831/f13-18.gif

file:///G|/ebooks/1575211831/f13-18.gif [11/06/2000 7:46:13 PM]



file:///G|/ebooks/1575211831/f13-19.gif

file:///G|/ebooks/1575211831/f13-19.gif [11/06/2000 7:46:13 PM]



file:///G|/ebooks/1575211831/f13-20.gif

file:///G|/ebooks/1575211831/f13-20.gif [11/06/2000 7:46:14 PM]



file:///G|/ebooks/1575211831/f13-21.gif

file:///G|/ebooks/1575211831/f13-21.gif [11/06/2000 7:46:14 PM]



file:///G|/ebooks/1575211831/f13-22.gif

file:///G|/ebooks/1575211831/f13-22.gif [11/06/2000 7:46:14 PM]



file:///G|/ebooks/1575211831/f13-23.gif

file:///G|/ebooks/1575211831/f13-23.gif [11/06/2000 7:46:15 PM]



file:///G|/ebooks/1575211831/f13-24.gif

file:///G|/ebooks/1575211831/f13-24.gif [11/06/2000 7:46:15 PM]



file:///G|/ebooks/1575211831/f13-25.gif

file:///G|/ebooks/1575211831/f13-25.gif [11/06/2000 7:46:15 PM]



Day 11

More Animation, Images, and Sound
by Laura Lemay

CONTENTS
Retrieving and Using Images

Getting Images❍   

Drawing Images❍   

A Note About Image Observers❍   

Modifying Images❍   

●   

Creating Animation Using Images

An Example: Neko❍   

●   

Retrieving and Using Sounds●   

Using Animation Packages

Sun's Animator Applet❍   

Dimension X's Liquid Motion❍   

●   

More About Flicker: Double-Buffering

Creating Applets with Double-Buffering❍   

A Note on Disposing Graphics Contexts❍   

An Example: Checkers Revisited❍   

●   

Summary●   

Q&A●   

Animation is fun and easy to do in Java, but there's only so much you can do with the built-in Java methods for lines
and fonts and colors. For really interesting animation, you have to provide your own images for each frame of the
animation-and having sounds is nice, as well. Today you'll do more with animation, incorporating images and sounds
into Java applets.

Specifically, you'll explore the following topics:

Using bitmap images such as GIF or JPEG files-getting them from the server, loading them into Java, and
displaying them in your applet

●   

Creating animation using images●   

Using sounds-getting them and playing them at the appropriate times●   

Using precompiled animator applets-an easy way to organize animation and sounds in Java●   

Double-buffering-hard-core flicker avoidance●   

Day 11 -- More Animation, Images, and Sound

file:///G|/ebooks/1575211831/ch11.htm (1 of 22) [11/06/2000 7:46:19 PM]



Retrieving and Using Images
Basic image handling in Java is easy. The Image class in the java.awt package provides abstract methods to
represent common image behavior, and special methods defined in Applet and Graphics give you everything you
need to load and display images in your applet as easily as drawing a rectangle. In this section, you'll learn about how
to get and draw images in your Java applets.

Getting Images

To display an image in your applet, you first must load that image over the Net into your Java program. Images are
stored as separate files from your Java class files, so you have to tell Java where to find them.

The Applet class provides a method called getImage(), which loads an image and automatically creates an
instance of the Image class for you. To use it, all you have to do is import the java.awt.Image class into your
Java program, and then give getImage the URL of the image you want to load. There are two ways of doing the
latter step:

The getImage() method with a single argument (an object of type URL) retrieves the image at that URL.●   

The getImage() method with two arguments: the base URL (also a URL object) and a string representing the
path or filename of the actual image (relative to the base).

●   

Although the first way may seem easier (just plug in the URL as a URL object), the second is more flexible.
Remember, because you're compiling Java files, if you include a hard-coded URL of an image and then move your
files around to a different location, you have to recompile all your Java files.

The latter form, therefore, is usually the one to use. The Applet class also provides two methods that will help with
the base URL argument to getImage():

The getDocumentBase() method returns a URL object representing the directory of the HTML file that
contains this applet. So, for example, if the HTML file is located at
http://www.myserver.com/htmlfiles/javahtml/, getDocumentBase() returns a URL
pointing to that path.

●   

The getCodeBase() method returns a string representing the directory in which this applet is
contained-which may or may not be the same directory as the HTML file, depending on whether the
CODEBASE attribute in <APPLET> is set or not.

●   

Whether you use getDocumentBase() or getCodebase() depends on whether your images are relative to
your HTML files or relative to your Java class files. Use whichever one applies better to your situation. Note that
either of these methods is more flexible than hard-coding a URL or pathname into the getImage() method; using
either getDocumentBase() or getCodeBase() enables you to move your HTML files and applets around and
Java can still find your images. (This assumes, of course, that you move the class files and the images around together.
If you move the images somewhere else and leave the class files where they are, you'll have to edit and recompile your
source.)

Here are a few examples of getImage, to give you an idea of how to use it. This first call to getImage() retrieves
the file at that specific URL (http://www.server.com/files/image.gif). If any part of that URL
changes, you have to recompile your Java applet to take into account the new path:

Image img = getImage(
    new URL("http://www.server.com/files/image.gif"));

In the following form of getImage, the image.gif file is in the same directory as the HTML files that refer to this
applet:

Day 11 -- More Animation, Images, and Sound

file:///G|/ebooks/1575211831/ch11.htm (2 of 22) [11/06/2000 7:46:19 PM]

http://www.server.com/files/image.gif
http://www.server.com/files/image.gif


Image img = getImage(getDocumentBase(), "image.gif")

In this similar form, the file image.gif is in the same directory as the applet itself:

Image img = getImage(getCodeBase(), "image.gif")

If you have lots of image files, it's common to put them into their own subdirectory. This form of getImage() looks
for the file image.gif in the directory images, which, in turn, is in the same directory as the Java applet:

Image img = getImage(getCodeBase(), "images/image.gif")

If getImage() can't find the file indicated, it returns null. drawImage() on a null image will simply draw
nothing. Using a null image in other ways will probably cause an error.

Note
Currently, Java supports images in the GIF and JPEG formats. Other
image formats may be available later; however, for now, your images
should be in either GIF or JPEG.

Drawing Images

All that stuff with getImage() does nothing except go off and retrieve an image and stuff it into an instance of the
Image class. Now that you have an image, you have to do something with it.

Technical Note
Actually, the loading of images is internally a lot more complex than
this. When you retrieve an image using getImage(), that method
actually spawns a thread to load the image and returns almost
immediately with your Image object. This gives your program the
illusion of almost instantaneously having the image there ready to
use. It may take some time, however, for the actual image to
download and decompress, which may cause your image applets to
draw with only partial images, or for the image to be drawn on the
screen incrementally as it loads (all the examples in this chapter work
like this). You can control how you want your applet to behave given
a partial image (for example, if you want it to wait until it's all there
before displaying it) by taking advantage of the ImageObserver
interface. You'll learn more about ImageObserver later in this
lesson in the section "A Note About Image Observers."

The most likely thing you're going to want to do with an image is display it as you would a rectangle or a text string.
The Graphics class provides two methods to do just this, both called drawImage().

The first version of drawImage() takes four arguments: the image to display, the x and y positions of the top left
corner, and this:

public void paint() {
    g.drawImage(img, 10, 10, this);
}

This first form does what you would expect it to: It draws the image in its original dimensions with the top-left corner
at the given x and y positions. Listing 11.1 shows the code for a very simple applet that loads an image called

Day 11 -- More Animation, Images, and Sound

file:///G|/ebooks/1575211831/ch11.htm (3 of 22) [11/06/2000 7:46:19 PM]



ladybug.gif and displays it. Figure 11.1 shows the obvious result.

Figure 11.1 : The lady bug image.

Listing 11.1. The Ladybug applet.

 1:import java.awt.Graphics;
 2:import java.awt.Image;
 3:
 4:public class LadyBug extends java.applet.Applet {
 5:
 6:    Image bugimg;
 7:
 8:    public void init() {
 9:       bugimg = getImage(getCodeBase(),
10:          "images/ladybug.gif");
11:    }
12:
13:    public void paint(Graphics g) {
14:      g.drawImage(bugimg, 10, 10,this);
15:    }
16:}

In this example the instance variable bugimg holds the ladybug image, which is loaded in the init()method. The
paint()method then draws that image on the screen.

The second form of drawImage() takes six arguments: the image to draw, the x and y coordinates of the top-left
corner, a width and height of the image bounding box, and this. If the width and height arguments for the bounding
box are smaller or larger than the actual image, the image is automatically scaled to fit. By using those extra
arguments, you can squeeze and expand images into whatever space you need them to fit in (keep in mind, however,
that there may be some image degradation from scaling it smaller or larger than its intended size).

One helpful hint for scaling images is to find out the size of the actual image that you've loaded, so you can then scale
it to a specific percentage and avoid distortion in either direction. Two methods defined for the Image class can give
you that information: getWidth() and getHeight(). Both take a single argument, an instance of
ImageObserver, which is used to track the loading of the image (more about this later). Most of the time, you can
use just this as an argument to either getWidth() or getHeight().

If you stored the ladybug image in a variable called bugimg, for example, this line returns the width of that image, in
pixels:

theWidth = bugimg.getWidth(this);

Technical Note
Here's another case where, if the image isn't loaded all the way, you
may get different results. Calling getWidth() or getHeight()
before the image has fully loaded will result in values of -1 for each
one. Tracking image loading with image observers can help you keep
track of when this information appears.

Listing 11.2 shows another use of the ladybug image, this time scaled several times to different sizes (Figure 11.2

Day 11 -- More Animation, Images, and Sound

file:///G|/ebooks/1575211831/ch11.htm (4 of 22) [11/06/2000 7:46:19 PM]



shows the result).

Figuire 11.2: The second Lady bug applet.

Listing 11.2. More ladybugs, scaled.

 1:  import java.awt.Graphics;
 2: import java.awt.Image;
 3:
 4: public class LadyBug2 extends java.applet.Applet {
 5:
 6:     Image bugimg;
 7:
 8:     public void init() {
 9:         bugimg = getImage(getCodeBase(),
10:             "images/ladybug.gif");
11:     }
12:
13:     public void paint(Graphics g) {
14:         int iwidth = bugimg.getWidth(this);
15:         int iheight = bugimg.getHeight(this);
16:         int xpos = 10;
17:
18:         // 25 %
19:        g.drawImage(bugimg, xpos, 10,
20:            iwidth / 4, iheight / 4, this);
21:
22:         // 50 %
23:         xpos += (iwidth / 4) + 10;
24:         g.drawImage(bugimg, xpos , 10,
25:              iwidth / 2, iheight / 2, this);
26:
27:         // 100%
28:         xpos += (iwidth / 2) + 10;
29:         g.drawImage(bugimg, xpos, 10, this);
30:
31:         // 150% x, 25% y
32:         g.drawImage(bugimg, 10, iheight + 30,
33:             (int)(iwidth * 1.5), iheight / 4, this);
34:      }
35: }

A Note About Image Observers

I've been steadfastly ignoring mentioning that last argument to drawImage(): the mysterious this, which also
appears as an argument to getWidth() and getHeight(). Why is this argument used? Its official use is to pass
in an object that functions as an ImageObserver (that is, an object that implements the ImageObserver
interface). Image observers are used to watch the progress of how far along an image is in the loading process and to
make decisions when the image is only fully or partially loaded. So, for example, your applet could pause until all the
images are loaded and ready, or display a "loading" message, or do something else while it was waiting.

Day 11 -- More Animation, Images, and Sound

file:///G|/ebooks/1575211831/ch11.htm (5 of 22) [11/06/2000 7:46:19 PM]



The Applet class, which your applet inherits from, contains a default behavior for image observation (which it
inherits from the Component superclass) that should work in the majority of cases-hence, the this argument to
drawImage(), getWidth(), and getHeight(). The only reason you'll want to use an alternate argument in
its place is if you want more control over what your applet will do in cases where an image may only be partially
loaded, or if tracking lots of images loading asynchronously.

You'll learn more about how to deal with image observers on Day 24, "Advanced Animation and Media."

Modifying Images

In addition to the basics of handling images described in this section, the java.awt.image package provides more
classes and interfaces that enable you to modify images and their internal colors, or to create bitmap images by hand.
You'll learn more about modifying images on Day 25, "Fun with Image Filters."

Creating Animation Using Images
Creating animation with images is much the same as creating animation with fonts, colors, or shapes-you use the same
methods and the same procedures for painting, repainting, and reducing flicker that you learned about yesterday. The
only difference is that you have a stack of images to flip through rather than a set of painting methods.

Probably the best way to show you how to use images for animation is simply to walk through an example. Here's an
extensive one of an animation of a small cat called Neko.

An Example: Neko

Neko was a small Macintosh animation/game written and drawn by Kenji Gotoh in 1989. "Neko" is Japanese for
"cat," and the animation is of a small kitten that chases the mouse pointer around the screen, sleeps, scratches, and
generally acts cute. The Neko program has since been ported to just about every possible platform, as well as rewritten
as a popular screensaver.

For this example, you'll implement a small animation based on the original Neko graphics. Unlike the original Neko
the cat, which was autonomous (it could "sense" the edges of the window and turn and run in a different direction),
this applet merely causes Neko to run in from the left side of the screen, stop in the middle, yawn, scratch its ear, sleep
a little, and then run off to the right.

Note
This is by far the largest of the applets discussed so far in this book,
and if I either print it here and then describe it, or build it up line by
line, you'll be here for days. Instead, I'm going to describe the parts of
this applet independently, and I'm going to leave out the basics-the
stuff you learned yesterday about starting and stopping threads, what
the run() method does, and so on. All the code is printed later today
so that you can put it all together.

Step 1: Collect Your Images

Before you begin writing Java code to construct an animation, you should have all the images that form the animation
itself. For this version of Neko there are nine of them (the original has 36), as shown in Figure 11.3.

Figure 11.3 : The images for Neko.

Note

Day 11 -- More Animation, Images, and Sound

file:///G|/ebooks/1575211831/ch11.htm (6 of 22) [11/06/2000 7:46:19 PM]



The Neko images, as well as the source code for this applet, are
available on the CD.

For this example I've stored these images in a directory called, appropriately, images. Where you store your images
isn't all that important, but you should take note of where you've put them because you'll need that information later on
when you load your images.

Step 2: Organize and Load the Images in Your Applet

Now, on to the applet. The basic idea here is that you have a set of images and you display them one at a time, rapidly,
so that they give the appearance of movement. The easiest way to manage this in Java is to store the images in an
array of class Image, and then to have a special variable to keep track of the current image. As you iterate over the
slots in the array (using a for loop), you can change the value of the current image each time.

For the Neko applet, you'll create instance variables to implement both these things: an array to hold the images,
called nekopics, and a variable of type Image called currentimg, to hold the current image being displayed:

Image nekopics[] = new Image[9];
Image currentimg;

Here the image array has nine slots, as the Neko animation has nine images. If you have a larger or smaller set of
images, you'll have a different number of slots.

Technical Note
The java.util class contains a class (HashTable) that
implements a hash table. For large numbers of images, a hash table is
faster to find and retrieve images from than an array is. Because
there's a small number of images here, and because arrays are better
for fixed-length, repeating animation, I'll use an array here.

Because the Neko animation draws the cat images in different positions on the screen, you'll also want to keep track of
the current x and y positions so that the various methods in this applet know where to start drawing. The y stays
constant for this particular applet (Neko runs left to right at the same y position), but the x may vary. Let's add two
instance variables for those two positions:

int xpos;
int ypos = 50;

Now, on to the body of the applet. During the applet's initialization, you'll read in all the images and store them in the
nekopics array. This is the sort of operation that works especially well in an init() method.

Given that you have nine images with nine different filenames, you could do a separate call to getImage() for each
one. You can save at least a little typing, however, by creating a local array of the file names (nekosrc, an array of
strings) and then use a for loop to iterate over each one and load them in turn. Here's the init() method for the
Neko applet that loads all the images into the nekopics array:

public void init() {

    String nekosrc[] = { "right1.gif", "right2.gif",
            "stop.gif", "yawn.gif", "scratch1.gif",
            "scratch2.gif","sleep1.gif", "sleep2.gif",
            "awake.gif" };
    for (int i=0; i < nekopics.length; i++) {

Day 11 -- More Animation, Images, and Sound

file:///G|/ebooks/1575211831/ch11.htm (7 of 22) [11/06/2000 7:46:19 PM]



        nekopics[i] = getImage(getCodeBase(),
            "images/" + nekosrc[i]);
    }
}

Note here in the call to getImage() that the directory these images are stored in (the image directory) is included as
part of the path.

Step 3: Animate the Images

With the images loaded, the next step is to start animating the bits of the applet. You do this inside the applet's thread's
run() method. In this applet, Neko does five main things:

Runs in from the left side of the screen●   

Stops in the middle and yawns●   

Scratches four times●   

Sleeps●   

Wakes up and runs off to the right side of the screen●   

Although you could animate this applet by merely painting the right image to the screen at the right time, it makes
more sense to write this applet so that many of Neko's activities are contained in individual methods. This way, you
can reuse some of the activities (the animation of  Neko running, in particular) if you want Neko to do things in a
different order.

Let's start by creating a method to make Neko run. Because you're going to be using this one twice, making it generic
is a good plan. Let's create a nekorun() method, which takes two arguments: the x position to start, and the x
position to end. Neko then runs between those two positions (the y remains constant).

void nekorun(int start, int end) {
...
}

There are two images that represent Neko running; to create the running effect, you need to alternate between those
two images (stored in positions 0 and 1 of the image array), as well as move them across the screen. The moving part
is a simple for loop between the start and end arguments, setting the x position to the current loop value.
Swapping the images means merely testing to see which one is active at any turn of the loop and assigning the other
one to the current image. Finally, at each new frame, you'll call repaint() and sleep() for a bit to pause the
animation.

Actually, given that during this animation there will be a lot of pausing of various intervals, it makes sense to create a
utility method that does just that-pause for a given amount of time. The pause() method, therefore, takes one
argument, a number of milliseconds. Here's its definition:

void pause(int time) {
    try { Thread.sleep(time); }
    catch (InterruptedException e) { }
}

Back to the nekorun() method. To summarize, nekorun() iterates from the start position to the end position.
For each turn of the loop, it sets the current x position, sets currentimg to the right animation frame, calls
repaint(), and pauses. Got it? Here's the definition of nekorun:

void nekorun(int start, int end) {

Day 11 -- More Animation, Images, and Sound

file:///G|/ebooks/1575211831/ch11.htm (8 of 22) [11/06/2000 7:46:19 PM]



    for (int i = start; i < end; i+=10) {
        xpos = i;
        // swap images
        if (currentimg == nekopics[0])
            currentimg = nekopics[1];
        else currentimg = nekopics[0];
        repaint();
        pause(150);
    }
}

Note that in that second line you increment the loop by 10 pixels. Why 10 pixels and not, say, 5 or 8? The answer is
determined mostly through trial and error to see what looks right. Ten seems to work best for the animation. When
you write your own animation, you have to play with both the distances and the sleep times until you get an animation
you like.

Speaking of repaint(), let's skip over to that paint() method, which paints each frame. Here the paint()
method is trivially simple; all paint() is responsible for is painting the current image at the current x and y
positions. All that information is stored in instance variables. However, we do want to make sure that the images
actually exist before we draw them (the images might be in the process of loading). To catch this and make sure we
don't try drawing an image that isn't there (resulting in all kinds of errors), we'll test to make sure currentimg isn't
null before calling drawImage() to paint the image:

public void paint(Graphics g) {
    if (currentimg != null)
       g.drawImage(currentimg, xpos, ypos, this);
}

Now let's back up to the run() method, where the main processing of this animation is happening. You've created
the nekorun() method; in run() you'll call that method with the appropriate values to make Neko run from the
left edge of the screen to the center:

// run from one side of the screen to the middle
nekorun(0, size().width / 2);

The second major thing Neko does in this animation is stop and yawn. You have a single frame for each of these
things (in positions 2 and 3 in the array), so you don't really need a separate method to draw them. All you need to do
is set the appropriate image, call repaint(), and pause for the right amount of time. This example pauses for a
second each time for both stopping and yawning-again, using trial and error. Here's the code:

// stop and pause
currentimg = nekopics[2];
repaint();
pause(1000);

// yawn
currentimg = nekopics[3];
repaint();
pause(1000);

Let's move on to the third part of the animation: Neko scratching. There's no horizontal movement for this part of the
animation. You alternate between the two scratching images (stored in positions 4 and 5 of the image array). Because

Day 11 -- More Animation, Images, and Sound

file:///G|/ebooks/1575211831/ch11.htm (9 of 22) [11/06/2000 7:46:19 PM]



scratching is a distinct action, however, let's create a separate method for it.

The nekoscratch() method takes a single argument: the number of times to scratch. With that argument, you can
iterate, and then, inside the loop, alternate between the two scratching images and repaint each time:

void nekoscratch(int numtimes) {
    for (int i = numtimes; i > 0; i--) {
        currentimg = nekopics[4];
        repaint();
        pause(150);
        currentimg = nekopics[5];
        repaint();
        pause(150);
    }
}

Inside the run method, you can then call nekoscratch() with an argument of (4):

// scratch four times
nekoscratch(4);

Onward! After scratching, Neko sleeps. Again, you have two images for sleeping (in positions 6 and 7 of the array),
which you'll alternate a certain number of times. Here's the nekosleep() method, which takes a single number
argument, and animates for that many "turns":

void nekosleep(int numtimes) {
    for (int i = numtimes; i > 0; i--) {
        currentimg = nekopics[6];
        repaint();
        pause(250);
        currentimg = nekopics[7];
        repaint();
        pause(250);
    }
}

Call nekosleep() in the run() method like this:

// sleep for 5 "turns"
nekosleep(5);

Finally, to finish off the applet, Neko wakes up and runs off to the right side of the screen. The waking up image is the
last image in the array (position 8), and you can reuse the nekorun method to finish:

// wake up and run off
currentimg = nekopics[8];
repaint();
pause(500);
nekorun(xpos, size().width + 10);

Step 4: Finish Up

Day 11 -- More Animation, Images, and Sound

file:///G|/ebooks/1575211831/ch11.htm (10 of 22) [11/06/2000 7:46:19 PM]



There's one more thing left to do to finish the applet. The images for the animation all have white backgrounds.
Drawing those images on the default applet background (a medium gray) means an unsightly white box around each
image. To get around the problem, merely set the applet's background to white at the start of the run() method:

setBackground(Color.white);

Got all that? There's a lot of code in this applet, and a lot of individual methods to accomplish a rather simple
animation, but it's not all that complicated. The heart of it, as in the heart of all forms of animation in Java, is to set up
the frame and then call repaint() to enable the screen to be drawn.

Note that you don't do anything to reduce the amount of flicker in this applet. It turns out that the images are small
enough, and the drawing area also small enough, that flicker is not a problem for this applet. It's always a good idea to
write your animation to do the simplest thing first, and then add behavior to make it run cleaner.

To finish up this section, Listing 11.3 shows the complete code for the Neko applet.

Listing 11.3. The final Neko applet.

  1:  import java.awt.Graphics;
  2:  import java.awt.Image;
  3:  import java.awt.Color;
  4:
  5:  public class Neko extends java.applet.Applet
  6:      implements Runnable {
  7:
  8:      Image nekopics[] = new Image[9];
  9:      Image currentimg;
 10:      Thread runner;
 11:      int xpos;
 12:      int ypos = 50;
 13:
 14:      public void init() {
 15:              String nekosrc[] = { "right1.gif", "right2.gif",
 16:              "stop.gif", "yawn.gif", "scratch1.gif",
 17:              "scratch2.gif","sleep1.gif", "sleep2.gif",
 18:              "awake.gif" };
 19:
 20:          for (int i=0; i < nekopics.length; i++) {
 21:              nekopics[i] = getImage(getCodeBase(),
 22:              "images/" + nekosrc[i]);
 23:          }
 24:      }
 25:      public void start() {
 26:          if (runner == null) {
 27:              runner = new Thread(this);
 28:              runner.start();
 29:          }
 30:      }
 31:
 32:      public void stop() {
 33:          if (runner != null) {
 34:              runner.stop();

Day 11 -- More Animation, Images, and Sound

file:///G|/ebooks/1575211831/ch11.htm (11 of 22) [11/06/2000 7:46:19 PM]



 35:              runner = null;
 36:          }
 37:      }
 38:
 39:      public void run() {
 40:
 41:          setBackground(Color.white);
 42:
 43:          // run from one side of the screen to the middle
 44:          nekorun(0, size().width / 2);
 45:
 46:          // stop and pause
 47:          currentimg = nekopics[2];
 48:          repaint();
 49:          pause(1000);
 50:
 51:          // yawn
 52:          currentimg = nekopics[3];
 53:          repaint();
 54:          pause(1000);
 55:
 56:          // scratch four times
 57:          nekoscratch(4);
 58:
 59:          // sleep for 5 "turns"
 60:          nekosleep(5);
 61:
 62:          // wake up and run off
 63:          currentimg = nekopics[8];
 64:          repaint();
 65:          pause(500);
 66:          nekorun(xpos, size().width + 10);
 67:      }
 68:
 69:      void nekorun(int start, int end) {
 70:          for (int i = start; i < end; i += 10) {
 71:              xpos = i;
 72:              // swap images
 73:              if (currentimg == nekopics[0])
 74:                 currentimg = nekopics[1];
 75:              else currentimg = nekopics[0];
 76:              repaint();
 77:              pause(150);
 78:          }
 79:      }
 80: 
 81:      void nekoscratch(int numtimes) {
 82:         for (int i = numtimes; i > 0; i--) {
 83:              currentimg = nekopics[4];
 84:              repaint();
 85:              pause(150);

Day 11 -- More Animation, Images, and Sound

file:///G|/ebooks/1575211831/ch11.htm (12 of 22) [11/06/2000 7:46:19 PM]



 86:              currentimg = nekopics[5];
 87:              repaint();
 88:              pause(150);
 89:          }
 90:      }
 91: 
 92:      void nekosleep(int numtimes) {
 93:         for (int i = numtimes; i > 0; i--) {
 94:              currentimg = nekopics[6];
 95:              repaint();
 96:              pause(250);
 97:              currentimg = nekopics[7];
 98:              repaint();
 99:              pause(250);
100:          }
101: 
102:      void pause(int time) {
103:         try { Thread.sleep(time); }
104:          catch (InterruptedException e) { }
105:      }
106: 
107:      public void paint(Graphics g) {
108:         if (currentimg != null)
109:           g.drawImage(currentimg, xpos, ypos, this);
110:      }
111: }

Retrieving and Using Sounds
Java has built-in support for playing sounds in conjunction with running animation or for sounds on their own. In fact,
support for sound, like support for images, is built into the Applet and awt classes, so using sound in your Java
applets is as easy as loading and using images.

Currently, the only sound format that Java supports is Sun's AU format, sometimes called µ-law format. AU files tend
to be smaller than sound files in other formats, but the sound quality is not very good. If you're especially concerned
with sound quality, you may want your sound clips to be references in the traditional HTML way (as links to external
files) rather than included in a Java applet.

The simplest way to retrieve and play a sound is through the play() method, part of the Applet class and therefore
available to you in your applets. The play() method is similar to the getImage() method in that it takes one of
two forms:

play() with one argument, a URL object, loads and plays the given audio clip at that URL.●   

play() with two arguments, one a base URL and one a pathname, loads and
plays that audio file. The first argument can most usefully be either a call to getDocumentBase() or
getCodeBase().

●   

For example, the following line of code retrieves and plays the sound meow.au, which is contained in the audio
directory. The audio directory, in turn, is located in the same directory as this applet:

play(getCodeBase(), "audio/meow.au");

Day 11 -- More Animation, Images, and Sound

file:///G|/ebooks/1575211831/ch11.htm (13 of 22) [11/06/2000 7:46:19 PM]



The play() method retrieves and plays the given sound as soon as possible after it is called. If it can't find the sound,
you won't get an error; you just won't get any audio when you expect it.

If you want to play a sound repeatedly, start and stop the sound clip, or run the clip as a loop (play it over and over),
things are slightly more complicated-but not much more so. In this case, you use the applet method
getAudioClip() to load the sound clip into an instance of the class AudioClip (part of java.applet-don't
forget to import it) and then operate directly on that AudioClip object.

Suppose, for example, that you have a sound loop that you want to play in the background of your applet. In your
initialization code, you can use this line to get the audio clip:

AudioClip clip = getAudioClip(getCodeBase(),
    "audio/loop.au");

Then, to play the clip once, use the play() method:

clip.play();

To stop a currently playing sound clip, use the stop() method:

clip.stop();

To loop the clip (play it repeatedly), use the loop() method:

clip.loop();

If the getAudioClip() method can't find the sound you indicate, or can't load it for any reason, it returns null.
It's a good idea to test for this case in your code before trying to play the audio clip, because trying to call the
play(), stop(), and loop() methods on a null object will result in an error (actually, an exception).

In your applet, you can play as many audio clips as you need; all the sounds you use will mix together properly as they
are played by your applet.

Note that if you use a background sound-a sound clip that loops repeatedly-that sound clip will not stop playing
automatically when you suspend the applet's thread. This means that even if your reader moves to another page, the
first applet's sounds will continue to play. You can fix this problem by stopping the applet's background sound in your
stop() method:

public void stop() {
    if (runner != null) {
        if (bgsound != null) 
            bgsound.stop();
        runner.stop();
        runner = null;
    }
}

Listing 11.4 shows a simple framework for an applet that plays two sounds: The first, a background sound called
loop.au, plays repeatedly. The second, a horn honking (beep.au), plays every 5 seconds. (I won't bother giving
you a picture of this applet because it doesn't actually display anything other than a simple string to the screen.)

Listing 11.4. The AudioLoop applet.

Day 11 -- More Animation, Images, and Sound

file:///G|/ebooks/1575211831/ch11.htm (14 of 22) [11/06/2000 7:46:19 PM]



 1: import java.awt.Graphics;
 2: import java.applet.AudioClip;
 3:
 4: public class AudioLoop extends java.applet.Applet
 5:  implements Runnable {
 6:
 7:     AudioClip bgsound;
 8:     AudioClip beep;
 9:     Thread runner;
10:
11:     public void start() {
12:         if (runner == null) {
13:             runner = new Thread(this);
14:             runner.start();
15:          }
16:      }
17:
18:     public void stop() {
19:         if (runner != null) {
20:             if (bgsound != null) bgsound.stop();
21:             runner.stop();
22:             runner = null;
23:         }
24:     }
25:
26:     public void init() {
27:         bgsound = getAudioClip(getCodeBase(),"audio/loop.au");
28:         beep = getAudioClip(getCodeBase(), "audio/beep.au");
29:     }
30:
31:     public void run() {
32:         if (bgsound != null) bgsound.loop();
33:         while (runner != null) {
34:             try { Thread.sleep(5000); }
35:             catch (InterruptedException e) { }
36:             if (beep != null) beep.play();
37:         }
38:     }
39:
40:     public void paint(Graphics g) {
41:         g.drawString("Playing Sounds....", 10, 10);
42:     }
43: }

There are only a few things to note about this applet. First, note the init() method in lines 26 to 29, which loads
both the loop.au and the beep.au sound files. We've made no attempt here to make sure these files actually load
as expected, so the possibility exists that the bgsound and beep instance variables may end up with the null values
if the file cannot load. In that case, we won't be able to call loop(), stop(), or any other methods, so we should
make sure we test for that elsewhere in the applet.

And we have tested for null several places here, particularly in the run() method in lines 32 and 36. These lines start

Day 11 -- More Animation, Images, and Sound

file:///G|/ebooks/1575211831/ch11.htm (15 of 22) [11/06/2000 7:46:19 PM]



the sounds looping and playing, but only if the values of the bgsound and beep variables are something other than
null.

Finally, note line 20, which explicitly turns off the background sound if the thread is also being stopped. Because
background sounds do not stop playing even when the thread has been stopped, you have to explicitly stop them here.

Using Animation Packages
Up until this point, I've described animation in a fair amount of detail, in order to help explain other topics that you
can use in applets that aren't necessarily animation (for example, graphics, threads, managing bitmap images).

If the purpose of your applet is animation, however, in many cases writing your own applet is overkill.
General-purpose applets that do nothing but animation exist, and you can use those applets in your own Web pages
with your own set of images-all you need to do is modify the HTML files to give different parameters to the applet
itself. Using these packages makes creating simple animation in Java far easier, particularly for Java developers who
aren't as good at the programming side of Java.

Two animation packages are particularly useful in this respect: Sun's Animator applet and Dimension X's Liquid
Motion.

Sun's Animator Applet

Sun's Animator applet, one of the examples in the 1.0.2 JDK, provides a simple, general-purpose applet for creating
animation with Java. You compile the code and create an HTML file with the appropriate parameters for the
animation. Using the Animator applet, you can do the following:

Create an animation loop, that is, an animation that plays repeatedly.●   

Add a soundtrack to the applet.●   

Add sounds to be played at individual frames.●   

Indicate the speed at which the animation is to occur.●   

Specify the order of the frames in the animation-which means that you can reuse frames that repeat during the
course of the animation.

●   

Even if you don't intend to use Sun's Animator for your own animation, you might want to look at the code. The
Animator applet is a great example of how animation works in Java and the sorts of clever tricks you can use in a Java
applet.

Dimension X's Liquid Motion

While Sun's Animator applet is a simple (and free) example of a general-purpose animation tool, Liquid Motion from
Dimension X is much more ambitious. Liquid Motion is an entire GUI application, running in Java, with which you
build animation (they call them scenes) given a set of media files (images and sound). If you've ever used Macromedia
Director to create multimedia presentations (or Shockwave presentations for the Web), you're familiar with the
approach. To use Liquid Motion, you import your media files, and then you can arrange images on the screen, arrange
them in frames over points in time, have them move along predefined paths, and add colors and backgrounds and
audio tracks simply by clicking buttons. Figure 11.4 shows the main Liquid Motion screen.

Figure 11.4 : Liquid Motion.

When you save a Liquid Motion scene as HTML, the program saves all the Java class files you'll need to run the
presentation and writes an HTML file, complete with the appropriate <APPLET> tags and parameters, to run that
scene. All you need to do is move the files to your Web server and you're done-there's no Java programming involved

Day 11 -- More Animation, Images, and Sound

file:///G|/ebooks/1575211831/ch11.htm (16 of 22) [11/06/2000 7:46:19 PM]



whatsoever. But even if you are a Java programmer (as you will be by the time you finish this book), you can extend
the Liquid Motion framework to include new behavior and features.

Because Liquid Motion is a Java application, it runs on any platform that Java runs on (Windows, UNIX, Mac). It is a
commercial application, costing $149.99 for the Windows and UNIX versions (the Mac version exists, but does not
appear to cost anything). Demonstration copies of the Solaris and Windows versions, which allow you to play with the
interface but not to publish the files on the Web, are available at Dimension X's Web site.

Liquid Motion is worth checking out if you intend to do a lot of animation-type applets in your Web pages; using
Liquid Motion its fairly easy to get up and running, far faster than working directly with the code. Check out
http://www.dimensionx.com/products/lm/ for more information and demonstration versions.

More About Flicker: Double-Buffering
Yesterday you learned two simple ways to reduce flickering in Java animation. Although you learned specifically
about animation using drawing, flicker can also result from animation using images. In addition to the two
flicker-reducing methods described yesterday, there is one other way to reduce flicker: double-buffering.

With double-buffering, you create a second surface (offscreen, so to speak), do all your painting to that offscreen
surface, and then draw the whole surface at once onto the actual applet (and onto the screen) at the end-rather than
drawing to the applet's actual graphics surface. Because all the work actually goes on behind the scenes, there's no
opportunity for interim parts of the drawing process to appear accidentally and disrupt the smoothness of the
animation.

Double-buffering is the process of doing all your drawing to an offscreen buffer and then displaying that entire screen
at once. It's called double-buffering because there are two drawing buffers and you switch between them.

Double-buffering isn't always the best solution. If your applet is suffering from flicker, try overriding update() and
drawing only portions of the screen first; that may solve your problem. Double-buffering is less efficient than regular
buffering and also takes up more memory and space, so, if you can avoid it, make an effort to do so. In terms of nearly
eliminating animation flicker, however, double-buffering works exceptionally well.

Creating Applets with Double-Buffering

To create an applet that uses double-buffering, you need two things: an offscreen image to draw on and a graphics
context for that image. Those two together mimic the effect of the applet's drawing surface: the graphics context (an
instance of Graphics) to provide the drawing methods, such as drawImage (and drawString), and the Image
to hold the dots that get drawn.

There are four major steps to adding double-buffering to your applet. First, your offscreen image and graphics context
need to be stored in instance variables so that you can pass them to the paint() method. Declare the following
instance variables in your class definition:

Image offscreenImage;
Graphics offscreenGraphics;

Second, during the initialization of the applet, you'll create an Image and a Graphics object and assign them to
these variables (you have to wait until initialization so you know how big they're going to be). The createImage()
method gives you an instance of Image, which you can then send the getGraphics() method in order to get a
new graphics context for that image:

offscreenImage = createImage(size().width,
    size().height);

Day 11 -- More Animation, Images, and Sound

file:///G|/ebooks/1575211831/ch11.htm (17 of 22) [11/06/2000 7:46:19 PM]

http://www.dimensionx.com/products/lm/


offscreenGraphics = offscreenImage.getGraphics();

Now, whenever you have to draw to the screen (usually in your paint() method), rather than drawing to paint's
graphics, draw to the offscreen graphics. For example, to draw an image called img at position 10,10, use this line:

offscreenGraphics.drawImage(img, 10, 10, this);

Finally, at the end of your paint method, after all the drawing to the offscreen image is done, add the following line
to place the offscreen buffer on to the real screen:

g.drawImage(offscreenImage, 0, 0, this);

Of course, you most likely will want to override update() so that it doesn't clear the screen between paintings:

public void update(Graphics g) {
    paint(g);
}

Let's review those four steps:

Add instance variables to hold the image and graphics contexts for the offscreen buffer.1.  

Create an image and a graphics context when your applet is initialized.2.  

Do all your applet painting to the offscreen buffer, not the applet's drawing surface.3.  

At the end of your paint() method, draw the offscreen buffer to the real screen.4.  

A Note on Disposing Graphics Contexts

If you make extensive use of graphics contexts in your applets or applications, be aware that those contexts will often
continue to stay around after you're done with them, even if you no longer have any references to them. Graphics
contexts are special objects in the awt that map to the native operating system; Java's garbage collector cannot release
those contexts by itself. If you use multiple graphics contexts or use them repeatedly, you'll want to explicitly get rid
of those contexts once you're done with them.

Use the dispose() method to explicitly clean up a graphics context. A good place to put this might be in the
applet's destroy() method (which you learned about on Day 8, "Java Applet Basics"; it was one of the primary
applet methods, along with init(), start(), and stop()):

public void destroy() {
  offscreenGraphics.dispose();
}

An Example: Checkers Revisited

Yesterday's example featured the animated moving red oval to demonstrate animation flicker and how to reduce it.
Even with the operations you did yesterday, however, the Checkers applet still flashed occasionally. Let's revise that
applet to include double-buffering.

First, add the instance variables for the offscreen image and its graphics context:

Image offscreenImg;
Graphics offscreenG;

Day 11 -- More Animation, Images, and Sound

file:///G|/ebooks/1575211831/ch11.htm (18 of 22) [11/06/2000 7:46:19 PM]



Second, add an init method to initialize the offscreen buffer:

public void init() {
    offscreenImg = createImage(size().width, size().height);
    offscreenG = offscreenImg.getGraphics();
}

Third, modify the paint() method to draw to the offscreen buffer instead of to the main graphics buffer:

public void paint(Graphics g) {
    // Draw background
    offscreenG.setColor(Color.black);
    offscreenG.fillRect(0, 0, 100, 100);
    offscreenG.setColor(Color.white);
    offscreenG.fillRect(100, 0, 100, 100);

    // Draw checker
    offscreenG.setColor(Color.red);
    offscreenG.fillOval(xpos, 5, 90, 90);

    g.drawImage(offscreenImg, 0, 0, this);
}

Note that you're still clipping the main graphics rectangle in the update() method, as you did yesterday; you don't
have to change that part. The only part that is relevant is that final line in the paint() method wherein everything is
drawn offscreen before finally being displayed.

Finally, in the applet's destroy() method we'll explicitly dispose of the graphics context stored in offscreenG:

public void destroy() {
   offscreenG.dispose();
}

Listing 11.5 shows the final code for the Checkers applet (Checkers3.java), which includes double-buffering.

Listing 11.5. Checkers revisited, with double-buffering.

 1: import java.awt.Graphics;
 2: import java.awt.Color;
 3: import java.awt.Image;
 4:
 5: public class Checkers3 extends java.applet.Applet implements Runnable {
 6:
 7:   Thread runner;
 8:   int xpos;
 9:   int ux1,ux2;
10:   Image offscreenImg;
11:   Graphics offscreenG;
12:
13:   public void init() {
14:     offscreenImg = createImage(this.size().width, this.size().height);
15:     offscreenG = offscreenImg.getGraphics();

Day 11 -- More Animation, Images, and Sound

file:///G|/ebooks/1575211831/ch11.htm (19 of 22) [11/06/2000 7:46:19 PM]



16:   }
17:
18:   public void start() {
19:     if (runner == null); {
20:       runner = new Thread(this);
21:       runner.start();
22:     }
23:   }
24:
25:   public void stop() {
26:     if (runner != null) {
27:       runner.stop();
28:       runner = null;
29:     }
30:   }
31: 
32:   public void run() {
33:     setBackground(Color.blue);
34:     while (true) {
35:       for (xpos = 5; xpos <= 105; xpos+=4) {
36:          if (xpos == 5) ux2 = size().width;
37:          else ux2 = xpos + 90;
38:          repaint();
39:          try { Thread.sleep(100); }
40:          catch (InterruptedException e) { }
41:          if (ux1 == 0) ux1 = xpos;
42:       }
43:       xpos = 5;
44:     }
45:   }
46: 
47:   public void update(Graphics g) {
48:     g.clipRect(ux1, 5, ux2 - ux1, 95);
49:     paint(g);
50:   }
51: 
52:   public void paint(Graphics g) {
53:     // Draw background
54:     offscreenG.setColor(Color.black);
55:     offscreenG.fillRect(0,0,100,100);
56:     offscreenG.setColor(Color.white);
57:     offscreenG.fillRect(100,0,100,100);
58: 
59:     // Draw checker
60:     offscreenG.setColor(Color.red);
61:     offscreenG.fillOval(xpos,5,90,90);
62: 
63:     g.drawImage(offscreenImg,0,0,this);
64: 
65:     // reset the drawing area
66:     ux1 = ux2 = 0;

Day 11 -- More Animation, Images, and Sound

file:///G|/ebooks/1575211831/ch11.htm (20 of 22) [11/06/2000 7:46:19 PM]



67:   }
68: 
69:   public void destroy() {
70:      offscreenG.dispose();
71:   }
72: }

Summary
Three major topics are the focus of today's lesson. First, you learned about using images in your applets-locating them,
loading them, and using the drawImage() method to display them, either at their normal size or scaled to different
sizes. You also learned how to create animation in Java using images.

Second, you learned how to use sounds, which can be included in your applets any time you need them-at specific
moments or as background sounds that can be repeated while the applet executes. You learned how to locate, load,
and play sounds using both the play() and the getAudioClip() methods.

Finally, you learned about double-buffering, a technique that enables you to virtually eliminate flicker in your
animation, at some expense of animation efficiency and speed. Using images and graphics contexts, you can create an
offscreen buffer to draw to, the result of which is then displayed to the screen at the last possible moment.

Q&A

Q: In the Neko program, you put the image loading into the init() method. It seems to me that it might
take Java a long time to load all those images, and because init() isn't in the main thread of the
applet, there's going to be a distinct pause there. Why not put the image loading at the beginning of the
run() method instead?

A: There are sneaky things going on behind the scenes. The getImage() method doesn't actually load the
image; in fact, it returns an Image object almost instantaneously, so it isn't taking up a large amount of
processing time during initialization. The image data that getImage() points to isn't actually loaded until
the image is needed. This way, Java doesn't have to keep enormous images around in memory if the program
is going to use only a small piece. Instead, it can just keep a reference to that data and retrieve what it needs
later.

Q: I compiled and ran the Neko applet. Something weird is going on; the animation starts in the middle
and drops frames. It's as if only some of the images have loaded when the applet is run.

A: That's precisely what's going on. Because image loading doesn't actually load the image right away, your
applet may be merrily animating blank screens while the images are still being loaded. Depending on how
long it takes those images to load, your applet may appear to start in the middle, to drop frames, or to not
work at all.
There are three possible solutions to this problem. The first is to have the animation loop (that is, start over
from the beginning once it stops). Eventually the images will load and the animation will work correctly. The
second solution, and not a very good one, is to sleep for a while before starting the animation, to pause while
the images load. The third, and best solution, is to use image observers to make sure no part of the animation
plays before its images have loaded. You'll learn more about image observers on Day 24.

Q: I wrote an applet to do a background sound using the getAudioClip() and loop() methods. The
sound works great, but it won't stop. I've tried suspending the current thread and killing the thread
together, but the sound goes on.

Day 11 -- More Animation, Images, and Sound

file:///G|/ebooks/1575211831/ch11.htm (21 of 22) [11/06/2000 7:46:19 PM]



A: I mentioned this as a small note in the section on sounds; background sounds don't run in the main thread of
the applet, so if you stop the thread, the sound keeps going. The solution is easy-in the same method where
you stop the thread, also stop the sound, like this:

runner.stop() //stop the thread
bgsound.stop() //also stop the sound

Q: If I use double-buffering, do I still have to clip to a small region of the screen? Because
double-buffering eliminates flicker, it seems easier to draw the whole frame every time.

A: Easier, yes, but less efficient. Drawing only part of the screen not only reduces flicker, it often also limits the
amount of work your applet has to do in the paint() method. The faster the paint() method works, the
faster and smoother your animation will run. Using clip regions and drawing only what is necessary is a good
practice to follow in general-not just if you have a problem with flicker.

   

Day 11 -- More Animation, Images, and Sound

file:///G|/ebooks/1575211831/ch11.htm (22 of 22) [11/06/2000 7:46:19 PM]



file:///G|/ebooks/1575211831/f11-1.gif

file:///G|/ebooks/1575211831/f11-1.gif [11/06/2000 7:46:20 PM]



file:///G|/ebooks/1575211831/f11-2.gif

file:///G|/ebooks/1575211831/f11-2.gif [11/06/2000 7:46:20 PM]



file:///G|/ebooks/1575211831/f11-3.gif

file:///G|/ebooks/1575211831/f11-3.gif [11/06/2000 7:46:21 PM]



file:///G|/ebooks/1575211831/f11-4.gif

file:///G|/ebooks/1575211831/f11-4.gif [11/06/2000 7:46:21 PM]



Day 24

Advanced Animation and Media
by Michael Morrison

CONTENTS
What Is Animation?●   

Types of Animation

Frame-Based Animation❍   

Cast-Based Animation❍   

●   

Tracking Images●   

The MediaTracker Class●   

Implementing Sprite Animation

The Sprite Class❍   

The SpriteVector Class❍   

The Background Classes❍   

●   

Sample Applet: Sharks●   

Summary●   

Q&A●   

A lot of people were stirred when the Web first brought full-color images to the Internet. These days, color images are
simply to be expected, while a growing interest is being placed on animation, or moving images. If a picture can tell a
thousand words, imagine what a bunch of pictures shown very rapidly can tell!

Today's lesson focuses on how the effect of animated movement is conveyed in Java using a series of images displayed
rapidly. This technique is really nothing new to computers or programming, although it is pretty new to the Web. If you're
thinking this description of today's lesson sounds awfully familiar, it's because you've already learned about animation in
earlier lessons. The difference is that today's lesson is going to take you much further in learning about what animation is
and how to do some really powerful things with it.

More specifically, today you'll learn about the following:

Animation theory●   

The primary types of animation●   

Transparency, z-order, collision detection, and a few other cool terms you can lay on your friends●   

Tracking images using the Java media tracker●   

Implementing your own sprite animation classes●   

Although part of today's lesson is theoretical, you'll finish up the lesson by creating a powerful set of reusable sprite
animation classes. Don't worry if you don't know what a sprite is yet-you will soon enough!

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (1 of 27) [11/06/2000 7:46:26 PM]



What Is Animation?
Before getting into animation as it relates to Java, it's important to understand the basics of what animation is and how it
works. So let's begin by asking the fundamental question: What is animation? Put simply, animation is the illusion of
movement. Am I telling you that every animation you've ever seen is really just an illusion? That's exactly right! And
probably the most surprising animated illusion is one that captured our attention long before modern computers-the
television. When you watch television, you see lots of things moving around, but what you perceive as movement is really
just a trick being played on your eyes.

New Term
Animation is the process of simulating movement.

In the case of television, the illusion of movement is created by displaying a rapid succession of images with slight
changes in content. The human eye perceives these changes as movement because of its low visual acuity. I'll spare you
the biology lesson of why this is so; the point is that our eyes are fairly easy to trick into falling for the illusion of
animation. More specifically, the human eye can be tricked into perceiving animated movement with as low as 12 frames
of movement per second. Animation speed is measured in frames per second (fps), which is the number of animation
frames, or image changes, presented every second.

New Term
Frames per second (fps) is the number of animation frames, or image
changes, presented every second.

Although 12fps is technically enough to fool our eyes into seeing animation, animations at speeds this low often end up
looking somewhat jerky. Most professional animations therefore use a higher frame rate. Television, for example, uses
30fps. When you go to the movies, you see motion pictures at about 24fps. It's pretty apparent that these frame rates are
more than enough to captivate our attention and successfully create the illusion of movement.

When programming animation in Java, you typically have the ability to manipulate the frame rate a decent amount. The
most obvious limitation on frame rate is the speed at which the computer can generate and display the animation frames. In
Java, this is a crucial point because Java applets aren't typically known to be speed demons. However, the recent release of
just-in-time Java compilers has helped speed up Java applets, along with alleviating some of the performance concerns
associated with animation.

Note
Currently, both Netscape Navigator 3.0 and Microsoft Internet
Explorer 3.0 support just-in-time compilation of Java applets.

Types of Animation
I know you're probably itching to see some real animation in Java, but there are a few more issues to cover before getting
into the details of animation programming. More specifically, it's important for you to understand the primary types of
animation used in Java programming. There are actually a lot of different types of animation, all of which are useful in
different instances. However, for the purposes of implementing animation in Java, I've broken animation down into two
basic types: frame-based animation and cast-based animation.

Frame-Based Animation

The most simple type of animation is frame-based animation, which is the primary type of animation found on the Web.
Frame-based animation involves simulating movement by displaying a sequence of pregenerated, static frame images. A
movie is a perfect example of frame-based animation; each frame of the film is a frame of animation, and when the frames
are shown in rapid succession, they create the illusion of movement.

New Term

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (2 of 27) [11/06/2000 7:46:26 PM]



Frame-based animation simulates movement by displaying a
sequence of pregenerated, static frame images.

Frame-based animation has no concept of a graphical object distinguishable from the background; everything appearing in
a frame is part of that frame as a whole. The result is that each frame image contains all the information necessary for that
frame in a static form. This is an important point because it distinguishes frame-based animation from cast-based
animation, which you'll learn about next.

Note
Much of the animation used in Web sites is implemented using
animated GIF images, which involves storing multiple animation
frames in a single GIF image file. Animated GIFs are a very good
example of frame-based animation.

Cast-Based Animation

A more powerful animation technique often employed in games and educational software is cast-based animation, which
is also known as sprite animation. Cast-based animation involves graphical objects that move independently of a
background. At this point, you may be a little confused by my usage of the term "graphical object" when referring to parts
of an animation. In this case, a graphical object is something that logically can be thought of as a separate entity from the
background of an animation image. For example, in an animation of the solar system, the planets would be separate
graphical objects that are logically independent of the starry background.

New Term
Cast-based animation simulates movement using graphical objects
that move independently of a background.

Each graphical object in a cast-based animation is referred to as a sprite and can have a position that varies over time. In
other words, sprites have a velocity associated with them that determines how their position changes over time. Almost
every computer game uses sprites to some degree. For example, every object in the classic Asteroids game is a sprite that
moves independently of the black background.

New Term
A sprite is a graphical object that can move independently of a
background or other objects.

Note
You may be wondering where the term cast-based animation comes
from. It comes from the fact that sprites can be thought of as cast
members moving around on a stage. This analogy of relating
computer animation to theatrical performance is very useful. By
thinking of sprites as cast members and the background as a stage,
you can take the next logical step and think of an animation as a
theatrical performance. In fact, this isn't far from the mark, because
the goal of theatrical performances is to entertain the audience by
telling a story through the interaction of the cast members. Likewise,
cast-based animations use the interaction of sprites to entertain the
user, while often telling a story or at least getting some point across.

Even though the fundamental principle behind sprite animation is the positional movement of a graphical object, there is
no reason you can't incorporate frame-based animation into a sprite. Incorporating frame-based animation into a sprite
allows you to change the image of the sprite as well as alter its position. This hybrid type of animation is what you will
implement later today in the Java sprite classes.

I mentioned in the frame-based animation discussion that television is a good example of frame-based animation. But can

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (3 of 27) [11/06/2000 7:46:26 PM]



you think of something on television that is created in a manner similar to cast-based animation (other than animated
movies and cartoons)? Have you ever wondered how weatherpeople magically appear in front of a computer-generated
map showing the weather? The news station uses a technique known as blue-screening, which enables them to overlay the
weatherperson on top of the weather map in real time. It works like this: The person stands in front of a blue backdrop,
which serves as a transparent background. The image of the weatherperson is overlaid onto the weather map; the trick is
that the blue background is filtered out when the image is overlaid so that it is effectively transparent. In this way, the
weatherperson is acting exactly like a sprite!

Transparency

The weatherperson example brings up a very important point regarding sprites: transparency. Because bitmapped images
are rectangular by nature, a problem arises when sprite images aren't rectangular in shape. In sprites that aren't rectangular
in shape, which is the majority of sprites, the pixels surrounding the sprite image are unused. In a graphics system without
transparency, these unused pixels are drawn just like any others. The end result is sprites that have visible rectangular
borders around them, which completely destroys the effectiveness of having sprites overlaid on a background image.

What's the solution? Well, one solution is to make all your sprites rectangular. Unless you're planning to write an applet
showing dancing boxes, a more realistic solution is transparency, which allows you to define a certain color in an image as
unused, or transparent. When pixels of this color are encountered by graphics drawing routines, they are simply skipped,
leaving the original background intact. Transparent colors in images act exactly like the weatherperson's blue screen.

New Term
Transparent colors are colors in an image that are unused, meaning
that they aren't drawn when the rest of the colors in the image are
drawn.

You're probably thinking that implementing transparency involves a lot of low-level bit twiddling and image pixel
manipulation. In some programming environments you would be correct in this assumption, but not in Java. Fortunately,
transparency is already supported in Java by way of the GIF 89a image format. In the GIF 89a image format, you simply
specify a color of the GIF image that serves as the transparent color. When the image is drawn, pixels matching the
transparent color are skipped and left undrawn, leaving the background pixels unchanged. No more dancing boxes!

Z-Order

In many instances, you will want some sprites to appear on top of others. For example, in the solar system animation you
would want to be able to see some planets passing in front of others. You handle this problem by assigning each planet
sprite a screen depth, which is also referred to as Z-order.

New Term
Z-order is the relative depth of sprites on the screen.

The depth of sprites is called Z-order because it works sort of like another dimension-like a Z axis. You can think of
sprites moving around on the screen in the XY plane. Similarly, the Z axis can be thought of as another axis projected into
the screen that determines how the sprites overlap each other. To put it another way, Z-order determines a sprite's depth
within the screen. By making use of a Z axis, you might think that Z-ordered sprites are 3D. The truth is that Z-ordered
sprites aren't 3D because the Z axis is a hypothetical axis that is used only to determine how sprite objects hide each other.
A real 3D sprite would be able to move just as freely in the Z axis as it does in the XY plane.

Just to make sure that you get a clear picture of how Z-order works, let's go back for a moment to the good old days of
traditional animation. Traditional animators, such as those at Disney, used celluloid sheets to draw animated objects. They
drew on these because they could be overlaid on a background image and moved independently. This was known as cel
animation and should sound vaguely familiar. (Cel animation is an early version of sprite animation.) Each cel sheet
corresponds to a unique Z-order value, determined by where in the pile of sheets the sheet is located. If an image near the
top of the pile happens to be in the same location on the cel sheet as any lower images, it conceals them. The location of
each image in the stack of cel sheets is its Z-order, which determines its visibility precedence. The same thing applies to

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (4 of 27) [11/06/2000 7:46:26 PM]



sprites in cast-based animations, except that the Z-order is determined by the order in which the sprites are drawn, rather
than the cel sheet location. This concept of a pile of cel sheets representing all the sprites in a sprite system will be useful
later today when you develop the sprite classes.

Collision Detection

Although collision detection is primarily useful only in games, it is an important component of sprite animation. Collision
detection is the process of determining whether sprites have collided with each other. Although collision detection doesn't
directly play a role in creating the illusion of movement, it is tightly linked to sprite animation and extremely useful in
some scenarios, such as games.

New Term
Collision detection is the process of determining if sprites have
collided with each other.

Collision detection is used to determine when sprites physically interact with each other. In an Asteroids game, for
example, if the ship sprite collides with an asteroid sprite, the ship is destroyed. Collision detection is the mechanism
employed to find out whether the ship collided with the asteroid. This might not sound like a big deal; just compare their
positions and see whether they overlap, right? Correct, but consider how many comparisons must take place when lots of
sprites are moving around; each sprite must be compared to every other sprite in the system. It's not hard to see how the
overhead of effective collision detection can become difficult to manage.

Not surprisingly, there are many approaches to handling collision detection. The simplest approach is to compare the
bounding rectangles of each sprite with the bounding rectangles of all the other sprites. This method is efficient, but if you
have objects that are not rectangular, a certain degree of error occurs when the objects brush by each other. This is because
the corners might overlap and indicate a collision when really only the transparent areas are overlapping. The more
irregular the shape of the sprites, the more errors typically occur. Figure 24.1 shows how simple rectangle collision works.

Figure 24.1 : Collision detection using simple rectangle collision.

In Figure 24.1 the areas determining the collision detection are shaded. You can see how simple rectangle collision
detection isn't very accurate unless you're dealing with sprites that are rectangular in shape. An improvement on this
technique is to shrink the collision rectangles a little, which reduces the corner error. This method improves things a little,
but has the potential of causing error in the reverse direction by allowing sprites to overlap in some cases without signaling
a collision. Not surprisingly, shrunken rectangle collision works best when you are dealing with sprites that are roughly
circular in shape.

Figure 24.2 shows how shrinking the collision rectangles can improve the error on simple rectangle collision detection.
Shrunken rectangle collision is just as efficient as simple rectangle collision because all you are doing is comparing
rectangles for intersection.

Figure 24.2 : Collision detection using shrunken rectangle collision.

The most accurate collision detection technique is to detect collision based on the sprite image data, which involves
actually checking whether transparent parts of the sprite or the sprite images themselves are overlapping. In this case, you
would get a collision only if the actual sprite images are overlapping. This is the ideal technique for detecting collisions
because it is exact and allows objects of any shape to move by each other without error. Figure 24.3 shows collision
detection using the sprite image data.

Figure 24.3 : Collision detection using sprite image data.

Unfortunately, this technique requires far more overhead than the other types of collision detection and is often a major
bottleneck in performance. Furthermore, implementing image data collision detection can get very messy. Considering
these facts, you'll focus your efforts later today on implementing the first two types of collision detection.

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (5 of 27) [11/06/2000 7:46:26 PM]



Tracking Images
There is one last topic to cover before getting into the details of animation programming in Java: tracking images. Since
animations typically require multiple images, the issue of managing images as they are being transferred over a Web
connection can't be overlooked. The primary issue with images being transferred is the limited bandwidth many of us have
in regard to our Web connections. Since many of us have a limited bandwidth connection (pronounced modem), the speed
at which images are transferred over such a Web connection often causes a noticeable delay in a Java applet reliant on
them, such as any applet displaying animations.

There is a standard technique for dealing with transfer delay as it affects static images. You've no doubt seen this technique
at work in your Web browser when you've viewed images in Web pages. The technique is known as interlacing and makes
images appear blurry until they have been completely transferred. To use interlacing, images must be stored in an
interlaced format (usually GIF version 89a), which means that the image data is arranged such that the image can be
displayed before it is completely transmitted. Interlacing is a good approach to dealing with transmission delays for static
images because it enables you to see the image as it is being transferred. Without interlacing, you have to wait until the
entire image has been transferred before you can see it at all.

Before you get too excited about interlacing, let me point out that it is useful only for static images. You're probably
wondering why this is the case. It has to do with the fact that animations (dynamic images) rely on rapidly displaying a
sequence of images over time, all of which must be readily available to successfully create the effect of movement. An
animation sequence simply wouldn't look right using interlacing because some of the images would be transferred before
others.

A good solution to the transfer-delay problem in animated images would be to just wait until all the images have been
transferred before displaying the animation. That's fine, but it requires you to know the status of images as they are being
transferred. How can you possibly know this? Enter the Java media tracker.

The Java media tracker is an object that tracks when media objects, such as images, have been successfully transferred.
Using the media tracker, you can keep track of any number of media objects and query to see when they have finished
being transmitted. For example, suppose you have an animation with four images. You would register each of these images
with the media tracker and then wait until they have all been transferred before displaying the animation. The media
tracker keeps up with the load status of each image. When the media tracker reports that all the images have been
successfully loaded, you are guaranteed that your animation has all the necessary images to display correctly.

The MediaTracker Class
The Java MediaTracker class is part of the awt package and contains a variety of members and methods for tracking
media objects. Unfortunately, the MediaTracker class that ships with release 1.02 of the Java Developer's Kit supports
only image tracking. Future versions of Java are expected to add support for other types of media objects such as sound
and music.

The MediaTracker class provides member flags for representing various states associated with tracked media objects.
These flags are returned by many of the member functions of MediaTracker, and are the following:

LOADING-Indicates that a media object is currently in the process of being loaded.●   

ABORTED-Indicates that the loading of a media object has been aborted.●   

ERRORED-Indicates that some type of error occurred while loading a media object.●   

COMPLETE-Indicates that a media object has been successfully loaded.●   

The MediaTracker class provides a variety of methods for helping to track media objects:

MediaTracker(Component comp)-The constructor for MediaTracker takes a single parameter of
type Component. This parameter specifies the Component object on which tracked images will eventually
be drawn. This parameter reflects the current limitation of being able to track only images with the
MediaTracker class, and not sounds or other types of media.

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (6 of 27) [11/06/2000 7:46:26 PM]



void addImage(Image image, int id)-The addImage method adds an image to the list of
images currently being tracked. This method takes as its first parameter an Image object and as its second
parameter an identifier that uniquely identifies the image. If you want to track a group of images together, you
can use the same identifier for each image.

synchronized void addImage(Image image, int id, int w, int h)-This addImage
method is similar to the first one, but it has additional parameters for specifying the width and height of a
tracked image. This version of addImage is used for tracking images that you are going to scale; you pass
the width and height to which you are scaling the image.

boolean checkID(int id)-After you have added images to the MediaTracker object, you are
ready to check their status. You use the checkID method to check whether images matching the passed
identifier have finished loading. The checkID method returns false if the images have not finished
loading, and true otherwise. This method returns true even if the loading has been aborted or if an error
has occurred. You must call the appropriate error-checking methods to see if an error has occurred. (You'll
learn about the error-checking methods a little later in this section.) The checkID method does not load an
image if that image has not already begun loading.

synchronized boolean checkID(int id, boolean load)-This checkID method is similar
to the first one except that it enables you to specify that the image should be loaded even if it hasn't already
begun loading, which is carried out by passing true in the load parameter.

boolean checkAll()-The checkAll method is similar to the checkID methods, except that it
applies to all images, not just those matching a certain identifier. The checkAll method checks to see if the
images have finished loading, but doesn't load any images that haven't already begun loading.

synchronized boolean checkAll(boolean load)-This checkAll method also checks the
status of loading images, but enables you to indicate that images are to be loaded if they haven't started
already.

void waitForID(int id)-You use the waitForID method to begin loading images with a certain
identifier. This identifier should match the identifier used when the images were added to the media tracker
with the addImage method. The waitForID method is synchronous, meaning that it does not return until
all the specified images have finished loading or an error occurs.

synchronized boolean waitForID(int id, long ms)-This waitForID method is similar to
the first one except that it enables you to specify a timeout period, in which case the load will end and
waitForID will return true. You specify the timeout period in milliseconds by using the ms parameter.

void waitForAll()-The waitForAll method is similar to the waitForID methods, except that it
operates on all images.

synchronized boolean waitForAll(long ms)-This waitForAll method is similar to the first
one except that it enables you to specify a timeout period, in which case the load will end and waitForAll
will return true. You specify the timeout period in milliseconds by using the ms parameter.

int statusID(int id, boolean load)-You use the statusID method to determine the status of
images matching the identifier passed in the id parameter. statusID returns the bitwise OR of the status
flags related to the images. The possible flags are LOADING, ABORTED, ERRORED, and COMPLETE. The
second parameter to statusID-load-should be familiar to you by now because of its use in the other
media- tracker methods. It specifies whether you want the images to begin loading if they haven't begun
already. This functionality is similar to that provided by the second versions of the checkID and
waitForID methods.

int statusAll(boolean load)-The statusAll method is similar to the statusID method; the
only difference is that statusAll returns the status of all the images being tracked rather than just those
matching a specific identifier.

synchronized boolean isErrorID(int id)-The isErrorID method checks the error status of
images being tracked, based on the id identifier argument. This method basically checks the status of each
image for the ERRORED flag. Note that this method will return true if any of the images have errors; it's up
to you to determine which specific images had errors.

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (7 of 27) [11/06/2000 7:46:26 PM]



synchronized boolean isErrorAny()-The isErrorAny method is similar to the isErrorID
method, except that it checks on all images rather than just those matching a certain identifier. Like
isErrorID, isErrorAny will return true if any of the images have errors; it's up to you to determine
which specific images had errors.

synchronized Object[] getErrorsID(int id)-If you use isErrorID or isErrorAny and
find out that there are load errors, you need to figure out which images have errors. You do this by using the
getErrorsID method. This method returns an array of Objects containing the media objects that have
load errors. In the current implementation of the MediaTracker class, this array is always filled with
Image objects. If there are no errors, this method returns null.

synchronized Object[] getErrorsAny()-The getErrorsAny method is very similar to
getErrorsID, except that it returns all errored images.

That wraps up the description of the MediaTracker class. Now that you understand what the class is all about, you're
probably ready to see it in action. Don't worry-the Sharks sample applet you'll develop later today will put the media
tracker through its paces.

Implementing Sprite Animation
As you learned earlier in today's lesson, sprite animation involves the movement of individual graphic objects called
sprites. Unlike simple frame animation, sprite animation involves a decent amount of overhead. More specifically, it is
necessary to develop not only a sprite class, but also a sprite management class for keeping up with all the sprites you've
created. This is necessary because sprites need to be able to interact with each other through a common mechanism.
Besides, it is nice to be able to work with the sprites as a whole when it comes to things like actually drawing the sprites on
the screen.

In this section, you'll learn how to implement sprite animation in Java by creating a suite of sprite classes. The primary
sprite classes are Sprite and SpriteVector. However, there are also a few support classes that you will learn about
as you get into the details of these two primary classes. The Sprite class models a single sprite and contains all the
information and methods necessary to get a single sprite up and running. However, the real power of sprite animation is
harnessed by combining the Sprite class with the SpriteVector class, which is a container class that manages
multiple sprites and their interaction with each other.

The Sprite Class

Although sprites can be implemented simply as movable graphical objects, I mentioned earlier that the sprite class
developed today will also contain support for frame animation. A frame-animated sprite is basically a sprite with multiple
frame images that can be displayed in succession. Your Sprite class will support frame animation in the form of an
array of frame images and some methods for setting the frame image currently being displayed. Using this approach, you'll
end up with a Sprite class that supports both fundamental types of animation, which gives you more freedom in creating
animated Java applets.

Before jumping into the details of how the Sprite class is implemented, take a moment to think about the different
pieces of information that a sprite must keep up with. When you understand the components of a sprite at a conceptual
level, it will be much easier to understand the Java code. So exactly what information should the Sprite class maintain?
The following list contains the key information that the Sprite class needs to include:

An array of frame images●   

The current frame●   

The XY position●   

The velocity●   

The Z-order●   

The boundaries●   

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (8 of 27) [11/06/2000 7:46:26 PM]



The first component, an array of frame images, is necessary to carry out the frame animations. Even though this sounds
like you are forcing a sprite to have multiple animation frames, a sprite can also use a single image. In this way, the frame
animation aspects of the sprite are optional. The current frame keeps up with the current frame of animation. In a typical
frame-animated sprite, the current frame is incremented to the next frame when the sprite is updated.

The XY position stores the position of the sprite. You move the sprite simply by altering this position. Alternatively, you
can set the velocity and let the sprite alter its position automatically based on the velocity.

The Z-order represents the depth of the sprite in relation to other sprites. Ultimately, the Z-order of a sprite determines its
drawing order (you'll learn more on that a little later).

Finally, the boundary of a sprite refers to the bounded region in which the sprite can move. All sprites are bound by some
region-usually the size of the applet window. The sprite boundary is important because it determines the limits of a sprite's
movement.

Now that you understand the core information required by the Sprite class, it's time to get into the specific Java
implementation. Let's begin with the Sprite class's member variables, which follow:

public static final int BA_STOP = 0,
                        BA_WRAP = 1,
                        BA_BOUncE = 2,
                        BA_DIE = 3;
protected Component     component;
protected Image[]       image;
protected int           frame,
                        frameInc,
                        frameDelay,
                        frameTrigger;
protected Rectangle     position,
                        collision;
protected int           zOrder;
protected Point         velocity;
protected Rectangle     bounds;
protected int           boundsAction;
protected boolean       hidden = false;

The member variables include the important sprite information mentioned earlier, along with some other useful
information. Most notably, you are probably curious about the static final members at the beginning of the listing. These
members are constant identifiers that define bounds actions for the sprite. Bounds actions are actions that a sprite takes in
response to reaching a boundary, such as wrapping to the other side or bouncing. Bounds actions are mutually exclusive,
meaning that only one can be set at a time.

The Component member variable is necessary because an ImageObserver object is required to retrieve information
about an image. But what does Component have to do with ImageObserver? The Component class implements the
ImageObserver interface, and the Applet class is derived from Component. So a Sprite object gets its image
information from the Java applet itself, which is used to initialize the Component member variable.

Note
ImageObserver is an interface defined in the java.awt.image
package that provides a means for receiving information about an
image.

The image member variable contains an array of Image objects representing the animation frames for the sprite. For
sprites that aren't frame animated, this array will simply contain one element.

The frameInc member variable is used to provide a means to change the way that the animation frames are updated. For

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (9 of 27) [11/06/2000 7:46:26 PM]



example, in some cases you might want the frames to be displayed in the reverse order. You can easily do this by setting
frameInc to -1 (its typical value is 1). The frameDelay and frameTrigger member variables are used to provide
a means of varying the speed of the frame animation. You'll see how the speed of animation is controlled when you learn
about the incFrame method later today.

The position member variable is a Rectangle object representing the current position of the sprite. The
collision member variable is also a Rectangle object and is used to support rectangle collision detection. You'll see
how collision is used later in today's lesson when you learn about the setCollision and testCollision
methods.

The zOrder and velocity member variables simply store the Z-order and velocity of the sprite. The bounds member
variable represents the boundary rectangle to which the sprite is bounded, while the boundsAction member variable is
the bounds action that is taken when the sprite encounters the boundary.

The last member variable, hidden, is a boolean flag that determines whether the sprite is hidden. By setting this variable
to false, the sprite is hidden from view. Its default setting is true, meaning that the sprite is visible.

The Sprite class has two constructors. The first constructor creates a Sprite without support for frame animation,
meaning that it uses a single image to represent the sprite. The code for this constructor follows:

public Sprite(Component comp, Image img, Point pos, Point vel, int z,
  int ba) {
  component = comp;
  image = new Image[1];
  image[0] = img;
  setPosition(new Rectangle(pos.x, pos.y, img.getWidth(comp),
    img.getHeight(comp)));
  setVelocity(vel);
  frame = 0;
  frameInc = 0;
  frameDelay = frameTrigger = 0;
  zOrder = z;
  bounds = new Rectangle(0, 0, comp.size().width, comp.size().height);
  boundsAction = ba;
}

This constructor takes an image, a position, a velocity, a Z-order, and a boundary action as parameters. The second
constructor takes an array of images and some additional information about the frame animations. The code for the second
constructor follows:

public Sprite(Component comp, Image[] img, int f, int fi, int fd,
  Point pos, Point vel, int z, int ba) {
  component = comp;
  image = img;
  setPosition(new Rectangle(pos.x, pos.y, img[f].getWidth(comp),
    img[f].getHeight(comp)));
  setVelocity(vel);
  frame = f;
  frameInc = fi;
  frameDelay = frameTrigger = fd;
  zOrder = z;
  bounds = new Rectangle(0, 0, comp.size().width, comp.size().height);
  boundsAction = ba;
}

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (10 of 27) [11/06/2000 7:46:26 PM]



The additional information required of this constructor includes the current frame, frame increment, and frame delay.

Warning
Because the frame parameter, f, used in the second Sprite
constructor is actually used as an index into the array of frame
images, make sure you always set it to a valid index when you create
sprites using this constructor. In other words, never pass a frame
value that is outside the bounds of the image array. In most cases you
will use a frame value of 0, which alleviates the potential problem.

The Sprite class contains a number of access methods, which are simply interfaces to get and set certain member
variables. These methods consist of one or two lines of code and are pretty self-explanatory. Check out the code for the
getVelocity and setVelocity access methods to see what I mean about the access methods being self-explanatory:

public Point getVelocity() {
  return velocity;
}

public void setVelocity(Point vel)
{ 
  velocity = vel;
}

There are more access methods for getting and setting other member variables in Sprite, but they are just as
straightforward as getVelocity and setVelocity. Rather than waste time on those, let's move on to some more
interesting methods!

The incFrame method is the first Sprite method with any real substance:

protected void incFrame() {
  if ((frameDelay > 0) && (--frameTrigger <= 0)) {
    // Reset the frame trigger
    frameTrigger = frameDelay;

    // Increment the frame
    frame += frameInc;
    if (frame >= image.length)
      frame = 0;
    else if (frame < 0)
      frame = image.length - 1;
  }
}

incFrame is used to increment the current animation frame. It first checks the frameDelay and frameTrigger
member variables to see whether the frame should actually be incremented. This check is what allows you to vary the
frame animation speed for a sprite, which is done by changing the value of frameDelay. Larger values for
frameDelay result in a slower animation speed. The current frame is incremented by adding frameInc to frame.
frame is then checked to make sure that its value is within the bounds of the image array, because it is used later to index
into the array when the frame image is drawn.

The setPosition methods set the position of the sprite. Their source code follows:

void setPosition(Rectangle pos) {
  position = pos;

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (11 of 27) [11/06/2000 7:46:26 PM]



  setCollision();
}

public void setPosition(Point pos) {
  position.move(pos.x, pos.y);
  setCollision();
}

Even though the sprite position is stored as a rectangle, the setPosition methods allow you to specify the sprite
position as either a rectangle or a point. In the latter version, the position rectangle is simply moved to the specified point.
After the position rectangle is moved, the collision rectangle is set with a call to setCollision. setCollision is
the method that sets the collision rectangle for the sprite. The source code for setCollision follows:

protected void setCollision() {
  collision = position;
}

Notice that setCollision sets the collision rectangle equal to the position rectangle, which results in simple rectangle
collision detection. Because there is no way to know what sprites will be shaped like, you leave it up to derived sprite
classes to implement versions of setCollision with specific shrunken rectangle calculations. So to implement
shrunken rectangle collision, you just calculate a smaller collision rectangle in setCollision.

This isPointInside method is used to test whether a point lies inside the sprite. The source code for
isPointInside follows:

boolean isPointInside(Point pt) {
  return position.inside(pt.x, pt.y);
}

This method is handy for determining whether the user has clicked on a certain sprite. This is useful in applets where you
want to be able to click on objects and move them around, such as a chess game. In a chess game, each piece would be a
sprite, and you would use isPointInside to find out which piece the user clicked.

The method that does most of the work in Sprite is the update method, which is shown in Listing 24.1.

Listing 24.1. The Sprite class's update method.

 1: public boolean update() {
 2:   // Increment the frame
 3:   incFrame();
 4:
 5:   // Update the position
 6:   Point pos = new Point(position.x, position.y);
 7:   pos.translate(velocity.x, velocity.y);
 8:
 9:   // Check the bounds
10:   // Wrap?
11:   if (boundsAction == Sprite.BA_WRAP) {
12:     if ((pos.x + position.width) < bounds.x)
13:       pos.x = bounds.x + bounds.width;
14:     else if (pos.x > (bounds.x + bounds.width))
15:       pos.x = bounds.x - position.width;
16:     if ((pos.y + position.height) < bounds.y)
17:       pos.y = bounds.y + bounds.height;

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (12 of 27) [11/06/2000 7:46:26 PM]



18:     else if (pos.y > (bounds.y + bounds.height))
19:       pos.y = bounds.y - position.height;
20:   }
21:   // Bounce?
22:   else if (boundsAction == Sprite.BA_BOUncE) {
23:     boolean bounce = false;
24:     Point   vel = new Point(velocity.x, velocity.y);
25:     if (pos.x < bounds.x) {
26:       bounce = true;
27:       pos.x = bounds.x;
28:       vel.x = -vel.x;
29:     }
30:     else if ((pos.x + position.width) >
31:       (bounds.x + bounds.width)) {
32:       bounce = true;
33:       pos.x = bounds.x + bounds.width - position.width;
34:       vel.x = -vel.x;
35:     }
36:     if (pos.y < bounds.y) {
37:       bounce = true;
38:       pos.y = bounds.y;
39:       vel.y = -vel.y;
40:     }
41:     else if ((pos.y + position.height) >
42:       (bounds.y + bounds.height)) {
43:       bounce = true;
44:       pos.y = bounds.y + bounds.height - position.height;
45:       vel.y = -vel.y;
46:     }
47:     if (bounce)
48:       setVelocity(vel);
49:   }
50:   // Die?
51:   else if (boundsAction == Sprite.BA_DIE) {
52:     if ((pos.x + position.width) < bounds.x || pos.x > bounds.width ||
53:       (pos.y + position.height) < bounds.y || pos.y > bounds.height) {
54:       return true;
55:     }
56:   }
57:   // Stop (default)
58:   else {
59:     if (pos.x  < bounds.x ||
60:       pos.x > (bounds.x + bounds.width - position.width)) {
61:       pos.x = Math.max(bounds.x, Math.min(pos.x,
62:         bounds.x + bounds.width - position.width));
63:       setVelocity(new Point(0, 0));
64:     }
65:     if (pos.y  < bounds.y ||
66:       pos.y > (bounds.y + bounds.height - position.height)) {
67:       pos.y = Math.max(bounds.y, Math.min(pos.y,
68:         bounds.y + bounds.height - position.height));
69:       setVelocity(new Point(0, 0));
70:     }

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (13 of 27) [11/06/2000 7:46:26 PM]



71:   }
72:   setPosition(pos);
73:
74:   return false;
75: }

Analysis
The update method handles the task of updating the animation
frame and position of the sprite. update begins by updating the
animation frame with a call to incFrame. The position of the sprite
is then updated by translating the position rectangle based on the
velocity. You can think of the position rectangle as being slid a
distance determined by the velocity.

The rest of the code in update is devoted to handling the various bounds actions. The first bounds action flag, BA_WRAP,
causes the sprite to wrap around to the other side of the bounds rectangle. The BA_BOUncE flag causes the sprite to
bounce if it encounters a boundary. The BA_DIE flag causes the sprite to die if it encounters a boundary. Finally, the
default flag, BA_STOP, causes the sprite to stop when it encounters a boundary.

Notice that update finishes by returning a boolean value. This boolean value specifies whether the sprite should be
killed, which provides a means for sprites to be destroyed when the BA_DIE bounds action is defined. If this seems a little
strange, keep in mind that the only way to get rid of a sprite is to remove it from the sprite vector. I know, you haven't
learned much about the sprite vector yet, but trust me on this one. Since individual sprites know nothing about the sprite
vector, they can't directly tell it what to do. So the return value of the update method is used to communicate to the sprite
vector whether a sprite needs to be killed. A return of true means that the sprite is to be killed, and false means let it
be.

Note
The sprite vector is the list of all sprites currently in the sprite system.
It is the sprite vector that is responsible for managing all the sprites,
including adding, removing, drawing, and detecting collisions
between them.

Judging by its size, it's not hard to figure out that the update method is itself the bulk of the code in the Sprite class.
This is logical, though, because the update method is where all the action takes place; update handles all the details of
updating the animation frame and position of the sprite, along with carrying out different bounds actions.

Another important method in the Sprite class is draw, whose source code follows:

public void draw(Graphics g) {
  // Draw the current frame
  if (!hidden)
    g.drawImage(image[frame], position.x, position.y, component);
}

After wading through the update method, the draw method looks like a piece of cake! It simply uses the drawImage
method to draw the current sprite frame image to the Graphics object that is passed in. Notice that the drawImage
method requires the image, XY position, and component (ImageObserver) to carry this out.

The last method in Sprite is testCollision, which is used to check for collisions between sprites:

protected boolean testCollision(Sprite test) {
  // Check for collision with another sprite
  if (test != this)

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (14 of 27) [11/06/2000 7:46:26 PM]



    return collision.intersects(test.getCollision());
  return false;
}

The sprite to test for collision is passed in the test parameter. The test simply involves checking whether the collision
rectangles intersect. If so, testCollision returns true. testCollision isn't all that useful within the context of a
single sprite, but it is very handy when you put together the SpriteVector class, which you are going to do next.

The SpriteVector Class

At this point, you have a Sprite class with some pretty impressive features, but you don't really have any way to manage
it. Of course, you could go ahead and create an applet with some Sprite objects, but how would they be able to interact
with each other? The answer to this question is the SpriteVector class, which handles all the details of maintaining a
list of sprites and handling the interactions between them.

The SpriteVector class is derived from the Vector class, which is a standard class provided in the java.util
package. The Vector class models a growable array of objects. In this case, the SpriteVector class is used as a
container for a growable array of Sprite objects.

The SpriteVector class has only one member variable, background, which is a Background object:

protected Background background;

This Background object represents the background on which the sprites appear. It is initialized in the constructor for
SpriteVector, like this:

public SpriteVector(Background back) {
  super(50, 10);
  background = back;
}

The constructor for SpriteVector simply takes a Background object as its only parameter. You'll learn about the
Background class a little later today. Notice that the constructor for SpriteVector calls the Vector parent class
constructor and sets the default storage capacity (50) and amount to increment the storage capacity (10) if the vector
needs to grow.

SpriteVector contains two access methods for getting and setting the background member variable, which follow:

public Background getBackground() {
  return background;
}

public void setBackground(Background back) {
  background = back;
}

These methods are useful whenever you have an animation that needs to have a changing background. To change the
background, you simply call setBackground and pass in the new Background object.

The getEmptyPosition method is used by the SpriteVector class to help position new sprites. Listing 24.2
contains the source code for getEmptyPosition.

Listing 24.2. The SpriteVector class's getEmptyPosition method.

 1: public Point getEmptyPosition(Dimension sSize) {

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (15 of 27) [11/06/2000 7:46:26 PM]



 2:   Rectangle pos = new Rectangle(0, 0, sSize.width, sSize.height);
 3:   Random    rand = new Random(System.currentTimeMillis());
 4:   boolean   empty = false;
 5:   int       numTries = 0;
 6: 
 7:   // Look for an empty position
 8:   while (!empty && numTries++ < 50) {
 9:     // Get a random position
10:     pos.x = Math.abs(rand.nextInt() %
11:       background.getSize().width);
12:     pos.y = Math.abs(rand.nextInt() %
13:       background.getSize().height);
14: 
15:     // Iterate through sprites, checking if position is empty
16:     boolean collision = false;
17:     for (int i = 0; i < size(); i++) {
18:       Rectangle testPos = ((Sprite)elementAt(i)).getPosition();
19:       if (pos.intersects(testPos)) {
20:         collision = true;
21:         break;
22:       }
23:     }
24:     empty = !collision;
25:   }
26:   return new Point(pos.x, pos.y);
27: }

Analysis
getEmptyPosition is a method whose importance might not be
readily apparent to you right now; it is used to find an empty physical
position in which to place a new sprite in the sprite vector. This
doesn't mean the position of the sprite in the array; rather, it means its
physical position on the screen. This method is useful when you want
to randomly place multiple sprites on the screen. By using
getEmptyPosition, you eliminate the possibility of placing new
sprites on top of existing sprites.

The isPointInside method in SpriteVector is similar to the version of isPointInside in Sprite, except it
goes through the entire sprite vector, checking each sprite. Check out the source code for it:

Sprite isPointInside(Point pt) {
  // Iterate backward through the sprites, testing each
  for (int i = (size() - 1); i >= 0; i--) {
    Sprite s = (Sprite)elementAt(i);
    if (s.isPointInside(pt))
      return s;
  }
  return null;
}

If the point passed in the parameter pt lies in a sprite, isPointInside returns the sprite. Notice that the sprite vector is
searched in reverse, meaning that the last sprite is checked before the first. The sprites are searched in this order for a very
important reason: Z-order. The sprites are stored in the sprite vector sorted in ascending Z-order, which specifies their

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (16 of 27) [11/06/2000 7:46:26 PM]



depth on the screen. Therefore, sprites near the beginning of the list are sometimes concealed by sprites near the end of the
list. If you want to check for a point lying within a sprite, it makes sense to check the topmost sprites first-that is, the
sprites with larger Z-order values. If this sounds a little confusing, don't worry; you'll learn more about Z-order later today
when you get to the add method.

As in Sprite, the update method is the key method in SpriteVector because it handles updating all the sprites.
Listing 24.3 contains the source code for update.

Listing 24.3. The SpriteVector class's update method.

 1: public void update() {
 2:   // Iterate through sprites, updating each
 3:   Sprite    s, sHit;
 4:   Rectangle lastPos;
 5:   for (int i = 0; i < size(); ) {
 6:     // Update the sprite
 7:     s = (Sprite)elementAt(i);
 8:     lastPos = new Rectangle(s.getPosition().x, s.getPosition().y,
 9:       s.getPosition().width, s.getPosition().height);
10:     boolean kill = s.update();
11: 
12:     // Should the sprite die?
13:     if (kill) {
14:       removeElementAt(i);
15:       continue;
16:     }
17: 
18:     // Test for collision
19:     int iHit = testCollision(s);
20:     if (iHit >= 0)
21:       if (collision(i, iHit))
22:         s.setPosition(lastPos);
23:     i++;
24:   }
25: }

Analysis
The update method iterates through the sprites, calling Sprite's
update method on each one. It then checks the return value of
update to see if the sprite is to be killed. If the return value is
true, the sprite is removed from the sprite vector. Finally,
testCollision is called to see whether a collision has occurred
between sprites. (You get the whole scoop on testCollision in a
moment.) If a collision has occurred, the old position of the collided
sprite is restored and the collision method is called.

The collision method is used to handle collisions between two sprites:

protected boolean collision(int i, int iHit) {
  // Do nothing
  return false;
}

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (17 of 27) [11/06/2000 7:46:26 PM]



The collision method is responsible for handling any actions that result from a collision between sprites. The action in
this case is to simply do nothing, which allows sprites to pass over each other with nothing happening. This method is
where you provide specific collision actions in derived sprites. For example, in a weather-simulator animation, you might
want clouds to cause lightning when they collide.

The testCollision method is used to test for collisions between a sprite and the rest of the sprites in the sprite vector:

protected int testCollision(Sprite test) {
  // Check for collision with other sprites
  Sprite  s;
  for (int i = 0; i < size(); i++)
  {
    s = (Sprite)elementAt(i);
    if (s == test)  // don't check itself
      continue;
    if (test.testCollision(s))
      return i;
  }
  return -1;
}

The sprite to be tested is passed in the test parameter. The sprites are then iterated through, and the testCollision
method in Sprite is called for each. Notice that testCollision isn't called on the test sprite if the iteration refers to
the same sprite. To understand the significance of this code, consider the effect of passing testCollision the same
sprite the method is being called on; you would be checking to see if a sprite was colliding with itself, which would always
return true. If a collision is detected, the Sprite object that has been hit is returned from testCollision.

The draw method handles drawing the background, as well as drawing all the sprites:

public void draw(Graphics g) {
  // Draw the background
  background.draw(g);

  // Iterate through sprites, drawing each
  for (int i = 0; i < size(); i++)
    ((Sprite)elementAt(i)).draw(g);
}

The background is drawn with a simple call to the draw method of the Background object. The sprites are then drawn
by iterating through the sprite vector and calling the draw method for each.

The add method is probably the trickiest method in the SpriteVector class. Listing 24.4 contains the source code for
add.

Listing 24.4. The SpriteVector class's add method.

 1: public int add(Sprite s) {
 2:   // Use a binary search to find the right location to insert the
 3:   // new sprite (based on z-order)
 4:   int   l = 0, r = size(), i = 0;
 5:   int   z = s.getZOrder(),
 6:         zTest = z + 1;
 7:   while (r > l) {
 8:     i = (l + r) / 2;

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (18 of 27) [11/06/2000 7:46:26 PM]



 9:     zTest = ((Sprite)elementAt(i)).getZOrder();
10:     if (z < zTest)
11:       r = i;
12:     else
13:       l = i + 1;
14:     if (z == zTest)
15:       break;
16:   }
17:   if (z >= zTest)
18:     i++;
19: 
20:   insertElementAt(s, i);
21:   return i;
22: }

Analysis
The add method handles adding new sprites to the sprite vector. The
catch is that the sprite vector must always be sorted according to
Z-order. Why is this? Remember that Z-order is the depth at which
sprites appear on the screen. The illusion of depth is established by
the order in which the sprites are drawn. This works because sprites
drawn later are drawn on top of sprites drawn earlier, and therefore
appear to be at a higher depth. Therefore, sorting the sprite vector by
ascending Z-order and then drawing them in that order is an effective
way to provide the illusion of depth. The add method uses a binary
search to find the right spot to add new sprites so that the sprite vector
remains sorted by Z-order.

That wraps up the SpriteVector class! You now have not only a powerful Sprite class, but also a SpriteVector
class for managing and providing interactivity between sprites. All that's left is putting these classes to work in a real
applet.

The Background Classes

Actually, there is some unfinished business to deal with before you try out the sprite classes. I'm referring to the
Background class used in SpriteVector. While you're at it, let's go ahead and look at a few different background
classes that you might find handy.

Background

If you recall, I mentioned earlier today that the Background class provides the overhead of managing a background for
the sprites to appear on top of. The source code for the Background class is shown in Listing 24.5.

Listing 24.5. The Background class.

 1: public class Background {
 2:   protected Component component;
 3:   protected Dimension size;
 4: 
 5:   public Background(Component comp) {
 6:     component = comp;
 7:     size = comp.size();
 8:   }

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (19 of 27) [11/06/2000 7:46:26 PM]



 9: 
10:   public Dimension getSize() {
11:     return size;
12:   }
13: 
14:   public void draw(Graphics g) {
15:     // Fill with component color
16:     g.setColor(component.getBackground());
17:     g.fillRect(0, 0, size.width, size.height);
18:     g.setColor(Color.black);
19:   }
20: }

Analysis
As you can see, the Background class is pretty simple. It basically
provides a clean abstraction of the background for the sprites. The
two member variables maintained by Background are used to keep
up with the associated component and dimensions for the
background. The constructor for Background takes a Component
object as its only parameter. This Component object is typically the
applet window, and it serves to provide the dimensions of the
background and the default background color.

The getSize method is an access method that simply returns the size of the background. The draw method fills the
background with the default background color, as defined by the component member variable.

You're probably thinking that this Background object isn't too exciting. Couldn't you just stick this drawing code
directly into SpriteVector's draw method? Yes, you could, but then you would miss out on the benefits provided by
the more derived background classes, ColorBackground and ImageBackground, which are explained next. The
background classes are a good example of how object-oriented design makes Java code much cleaner and easier to extend.

ColorBackground

The ColorBackground class provides a background that can be filled with any color. Listing 24.6 contains the source
code for the ColorBackground class.

Listing 24.6. The ColorBackground class.

 1: public class ColorBackground extends Background {
 2:   protected Color color;
 3: 
 4:   public ColorBackground(Component comp, Color c) {
 5:     super(comp);
 6:     color = c;
 7:   }
 8: 
 9:   public Color getColor() {
10:     return color;
11:   }
12: 
13:   public void setColor(Color c) {
14:     color = c;
15:   }

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (20 of 27) [11/06/2000 7:46:26 PM]



16: 
17:   public void draw(Graphics g) {
18:     // Fill with color
19:     g.setColor(color);
20:     g.fillRect(0, 0, size.width, size.height);
21:     g.setColor(Color.black);
22:   }
23: }

Analysis
ColorBackground adds a single member variable, color, which
is a Color object. This member variable holds the color used to fill
the background. The constructor for ColorBackground takes
Component and Color objects as parameters. There are two access
methods for getting and setting the color member variable. The
draw method for ColorBackground is very similar to the draw
method in Background, except that the color member variable is
used as the fill color.

ImageBackground

A more interesting Background derived class is ImageBackground, which uses an image as the background. Listing
24.7 contains the source code for the ImageBackground class.

Listing 24.7. The ImageBackground class.

 1: public class ImageBackground extends Background {
 2:   protected Image image;
 3: 
 4:   public ImageBackground(Component comp, Image img) {
 5:     super(comp);
 6:     image = img;
 7:   }
 8: 
 9:   public Image getImage() {
10:     return image;
11:   }
12: 
13:   public void setImage(Image img) {
14:     image = img;
15:   }
16: 
17:   public void draw(Graphics g) {
18:     // Draw background image
19:     g.drawImage(image, 0, 0, component);
20:   }
21: }

Analysis

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (21 of 27) [11/06/2000 7:46:26 PM]



The ImageBackground class adds a single member variable,
image, which is an Image object. This member variable holds the
image to be used as the background. Not surprisingly, the constructor
for ImageBackground takes Component and Image objects as
parameters. There are two access methods for getting and setting the
image member variable. The draw method for
ImageBackground simply draws the background image using the
drawImage method of the passed Graphics object.

Sample Applet: Sharks
It's time to take all the hard work that you've put into the sprite classes and see what it amounts to. Figure 24.4 shows a
screen shot of the Sharks applet, which shows off the sprite classes you've worked so hard on all day. The complete source
code, images, and executable classes for the Sharks applet are on the accompanying CD-ROM.

Figure 24.4 : The Sharks applet.

The Sharks applet uses a SpriteVector object to manage a group of hungry shark Sprite objects. This object, sv, is
one of the Shark applet class's member variables, which follow:

private Image         offImage, back;
private Image[]       leftShark = new Image[2];
private Image[]       rightShark = new Image[2];
private Image[]       clouds = new Image[2];
private Graphics      offGrfx;
private Thread        animate;
private MediaTracker  tracker;
private SpriteVector  sv;
private int           delay = 83; // 12 fps
private Random        rand = new Random(System.currentTimeMillis());

The Image member variables in the Sharks class represent the offscreen buffer, the background image, the shark
images, and some cloud images. The Graphics member variable, offGrfx, holds the graphics context for the offscreen
buffer image. The Thread member variable, animate, is used to hold the thread where the animation takes place. The
MediaTracker member variable, tracker, is used to track the various images as they are being loaded. The
SpriteVector member variable, sv, holds the sprite vector for the applet. The integer (int) member variable,
delay, determines the animation speed of the sprites. Finally, the Random member variable, rand, is used to generate
random numbers throughout the applet.

Notice that the delay member variable is set to 83. The delay member variable specifies the amount of time (in
milliseconds) that elapses between each frame of animation. You can determine the frame rate by inverting the value of
delay, which results in a frame rate of about 12 frames per second (fps) in this case. This frame rate is pretty much the
minimum rate required for fluid animation, such as sprite animation. You'll see how delay is used to establish the frame
rate in a moment when you get into the details of the run method.

The Sharks class's init method loads all the images and registers them with the media tracker:

public void init() {
  // Load and track the images
  tracker = new MediaTracker(this);
  back = getImage(getCodeBase(), "Water.gif");
  tracker.addImage(back, 0);
  leftShark[0] = getImage(getCodeBase(), "LShark0.gif");

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (22 of 27) [11/06/2000 7:46:26 PM]



  tracker.addImage(leftShark[0], 0);
  leftShark[1] = getImage(getCodeBase(), "LShark1.gif");
  tracker.addImage(leftShark[1], 0);
  rightShark[0] = getImage(getCodeBase(), "RShark0.gif");
  tracker.addImage(rightShark[0], 0);
  rightShark[1] = getImage(getCodeBase(), "RShark1.gif");
  tracker.addImage(rightShark[1], 0);
  clouds[0] = getImage(getCodeBase(), "SmCloud.gif");
  tracker.addImage(clouds[0], 0);
  clouds[1] = getImage(getCodeBase(), "LgCloud.gif");
  tracker.addImage(clouds[1], 0);
}

Tracking the images is necessary because you want to wait until all the images have been loaded before you start the
animation. The start and stop methods are standard thread- handler methods:

public void start() {
  if (animate == null) {
    animate = new Thread(this);
    animate.start();
  }
}

public void stop() {
  if (animate != null) {
    animate.stop();
    animate = null;
  }
}

The start method is responsible for initializing and starting the animation thread. Likewise, the stop method stops the
animation thread and cleans up after it.

Warning
If for some reason you're thinking that stopping the animation thread
in the stop method isn't really that big of a deal, think again. The
stop method is called whenever a user leaves the Web page
containing an applet, in which case it is of great importance that you
stop all threads executing in the applet. So always make sure to stop
threads in the stop method of your applets.

The run method is the heart of the animation thread. Listing 24.8 shows the source code
for run.

Listing 24.8. The Sharks class's run method.

 1: public void run() {
 2:   try {
 3:     tracker.waitForID(0);
 4:   }
 5:   catch (InterruptedException e) {
 6:     return;
 7:   }
 8: 

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (23 of 27) [11/06/2000 7:46:26 PM]



 9:   // Create the sprite vector
10:   sv = new SpriteVector(new ImageBackground(this, back));
11: 
12:   // Create and add the sharks
13:   for (int i = 0; i < 8; i++) {
14:     boolean left = (rand.nextInt() % 2 == 0);
15:     Point pos = new Point(Math.abs(rand.nextInt() % size().width),
16:       (i + 1) * 4 + i * leftShark[0].getHeight(this));
17:     Sprite s = new Sprite(this, left ? leftShark: rightShark, 0, 1, 3,
18:       pos, new Point((Math.abs(rand.nextInt() % 3) + 1) * (left ? -1: 1),
19:       0), 0, Sprite.BA_WRAP);
20:     sv.add(s);
21:   }
22: 
23:   // Create and add the clouds
24:   Sprite s = new Sprite(this, clouds[0], new Point(Math.abs(rand.nextInt()
25:     % size().width), Math.abs(rand.nextInt() % size().height)), new
26:     Point(Math.abs(rand.nextInt() % 5) + 1, rand.nextInt() % 3), 1,
27:     Sprite.BA_WRAP);
28:   sv.add(s);
29:   s = new Sprite(this, clouds[1], new Point(Math.abs(rand.nextInt()
30:     % size().width), Math.abs(rand.nextInt() % size().height)), new
31:     Point(Math.abs(rand.nextInt() % 5) - 5, rand.nextInt() % 3), 2,
32:     Sprite.BA_WRAP);
33:   sv.add(s);
34: 
35:   // Update everything
36:   long t = System.currentTimeMillis();
37:   while (Thread.currentThread() == animate) {
38:     // Update the sprites
39:     sv.update();
40:     repaint();
41:     try {
42:       t += delay;
43:       Thread.sleep(Math.max(0, t - System.currentTimeMillis()));
44:     }
45:     catch (InterruptedException e) {
46:       break;
47:     }
48:   }
49: }

Analysis
The run method first waits for the images to finish loading by calling
the waitForID method of the MediaTracker object. After the
images have finished loading, the SpriteVector is created. Eight
different shark Sprite objects are then created with varying
positions on the screen. Also notice that the direction each shark is
moving is chosen randomly, as are the shark images, which also
reflect the direction. These shark sprites are then added to the sprite
vector.

Once the sharks have been added, a couple cloud sprites are added just to make things a little more interesting. Notice that

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (24 of 27) [11/06/2000 7:46:27 PM]



the Z-order of the clouds is greater than that of the sharks. The Z-order is the next-to-last parameter in the Sprite
constructor, and is set to 1 and 2 for the clouds, and 0 for the sharks. This results in the clouds appearing on top of the
sharks, as they should. Also, the cloud with a Z-order of 2 will appear to be above the cloud with a Z-order of 1 if they
should pass each other.

After creating and adding the clouds, a while loop is entered that handles updating the SpriteVector and forcing the
applet to repaint itself. By forcing a repaint, you are causing the applet to redraw the sprites in their newly updated states.

Before you move on, it's important to understand how the frame rate is controlled in the run method. The call to
currentTimeMillis returns the current system time in milliseconds. You aren't really concerned with what absolute
time this method is returning, because you are only using it here to measure relative time. After updating the sprites and
forcing a redraw, the delay value is added to the time you just retrieved. At this point, you have updated the frame and
calculated a time value that is delay milliseconds into the future. The next step is to tell the animation thread to sleep an
amount of time equal to the difference between the future time value you just calculated and the present time.

This probably sounds pretty confusing, so let me clarify things a little. The sleep method is used to make a thread sleep
for a number of milliseconds, as determined by the value passed in its only parameter. You might think that you could just
pass delay to sleep and things would be fine. This approach technically would work, but it would have a certain degree
of error. The reason is that a finite amount of time passes between updating the sprites and putting the thread to sleep.
Without accounting for this lost time, the actual delay between frames wouldn't be equal to the value of delay. The
solution is to check the time before and after the sprites are updated, and then reflect the difference in the delay value
passed to the sleep method. And that's how the frame rate is managed!

The update method is where the sprites are actually drawn to the applet window:

public void update(Graphics g) {
  // Create the offscreen graphics context
  if (offGrfx == null) {
    offImage = createImage(size().width, size().height);
    offGrfx = offImage.getGraphics();
  }

  // Draw the sprites
  sv.draw(offGrfx);

  // Draw the image onto the screen
  g.drawImage(offImage, 0, 0, null);
}

The update method uses double buffering to eliminate flicker in the sprite animation. By using double buffering, you
eliminate flicker and allow for speedier animations. The offImage member variable contains the offscreen buffer image
used for drawing the next animation frame. The offGrfx member variable contains the graphics context associated with
the offscreen buffer image.

In update, the offscreen buffer is first created as an Image object whose dimensions match those of the applet window.
It is important that the offscreen buffer be exactly the same size as the applet window. The graphics context associated
with the buffer is then retrieved using the getGraphics method of Image. After the offscreen buffer is initialized, all
you really have to do is tell the SpriteVector object to draw itself to the buffer. Remember that the SpriteVector
object takes care of drawing the background and all the sprites. This is accomplished with a simple call to
SpriteVector's draw method. The offscreen buffer is then drawn to the applet window using the drawImage
method.

Even though the update method takes care of drawing everything, it is still important to implement the paint method.
As a matter of fact, the paint method is very useful in providing the user visual feedback regarding the state of the
images used by the applet. Listing 24.9 shows the source code for paint.

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (25 of 27) [11/06/2000 7:46:27 PM]



Listing 24.9. The Sharks class's paint method.

 1: public void paint(Graphics g) {
 2:   if ((tracker.statusID(0, true) & MediaTracker.ERRORED) != 0) {
 3:     // Draw the error rectangle
 4:     g.setColor(Color.red);
 5:     g.fillRect(0, 0, size().width, size().height);
 6:     return;
 7:   }
 8:   if ((tracker.statusID(0, true) & MediaTracker.COMPLETE) != 0) {
 9:     // Draw the offscreen image
10:     g.drawImage(offImage, 0, 0, null);
11:   }
12:   else {
13:     // Draw the title message (while the images load)
14:     Font        f1 = new Font("TimesRoman", Font.BOLD, 28),
15:                 f2 = new Font("Helvetica", Font.PLAIN, 16);
16:     FontMetrics fm1 = g.getFontMetrics(f1),
17:                 fm2 = g.getFontMetrics(f2);
18:     String      s1 = new String("Sharks"),
19:                 s2 = new String("Loading images...");
20:     g.setFont(f1);
21:     g.drawString(s1, (size().width - fm1.stringWidth(s1)) / 2,
22:       ((size().height - fm1.getHeight()) / 2) + fm1.getAscent());
23:     g.setFont(f2);
24:     g.drawString(s2, (size().width - fm2.stringWidth(s2)) / 2,
25:       size().height - fm2.getHeight() - fm2.getAscent());
26:   }
27: }

Analysis
Using the media tracker, paint notifies the user that the images are
still loading, or that an error has occurred while loading them. Check
out Figure 24.5, which shows the Sharks applet while the images are
loading.

Figure 24.5 : The Sharks applet while the images are loading.

If an error occurs while loading one of the images, the paint method displays a red rectangle over the entire applet
window area. If the images have finished loading, paint just draws the latest offscreen buffer to the applet window. If the
images haven't finished loading, paint displays the title of the applet and a message stating that the images are still
loading (see Figure 24.5). Displaying the title and status message consists of creating the appropriate fonts and centering
the text within the applet window.

That's all it takes to get the sprite classes working together. It might seem like a lot of code at first, but think about all that
the applet is undertaking. The applet is responsible for loading and keeping track of all the images used by the sprites, as
well as the background and offscreen buffer. If the images haven't finished loading, or if an error occurs while loading, the
applet has to notify the user accordingly. Additionally, the applet is responsible for maintaining a consistent frame rate and
drawing the sprites using double buffering. Even with these responsibilities, the applet is still benefiting a great deal from
the functionality provided by the sprite classes.

You can use this applet as a template applet for other applets you create that use the sprite classes. You now have all the
functionality required to manage both cast- and frame-based animation, as well as provide support for interactivity among

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (26 of 27) [11/06/2000 7:46:27 PM]



sprites via collision detection.

Summary
In today's lesson you have learned all about animation, including the two major types of animation: frame based and cast
based. Adding to this theory, you have learned that sprite animation is where the action really is. You have seen firsthand
how to develop a powerful duo of sprite classes for implementing sprite animation, including a few support classes to
make things easier. You have put the sprite classes to work in a sample applet that involves relatively little additional
overhead.

You now have all you need to start creating your own Java sprite animations with ease. If that's not enough for you, just
wait until tomorrow's lesson, which deals with another advanced graphics topic: image filters.

Q&A

Q: What's the big deal with sprites?
A: The big deal is that sprites provide a very flexible approach to implementing animation. Additionally, using sprites

you can take advantage of both fundamental types of animation: frame-based animation and cast-based animation.
Q: What exactly is Z-order, and do I really need it?
A Z-order is the depth of a sprite relative to other sprites; sprites with higher Z-order values appear to be on top of

sprites with lower Z-order values. You only need Z-order if you have sprites that overlap each other, in which case
Z-order will determine which one conceals the other.

Q: Why bother with the different types of collision detection?
A: The different types of collision detection (rectangle, shrunken rectangle, and image data) provide different

trade-offs in regard to performance and accuracy. Rectangle and shrunken rectangle collision detection provide a
very high-performance solution, but with moderate to poor accuracy. Image data-collision detection is perfect
when it comes to accuracy, but it can bring your applet to its knees in the performance department, not to mention
give you a headache trying to make it work.

Q: Why do I need the SpriteVector class? Isn't the Sprite class enough?
A: The Sprite class is nice, but it represents only a single sprite. To enable multiple sprites to interact with each

other, you must have a second entity that acts as a storage unit for the sprites. The SpriteVector class solves
this problem by doubling as a container for all the sprites as well as a means of detecting collisions between
sprites.

   

Day 24 -- Advanced Animation and Media

file:///G|/ebooks/1575211831/ch24.htm (27 of 27) [11/06/2000 7:46:27 PM]



file:///G|/ebooks/1575211831/f24-1.gif

file:///G|/ebooks/1575211831/f24-1.gif [11/06/2000 7:46:27 PM]



file:///G|/ebooks/1575211831/f24-2.gif

file:///G|/ebooks/1575211831/f24-2.gif [11/06/2000 7:46:27 PM]



file:///G|/ebooks/1575211831/f24-3.gif

file:///G|/ebooks/1575211831/f24-3.gif [11/06/2000 7:46:28 PM]



file:///G|/ebooks/1575211831/f24-4.gif

file:///G|/ebooks/1575211831/f24-4.gif [11/06/2000 7:46:28 PM]



file:///G|/ebooks/1575211831/f24-5.gif

file:///G|/ebooks/1575211831/f24-5.gif [11/06/2000 7:46:29 PM]



Day 23

Working with Data Structures in Java
by Michael Morrison

CONTENTS
Data Structure Fundamentals●   

The Standard Java Data Structures

Enumerations❍   

Bit Sets❍   

Vectors❍   

Stacks❍   

Dictionaries❍   

Hash Tables❍   

●   

Building Your Own Data Structures

Linked List Basics❍   

Implementing a Linked List❍   

●   

Summary●   

Q&A●   

Few programs can be developed without at least some usage of data structures, which are responsible for
storing and maintaining information used by a program. Whether you develop your own data structures
from scratch or rely on those developed and tested by others, you will undoubtedly need to use data
structures at some point in your Java programming endeavors. Today's lesson takes a look at data
structures as they relate to Java. It covers the following topics:

Data structure basics●   

The standard Java data structures●   

Building your own data structures●   

By the end of today's lesson, you'll have a good idea of what data structures are readily available in the
standard Java packages, along with some data structures you can implement yourself without too much
pain. Let's get started!

Day 23 -- Working with Data Structures in Java

file:///G|/ebooks/1575211831/ch23.htm (1 of 22) [11/06/2000 7:46:32 PM]



Data Structure Fundamentals
Like algorithms in general, data structures are one of those general concepts in computer science whose
usefulness spreads far and wide. Consequently, a solid understanding of data structures and when to
apply certain ones is the trademark of any good programmer. Java programming is no different, and you
should take data structures no less seriously in Java than in any other language. Just because many Java
programs come in the form of applets, which sound cuter and less auspicious than C or C++ applications,
doesn't mean that they don't rely on a solid means of storing and manipulating data.

Almost every Java applet works with information to some extent. Even very simple animation applets
that display a series of images must somehow store the images in such a way that the images can be
referenced quickly. In this example, a very elementary data structure such as an array might be the best
solution, since all that is required of the data structure is the storage of multiple images. Even so,
consider the fact that every program has its own set of data requirements that greatly affect the
applicability of different data structures. If you don't understand the full range of programming options in
terms of data structures, you'll find yourself trying to use an array in every program you write. This
tendency to rely on one solution for all your programming problems will end up getting you into trouble.
In other words, by understanding how to use a wide variety of data structures, you broaden your
perspective on how to solve the inevitable problems arising from new programming challenges.

I mentioned arrays being a very simple data structure. In fact, outside of member variables themselves,
arrays are the most simple data structure supported by Java. An array is simply an aggregate series of
data elements of the same type. I say that arrays are aggregate because they are treated as a single entity,
just like any other member variable. However, they actually contain multiple elements that can be
accessed independently. Based on this description, it's logical that arrays are useful any time you need to
store and access a group of information that is all of the same type. For example, you could store your
picks for a lottery in an array of integers. However, the glaring limitation of arrays is that they can't
change in size to accommodate more (or fewer) elements. This means that you can't add new elements to
an array that is already full.

It turns out that the data requirements for many practical programs reach far beyond what arrays provide.
In other languages, it is often necessary to develop custom data structures whenever the requirements go
beyond arrays. However, the Java class library provides a set of data structures in the java.util
package that give you a lot more flexibility in how to approach organizing and manipulating data. There
still may be situations in which these standard data structures don't fit your needs, in which case you'll
have to write your own. You'll learn how to implement your own custom data structures later in today's
lesson.

Technical Note
Unlike the data structures provided by the java.util package,
arrays are considered such a core component of the Java language
that they are implemented in the language itself. Therefore, you can
use arrays in Java without importing any packages.

Day 23 -- Working with Data Structures in Java

file:///G|/ebooks/1575211831/ch23.htm (2 of 22) [11/06/2000 7:46:32 PM]



The Standard Java Data Structures
The data structures provided by the Java utility package are very powerful and perform a wide range of
functions. These data structures consist of the following interface and five classes:

Enumeration●   

BitSet●   

Vector●   

Stack●   

Dictionary●   

Hashtable●   

The Enumeration interface isn't itself a data structure, but it is very important within the context of
other data structures. The Enumeration interface defines a means to retrieve successive elements from
a data structure. For example, Enumeration defines a method called nextElement that is used to
get the next element in a data structure that contains multiple elements.

The BitSet class implements a group of bits, or flags, that can be set and cleared individually. This
class is very useful in cases where you need to keep up with a set of boolean values; you just assign a bit
to each value and set or clear it as appropriate.

New Term
A flag is a boolean value that is used to represent one of a group of
on/off type states in a program.

The Vector class is similar to a traditional Java array, except that it can grow as necessary to
accommodate new elements. Like an array, elements of a Vector object can be accessed via an index
into the vector. The nice thing about using the Vector class is that you don't have to worry about setting
it to a specific size upon creation; it shrinks and grows automatically when necessary.

The Stack class implements a last-in-first-out (LIFO) stack of elements. You can think of a stack
literally as a vertical stack of objects; when you add a new element, it gets stacked on top of the others.
When you pull an element off the stack, it comes off the top. In other words, the last element you added
to the stack is the first one to come back off.

The Dictionary class is an abstract class that defines a data structure for mapping keys to values. This
is useful in cases where you want to be able to access data via a particular key rather than an integer
index. Since the Dictionary class is abstract, it provides only the framework for a key-mapped data
structure rather than a specific implementation.

New Term
A key is a numeric identifier used to reference, or look up, a value in
a data structure.

An actual implementation of a key-mapped data structure is provided by the Hashtable class. The
Hashtable class provides a means of organizing data based on some user-defined key structure. For
example, in an address list hash table you could store and sort data based on a key such as ZIP code

Day 23 -- Working with Data Structures in Java

file:///G|/ebooks/1575211831/ch23.htm (3 of 22) [11/06/2000 7:46:32 PM]



rather than on a person's name. The specific meaning of keys in regard to hash tables is totally dependent
on the usage of the hash table and the data it contains.

That pretty well sums up the data structures provided by the Java utility package. Now that you have a
cursory understanding of them, let's dig into each in a little more detail and see how they work.

Enumerations

The Enumeration interface provides a standard means of iterating through a list of sequentially stored
elements, which is a common task of many data structures. Even though you can't use the interface
outside the context of a particular data structure, understanding how it works will put you well on your
way to understanding other Java data structures. With that in mind, take a look at the only two methods
defined by the Enumeration interface:

public abstract boolean hasMoreElements();
public abstract Object nextElement();

The hasMoreElements method is used to determine if the enumeration contains any more elements.
You will typically call this method to see if you can continue iterating through an enumeration. An
example of this is calling hasMoreElements in the conditional clause of a while loop that is
iterating through an enumeration.

The nextElement method is responsible for actually retrieving the next element in an enumeration. If
no more elements are in the enumeration, nextElement will throw a NoSuchElementException
exception. Since you want to avoid generating exceptions whenever possible, you should always use
hasMoreElements in conjunction with nextElement to make sure there is another element to
retrieve. Following is an example of a while loop that uses these two methods to iterate through a data
structure object that implements the Enumeration interface:

// e is an object that implements the Enumeration interface
while (e.hasMoreElements()) {
  Object o = e.nextElement();
  System.out.println(o);
}

This sample code prints out the contents of an enumeration using the hasMoreElements and
nextElement methods. Pretty simple!

Technical Note
Since Enumeration is an interface, you'll never actually use it as a
data structure directly. Rather, you will use the methods defined by
Enumeration within the context of other data structures. The
significance of this architecture is that it provides a consistent
interface for many of the standard data structures, which makes them
easier to learn and use.

Day 23 -- Working with Data Structures in Java

file:///G|/ebooks/1575211831/ch23.htm (4 of 22) [11/06/2000 7:46:32 PM]



Bit Sets

The BitSet class is useful whenever you need to represent a group of boolean flags. The nice thing
about the BitSet class is that it allows you to use individual bits to store boolean values without the
mess of having to extract bit values using bitwise operations; you simply refer to each bit using an index.
Another nice feature about the BitSet class is that it automatically grows to represent the number of
bits required by a program. Figure 23.1 shows the logical organization of a bit set data structure.

Figure 23.1 : The logical organization of a bit set data structure.

For example, you can use BitSet as an object that has a number of attributes that can easily be
modeled by boolean values. Since the individual bits in a bit set are accessed via an index, you can define
each attribute as a constant index value:

class someBits {
  public static final int readable = 0;
  public static final int writeable = 1;
  public static final int streamable = 2;
  public static final int flexible = 3;
}

Notice that the attributes are assigned increasing values, beginning with 0. You can use these values to
get and set the appropriate bits in a bit set. But first, you need to create a BitSet object:

BitSet bits = new BitSet();

This constructor creates a bit set with no specified size. You can also create a bit set with a specific size:

BitSet bits = new BitSet(4);

This creates a bit set containing four boolean bit fields. Regardless of the constructor used, all bits in new
bit sets are initially set to false. Once you have a bit set created, you can easily set and clear the bits
using the set and clear methods along with the bit constants you defined:

bits.set(someBits.writeable);
bits.set(someBits.streamable);
bits.set(someBits.flexible);
bits.clear(someBits.writeable);

In this code, the writeable, streamable, and flexible attributes are set, and then the
writeable bit is cleared. Notice that the fully qualified name is used for each attribute, since the
attributes are declared as static in the someBits class.

You can get the value of individual bits in a bit set using the get method:

boolean canIWrite = bits.get(someBits.writeable);

Day 23 -- Working with Data Structures in Java

file:///G|/ebooks/1575211831/ch23.htm (5 of 22) [11/06/2000 7:46:32 PM]



You can find out how many bits are being represented by a bit set using the size method. An example
of this follows:

int numBits = bits.size();

The BitSet class also provides other methods for performing comparisons and bitwise operations on
bit sets such as AND, OR, and XOR. All these methods take a BitSet object as their only parameter.

Vectors

The Vector class implements a growable array of objects. Since the Vector class is responsible for
growing itself as necessary to support more elements, it has to decide when and by how much to grow as
new elements are added. You can easily control this aspect of vectors upon creation. Before getting into
that, however, take a look at how to create a basic vector:

Vector v = new Vector();

That's about as simple as it gets! This constructor creates a default vector containing no elements.
Actually, all vectors are empty upon creation. One of the attributes important to how a vector sizes itself
is the initial capacity of a vector, which is how many elements the vector allocates memory for by
default.

New Term
The size of a vector is the number of elements currently stored in the
vector.

New Term
The capacity of a vector is the amount of memory allocated to hold
elements, and is always greater than or equal to the size.

The following code shows how to create a vector with a specified capacity:

Vector v = new Vector(25);

This vector is created to immediately support up to 25 elements. In other words, the vector will go ahead
and allocate enough memory to support 25 elements. Once 25 elements have been added, however, the
vector must decide how to grow itself to accept more elements. You can specify the value by which a
vector grows using yet another Vector constructor:

Vector v = new Vector(25, 5);

This vector has an initial size of 25 elements, and will grow in increments of 5 elements whenever its
size grows to more than 25 elements. This means that the vector will first jump to 30 elements in size,
then 35, and so on. A smaller grow value for a vector results in more efficient memory management, but
at the cost of more execution overhead since more memory allocations are taking place. On the other
hand, a larger grow value results in fewer memory allocations, but sometimes memory may be wasted if
you don't use all the extra space created.

Day 23 -- Working with Data Structures in Java

file:///G|/ebooks/1575211831/ch23.htm (6 of 22) [11/06/2000 7:46:32 PM]



Unlike with arrays, you can't just use square brackets ([]) to access the elements in a vector; you have to
use methods defined in the Vector class. To add an element to a vector, you use the addElement
method:

v.addElement("carrots");
v.addElement("broccoli");
v.addElement("cauliflower");

This code shows how to add some vegetable strings to a vector. To get the last string added to the vector,
you can use the lastElement method:

String s = (String)v.lastElement();

The lastElement method retrieves the last element added to the vector. Notice that you have to cast
the return value of lastElement, since the Vector class is designed to work with the generic
Object class. Although lastElement certainly has its usefulness, you will probably find more use
with the elementAt method, which allows you to index into a vector to retrieve an element. Following
is an example of using the elementAt method:

String s1 = (String)v.elementAt(0);
String s2 = (String)v.elementAt(2);

Since vectors are zero based, the first call to elementAt retrieves the "carrots" string, and the
second call retrieves the "cauliflower" string. Just as you can retrieve an element at a particular
index, you can also add and remove elements at an index using the insertElementAt and
removeElementAt methods:

v.insertElementAt("squash", 1);
v.insertElementAt("corn", 0);
v.removeElementAt(3);

The first call to insertElementAt inserts an element at index 1, between the "carrots" and
"broccoli" strings. The "broccoli" and "cauliflower" strings are moved up a space in the
vector to accommodate the inserted "squash" string. The second call to insertElementAt inserts
an element at index 0, which is the beginning of the vector. In this case, all existing elements are moved
up a space in the vector to accommodate the inserted "corn" string. At this point, the contents of the
vector look like this:

"corn"
"carrots"
"squash"
"broccoli"
"cauliflower"

The call to removeElementAt removes the element at index 3, which is the "broccoli" string.
The resulting contents of the vector consist of the following strings:

Day 23 -- Working with Data Structures in Java

file:///G|/ebooks/1575211831/ch23.htm (7 of 22) [11/06/2000 7:46:32 PM]



"corn"
"carrots"
"squash"
"cauliflower"

You can use the setElementAt method to change a specific element:

v.setElementAt("peas", 1);

This method replaces the "carrots" string with the "peas" string, resulting in the following vector
contents:

"corn"
"peas"
"squash"
"cauliflower"

If you want to clear out the vector completely, you can remove all the elements with the
removeAllElements method:

v.removeAllElements();

The Vector class also provides some methods for working with elements without using indexes. These
methods actually search through the vector for a particular element. The first of these methods is the
contains method, which simply checks to see if an element is in the vector:

boolean isThere = v.contains("celery");

Another method that works in this manner is the indexOf method, which finds the index of an element
based on the element itself:

int i = v.indexOf("squash");

The indexOf method returns the index of the element in question if it is in the vector, or
-1 if not. The removeElement method works similarly in that it removes an element based on the
element itself rather than on an index:

v.removeElement("cauliflower");

If you're interested in working with all the elements in a vector sequentially, you can use the elements
method, which returns an enumeration of the elements:

Enumeration e = v.elements();

Recall from earlier in today's lesson that you can use an enumeration to step through elements

Day 23 -- Working with Data Structures in Java

file:///G|/ebooks/1575211831/ch23.htm (8 of 22) [11/06/2000 7:46:32 PM]



sequentially. In this example, you can work with the enumeration e using the methods defined by the
Enumeration interface.

You may find yourself wanting to work with the size of a vector. Fortunately, the Vector class
provides a few methods for determining and manipulating the size of a vector. First, the size method
determines the number of elements in the vector:

int size = v.size();

If you want to explicitly set the size of a vector, you can use the setSize method:

v.setSize(10);

The setSize method expands or truncates the vector to accommodate the new size specified. If the
vector is expanded because of a larger size, null elements are inserted as the newly added elements. If the
vector is truncated, any elements at indexes beyond the specified size are discarded.

If you recall, vectors have two different attributes relating to size: size and capacity. The size is the
number of elements in the vector and the capacity is the amount of memory allocated to hold all
elements. The capacity is always greater than or equal to the size. You can force the capacity to exactly
match the size using the trimToSize method:

v.trimToSize();

You can also check to see what the capacity is, using the capacity method:

int capacity = v.capacity();

You'll find that the Vector class is one of the most useful data structures provided in the Java API.
Hopefully this tour of the class gives you an idea of how powerful vectors are and how easy it is to use
them.

Stacks

Stacks are a classic data structure used to model information that is accessed in a specific order. The
Stack class in Java is implemented as a last-in-first-out (LIFO) stack, which means that the last item
added to the stack is the first one to come back off. Figure 23.2 shows the logical organization of a stack.

Figure 23.2 : The logical organization of a stack data structure.

You may be wondering from Figure 23.2 why the numbers of the elements don't match their position
from the top of the stack. Keep in mind that elements are added to the top, so Element0, which is on
the bottom, was the first element added to the stack. Likewise, Element3, which is on top, is the last
element added to the stack. Also, since Element3 is at the top of the stack, it will be the first to come
back off.

The Stack class only defines one constructor, which is a default constructor that creates an empty stack.
You use this constructor to create a stack like this:

Day 23 -- Working with Data Structures in Java

file:///G|/ebooks/1575211831/ch23.htm (9 of 22) [11/06/2000 7:46:33 PM]



Stack s = new Stack();

You add new elements to a stack using the push method, which pushes an element onto the top of the
stack:

s.push("One");
s.push("Two");
s.push("Three");
s.push("Four");
s.push("Five");
s.push("Six");

This code pushes six strings onto the stack, with the last string ("Six") remaining on top. You pop
elements back off the stack using the pop method:

String s1 = (String)s.pop();
String s2 = (String)s.pop();

This code pops the last two strings off the stack, leaving the first four strings remaining. This code results
in the s1 variable containing the "Six" string and the s2 variable containing the "Five" string.

If you want to get the top element on the stack without actually popping it off the stack, you can use the
peek method:

String s3 = (String)s.peek();

This call to peek returns the "Four" string but leaves the string on the stack. You can search for an
element on the stack using the search method:

int i = s.search("Two");

The search method returns the distance from the top of the stack of the element if it is found, or -1 if
not. In this case, the "Two" string is the third element from the top, so the search method returns 2
(zero based).

Technical Note
As in all Java data structures that deal with indexes or lists, the
Stack class reports element position in a zero-based fashion. This
means that the top element in a stack has a location of 0, and the
fourth element down in a stack has a location of 3.

The only other method defined in the Stack class is empty, which determines whether a stack is
empty:

boolean isEmpty = s.empty();

Day 23 -- Working with Data Structures in Java

file:///G|/ebooks/1575211831/ch23.htm (10 of 22) [11/06/2000 7:46:33 PM]



Although maybe not quite as useful as the Vector class, the Stack class provides the functionality for
a very common and established data structure.

Dictionaries

The Dictionary class defines a framework for implementing a basic key-mapped data structure.
Although you can't actually create Dictionary objects since the class is abstract, you can still learn a
lot about key-mapped data modeling by learning how the Dictionary class works. You can put the
key-mapped approach to work using the Hashtable class, which is derived from Dictionary, or by
deriving your own class from Dictionary. You learn about the Hashtable class in the next section
of today's lesson.

The Dictionary class defines a means of storing information based on a key. This is similar in some
ways to how the Vector class works, in that elements in a vector are accessed via an index, which is a
specific type of key. However, keys in the Dictionary class can be just about anything. You can
create your own class to use as the keys for accessing and manipulating data in a dictionary. Figure 23.3
shows how keys map to data in a dictionary.

Figure 23.3 : The logical organization of a dictionary data structure.

The Dictionary class defines a variety of methods for working with the data stored in a dictionary.
All these methods are defined as abstract, meaning that derived classes will have to implement all of
them to actually be useful. The put and get methods are used to put objects in the dictionary and get
them back. Assuming dict is a Dictionary-derived class that implements these methods, the
following code shows how to use the put method to add elements to a dictionary:

dict.put("small", new Rectangle(0, 0, 5, 5));
dict.put("medium", new Rectangle(0, 0, 15, 15));
dict.put("large", new Rectangle(0, 0, 25, 25));

This code adds three rectangles to the dictionary, using strings as the keys. To get an element from the
dictionary, you use the get method and specify the appropriate key:

Rectangle r = (Rectangle)dict.get("medium");

You can also remove an element from the dictionary with a key using the remove method:

dict.remove("large");

You can find out how many elements are in the dictionary using the size method, much as you did with
the Vector class:

int size = dict.size();

You can also check whether the dictionary is empty using the isEmpty method:

boolean isEmpty = dict.isEmpty();

Day 23 -- Working with Data Structures in Java

file:///G|/ebooks/1575211831/ch23.htm (11 of 22) [11/06/2000 7:46:33 PM]



Finally, the Dictionary class includes two methods for enumerating the keys and values contained
within: keys and elements. The keys method returns an enumeration containing all the keys
contained in a dictionary, while the elements method returns an enumeration of all the key-mapped
values contained. Following is an example of retrieving both enumerations:

Enumeration keys = dict.keys();
Enumeration elements = dict.elements();

Note that since keys are mapped to elements on a one-to-one basis, these enumerations are of equal
length.

Hash Tables

The Hashtable class is derived from Dictionary and provides a complete implementation of a
key-mapped data structure. Similar to dictionaries, hash tables allow you to store data based on some
type of key. Unlike dictionaries, hash tables have an efficiency associated with them defined by the load
factor of the table.

The load factor of a hash table is a number between 0.0 and 1.0 that determines how and when the hash
table allocates space for more elements.

Like vectors, hash tables have a capacity, which is the amount of memory allocated for the table. Hash
tables allocate more memory by comparing the current size of the table with the product of the capacity
and the load factor. If the size of the hash table exceeds this product, the table increases its capacity by
rehashing itself.

Load factors closer to 1.0 result in a more efficient use of memory at the expense of a longer look-up
time for each element. Similarly, load factors closer to 0.0 result in more efficient look-ups but also tend
to be more wasteful with memory. Determining the load factor for your own hash tables is really
dependent on the usage of the hash table and whether your priority is on performance or memory
efficiency.

You create hash tables using one of three methods. The first method creates a default hash table:

Hashtable hash = new Hashtable();

The second constructor creates a hash table with the specified initial capacity:

Hashtable hash = new Hashtable(20);

Finally, the third constructor creates a hash table with the specified initial capacity and load factor:

Hashtable hash = new Hashtable(20, 0.75);

All the abstract methods defined in Dictionary are implemented in the Hashtable class. Since
these methods perform the exact same function in Hashtable, there's no need to cover them again.
However, they are listed here just so you'll have an idea of what support Hashtable provides:

Day 23 -- Working with Data Structures in Java

file:///G|/ebooks/1575211831/ch23.htm (12 of 22) [11/06/2000 7:46:33 PM]



elements
get
isEmpty
keys
put
remove
size

In addition to these methods, the Hashtable class implements a few others that perform functions
specific to supporting hash tables. One of these is the clear method, which clears a hash table of all its
keys and elements:

hash.clear();

The contains method is used to see if an object is stored in the hash table. This method searches for
an object value in the hash table rather than a key. The following code shows how to use the contains
method:

boolean isThere = hash.contains(new Rectangle(0, 0, 5, 5));

Similar to contains, the containsKey method searches a hash table, but it searches based on a key
rather than a value:

boolean isThere = hash.containsKey("Small");

I mentioned earlier that a hash table will rehash itself when it determines that it must increase its
capacity. You can force a rehash yourself by calling the rehash method:

hash.rehash();

That pretty much sums up the important methods implemented by the Hashtable class. Even though
you've seen all the methods, you still may be wondering exactly how the Hashtable class is useful.
The practical usage of a hash table is actually in representing data that is too time-consuming to search or
reference by value. In other words, hash tables often come in handy when you're working with complex
data, where it's much more efficient to access the data using a key rather than by comparing the data
objects themselves. Furthermore, hash tables typically compute a key for elements, which is called a hash
code. For example, an object such as a string can have an integer hash code computed for it that uniquely
represents the string. When a bunch of strings are stored in a hash table, the table can access the strings
using integer hash codes as opposed to using the contents of the strings themselves. This results in much
more efficient searching and retrieving capabilities.

New Term
A hash code is a computed key that uniquely identifies each element
in a hash table.

This technique of computing and using hash codes for object storage and reference is exploited heavily

Day 23 -- Working with Data Structures in Java

file:///G|/ebooks/1575211831/ch23.htm (13 of 22) [11/06/2000 7:46:33 PM]



throughout the Java system. This is apparent in the fact that the parent of all classes, Object, defines a
hashCode method that is overridden in most standard Java classes. Any class that defines a hashCode
method can be efficiently stored and accessed in a hash table. A class wishing to be hashed must also
implement the equals method, which defines a way of telling if two objects are equal. The equals
method usually just performs a straight comparison of all the member variables defined in a class.

Hash tables are an extremely powerful data structure that you will probably want to integrate into some
of your programs that manipulate large amounts of data. The fact that they are so widely supported in the
Java API via the Object class should give you a clue as to their importance in Java programming.

Building Your Own Data Structures
Even though the Java utility package provides some very powerful and useful data structures, there may
be situations in which you need something a little different. I encourage you to make the most of the
standard Java data structures whenever possible, since reusing stable code is always a smarter solution
than writing your own code. However, in cases where the standard data structures just don't seem to fit,
you may need to turn your attention toward other options.

Throughout the rest of today's lesson you'll learn all about one of these other options. More specifically,
you'll learn about linked lists, which are a very useful type of data structure not provided in the standard
Java data structures. Not only will you learn about linked lists, but you'll also develop your own linked
list class that you can reuse in your own Java programs. You'll see that building custom data structures
isn't all that difficult. Let's get started!

Linked List Basics

Like vectors and arrays, linked lists are used to store a sequential list of objects. The primary difference
between these data structures is that arrays and vectors are better at referencing elements via a numeric
index, whereas linked lists are better at accessing data in a purely sequential manner. In other words,
linked lists aren't suited for the type of random access provided by arrays and vectors. This may seem
like a limitation of linked lists, but it is in fact what makes them unique as a data structure; they are much
more efficient when it comes to adding, inserting, and removing elements.

To get a better idea of why linked lists have the properties mentioned, take a look at the logical
organization of linked lists shown in Figure 23.4.

Figure 23.4 : The logical organization of a doubly linked list data structure.

The figure shows the linked list having a distinct start and end, which is somewhat different from arrays
and vectors. Sure, arrays and vectors have a first element and a last element, but the elements have no
more significance than any other elements. The start and end of linked lists are a strict requirement since
linked lists don't hold elements in a fixed amount of memory. This actually touches on the biggest
difference between linked lists and vectors/arrays. Linked lists simply hold references to the start and end
elements contained within, whereas vectors and arrays contain references to all of their elements.

Another key point to note from Figure 23.4 is that each element in a linked list contains a reference to
both the element before and the element after it. This is how elements in linked lists are accessed: by

Day 23 -- Working with Data Structures in Java

file:///G|/ebooks/1575211831/ch23.htm (14 of 22) [11/06/2000 7:46:33 PM]



traversing the list through the references to successive elements. In other words, to get the third element
in a linked list, you have to start with the first element and follow its reference to the second element, and
then repeat the process to get to the third element. This may seem like a tedious process, but it actually
works quite well in some situations.

In the discussion thus far, I've glossed over one fine point in regard to linked lists, and that is the two
types of linked lists. The type shown in Figure 23.4 is called a doubly linked list because it contains
references to both the element following and the element preceding a particular element. Another popular
type of linked list is the singly linked list, where each element contains only a reference to the element
following it. Figure 23.5 shows the logical organization of a singly linked list.

Figure 23.5 : The logical organization of a singly linked list data structure.

Since doubly linked lists tend to be more general and therefore have a wider range of application, you'll
focus on them in today's lesson. Besides, a doubly linked list is really just a singly linked list with more
features, which means you can use it just like a singly linked list if you want.

Implementing a Linked List

Now that you have an idea of what a linked list is, let's go ahead and take a stab at developing a fully
functioning linked list class. Before jumping into the details of a specific linked list implementation,
however, consider the fact that the linked list class you're developing is actually an extension to the
standard Java data structures you learned about earlier today. This means that it is to your advantage to
design the class to fit in well with the design of the existing data structures. A good approach, then,
would be to model the linked list class around the Vector class, at least in regard to some of the basic
techniques of manipulating elements through methods. The reason for this is so anyone else using your
linked list class can easily see how to use the class based on their understanding of other standard Java
classes like Vector. This mindset in terms of extending the standard Java classes is very important
when it comes to writing reusable code.

Even though I've been discussing the linked list implementation in terms of a single class, it turns out that
it takes a few classes to realistically build a complete linked list. These classes consist of a linked list
class, a linked list entry class, and a linked list enumeration class. The linked list class models the list
itself and is the only class anyone using the linked list will come into contact with. The other two classes
are helper classes that provide some type of behind-the-scenes functionality for the linked list class. The
linked list entry class models an individual element within the linked list, and the linked list enumerator
class provides support for the Enumeration interface.

Since it is by far the most simple of the three classes, let's start by looking at the linked list entry class,
which is called LinkedListEntry:

class LinkedListEntry {
  protected Object          val = null;
  protected LinkedListEntry next = null;
  protected LinkedListEntry prev = null;

  public LinkedListEntry(Object obj) {

Day 23 -- Working with Data Structures in Java

file:///G|/ebooks/1575211831/ch23.htm (15 of 22) [11/06/2000 7:46:33 PM]



    // Make sure the object is valid
    if (obj == null)
      throw new NullPointerException();

    val = obj;
  }
}

The LinkedListEntry class contains three member variables that keep up with the value of the entry
(the element being stored) and a reference to the next and previous elements. This class has a single
constructor defined, which simply checks the validity of the object being stored in the entry and assigns it
to the entry's val member variable.

Based on the simplicity of LinkedListEntry, you're probably guessing that most of the functionality
of the linked list is provided by the main linked list class. You guessed right! This class is called
LinkedList and contains a few member variables, which follow:

protected LinkedListEntry start = null;
protected LinkedListEntry end = null;
protected int             numElements;

The start and end member variables hold references to the beginning and end elements in the list,
while the numElements member keeps up with the size of the list. There are also a variety of methods
defined in the LinkedList class that resemble methods in the Vector class. One of the most
important methods is addElement, which adds a new element to the end of the list. The source code
for addElement is shown in Listing 23.1.

Listing 23.1. The LinkedList class's addElement method.

 1: public void addElement(Object obj) {
 2:   // Make sure the object is valid
 3:   if (obj == null)
 4:     throw new NullPointerException();
 5:
 6:   // Create the new entry
 7:   LinkedListEntry newElement = new LinkedListEntry(obj);
 8:   numElements++;
 9:
10:   // See if the new element is the start of the list
11:   if (start == null) {
12:     start = newElement;
13:     end = newElement;
14:   }
15:   else {
16:     end.next = newElement;
17:     newElement.prev = end;

Day 23 -- Working with Data Structures in Java

file:///G|/ebooks/1575211831/ch23.htm (16 of 22) [11/06/2000 7:46:33 PM]



18:     end = newElement;
19:   }
20: }

Analysis
The addElement method first checks to make sure the new object
is valid. It then creates an entry to hold the object and checks to see if
the new element will be placed at the start of the list. addElement
then adjusts the references of elements related to the new element so
the list's structure is maintained.

Just as the addElement method is important for adding a new element to the end of the list, the
insertElementAt method is useful for inserting a new element at any point in the list. Listing 23.2
contains the source code for insertElementAt.

Listing 23.2. The LinkedList class's insertElementAt method.

 1: public void insertElementAt(Object obj, Object pos) {
 2:   // Make sure the objects are valid
 3:   if (obj == null || pos == null)
 4:     throw new NullPointerException();
 5:
 6:   // Make sure the position object is in the list
 7:   LinkedListEntry posEntry = find(pos);
 8:   if (posEntry == null)
 9:     throw new NullPointerException();
10:
11:   // Create the new entry
12:   LinkedListEntry newElement = new LinkedListEntry(obj);
13:   numElements++;
14:
15:   // Link in the new entry
16:   newElement.next = posEntry;
17:   newElement.prev = posEntry.prev;
18:   if (posEntry == start)
19:     start = newElement;
20:   else
21:     posEntry.prev.next = newElement;
22:   posEntry.prev = newElement;
23: }

Analysis

Day 23 -- Working with Data Structures in Java

file:///G|/ebooks/1575211831/ch23.htm (17 of 22) [11/06/2000 7:46:33 PM]



The insertElementAt method takes two parameters that specify
the new object to be added to the list, along with the object at the
position where the new object is to be inserted. insertElementAt
first makes sure both objects are valid; then it checks to see if the
position object is in the list. If things are okay at this point, a new
entry is created to hold the new object, and the references of adjacent
elements are adjusted to reflect the insertion.

At this point you have two methods that allow you to add and insert elements to the linked list. However,
there still isn't any means to remove elements from the list. Enter the removeElement method! Listing
23.3 contains the source code for removeElement, which allows you to remove an element by
specifying the object itself.

Listing 23.3. The LinkedList class's removeElement method.

 1: public boolean removeElement(Object obj) {
 2:   // Make sure the object is valid
 3:   if (obj == null)
 4:     throw new NullPointerException();
 5:
 6:   // Make sure the object is in the list
 7:   LinkedListEntry delEntry = find(obj);
 8:   if (delEntry == null)
 9:     return false;
10:
11:   // Unlink the entry
12:   numElements--;
13:   if (delEntry == start)
14:     start = delEntry.next;
15:   else
16:     delEntry.prev.next = delEntry.next;
17:   if (delEntry == end)
18:     end = delEntry.prev;
19:   else
20:     delEntry.next.prev = delEntry.prev;
21:   return true;
22: }

Analysis
The removeElement method first checks to see if the object
passed in is valid, and then searches to make sure the object is in the
list. It performs the search by calling the find method, which is a
private method you'll learn about in just a moment. Upon finding the
entry in the list, the removeElement method unlinks the entry by
adjusting the references of adjacent entries.

Day 23 -- Working with Data Structures in Java

file:///G|/ebooks/1575211831/ch23.htm (18 of 22) [11/06/2000 7:46:33 PM]



The find method is a private method used internally by the LinkedList class to find entries in the
list based on the object they store. Following is the source code for the find method:

private LinkedListEntry find(Object obj) {
  // Make sure the list isn't empty and the object is valid
  if (isEmpty() || obj == null)
    return null;

  // Search the list for the object
  LinkedListEntry tmp = start;
  while (tmp != null) {
    if (tmp.val == obj)
      return tmp;
    tmp = tmp.next;
  }
  return null;
}

The find method first checks to make sure the list isn't empty and that the object in question is valid. It
then traverses the list using a while loop, checking the val member variable of each entry against the
object passed in. If there is a match, the entry holding the object is returned; otherwise, null is returned.

The find method isn't public because you don't want outside users of the LinkedList class to know
anything about the LinkedListEntry class. In other words, the LinkedListEntry class is a
purely internal helper class, so the LinkedListEntry object returned from find wouldn't make any
sense to a user of LinkedList. Even though find is private, there is a public method that can be used
to see if an object is in the list. This method is called contains; its source code follows:

public boolean contains(Object obj) {
  return (find(obj) != null);
}

As you can see, all the contains method does is call find and compare the return value to null.
Since find only returns a non-null value if an object is found, this little trick works perfectly!

You may have noticed earlier that the find method made a call to the isEmpty method to see if the
list was empty. The code for this method follows:

public boolean isEmpty() {
  return (start == null);
}

Since the start reference in LinkedList only contains a null value if the list is empty, the
isEmpty method simply checks to see if it is in fact set to null. This is a very simple and effective
way to see if the list is empty.

Day 23 -- Working with Data Structures in Java

file:///G|/ebooks/1575211831/ch23.htm (19 of 22) [11/06/2000 7:46:33 PM]



That pretty much sums up the LinkedList class, except for how it supports the Enumeration
interface. In deciding how to support the Enumeration interface, your best bet is to look to the
Vector class. The Vector class supports the Enumeration interface through a method called
elements. The elements method returns an object of type Enumeration that can be used to
enumerate the elements in a vector. Let's use this same approach to add enumeration capabilities to the
linked list. Following is the source code for the elements method in the LinkedList class:

public Enumeration elements() {
  return new LinkedListEnumerator(this);
}

The elements method is probably a lot simpler than you expected. That's because the work of actually
supporting the Enumeration interface is left to the LinkedListEnumerator class. Listing 23.4
contains the source code for the LinkedListEnumerator class.

Listing 23.4. The LinkedListEnumerator class.

 1: class LinkedListEnumerator implements Enumeration {
 2:   protected LinkedListEntry pos;
 3:
 4:   public LinkedListEnumerator(LinkedList list) {
 5:     pos = list.start;
 6:   }
 7:
 8:   public boolean hasMoreElements() {
 9:     return (pos != null);
10:   }
11:
12:   public Object nextElement() {
13:     // Make sure the current object is valid
14:     if (pos == null)
15:       throw new NoSuchElementException();
16:
17:     // Increment the list and return the object
18:     LinkedListEntry tmp = pos;
19:     pos = pos.next;
20:     return tmp.val;
21:   }
22: }

Analysis

Day 23 -- Working with Data Structures in Java

file:///G|/ebooks/1575211831/ch23.htm (20 of 22) [11/06/2000 7:46:33 PM]



The first thing to notice in the LinkedListEnumerator class is
that it implements the Enumeration interface, which is evident in
the class definition. The LinkedListEnumerator class contains
one member variable, pos, which keeps up with the current entry in
the enumeration. The constructor simply sets the pos member to the
start of the list.

Other than saying so in the class definition, implementing the Enumeration interface involves
supporting two methods: hasMoreElements and nextElement. The hasMoreElements
method simply checks to see if the pos member is non-null, in which case there are more elements to
enumerate. The nextElement method makes sure the current entry is valid and then returns the object
stored in this entry. And that's really all there is to the LinkedListEnumerator class!

You now have a complete linked list class that is ready to be put to use in a practical Java program. I'll
leave it up to you to figure out a neat application of it. Incidentally, all the source code for the linked list
classes is located on the accompanying CD-ROM.

Summary
In today's lesson you have learned all about data structures and their relevance to Java programming.
You began the lesson with a brief overview of data structures in general and why it is important to have a
solid understanding of how to use them. You then moved on to learning about the standard data
structures provided in the Java utility package. These standard data structures provide a range of options
that cover many practical programming scenarios. However, for those cases where you need something a
little different to hold data, you also learned about a type of data structure that isn't provided by the Java
utility package: linked lists. You even implemented a linked list class that you can reuse in your own
Java programs. This knowledge, combined with an understanding of the standard Java data structures,
should serve as a solid foundation for your handling of data in practical programming scenarios.

If you thought the topic of data structures was a little dry, don't worry, because tomorrow's lesson gets
much more exciting. Tomorrow you'll learn about advanced animation techniques and the handling of
distributed media. You'll even use your newfound understanding of vectors to implement some really
neat animation classes!

Q&A

Q: If Java arrays are data structures, why aren't they implemented as classes?
A: Actually, Java arrays are implemented as classes; they just aren't used as classes in the traditional

sense of calling methods, and so on. Even though you won't find a class called Array in the
Java API documentation, you can rest assured that under Java's hood there is an array class that
is at least vaguely similar to the Vector class.

Q: Do all of the standard Java data structures implement the Enumeration interface?

Day 23 -- Working with Data Structures in Java

file:///G|/ebooks/1575211831/ch23.htm (21 of 22) [11/06/2000 7:46:33 PM]



A: No, because the design of the Enumeration interface is based on a sequential data structure.
For example, the Vector class is sequential and fits in perfectly with supporting the
Enumeration interface. However, the BitSet class is very much nonsequential, so
supporting the Enumeration interface wouldn't make any sense.

Q: I still don't totally see the importance of using a hash table. What gives?
A: The concept of calculating a hash code for a complex piece of data is important because it allows

you to lessen the overhead involved in searching for the data. The hash code allows you to home
in on a particular point in a large set of data before you begin the arduous task of searching based
on the data itself, which can greatly improve performance.

Q: How are linked lists different from vectors when it comes to the storage of individual
elements?

A: Vectors manage the memory requirements of all elements by allocating a certain amount of
memory upon creation. When a vector is required to grow, it will allocate memory large enough
to hold the existing data and the new data, and then copy everything to it. Even if a vector only
holds references to objects, it must still manage the memory that holds the references. Linked
lists don't manage any of the memory for the elements contained in the list, except for references
to the start and end elements.

   

Day 23 -- Working with Data Structures in Java

file:///G|/ebooks/1575211831/ch23.htm (22 of 22) [11/06/2000 7:46:33 PM]



file:///G|/ebooks/1575211831/f23-1.gif

file:///G|/ebooks/1575211831/f23-1.gif [11/06/2000 7:46:33 PM]



file:///G|/ebooks/1575211831/f23-2.gif

file:///G|/ebooks/1575211831/f23-2.gif [11/06/2000 7:46:34 PM]



file:///G|/ebooks/1575211831/f23-3.gif

file:///G|/ebooks/1575211831/f23-3.gif [11/06/2000 7:46:34 PM]



file:///G|/ebooks/1575211831/f23-4.gif

file:///G|/ebooks/1575211831/f23-4.gif [11/06/2000 7:46:34 PM]



file:///G|/ebooks/1575211831/f23-5.gif

file:///G|/ebooks/1575211831/f23-5.gif [11/06/2000 7:46:34 PM]



Day 12

Managing Simple Events and Interactivity
by Laura Lemay

CONTENTS
Mouse Clicks

Mouse Down and Mouse Up Events❍   

An Example: Spots❍   

Double-Clicks❍   

●   

Mouse Movements

Mouse Drag and Mouse Move Events❍   

Mouse Enter and Mouse Exit Events❍   

An Example: Drawing Lines❍   

Keyboard Events❍   

The keyDown() and keyUp() Methods❍   

Default Keys❍   

An Example: Entering, Displaying, and Moving Characters❍   

Testing for Modifier Keys and Multiple Mouse Buttons❍   

●   

The awt Event Handler●   

Summary●   

Q&A●   

Java events are part of the Java awt (Abstract Windowing Toolkit) package. An event is the way that the awt
communicates to you, as the programmer, and to other Java awt components that something has happened.
That something can be input from the user (mouse movements or clicks, keypresses), changes in the system
environment (a window opening or closing, the window being scrolled up or down), or a host of other things
that might, in some way, affect the operation of the program.

In other words, whenever just about anything happens to a Java awt component, including an applet, an event
is generated. Some events are handled by the awt or by the environment your applet is running in (the
browser) without you needing to do anything. paint() methods, for example, are generated and handled by
the environment-all you have to do is tell the awt what you want painted when it gets to your part of the
window. However, you may need to know about some events, such as a mouse click inside the boundaries of
your applet. By writing your Java programs to handle these kinds of events, you can get input from the user
and have your applet change its behavior based on that input.

Day 12 -- Managing Simple Events and Interactivity 

file:///G|/ebooks/1575211831/ch12.htm (1 of 21) [11/06/2000 7:46:38 PM]



Today you'll learn about managing simple events, including the following basics:

Mouse clicks●   

Mouse movements, including mouse dragging●   

Keyboard actions●   

You'll also learn about the handleEvent() method, which is the basis for collecting, handling, and
passing on events of all kinds from your applet to other components of the window or of your applet itself.
Tomorrow you'll learn how to combine events with other awt components to create a complete interface for
your applet.

Mouse Clicks
Let's start with the most common event you might be interested in: mouse clicks. Mouse-click events occur
when your user clicks the mouse somewhere in the body of your applet. You can intercept mouse clicks to do
very simple things-for example, to toggle the sound on and off in your applet, to move to the next slide in a
presentation, or to clear the screen and start over-or you can use mouse clicks in conjunction with mouse
movements to perform more complex motions inside your applet.

Mouse Down and Mouse Up Events

When you click the mouse once, the awt generates two events: a mouse down event when the mouse button
is pressed and a mouse up event when the button is released. Why two individual events for a single mouse
action? Because you may want to do different things for the "down" and the "up." For example, look at a
pull-down menu. The mouse down extends the menu, and the mouse up selects an item (with mouse drags
between-but you'll learn about that one later). If you have only one event for both actions (mouse up and
mouse down), you cannot implement that sort of user interaction.

Handling mouse events in your applet is easy-all you have to do is override the right method definition in
your applet. That method will be called when that particular event occurs. Here's an example of the method
signature for a mouse down event:

public boolean mouseDown(Event evt, int x, int y) {
...
}

The mouseDown() method (and the mouseUp() method as well) takes three parameters: the event itself
and the x and y coordinates where the mouse down or mouse up event occurred.

The evt argument is an instance of the class Event. All system events generate an instance of the Event
class, which contains information about where and when the event took place, the kind of event it is, and
other information that you might want to know about this event. Sometimes having a handle to that Event
object is useful, as you'll discover later in this section.

The x and the y coordinates of the event, as passed in through the x and y arguments to the mouseDown()
method, are particularly nice to know because you can use them to determine precisely where the mouse
click took place. So, for example, if the mouse down event were over a graphical button, you could activate
that button.

Day 12 -- Managing Simple Events and Interactivity 

file:///G|/ebooks/1575211831/ch12.htm (2 of 21) [11/06/2000 7:46:38 PM]



For example, here's a simple method that prints out information about a mouse down when it occurs:

public boolean mouseDown(Event evt, int x, int y) {
    System.out.println("Mouse down at " + x + "," + y);
    return true;

By including this method in your applet, every time your user clicks the mouse inside your applet, this
message will get printed. The awt system calls each of these methods when the actual event takes place.

Note
Unlike with Java applications, where System.out.println()
outputs to the screen, the output that appears in applets varies from
system to system and browser to browser. Netscape has a special
window called the Java console that must be visible for you to see the
output. Internet Explorer logs Java output to a separate file. Check
with your environment to see where Java output from applets is sent.

Note that this method, unlike the other system methods you've studied this far, returns a boolean value
instead of not returning anything (void). This will become important tomorrow when you create user
interfaces and then manage input to these interfaces; having an event handler method return true or false
determines whether a given component can intercept an event or whether it needs to pass it on to the
enclosing component. The general rule is that if your method intercepts and does something with the event, it
should return true. If for any reason the method doesn't do anything with that event, it should return false
so that other components in the system can have a chance to see that event. In most of the examples in today's
lesson, you'll be intercepting simple events, so most of the methods here will return true. Tomorrow you'll
learn about nesting components and passing events up the component hierarchy.

The second half of the mouse click is the mouseUp() method, which is called when the mouse button is
released. To handle a mouse up event, add the mouseUp() method to your applet: mouseUp() looks just
like mouseDown():

public boolean mouseUp(Event evt, int x, int y) {
    ....
}

An Example: Spots

In this section you'll create an example of an applet that uses mouse events-mouse down events in particular.
The Spots applet starts with a blank screen and then sits and waits. When you click the mouse on that screen,
a blue dot is drawn. You can place up to 10 dots on the screen. Figure 12.1 shows the Spots applet.

Figure 12.1 : The Spots applet.

Let's start from the beginning and build this applet, starting from the initial class definition:

import java.awt.Graphics;
import java.awt.Color;
import java.awt.Event;

Day 12 -- Managing Simple Events and Interactivity 

file:///G|/ebooks/1575211831/ch12.htm (3 of 21) [11/06/2000 7:46:38 PM]



public class Spots extends java.applet.Applet {

    final int MAXSPOTS = 10;
    int xspots[] = new int[MAXSPOTS];
    int yspots[] = new int[MAXSPOTS];
    int currspots = 0;

}

This class uses three other awt classes: Graphics, Color, and Event. That last class, Event, needs to be
imported in any applets that use events. The class has four instance variables: a constant to determine the
maximum number of spots that can be drawn, two arrays to store the x and y coordinates of the spots that
have already been drawn, and an integer to keep track of the number of the current spot.

Note
This class doesn't include the implements Runnable words in
its definition. As you'll see later as you build this applet, it also
doesn't have a run() method. Why not? Because it doesn't actually
do anything on its own-all it does is wait for input and then do stuff
when input happens. There's no need for threads if your applet isn't
actively doing something all the time.

Let's start by adding the init() method, which does only one thing: set the background color to white:

public void init() {
    setBackground(Color.white);
}

We've set the background here in init() instead of in paint() as you have in past examples because you
need to set the background only once. Because paint() is called repeatedly each time a new spot is added,
setting the background in the paint() method unnecessarily slows down that method. Putting it here is a
much better idea.

The main action of this applet occurs with the mouseDown() method, so let's add that one now:

public boolean mouseDown(Event evt, int x, int y) {
    if (currspots < MAXSPOTS) {
        addspot(x,y);
        return true;
    }
    else {
       System.out.println("Too many spots.");
       return false;
    }
}

When the mouse click occurs, the mouseDown() method tests to see whether there are fewer than 10 spots.
If so, it calls the addspot() method (which you'll write soon) and returns true (the mouse down event

Day 12 -- Managing Simple Events and Interactivity 

file:///G|/ebooks/1575211831/ch12.htm (4 of 21) [11/06/2000 7:46:38 PM]



was intercepted and handled). If not, it just prints an error message and returns false.

What does addspot() do? It adds the coordinates of the spot to the arrays that store the coordinates,
increments the currspots variable, and then calls repaint():

void addspot(int x, int y) {
    xspots[currspots] = x;
    yspots[currspots] = y;
    currspots++;
    repaint();
}

You may be wondering why you have to keep track of all the past spots in addition to the current spot. It's
because of repaint(): Each time you paint the screen, you have to paint all the old spots in addition to the
newest spot. Otherwise, each time you painted a new spot, the older spots would get erased. Now, on to the
paint() method:

public void paint(Graphics g) {
    g.setColor(Color.blue);
    for (int i = 0; i < currspots; i++) {
        g.fillOval(xspots[i] -10, yspots[i] - 10, 20, 20);
    }
}

Inside paint(), you just loop through the spots you've stored in the xspots and yspots arrays, painting
each one (actually, painting them a little to the right and upward so that the spot is painted around the mouse
pointer rather than below and to the right).

That's it! That's all you need to create an applet that handles mouse clicks. Everything else is handled for you.
You have to add the appropriate behavior to mouseDown() or mouseUp() to intercept and handle that
event. Listing 12.1 shows the full text for the Spots applet.

Listing 12.1. The Spots applet.

 1: import java.awt.Graphics;
 2: import java.awt.Color;
 3: import java.awt.Event;
 4:
 5: public class Spots extends java.applet.Applet {
 6:
 7:     final int MAXSPOTS = 10;
 8:     int xspots[] = new int[MAXSPOTS];
 9:     int yspots[] = new int[MAXSPOTS];
10:     int currspots = 0;
11:
12:     public void init() {
13:         setBackground(Color.white);
14:     }

Day 12 -- Managing Simple Events and Interactivity 

file:///G|/ebooks/1575211831/ch12.htm (5 of 21) [11/06/2000 7:46:39 PM]



15:
16:     public boolean mouseDown(Event evt, int x, int y) {
17:         if (currspots < MAXSPOTS) {
18:             addspot(x,y);
19:             return true;
20:         }
21:         else {
22:            System.out.println("Too many spots.");
23:            return false;
24:         }
25:     }
26: 
27:     void addspot(int x,int y) {
28:          xspots[currspots] = x;
29:          yspots[currspots] = y;
30:          currspots++;
31:          repaint();
32:     }
33:     
34:     public void paint(Graphics g) {
35:         g.setColor(Color.blue);
36:         for (int i = 0; i < currspots; i++) {
37:               g.fillOval(xspots[i] - 10, yspots[i] - 10, 20, 20);
38:        }
39:     }
40: }

Double-Clicks

What if the mouse event you're interested in is more than a single mouse click-what if you want to track
double- or triple-clicks? The Java Event class provides a variable for tracking this information, called
clickCount. clickCount is an integer representing the number of consecutive mouse clicks that have
occurred (where "consecutive" is usually determined by the operating system or the mouse hardware). If
you're interested in multiple mouse clicks in your applets, you can test this value in the body of your
mouseDown() method, like this:

public boolean mouseDown(Event evt, int x, int y) {
    switch (evt.clickCount) {
      case 1:  // single-click
      case 2:  // double-click
      case 3:  // triple-click
      ....
    }
}

Day 12 -- Managing Simple Events and Interactivity 

file:///G|/ebooks/1575211831/ch12.htm (6 of 21) [11/06/2000 7:46:39 PM]



Mouse Movements
Every time the mouse is moved a single pixel in any direction, a mouse move event is generated. There are
two mouse movement events: mouse drags, where the movement occurs with the mouse button pressed
down, and plain mouse movements, where the mouse button isn't pressed.

To manage mouse movement events, use the mouseDrag() and mouseMove() methods.

Mouse Drag and Mouse Move Events

The mouseDrag() and mouseMove() methods, when included in your applet code, intercept and handle
mouse movement events. Mouse move and move drag events are generated for every pixel change the mouse
moves, so a mouse movement from one side of the applet to the other may generate hundreds of events. The
mouseMove() method, for plain mouse pointer movements without the mouse button pressed, looks much
like the mouse-click methods:

public boolean mouseMove(Event evt, int x, int y) {
    ...
}

The mouseDrag() method handles mouse movements made with the mouse button pressed down (a
complete dragging movement consists of a mouse down event, a series of mouse drag events for each pixel
the mouse is moved, and a mouse up when the button is released). The mouseDrag() method looks like
this:

public boolean mouseDrag(Event evt, int x, int y) {
    ...
}

Note that for both the mouseMove() and mouseDrag() methods, the arguments for the x and y
coordinates are the new location of the mouse, not its starting location.

Mouse Enter and Mouse Exit Events

Finally, there are the mouseEnter() and mouseExit() methods. These two methods are called when
the mouse pointer enters or exits an applet or a portion of that applet. (In case you're wondering why you
might need to know this, it's more useful on awt components that you might put inside an applet. You'll learn
more about the awt tomorrow.)

Both mouseEnter() and mouseExit() have signatures similar to the mouse click methods-three
arguments: the event object and the x and y coordinates of the point where the mouse entered or exited the
applet. These examples show the signatures for mouseEnter() and mouseExit():

public boolean mouseEnter(Event evt, int x, int y) {
    ...
}

Day 12 -- Managing Simple Events and Interactivity 

file:///G|/ebooks/1575211831/ch12.htm (7 of 21) [11/06/2000 7:46:39 PM]



public boolean mouseExit(Event evt, int x, int y) {
    ...
}

An Example: Drawing Lines

Examples always help to make concepts more concrete. In this section you'll create an applet that enables you
to draw straight lines on the screen by dragging from the startpoint to the endpoint. Figure 12.2 shows the
applet at work.

Figure 12.2 : Drawing lines.

As with the Spots applet (on which this applet is based), let's start with the basic definition and work our way
through it, adding the appropriate methods to build the applet. Here's a simple class definition for the Lines
applet, with a number of initial instance variables and a simple init() method:

import java.awt.Graphics;
import java.awt.Color;
import java.awt.Event;
import java.awt.Point;

public class Lines extends java.applet.Applet {

    final int MAXLINES = 10;
    Point starts[] = new Point[MAXLINES]; // starting points
    Point ends[] = new Point[MAXLINES];    // ending points
    Point anchor;    // start of current line
    Point currentpoint; // current end of line
    int currline = 0; // number of lines

    public void init() {
        setBackground(Color.white);
    }
}

This applet adds a few more things than Spots. Unlike Spots, which keeps track of individual integer
coordinates, this one keeps track of Point objects. Points represent an x and a y coordinate, encapsulated in
a single object. To deal with points, you import the Point class and set up a bunch of instance variables that
hold points:

The starts array holds points representing the starts of lines already drawn.●   

The ends array holds the endpoints of those same lines.●   

anchor holds the starting point of the line currently being drawn.●   

currentpoint holds the current endpoint of the line currently being drawn.●   

currline holds the current number of lines (to make sure you don't go over MAXLINES, and to keep
track of which line in the array to access next).

●   

Finally, the init() method, as in the Spots applet, sets the background of the applet to white.

Day 12 -- Managing Simple Events and Interactivity 

file:///G|/ebooks/1575211831/ch12.htm (8 of 21) [11/06/2000 7:46:39 PM]



The three main events this applet deals with are mouseDown(), to set the anchor point for the current line,
mouseDrag(), to animate the current line as it's being drawn, and mouseUp(), to set the ending point for
the new line. Given that you have instance variables to hold each of these values, it's merely a matter of
plugging the right variables into the right methods. Here's mouseDown(), which sets the anchor point (but
only if we haven't exceeded the maximum number of lines):

public boolean mouseDown(Event evt, int x, int y) {
   if (currline < MAXLINES) {
       anchor = new Point(x,y);
       return true;
  }
   else  {
      System.out.println("Too many lines.");
      return false;
   }
}

While the mouse is being dragged to draw the line, the applet animates the line being drawn. As you drag the
mouse around, the new line moves with it from the anchor point to the tip of the mouse. The mouseDrag()
event contains the current point each time the mouse moves, so use that method to keep track of the current
point (and to repaint for each movement so the line "animates"). Note that if we've exceeded the maximum
number of lines, we won't want to do any of this. Here's the mouseDrag() method to do all those things:

public boolean mouseDrag(Event evt, int x, int y) {
   if (currline < MAXLINES) {
       currentpoint = new Point(x,y);
       repaint();
       return true;
    }
   else return false;
}

The new line doesn't get added to the arrays of old lines until the mouse button is released. Here's
mouseUp(), which tests to make sure you haven't exceeded the maximum number of lines before calling
the addline() method (described next):

public boolean mouseUp(Event evt, int x, int y) {
     if (currline < MAXLINES) {
         addline(x,y);
         return true;
     }
     else return false;
}

The addline() method is where the arrays of starting and ending points get updated and where the applet
is repainted to take the new line into effect:

Day 12 -- Managing Simple Events and Interactivity 

file:///G|/ebooks/1575211831/ch12.htm (9 of 21) [11/06/2000 7:46:39 PM]



void addline(int x,int y) {
    starts[currline] = anchor;
    ends[currline] = new Point(x,y);
    currline++;
    currentpoint = null;
    anchor = null;
    repaint();
}

Note that in this method you also set currentpoint and anchor to null. Why? Because the current
line you were drawing is over. By setting these variables to null, you can test for that value in the
paint() method to see whether you need to draw a current line.

Painting the applet means drawing all the old lines stored in the starts and ends arrays, as well as
drawing the current line in progress (whose endpoints are in anchor and currentpoint, respectively).
To show the animation of the current line, draw it in blue. Here's the paint() method for the Lines applet:

public void paint(Graphics g) {

    // Draw existing lines
    for (int i = 0; i < currline; i++) {
        g.drawLine(starts[i].x, starts[i].y,
            ends[i].x, ends[i].y);
    }

    // Draw current line
    g.setColor(Color.blue);
    if (currentpoint != null)
        g.drawLine(anchor.x, anchor.y,
            currentpoint.x, currentpoint.y);
}

In paint(), when you're drawing the current line, you test first to see whether currentpoint is null.
If it is, the applet isn't in the middle of drawing a line, so there's no reason to try drawing a line that doesn't
exist. By testing for currentpoint (and by setting currentpoint to null in the addline()
method), you can paint only what you need.

That's it-just 60 lines of code and a few basic methods, and you have a very basic drawing application in your
Web browser. Listing 12.2 shows the full text of the Lines applet so that you can put the pieces together.

Listing 12.2. The Lines applet.

 1: import java.awt.Graphics;
 2: import java.awt.Color;
 3: import java.awt.Event;
 4: import java.awt.Point;
 5:
 6: public class Lines extends java.applet.Applet {

Day 12 -- Managing Simple Events and Interactivity 

file:///G|/ebooks/1575211831/ch12.htm (10 of 21) [11/06/2000 7:46:39 PM]



 7:
 8:     final int MAXLINES = 10;
 9:     Point starts[] = new Point[MAXLINES]; // starting points
10:     Point ends[] = new Point[MAXLINES];    // endingpoints
11:     Point anchor;    // start of current line
12:     Point currentpoint; // current end of line
13:     int currline = 0; // number of lines
14:
15:     public void init() {
16:         setBackground(Color.white);
17:     }
18:
19:     public boolean mouseDown(Event evt, int x, int y) {
20:        if (currline < MAXLINES) {
21:            anchor = new Point(x,y);
22:            return true;
23:       }
24:        else  {
25:           System.out.println("Too many lines.");
26:           return false;
27:        }
28:     }
29: 
30:    public boolean mouseUp(Event evt, int x, int y) {
31:         if (currline < MAXLINES) {
32:             addline(x,y);
33:             return true;
34:         }
35:         else return false;
36:    }
37: 
38:     public boolean mouseDrag(Event evt, int x, int y) {
39:        if (currline < MAXLINES) {
40:            currentpoint = new Point(x,y);
41:            repaint();
42:            return true;
43:         }
44:        else return false;
45:     }
46:
47:     void addline(int x,int y) {
48:         starts[currline] = anchor;
49:         ends[currline] = new Point(x,y);
50:         currline++;
51:         currentpoint = null;
52:         anchor = null;
53:         repaint();

Day 12 -- Managing Simple Events and Interactivity 

file:///G|/ebooks/1575211831/ch12.htm (11 of 21) [11/06/2000 7:46:39 PM]



54:     }
55: 
56:     public void paint(Graphics g) {
57: 
58:         // Draw existing lines
59:         for (int i = 0; i < currline; i++) {
50:             g.drawLine(starts[i].x, starts[i].y,
51:                  ends[i].x, ends[i].y);
52:         }
53: 
54:         // draw current line
55:         g.setColor(Color.blue);
56:         if (currentpoint != null)
57:             g.drawLine(anchor.x,anchor.y,
58:             currentpoint.x,currentpoint.y);
59:     }
60:}

Keyboard Events

A keyboard event is generated whenever a user presses a key on the keyboard. By using keyboard events,
you can get hold of the values of the keys the user pressed to perform an action or merely to get character
input from the users of your applet.

The keyDown() and keyUp() Methods

To capture a keyboard event, use the keyDown() method:

public boolean keyDown(Event evt, int key) {
    ...
}

The keys generated by key down events (and passed into keyDown() as the key argument) are integers
representing Unicode character values, which include alphanumeric characters, function keys, tabs, returns,
and so on. To use them as characters (for example, to print them), you need to cast them to characters:

currentchar = (char)key;

Here's a simple example of a keyDown() method that does nothing but print the key you just typed in both
its Unicode and character representation (it can be fun to see which key characters produce which values):

public boolean keyDown(Event evt, int key) {
    System.out.println("ASCII value: " + key);
    System.out.println("Character: " + (char)key);
    return true;
}

Day 12 -- Managing Simple Events and Interactivity 

file:///G|/ebooks/1575211831/ch12.htm (12 of 21) [11/06/2000 7:46:39 PM]



As with mouse clicks, each key down event also has a corresponding key up event. To intercept key up
events, use the keyUp() method:

public booklean keyUp(Event evt, int key)  {
   ...
}

Default Keys

The Event class provides a set of class variables that refer to several standard nonalphanumeric keys, such
as the arrow and function keys. If your applet's interface uses these keys, you can provide more readable code
by testing for these names in your keyDown() method rather than testing for their numeric values (and
you're also more likely to be cross-platform if you use these variables). For example, to test whether the up
arrow was pressed, you might use the following snippet of code:

if (key == Event.UP) {
    ...
}

Because the values these class variables hold are integers, you also can use the switch statement to test for
them.

Table 12.1 shows the standard event class variables for various keys and the actual keys they represent.

Table 12.1. Standard keys defined by the Event class.

Class Variable Represented Key
Event.HOME The Home key
Event.END The End key
Event.PGUP The Page Up key
Event.PGDN The Page Down key
Event.UP The up arrow
Event.DOWN The down arrow
Event.LEFT The left arrow
Event.RIGHT The right arrow
Event.f1 The f1 key
Event.f2 The f2 key
Event.f3 The f3 key
Event.f4 The f4 key
Event.f5 The f5 key
Event.f6 The f6 key
Event.f7 The f7 key
Event.f8 The f8 key
Event.f9 The f9 key
Event.f10 The f10 key

Day 12 -- Managing Simple Events and Interactivity 

file:///G|/ebooks/1575211831/ch12.htm (13 of 21) [11/06/2000 7:46:39 PM]



Event.f11 The f11 key
Event.f12 The f12 key

An Example: Entering, Displaying, and Moving Characters

Let's look at an applet that demonstrates keyboard events. With this applet, you type a character, and that
character is displayed in the center of the applet window. You then can move that character around on the
screen with the arrow keys. Typing another character at any time changes the character as it's currently
displayed. Figure 12.3 shows an example.

Figure 12.3 : The Keys applet.

Note
To get this applet to work, you might have to click once with the
mouse on it in order for the keys to show up. This is to make sure the
applet has the keyboard focus (that is, that its actually listening when
you type characters on the keyboard).

This applet is actually less complicated than the previous applets you've used. This one has only three
methods: init(), keyDown(), and paint(). The instance variables are also simpler because the only
things you need to keep track of are the x and y positions of the current character and the values of that
character itself. Here's the initial class definition:

import java.awt.Graphics;
import java.awt.Event;
import java.awt.Font;
import java.awt.Color;

public class Keys extends java.applet.Applet {

    char currkey;
    int currx;
    int curry;
}

Let's start by adding an init() method. Here, init() is responsible for three things: setting the
background color, setting the applet's font (here, 36-point Helvetica bold), and setting the beginning position
for the character (the middle of the screen, minus a few points to nudge it up and to the right):

public void init() {
    currx = (size().width / 2) - 8;
    curry = (size().height / 2) - 16;
    setBackground(Color.white);
    setFont(new Font("Helvetica", Font.BOLD, 36));
}

Because this applet's behavior is based on keyboard input, the keyDown() method is where most of the
work of the applet takes place:

Day 12 -- Managing Simple Events and Interactivity 

file:///G|/ebooks/1575211831/ch12.htm (14 of 21) [11/06/2000 7:46:39 PM]



public boolean keyDown(Event evt, int key) {
   switch (key) {
         case Event.DOWN:
             curry += 5;
             break;
         case Event.UP:
             curry -= 5;
             break;
         case Event.LEFT:
             currx -= 5;
             break;
         case Event.RIGHT:
             currx += 5;
             break;
         default:
             currkey = (char)key;
         }
         repaint();
         return true;
}

In the center of the keyDown() applet is a switch statement that tests for different key events. If the event
is an arrow key, the appropriate change is made to the character's position. If the event is any other key, the
character itself is changed (that's the default part of the switch). The method finishes up with a
repaint() and returns true.

The paint() method here is almost trivial; just display the current character at the current position.
However, note that when the applet starts up, there's no initial character and nothing to draw, so you have to
take that into account. The currkey variable is initialized to 0, so you paint the applet only if currkey
has an actual value:

public void paint(Graphics g) {
    if (currkey != 0) {
        g.drawString(String.valueOf(currkey), currx,curry);
    }
}

Listing 12.3 shows the complete source code for the Keys applet.

Listing 12.3. The Keys applet.

 1: import java.awt.Graphics;
 2: import java.awt.Event;
 3: import java.awt.Font;
 4: import java.awt.Color;
 5: 
 6: public class Keys extends java.applet.Applet {

Day 12 -- Managing Simple Events and Interactivity 

file:///G|/ebooks/1575211831/ch12.htm (15 of 21) [11/06/2000 7:46:39 PM]



 7: 
 8:     char currkey;
 9:     int currx;
10:    int curry;
11:
12:     public void init() {
13:         currx = (size().width / 2) -8;  // default
14:         curry = (size().height / 2) -16;
15:
16:         setBackground(Color.white);
17:         setFont(new Font("Helvetica",Font.BOLD,36));
18:     }
19:
20:     public boolean keyDown(Event evt, int key) {
21:         switch (key) {
22:         case Event.DOWN:
23:             curry += 5;
24:             break;
25:         case Event.UP:
26:             curry -= 5;
27:             break;
28:         case Event.LEFT:
29:             currx -= 5;
30:             break;
31:         case Event.RIGHT:
32:             currx += 5;
33:             break;
34:         default:
35:             currkey = (char)key;
36:         }
37:
38:         repaint();
39:         return true;
40:     }
41:
42:     public void paint(Graphics g) {
43:         if (currkey != 0) {
44:             g.drawString(String.valueOf(currkey), currx,curry);
45:         }
46:     }
47: }

Testing for Modifier Keys and Multiple Mouse Buttons

Shift, Control (Ctrl), and Meta are modifier keys. They don't generate key events themselves, but when you
get an ordinary mouse or keyboard event, you can test to see whether those modifier keys were held down

Day 12 -- Managing Simple Events and Interactivity 

file:///G|/ebooks/1575211831/ch12.htm (16 of 21) [11/06/2000 7:46:39 PM]



when the event occurred. Sometimes it may be obvious-shifted alphanumeric keys produce different key
events than unshifted ones, for example. For other events, however-mouse events in particular-you may want
to handle an event with a modifier key held down differently from a regular version of that event.

Note
The Meta key is commonly used on UNIX systems; it's usually
mapped to Alt on pc keyboards and Command (apple) on
Macintoshes.

The Event class provides three methods for testing whether a modifier key is held down: shiftDown(),
metaDown(), and controlDown(). All return boolean values based on whether that modifier key is
indeed held down. You can use these three methods in any of the event- handling methods (mouse or
keyboard) by calling them on the event object passed into that method:

public boolean mouseDown(Event evt, int x, int y ) {
    if (evt.shiftDown())
         // handle shift-click
    else // handle regular click
}

One other significant use of these modifier key methods is to test for which mouse button generated a
particular mouse event on systems with two or three mouse buttons. By default, mouse events (such as mouse
down and mouse drag) are generated regardless of which mouse button is used. However, Java events
internally map left and middle mouse actions to meta and Control (Ctrl) modifier keys, respectively, so
testing for the key tests for the mouse button's action. By testing for modifier keys, you can find out which
mouse button was used and execute different behavior for those buttons than you would for the left button.
Use an if statement to test each case, like this:

public boolean mouseDown(Event evt, int x, int y ) {
    if (evt.metaDown())
         // handle a right-click
    else if (evt.controlDown())
        // handle a middle-click
    else // handle a regular click
}

Note that because this mapping from multiple mouse buttons to keyboard modifiers happens automatically,
you don't have to do a lot of work to make sure your applets or applications work on different systems with
different kinds of mouse devices. Because left-button or right-button mouse clicks map to modifier key
events, you can use those actual modifier keys on systems with fewer mouse buttons to generate exactly the
same results. So, for example, holding down the Ctrl key and clicking the mouse on Windows or holding the
Control key on the Macintosh is the same as clicking the middle mouse button on a three-button mouse;
holding down the Command (apple) key and clicking the mouse on the Mac is the same as clicking the right
mouse button on a two- or three-button mouse.

Consider, however, that the use of different mouse buttons or modifier keys may not be immediately obvious
if your applet or application runs on a system with fewer buttons than you're used to working with. Consider
restricting your interface to a single mouse button or to providing help or documentation to explain the use of

Day 12 -- Managing Simple Events and Interactivity 

file:///G|/ebooks/1575211831/ch12.htm (17 of 21) [11/06/2000 7:46:39 PM]



your program in this case.

The awt Event Handler
The default methods you've learned about today for handling basic events in applets are actually called by a
generic event handler method called handleEvent(). The handleEvent() method is how the awt
generically deals with events that occur between application components and events based on user input.

In the default handleEvent() method, basic events are processed and the methods you learned about
today are called. To handle events other than those mentioned here (for example, events for scrollbars or for
other user interface elements-which you'll learn about on Day 13, "Creating User Interfaces with the awt"), to
change the default event handling behavior, or to create and pass around your own events, you need to
override handleEvent() in your own Java programs. The handleEvent() method looks like this:

public boolean handleEvent(Event evt) {
    ...
}

To test for specific events, examine the id instance variable of the Event object that gets passed in to
handleEvent(). The event ID is an integer, but fortunately the Event class defines a whole set of event
IDs as class variables whose names you can test for in the body of handleEvent(). Because these class
variables are integer constants, a switch statement works particularly well. For example, here's a simple
handleEvent() method to print out debugging information about mouse events:

public boolean handleEvent(Event evt) {
    switch (evt.id) {
    case Event.MOUSE_DOWN:
        System.out.println("MouseDown: " +
                evt.x + "," + evt.y);
        return true;
    case Event.MOUSE_UP:
        System.out.println("MouseUp: " +
                evt.x + "," + evt.y);
        return true;
    case Event.MOUSE_MOVE:
        System.out.println("MouseMove: " +
                evt.x + "," + evt.y);
        return true;
    case Event.MOUSE_DRAG:
        System.out.println("MouseDrag: " +
                evt.x + "," + evt.y);
        return true;
    default:
        return false;
    }
}

Day 12 -- Managing Simple Events and Interactivity 

file:///G|/ebooks/1575211831/ch12.htm (18 of 21) [11/06/2000 7:46:39 PM]



You can test for the following keyboard events:

Event.KEY_PRESS is generated when a key is pressed (the same as the keyDown() method).●   

Event.KEY_RELEASE is generated when a key is released.●   

Event.KEY_ACTION and Event.KEY_ACTION_RELEASE are generated when an action key (a
function key, an arrow key, Page Up, Page Down, or Home) is pressed or released.

●   

You can test for these mouse events:

Event.MOUSE_DOWN is generated when the mouse button is pressed (the same as the
mouseDown() method).

●   

Event.MOUSE_UP is generated when the mouse button is released (the same as the mouseUp()
method).

●   

Event.MOUSE_MOVE is generated when the mouse is moved (the same as the mouseMove()
method).

●   

Event.MOUSE_DRAG is generated when the mouse is moved with the button pressed (the same as
the mouseDrag() method).

●   

Event.MOUSE_ENTER is generated when the mouse enters the applet (or a component of that
applet). You can also use the mouseEnter() method.

●   

Event.MOUSE_EXIT is generated when the mouse exits the applet. You can also use the
mouseExit() method.

●   

In addition to these events, the Event class has a whole suite of methods for handling awt components.
You'll learn more about these events tomorrow.

Note that if you override handleEvent() in your class, none of the default event-handling methods you
learned about today will get called unless you explicitly call them in the body of handleEvent(), so be
careful if you decide to do this. One way to get around this is to test for the event you're interested in, and if
that event isn't it, call super.handleEvent() so that the superclass that defines handleEvent() can
process things. Here's an example of how to do this:

public boolean handleEvent(Event evt) {
    if (evt.id == Event.MOUSE_DOWN) {
        // process the mouse down
        return true;
    } else {
        return super.handleEvent(evt);
    }
}

Also, note that like the individual methods for individual events, handleEvent() also returns a boolean.
The value you return here is particularly important; if you pass handling of the event to another method, you
must return false. If you handle the event in the body of this method, return true. If you pass the event up
to a superclass, that method will return true or false; you don't have to yourself.

Day 12 -- Managing Simple Events and Interactivity 

file:///G|/ebooks/1575211831/ch12.htm (19 of 21) [11/06/2000 7:46:39 PM]



Summary
Handling events in Java's Abstract Windowing Toolkit is easy. Most of the time all you need to do is stick
the right method in your applet code, and your applet intercepts and handles that event at the right time. Here
are some of the basic events you can manage in this way:

Mouse clicks-mouseUp() and mouseDown() methods for each part of a mouse click.●   

Mouse movements-mouseMove() and mouseDrag() for mouse movement with the mouse button
released and pressed, respectively, as well as mouseEnter() and mouseExit() for when the
mouse enters and exits the applet area.

●   

keyDown() and keyUp() for when a key on the keyboard is pressed.●   

All events in the awt generate an Event object; inside that object, you can find out information about the
event, when it occurred, and its x and y coordinates (if applicable). You can also test that event to see
whether a modifier key was pressed when the event occurred, by using the shiftDown(),
controlDown(), and metaDown() methods.

Finally, there is the handleEvent() method, the "parent" of the individual event methods. The
handleEvent() method is actually what the Java system calls to manage events; the default
implementation calls the individual method events where necessary. To override how methods are managed
in your applet, override handleEvent().

Q&A

Q: In the Spots applet, the spot coordinates are stored in arrays, which have a limited size. How
can I modify this applet so that it will draw an unlimited number of spots?

A: You can do one of a couple things:
The first thing to do is test, in your addspot() method, whether the number of spots has exceeded
MAXSPOTS. Then create a bigger array, copy the elements of the old array into that bigger array (use
the System.arraycopy() method to do that), and reassign the x and y arrays to that new,
bigger array.
The second thing to do is to use the Vector class. Vector, part of the java.util package,
implements an array that is automatically growable-sort of like a linked list is in other languages.
The disadvantage of Vector is that to put something into Vector, it has to be an actual object.
This means you'll have to cast integers to Integer objects, and then extract their values from
Integer objects to treat them as integers again. The Vector class allows you to access and
change elements in the Vector just as you can in an array (by using method calls, rather than array
syntax). Check it out.

Q: What's a Meta key?
A: It's popular in UNIX systems, and often mapped to Alt on most keyboards (Option on Macs).

Because Shift and Control (Ctrl) are much more popular and widespread, it's probably a good idea to
base your interfaces on those modifier keys if you can.

Q: How do I test to see whether the Return key has been pressed?

Day 12 -- Managing Simple Events and Interactivity 

file:///G|/ebooks/1575211831/ch12.htm (20 of 21) [11/06/2000 7:46:39 PM]



A: Return (line feed) is character 10; Enter (carriage return) is character 13. Note that different
platforms may send different keys for the actual key marked Return. In particular, UNIX systems
send line feeds, Macintoshes send carriage returns, and DOS systems send both. So to provide
cross-platform behavior, you may want to test for both line feed and carriage return.
The word from the Java team is that a Return is a Return is a Return, regardless of the platform.
However, at the time of this writing, it is questionable whether this is currently true in the Java
Developer's Kit. You may want to check the API documentation for the Event class to see whether
this has changed in the interim.

Q: I looked at the API for the Event class, and there are many more event types listed there than
the ones you mention today.

A: Yes. The Event class defines many different kinds of events, both for general user input, such as
the mouse and keyboard events you learned about here, and also events for managing changes to the
state of user interface components, such as windows and scrollbars. Tomorrow you'll learn about
those other events.

   

Day 12 -- Managing Simple Events and Interactivity 

file:///G|/ebooks/1575211831/ch12.htm (21 of 21) [11/06/2000 7:46:39 PM]



file:///G|/ebooks/1575211831/f12-1.gif

file:///G|/ebooks/1575211831/f12-1.gif [11/06/2000 7:46:40 PM]



file:///G|/ebooks/1575211831/f12-2.gif

file:///G|/ebooks/1575211831/f12-2.gif [11/06/2000 7:46:41 PM]



file:///G|/ebooks/1575211831/f12-3.gif

file:///G|/ebooks/1575211831/f12-3.gif [11/06/2000 7:46:41 PM]



file:///G|/ebooks/1575211831/f13-26.gif

file:///G|/ebooks/1575211831/f13-26.gif [11/06/2000 7:46:41 PM]



file:///G|/ebooks/1575211831/f13-27.gif

file:///G|/ebooks/1575211831/f13-27.gif [11/06/2000 7:46:42 PM]



Day 15

Modifiers, Access Control, and Class Design
by Laura Lemay and Charles L. Perkins

CONTENTS
Modifiers●   

Controlling Access to Methods and Variables

Why Access Control Is Important❍   

The Four Ps of Protection❍   

Method Protection and Inheritance❍   

Instance Variable Protection and Accessor Methods❍   

●   

Class Variables and Methods●   

Finalizing Classes, Methods, and Variables

Finalizing Classes❍   

Finalizing Variables❍   

Finalizing Methods❍   

●   

Abstract Classes and Methods●   

Summary●   

Q&A●   

Here at the start of Week 3, you've probably grasped the basics of the Java language from Week 1, and you've applied
them fairly often to create applets in Week 2. You can stop here, if you like, and go on your merry way, knowing
enough Java to get by.

Week 3 extends what you already know. In this week you'll learn more about advanced Java concepts such as access
control and packages, and you'll learn techniques for structuring large programs in an efficient object-oriented way so
your code can be more easily maintained and extended or, if you so choose, easily reused by other people.

Today we'll start with advanced Java language concepts for organizing and designing individual classes:

What a modifier is and how it's used●   

Controlling access to methods and variables from outside a class to better encapsulate your code●   

Using a special case of controlling access to methods and variables: instance variable accessor methods●   

Using Class variables and methods to store class-specific attributes and behavior●   

Finalizing classes, methods, and variables so their values or definitions cannot be subclasses or overridden●   

Creating abstract classes and methods for factoring common behavior into superclasses●   

Day 15 -- Modifiers, Access Control, and Class Design 

file:///G|/ebooks/1575211831/ch15.htm (1 of 16) [11/06/2000 7:46:45 PM]



Modifiers
The techniques for programming you'll learn today involve different strategies and ways of thinking about how a class
is organized. But the one thing all these techniques have in common is that they all use special modifier keywords in the
Java language.

In Week 1 you learned how to define classes, methods, and variables in Java. Modifiers are keywords you add to those
definitions to change their meaning. Classes, methods, and variables with modifiers are still classes, methods, and
variables, but the modifiers change their behavior or how Java treats those elements.

Modifiers are special language keywords that modify the definition (and the behavior) of a class, method, or variable.

Note
You've already learned about a few of these modifiers earlier in the
book, but here we'll talk about them in detail so you can get the
bigger picture of why modifiers work the way they do.

The Java language has a wide variety of modifiers, including

Modifiers for controlling access to a class, method, or variable: public, protected, and private●   

The static modifier for creating class methods and variables●   

The abstract modifier, for creating abstract classes and methods●   

The final modifier, for finalizing the implementations of classes, methods, and variables●   

The synchronized and volatile modifiers, which are used for threads and which you'll learn more about
on Day 18, "Multithreading"

●   

The native modifier, which is used for creating native methods, which you'll learn about on Day 21, "Under
the Hood"

●   

Some modifiers, as you can see, can apply only to classes and methods or only to methods and variables. For each of
the modifiers, however, to use them you put them just previous to the class, method, or variable definition, as in the
following examples:

public class MyApplet extends Java.applet.Applet { ... }

private boolean engineState;

static final double pi = 3.141559265

protected static final int MAXNUMELEMENTS = 128;

public static void main(String args[]) { ...}

The order of modifiers is irrelevant to their meaning-your order can vary and is really a matter of taste. Pick a style and
then be consistent with it throughout all your classes. Here is the usual order:

<access> static abstract synchronized volatile final native

In this definition, <access> can be public, protected, or private (but no more than one of them).

All the modifiers are essentially optional; none have to appear in a declaration. Good object-oriented programming
style, however, suggests adding as many as are needed to best describe the intended use of, and restrictions on, the thing
you're declaring. In some special situations (inside an interface, for example, as described tomorrow), certain modifiers
are implicitly defined for you, and you needn't type them-they will be assumed to be there.

Day 15 -- Modifiers, Access Control, and Class Design 

file:///G|/ebooks/1575211831/ch15.htm (2 of 16) [11/06/2000 7:46:45 PM]



Controlling Access to Methods and Variables
The most important modifiers in the language, from the standpoint of class and object design, are those that allow you
to control the visibility of, and access to, variables and methods inside your classes.

Why Access Control Is Important

Why would you care about controlling access to methods and variables inside your classes? If you remember way back
to the beginning of this book, I used the analogy of the pc-how you can buy different pc components and put them all
together so that they interact to create a larger system.

Each component in that pc system works in a particular way and has a specific way of interacting with the other
components in the system. For example, a video card plugs into your motherboard using a standard socket and plug
arrangement, as does your monitor to the back of the card. And then your computer can talk the right software language
through the card to get bits up on the screen.

The video card itself has a whole lot of other internal features and capabilities beyond this basic hardware and software
interface. But as a user or consumer of the card, I don't need to know what every single chip does, nor do I need to
touch them in order to get the card to work. Given the standard interfaces, the card figures everything out and does what
it needs to do internally. And, in fact, the manufacturer of the card most likely doesn't want me to go in and start
mucking with individual chips or capabilities of the card, because I'm likely to screw something up. It's best if I just
stick to the defined interface and let the internal workings stay hidden.

Classes and objects are the same way. While a class may define lots of methods and variables, not all of them are useful
to a consumer of that class, and some may even be harmful if they're not used in the way they were intended to be used.

Access control is about controlling visibility. When a method or variable is visible to another class, its methods can
reference (call, or modify) that method or variable. Protecting those methods and instance variables limits the visibility
and the use of those methods and variables (and also limits what you have to document!). As a designer of a class or an
entire hierarchy of classes, therefore, it's a good idea to define what the external appearance of a class is going to be,
which variables and methods will be accessible for other users of that class, and which ones are for internal use only.
This is called encapsulation and is an important feature of object-oriented design.

Encapsulation is the process of hiding the internal parts of an object's implementation and allowing access to that object
only through a defined interface.

You may note that up to this point we haven't done very much of this in any of the examples; in fact, just about every
variable and method we've created has been fairly promiscuous and had no access control whatsoever. The reason I
approached the problem in this way is that it makes for simpler examples. As you become a more sophisticated
programmer and create Java programs with lots of interrelated classes, you'll find that adding features such as
encapsulation and protecting access to the internal workings of your classes makes for better-designed programs
overall.

The Four Ps of Protection

The Java language provides four levels of protection for methods and instance variables: public, private,
protected, and package (actually, the latter isn't an explicit form of Java protection, but I've included it here
because it's nicely alliterative). Before applying protection levels to your own code, you should know what each form
means and understand the fundamental relationships that a method or variable within a class can have to the other
classes in the system.

Note

Day 15 -- Modifiers, Access Control, and Class Design 

file:///G|/ebooks/1575211831/ch15.htm (3 of 16) [11/06/2000 7:46:45 PM]



You can also protect entire classes using these modifiers. But class
protection applies better once you know what packages are, so we'll
postpone talking about that until tomorrow.

Package Protection

The first form of protection we'll talk about is the one you've been unconsciously using all this time: what's called
package protection. In C, there's the notion of hiding a name so that only the functions within a given source file can
see it. Java doesn't have this kind of control; names will be happily found in other source files as long as Java knows
where to find them. Instead of file-level protection, Java has the concept of packages, which, as you learned on Day 2,
"Object-Oriented Programming and Java," and will learn a whole lot more about tomorrow, are a group of classes
related by purpose or function.

Methods and variables with package protection are visible to all other classes in the same package, but not outside that
package. This is the kind of protection you've been using up to this point, and it's not much protection at all. Much of
the time you'll want to be more explicit when you define the protection for that class's methods and variables.

Package protection, the default level of protection, means that your methods and variables are accessible to all the other
classes in the same package.

Package protection isn't an explicit modifier you can add to your method or variable definitions; instead, it's the default
protection you get when you don't add any protection modifiers to those definitions.

Note
You may not think you've been using packages at all up to this point,
but actually, you have. In Java, if you don't explicitly put a class into
a package, it'll be included in a default package that also includes all
the other classes that aren't in a specific package. While not defining a
class to be in a package works for simple examples, it's better if you
just create packages instead.

Private

From the default protection you get with package protection, you can either become more restrictive or more loose in
how you control the visibility and access to your methods and variables. The most restrictive form of protection is
private, which limits the visibility of methods and instance variables to the class in which they're defined. A private
instance variable, for example, can be used by methods inside the same class, but cannot be seen or used by any other
class or object. Private methods, analogously, can be called by other methods inside that same class, but not by any
other classes. In addition, neither private variables nor private methods are inherited by subclasses.

Private protection means that your methods and variables are accessible only to other methods in the same class.

To create a private method or instance variable, add the private modifier to its definition:

class  Writer {
    private boolean writersBlock = true;
    private String mood;
    private int income = 0;

    private void getIdea(Inspiration in) {
        . . .
    }

Day 15 -- Modifiers, Access Control, and Class Design 

file:///G|/ebooks/1575211831/ch15.htm (4 of 16) [11/06/2000 7:46:45 PM]



    Book createBook(int numDays, long numPages) {
      ...
    }
}

In this code example, the internal data to the class Writer (the variables writersBlock, mood, and income and
the method getIdea()) is all private. The only method accessible from outside the Writer class is the
createBook() method. createBook() is the only thing other objects (editor objects, perhaps?) can ask the
Writer object to do; the other bits of data are implementation details that may affect how the book is written, but don't
otherwise need to be visible or accessible from other sources.

The rule of thumb for private protection is that any data or behavior internal to the class that other classes or subclasses
should not be touching should be private. Judicious use of private variables and methods is how you limit the
functionality of a class to only those features you want visible outside that class-as with the example of the pc
components. Remember that an object's primary job is to encapsulate its data-to hide it from the world's sight and limit
its manipulation. Encapsulation separates design from implementation, minimizes the amount of information one class
needs to know about another to get its job done, and reduces the extent of the code changes you need to make if your
internal implementation changes. Also, by separating the public interface from the private implementation, your class's
interface becomes more abstract-that is, more general purpose and more easily used for other purposes. Subclasses of
your class can override the more abstract behavior of your public interface with their own private implementations.

In addition to picking and choosing which methods you'll want to keep private and which will be accessible to others, a
general rule of thumb is that all the instance variables in a class should be private, and you should create special
nonprivate methods to get or change those variables. You'll learn more about this rule and why it's important a little
later, in the section "Instance Variable Protection and Accessor Methods."

Public

The diametric opposite of private protection, and the least restrictive form of protection, is public. A method or
variable that is declared with the public modifier is accessible to the class in which it's defined, all the subclasses of
that class, all the classes in the package, and any other classes outside that package, anywhere in the entire universe of
Java classes.

Public protection means that your methods and variables are accessible to other methods anywhere inside or outside the
current class or package.

Indicating that a method or variable is public isn't necessarily a bad thing. Just as hiding the data that is internal to
your class using private helps encapsulate an object, using public methods defines precisely what the interface to
instances of your class is. If you expect your classes to be reused by other programmers in other programs, the methods
that they'll be using to use your class should be public.

In many ways, public protection is very similar to the default package protection. Both allow methods and variables to
be accessed by other classes in the same package. The difference occurs when you create packages of classes. Variables
and methods with package protection can be used in classes that exist in the same package. But if someone imports your
class into his own program from outside your package, those methods and variables will not be accessible unless they
have been declared public. Once again, you'll learn more about packages tomorrow.

Public declarations work just like private ones; simply substitute the word public for private.

Protected

The final form of protection available in Java concerns the relationship between a class and its present and future
subclasses declared inside or outside a package. These subclasses are much closer to a particular class than to any other
"outside" classes for the following reasons:

Subclasses usually "know" more about the internal implementation of a superclass.●   

Day 15 -- Modifiers, Access Control, and Class Design 

file:///G|/ebooks/1575211831/ch15.htm (5 of 16) [11/06/2000 7:46:45 PM]



Subclasses are often written by you or by someone to whom you've given your source code.●   

Subclasses frequently need to modify or enhance the representation of the data within a parent class.●   

To support a special level of visibility reserved for subclasses somewhat less restrictive than private, Java has an
intermediate level of access between package and private called, appropriately, protected. Protected methods and
variables are accessible to any class inside the package, as they would be if they were package protected, but those
methods and variables are also available to any subclasses of your class that have been defined outside your package.

Protected protection means that your methods and variables are accessible to all classes inside the package, but only to
subclasses outside the package.

Technical Note
In C++, the protected modifier means that only subclasses can
access a method or variable, period. Java's meaning of protected is
slightly different, also allowing any class inside the package to access
those methods and variables.

Why would you need to do this? You may have methods in your class that are specific to its internal
implementation-that is, not intended to be used by the general public-but that would be useful to subclasses for their
own internal implementations. In this case, the developer of the subclass-be it you or someone else-can be trusted to be
able to handle calling or overriding that method.

For example, let's say you had a class called AudioPlayer, which plays a digital audio file. AudioPlayer has a
method called openSpeaker(), which is an internal method that interacts with the hardware to prepare the speaker
for playing. openSpeaker() isn't important to anyone outside the AudioPlayer class, so at first glance you might
want to make it private. A snippet of AudioPlayer might look something like this:

class AudioPlayer {
   
  private boolean openSpeaker(Speaker sp_ {
     // implementation details
  }
}

This works fine if AudioPlayer isn't going to be subclassed. But what if you were going to create a class called
StereoAudioPlayer that is a subclass of AudioPlayer? This class would want access to the openSpeaker()
method so that it can override it and provide stereo-specific speaker initialization. You still don't want the method
generally available to random objects (and so it shouldn't be public), but you want the subclass to have access to it-so
protected is just the solution.

Technical Note
In versions of Java and the JDK up to 1.0.1, you could use private
and protected together to create yet another form of protection
that would restrict access to methods or variables solely to subclasses
of a given class. As of 1.0.2, this capability has been removed from
the language.

A Summary of Protection Forms

The differences between the various protection types can become very confusing, particularly in the case of protected
methods and variables. Table 15.1, which summarizes exactly what is allowed where, will help clarify the differences
from the least restrictive (public) to the most restrictive (private) forms of protection.

Table 15.1. Different protection schemes.

Day 15 -- Modifiers, Access Control, and Class Design 

file:///G|/ebooks/1575211831/ch15.htm (6 of 16) [11/06/2000 7:46:45 PM]



Visibility public protected package private

From the same class yes yes yes yes
From any class in the
same package

yes yes yes no

From any class outside
the package

yes no no no

From a subclass in the
same package

yes yes yes no

From a subclass outside
the same package

yes yes no no

Method Protection and Inheritance

Setting up protections in new classes with new methods is easy; you make your decisions based on your design and
apply the right modifiers. When you create subclasses and override other methods, however, you have to take into
account the protection of the original method.

The general rule in Java is that you cannot override a method and make the new method more private than the original
method (you can, however, make it more public). More specifically, the following rules for inherited methods are
enforced by Java:

Methods declared public in a superclass must also be public in all subclasses (this, by the way, is the reason
most of the applet methods are public).

●   

Methods declared protected in a superclass must either be protected or public in subclasses; they
cannot be private.

●   

Methods declared private are not inherited and therefore this rule doesn't apply.●   

Methods declared without protection at all (the implicit package protection) can be declared more private in
subclasses.

●   

Instance Variable Protection and Accessor Methods

A good rule of thumb in object-oriented programming is that unless an instance variable is constant it should almost
certainly be private. But, I hear you say, if instance variables are private, how can they be changed from outside the
class? They can't. That's precisely the point. Instead, if you create special methods that indirectly read or change the
value of that instance variable, you can much better control the interface of your classes and how those classes behave.
You'll learn about how to do this later in this section.

Why Nonprivate Instance Variables Are a Bad Idea

In most cases, having someone else accessing or changing instance variables inside your object isn't a good idea. Take,
for example, a class called circle, whose partial definition looks like this:

class Circle {
   int x, y, radius;

   Circle(int x, int y, int radius) { 
      ...
   }

   void draw() { 
      ... 

Day 15 -- Modifiers, Access Control, and Class Design 

file:///G|/ebooks/1575211831/ch15.htm (7 of 16) [11/06/2000 7:46:45 PM]



   }
}

The Circle class has three instance variables: for the x and y position of the center point, and of the radius. A
constructor builds the circle from those three values, and the draw() method draws the circle on the screen. So far, so
good, right?

So let's say you have a Circle object created and drawn on the screen. Then some other object comes along and
changes the value of radius. Now what? Your circle doesn't know that the radius has changed. It doesn't know to
redraw itself to take advantage of the new size of the circle. Changing the value of an instance variable doesn't in itself
trigger any methods. You have to rely on the same random object that changed the radius to also call the draw()
method. And that overly complicates the interface of your class, making it more prone to errors.

Another example of why it's better not to make instance variables publicly accessible is that it's not possible to prevent a
nonconstant instance variable from being changed. In other words, you could create a variable that you'd intended to be
read-only, and perhaps your program was well mannered and didn't go about changing that variable randomly-but
because the variable is there and available someone else may very well change it without understanding your
methodology.

Why Accessor Methods Are a Better Idea

If all your instance variables are private, how do you give access to them to the outside world? The answer is to
write special methods to read and change that variable (one for reading the value of the variable, one for changing it)
rather than allowing it to be read and changed directly. These methods are sometimes called accessor methods, mutator
methods (for changing the variable) or simply getters and setters.

Accessor methods are special methods you implement to indirectly modify otherwise private instance variables.

Having a method to change a given instance variable means you can control both the value that variable is set to (to
make sure it's within the boundaries you expect), as well as perform any other operations that may need to be done if
that variable changes, for example, to redraw the circle.

Having two methods for reading and changing the variable also allows you to set up different protections for each. The
method to read the value, for example, could be public, whereas the method to change the value can be private or
protected, effectively creating a variable that's read-only except in a few cases (which is different from constant, which
is read-only in all cases).

Using methods to access an instance variable is one of the most frequently used idioms in object-oriented programs.
Applying it liberally throughout all your classes repays you numerous times with more robust and reusable programs.

Creating Accessor Methods

Creating accessor methods for your instance variables simply involves creating two extra methods for each variable.
There's nothing special about accessor methods; they're just like any other method. So, for example, here's a modified
Circle class that has three private instance variables: x, y, and radius. The public getRadius() method is used
to retrieve the value of the radius variable, and the setRadius() method is used to set it (and update other parts of
the class that need to be updated at the same time):

class Circle {
   private int x, y radius;
   
   public int getRadius() {
     return radius;
   }
   public int setRadius(int value) {

Day 15 -- Modifiers, Access Control, and Class Design 

file:///G|/ebooks/1575211831/ch15.htm (8 of 16) [11/06/2000 7:46:45 PM]



       radius = value;
       draw();
       doOtherStuff();
       return radius;
   }

    ....
}

In this modified example of the Circle class the accessor methods for the instance variable radius have the words
set and get appended with the name of the variable. This is a naming convention popular among many programmers
for accessor methods, so you always know which methods do what and to which variable. To access or change the
value of the instance variable, therefore, you'd just call the methods setRadius() and getRadius(), respectively:

theCircle.getRadius(); //get the value
theCircle.setRadius(4); //set the value (and redraw, etc)

Another convention for naming accessor methods is to use the same name for the methods as for the variable itself. In
Java it is legal for instance variables and methods to have the same name; Java knows from how they are used to
perform the right operation. While this does make accessor methods shorter to type (no extra "set" or "get" to type at the
beginning of each variable), there are two problems with using this convention:

The fact that methods and variables can have the same names is a vague point in the Java specification. If
someday this becomes more clarified and they cannot have the same names, you will have to change your code to
fix the problem.

●   

I find that using the same name for instance variables and methods makes my code more difficult to read and
understand than using a more explicit name.

●   

Which convention you use is a question of personal taste. The most important thing is to choose a convention and stick
with it throughout all your classes so that your interfaces are consistent and understandable.

Using Accessor Methods

The idea behind declaring instance variables private and creating accessor methods is so that external users of your
class will be forced to use the methods you choose to modify your class's data. But the benefit of accessor methods isn't
just for use by objects external to yours; they're also there for you. Just because you have access to the actual instance
variable inside your own class doesn't mean you can avoid using accessor methods.

Consider that one of the good reasons to make instance variables private is to hide implementation details from outside
your object. Protecting a variable with accessor methods means that other objects don't need to know about anything
other than the accessor methods-you can happily change the internal implementation of your class without wreaking
havoc on everyone who's used your class. The same is true of your code inside that class; by keeping variables separate
from accessors, if you must change something about a given instance variable all you have to change are the accessor
methods and not every single reference to the variable itself. In terms of code maintenance and reuse, what's good for
the goose (external users of your class) is generally also good for the gander (you, as a user of your own class).

Class Variables and Methods
You learned about class variables and methods early last week, so I won't repeat a long description of them here.
Because they use modifiers, however, they deserve a cursory mention.

To create a class variable or method, simply include the word static in front of the method name. The static
modifier typically comes after any protection modifiers, like this:

Day 15 -- Modifiers, Access Control, and Class Design 

file:///G|/ebooks/1575211831/ch15.htm (9 of 16) [11/06/2000 7:46:45 PM]



public class  Circle {
    public static float  pi = 3.14159265F;

    public float  area(float r) {
        return  pi * r * r;
    }
}

Note
The word static comes from C and C++. While static has a
specific meaning for where a method or variable is stored in a
program's runtime memory in those languages, static simply
means that it's stored in the class in Java. Whenever you see the word
static, remember to mentally substitute the word class.

Both class variables and methods can be accessed using standard dot notation with either the class name or an object on
the left side of the dot. However, the convention is to always use the name of the class, to clarify that a class variable is
being used, and to help the reader to know instantly that the variable is global to all instances. Here are a few examples:

float circumference = 2 * Circle.pi * getRadius();

float randomNumer = Math.random();

Tip
Class variables, for the same reasons as instance variables, can also
benefit from being declared private and having accessor methods
get or set their values.

Listing 15.1 shows a class called CountInstances that uses class and instance variables to keep track of how many
instances of that class have been created.

Listing 15.1. The CountInstances class, which uses class and instance variables.

 1: public class  CountInstances {
 2:    private static int   numInstances = 0;
 3: 
 4:     protected static int getNumInstances() {
 5:         return numInstances;
 6:    }
 7: 
 8:     private static void  addInstance() { 
 9:         numInstances++;
10:     }
11: 
12:    CountInstances() {
13:         CountInstances.addInstance();
14:    }
15: 
16:     public static void  main(String args[]) {

Day 15 -- Modifiers, Access Control, and Class Design 

file:///G|/ebooks/1575211831/ch15.htm (10 of 16) [11/06/2000 7:46:45 PM]



17:         System.out.println("Starting with " + 
18:           CountInstances.getNumInstances() + " instances");
19:         for (int  i = 0;  i < 10;  ++i)
20:             new CountInstances();
21:       System.out.println("Created " + 
22:           CountInstances.getNumInstances() + " instances");
23:    }
24:}

Started with 0 instances
Creates 10 instances

This example has a number of features, so let's go through it line by line. In line 2 we declare a private class variable
to hold the number of instances (called numInstances). This is a class variable (declared static) because the
number of instances is relevant to the class as a whole, not to any one instance. And it's private so that it follows the
same rules as instance variables accessor methods.

Note the initialization of numInstances to 0 in that same line. Just as an instance variable is initialized when its
instance is created, a class variable is initialized when its class is created. This class initialization happens essentially
before anything else can happen to that class, or its instances, so the class in the example will work as planned.

In lines 4 through 6, we created a get method for that private instance variable to get its value
(getNumInstances()). This method is also declared as a class method, as it applies directly to the class variable.
The getNumInstances() method is declared protected, as opposed to public, because only this class and
perhaps subclasses will be interested in that value; other random classes are therefore restricted from seeing it.

Note that there's no accessor method to set the value. The reason is that the value of the variable should be incremented
only when a new instance is created; it should not be set to any random value. Instead of creating an accessor method,
therefore, we'll create a special private method called addInstance() in lines 8 through 10 that increments the value
of numInstances by 1.

Lines 12 through 14 have the constructor method for this class. Remember, constructors are called when a new object is
created, which makes this the most logical place to call addInstance() and to increment the variable.

And finally, the main() method indicates that we can run this as a Java application and test all the other methods. In
the main() method we create 10 instances of the CountInstances class, reporting after we're done the value of
the numInstances class variable (which, predictably, prints 10).

Finalizing Classes, Methods, and Variables
Although it's not the final modifier I'll discuss today, the final modifier is used to finalize classes, methods, and
variables. Finalizing a thing effectively "freezes" the implementation or value of that thing. More specifically, here's
how final works with classes, variables, and methods:

When the final modifier is applied to a class, it means that the class cannot be subclassed.●   

When applied to a variable, final means that the variable is constant.●   

When applied to a method, final means that the method cannot be overridden by subclasses.●   

Finalization (using the final modifier) freezes the implementation of a class, method, or variable.

Day 15 -- Modifiers, Access Control, and Class Design 

file:///G|/ebooks/1575211831/ch15.htm (11 of 16) [11/06/2000 7:46:45 PM]



Finalizing Classes

To finalize a class, add the final modifier to its definition. final typically goes after any protection modifiers such
as private or public:

public final class  AFinalClass {
    . . .
}

You declare a class final for only two reasons:

To prevent others from subclassing your class. If your class has all the capabilities it needs, and no one else
should be able to extend its capabilities, then that class should be final.

●   

For better efficiency. With final classes you can rely on instances of only that one class (and no subclasses)
being around in the system, and optimize for those instances.

●   

The Java class library uses final classes extensively. Classes that have been finalized to prevent their being
subclassed include java.lang.System, java.net.InetAddress, and java.net.Socket (although, as
you learned on Day 14, "Windows, Networking, and Other Tidbits," the latter will no longer be final as of Java 1.1).
A good example of a class being declared final for efficiency reasons is java.lang.String. Strings are so
common in Java, and so central to it that Java handles them specially.

In most cases, it will be a rare event for you to create a final class yourself since extendible classes are so much more
useful than finalized classes, and the efficiency gains are minimal. You will, however, most likely have plenty of
opportunity to be upset at certain system classes being final (making it more difficult to extend them).

Finalizing Variables

A finalized variable means its value cannot be changed. This is effectively a constant, which you learned about early in
Week 1. To declare constants in Java, use final variables with initial values:

public class  AnotherFinalClass {
    public static final int aConstantInt    = 123;
    public final String aConstantString = "Hello world!";
}

Local variables (those inside blocks of code surrounded by braces, for example, in while or for loops) can't be
declared final.

Finalizing Methods

Finalized methods are methods that cannot be overridden; that is, their implementations are frozen and cannot be
redefined in subclasses.

public class  ClassWithFinalMethod {

    public final void  noOneGetsToDoThisButMe() {
        . . .
    }
}

The only reason to declare a method final is efficiency. Normally, method signatures and implementations are
matched up when your Java program runs, not when it's compiled. Remember that when you call a method, Java

Day 15 -- Modifiers, Access Control, and Class Design 

file:///G|/ebooks/1575211831/ch15.htm (12 of 16) [11/06/2000 7:46:45 PM]



dynamically checks the current class and each superclass in turn for that method's definition. Although this makes
methods very flexible to define and use, it's not very fast.

If you declare a method final, however, the compiler can then "in-line" it (stick its definition) right in the middle of
methods that call it because it "knows" that no one else can ever subclass and override the method to change its
meaning. Although you might not use final right away when writing a class, as you tune the system later, you may
discover that a few methods have to be final to make your class fast enough. Almost all your methods will be fine,
however, just as they are.

If you use accessor methods a lot (as recommended), changing your accessor methods to be final can be a quick way
of speeding up your class. Because subclasses will rarely want to change the definitions of those accessor methods,
there's little reason those methods should not be final.

The Java class library declares a lot of commonly used methods final so that you'll benefit from the speed-up. In the
case of classes that are already final, this makes perfect sense and is a wise choice. The few final methods
declared in non-final classes will annoy you-your subclasses can no longer override them. When efficiency becomes
less of an issue for the Java environment, many of these final methods can be "unfrozen" again, restoring this lost
flexibility to the system.

Note
Private methods are effectively final, as are all methods
declared in a final class. Marking these latter methods final (as
the Java library sometimes does) is legal, but redundant; the compiler
already treats them as final.

It's possible to use final methods for some of the same security
reasons you use final classes, but it's a much rarer event.

Abstract Classes and Methods
Whenever you arrange classes into an inheritance hierarchy, the presumption is that "higher" classes are more abstract
and general, whereas "lower" subclasses are more concrete and specific. Often, as you design hierarchies of classes, you
factor out common design and implementation into a shared superclass. That superclass won't have any instances; its
sole reason for existing is to act as a common, shared repository for information that its subclasses use. These kinds of
classes are called abstract classes, and you declare them using the abstract modifier. For example, the following
skeleton class definition for the Fruit class declared that class to be both public and abstract:

public abstract class Fruit {
...
}

Abstract classes can never be instantiated (you'll get a compiler error if you try), but they can contain anything a normal
class can contain, including class and instance variables and methods with any kind of protection or finalization
modifiers. In addition, abstract classes can also contain abstract methods. An abstract method is a method signature with
no implementation; subclasses of the abstract class are expected to provide the implementation for that method.
Abstract methods, in this way, provide the same basic concept as abstract classes; they're a way of factoring common
behavior into superclasses and then providing specific concrete uses of those behaviors in subclasses.

Abstract classes are classes whose sole purpose is to provide common information for subclasses. Abstract classes can
have no instances.

Abstract methods are methods with signatures, but no implementation. Subclasses of the class which contains that
abstract method must provide its actual implementation.

Day 15 -- Modifiers, Access Control, and Class Design 

file:///G|/ebooks/1575211831/ch15.htm (13 of 16) [11/06/2000 7:46:45 PM]



Like abstract classes, abstract methods give you the ability to factor common information into a general superclass and
then reuse that class in different ways.

The opposite of abstract is concrete: Concrete classes are classes that can be instantiated; concrete methods are those
that have actual implementations.

Abstract methods are declared with the abstract modifier, which usually goes after the protection modifiers but
before either static or final. In addition, they have no body. Abstract methods can only exist inside abstract
classes; even if you have a class full of concrete methods, with only one abstract method, the whole class must be
abstract. This is because abstract methods cannot be called; they have no implementation, so calling them would
produce an error. Rather than worry about special-case abstract methods inside otherwise concrete instances, it's easier
just to insist that abstract methods be contained only inside abstract classes.

Listing 15.2 shows two simple classes. One, appropriately called MyFirstAbstractClass, has an instance
variable and two methods. One of those methods, subclassesImplementMe(), is abstract. The other,
doSomething(), is concrete and has a normal definition.

The second class is AConcreteSubclass, which is a subclass of MyFirstAbstractClass. It provides the
implementation of subclassesImplementMe(), and inherits the remaining behavior from
MyFirstAbstractClass.

Note
Because both these classes are public, they must be defined in
separate source files.

Listing 15.2. Two classes: one abstract, one concrete.

 1:ipublic abstract class  MyFirstAbstractClass {
 2:    int  anInstanceVariable;
 3:p
 4:      public abstract int  subclassesImplementMe(); // note no definition
 5:
 6:      public void  doSomething() {
 7:          . . .    // a normal method
 8:      }
 9:}
10:
11:public class  AConcreteSubClass extends MyFirstAbstractClass {
12:    public int  subclassesImplementMe() {
13:        . . .    // we *must* implement this method here
14:    }
15:}

Here are some attempted uses of these classes:

Object  a = new MyFirstAbstractClass();    // illegal, is abstract

Object  c = new AConcreteSubClass();       // OK, a concrete subclass

Using an abstract class with nothing but abstract methods-that is, one that provides nothing but a template for
behavior-is better accomplished in Java by using an interface (discussed tomorrow). Whenever a design calls for an
abstraction that includes instance state and/or a partial implementation, however, an abstract class is your only choice.

Day 15 -- Modifiers, Access Control, and Class Design 

file:///G|/ebooks/1575211831/ch15.htm (14 of 16) [11/06/2000 7:46:45 PM]



Summary
Today you have learned how variables and methods can control their visibility and access by other classes via the four
Ps of protection: public, package, protected, and private. You have also learned that although instance
variables are most often declared private, declaring accessor methods allows you to control the reading and writing
of them separately. Protection levels allow you, for example, to separate cleanly your public abstractions from their
concrete representations.

You have also learned how to create class variables and methods, which are associated with the class itself, and how to
declare final variables, methods, and classes to represent constants and fast or secure methods and classes.

Finally, you have discovered how to declare and use abstract classes, which cannot be instantiated, and abstract
methods, which have no implementation and must be overridden in subclasses. Together, they provide a template for
subclasses to fill in and act as a variant of the powerful interfaces of Java that you'll study tomorrow.

Q&A

Q: Why are there so many different levels of protection in Java?
A: Each level of protection, or visibility, provides a different view of your class to the outside world. One view is

tailored for everyone, one for classes in your own package, another for your class and its subclasses only, one
combining these last two and the final one for just within your class. Each is a logically well-defined and useful
separation that Java supports directly in the language (as opposed to, for example, accessor methods, which are
a convention you must follow).

Q: Won't using accessor methods everywhere slow down my Java code?
A: Not always. As Java compilers improve and can create more optimizations, they'll be able to make them fast

automatically, but if you're concerned about speed, you can always declare accessor methods to be final, and
they'll be just as fast as direct instance variable accesses.

Q: Are class (static) methods inherited just like instance methods?
A: No. static (class) methods are now final by default. How, then, can you ever declare a non-final class

method? The answer is that you can't! Inheritance of class methods is not allowed, breaking the symmetry with
instance methods.

Q: Based on what I've learned, it seems like private abstract methods and final abstract
methods or classes don't make sense. Are they legal?

A: Nope, they're compile-time errors, as you have guessed. To be useful, abstract methods must be overridden,
and abstract classes must be subclassed, but neither of those two operations would be legal if they were
also private or final.

Q: What about the transient modifier? I saw that mentioned in the Java Language Specification.
A: The transient modifier is reserved by the designers of Java for use in future versions of the Java language

(beyond 1.0.2 and 1.1); it will be used to create persistent object store systems (the ability to save a set of
classes and objects and restore their state later on). It, like other modifiers such as byvalue, future, and
generic, are not currently used but are reserved words in the language.

Q: I tried creating a private variable inside a method definition. It didn't work. What did I do wrong?
A: Nothing. All the modifiers in this chapter, when you can use them with variables, only apply to class and

instance variables. Local variables-those that appear inside the body of a method or loop-cannot use any of
these modifiers.

Day 15 -- Modifiers, Access Control, and Class Design 

file:///G|/ebooks/1575211831/ch15.htm (15 of 16) [11/06/2000 7:46:45 PM]



   

Day 15 -- Modifiers, Access Control, and Class Design 

file:///G|/ebooks/1575211831/ch15.htm (16 of 16) [11/06/2000 7:46:45 PM]



Day 2

Object-Oriented Programming and Java
by Laura Lemay

CONTENTS
Thinking in Objects: An Analogy●   

Objects and Classes●   

Behavior and Attributes

Attributes❍   

Behavior❍   

Creating a Class❍   

●   

Inheritance, Interfaces, and Packages

Inheritance❍   

Creating a Class Hierarchy❍   

How Inheritance Works❍   

Single and Multiple Inheritance❍   

Interfaces and Packages❍   

Creating a Subclass❍   

●   

Summary●   

Q&A●   

Object-oriented programming (OOP) is one of the biggest programming ideas of recent years, and you might
worry that you must spend years learning all about object-oriented programming methodologies and how they
can make your life easier than The Old Way of programming. It all comes down to organizing your programs
in ways that echo how things are put together in the real world.

Today you'll get an overview of object-oriented programming concepts in Java and how they relate to how you
structure your own programs:

What classes and objects are and how they relate to each other●   

The two main parts of a class or object: its behaviors and its attributes●   

Class inheritance and how inheritance affects the way you design your programs●   

Some information about packages and interfaces●   

If you're already familiar with object-oriented programming, much of today's lesson will be old hat to you.
You may want to skim it and go to a movie today instead. Tomorrow, you'll get into more specific details.

Day 2-- Object-Oriented Programming and Java

file:///G|/ebooks/1575211831/ch2.htm (1 of 19) [11/06/2000 7:46:49 PM]



Thinking in Objects: An Analogy
Consider, if you will, Legos. Legos, for those who do not spend much time with children, are small plastic
building blocks in various colors and sizes. They have small round bits on one side that fit into small round
holes on other Legos so that they fit together snugly to create larger shapes. With different Lego parts (Lego
wheels, Lego engines, Lego hinges, Lego pulleys), you can put together castles, automobiles, giant robots that
swallow cities, or just about anything else you can imagine. Each Lego part is a small object that fits together
with other small objects in predefined ways to create other larger objects. That is roughly how object-oriented
programming works: putting together smaller elements to build larger ones.

Here's another example. You can walk into a computer store and, with a little background and often some help,
assemble an entire pc computer system from various components: a motherboard, a CPU chip, a video card, a
hard disk, a keyboard, and so on. Ideally, when you finish assembling all the various self-contained units, you
have a system in which all the units work together to create a larger system with which you can solve the
problems you bought the computer for in the first place.

Internally, each of those components may be vastly complicated and engineered by different companies with
different methods of design. But you don't need to know how the component works, what every chip on the
board does, or how, when you press the A key, an A gets sent to your computer. As the assembler of the
overall system, each component you use is a self-contained unit, and all you are interested in is how the units
interact with each other. Will this video card fit into the slots on the motherboard, and will this monitor work
with this video card? Will each particular component speak the right commands to the other components it
interacts with so that each part of the computer is understood by every other part? Once you know what the
interactions are between the components and can match the interactions, putting together the overall system is
easy.

What does this have to do with programming? Everything. Object-oriented programming works in exactly this
same way. Using object-oriented programming, your overall program is made up of lots of different
self-contained components (objects), each of which has a specific role in the program and all of which can talk
to each other in predefined ways.

Objects and Classes
Object-oriented programming is modeled on how, in the real world, objects are often made up of many kinds
of smaller objects. This capability of combining objects, however, is only one very general aspect of
object-oriented programming. Object-oriented programming provides several other concepts and features to
make creating and using objects easier and more flexible, and the most important of these features is classes.

When you write a program in an object-oriented language, you don't define actual objects. You define classes
of objects, where a class is a template for multiple objects with similar features. Classes embody all the
features of a particular set of objects. For example, you might have a Tree class that describes the features of
all trees (has leaves and roots, grows, creates chlorophyll). The Tree class serves as an abstract model for the
concept of a tree-to reach out and grab, or interact with, or cut down a tree you have to have a concrete
instance of that tree. Of course, once you have a tree class, you can create lots of different instances of that
tree, and each different tree instance can have different features (short, tall, bushy, drops leaves in autumn),
while still behaving like and being immediately recognizable as a tree (see Figure 2.1).

Figure 2.1 : The Tree class and several Tree instances.

Day 2-- Object-Oriented Programming and Java

file:///G|/ebooks/1575211831/ch2.htm (2 of 19) [11/06/2000 7:46:49 PM]



New Term
A class is a generic template for a set of objects with similar features.

An instance of a class is another word for an actual object. If class is the general (generic) representation of an
object, an instance is its concrete representation. So what, precisely, is the difference between an instance and
an object? Nothing, really. Object is the more general term, but both instances and objects are the concrete
representation of a class. In fact, the terms instance and object are often used interchangeably in OOP lingo.
An instance of a tree and a tree object are both the same thing.

New Term
An instance is the specific concrete representation of a class.
Instances and objects are the same thing.

What about an example closer to the sort of things you might want to do in Java programming? You might
create a class for the user interface element called a button. The Button class defines the features of a button
(its label, its size, its appearance) and how it behaves. (Does it need a single-click or a double-click to activate
it? Does it change color when it's clicked? What does it do when it's activated?) After you define the Button
class, you can then easily create instances of that button-that is, button objects-that all take on the basic
features of the button as defined by the class, but may have different appearances and behavior based on what
you want that particular button to do. By creating a Button class, you don't have to keep rewriting the code
for each individual button you want to use in your program, and you can reuse the Button class to create
different kinds of buttons as you need them in this program and in other programs.

Tip
If you're used to programming in C, you can think of a class as sort of
creating a new composite data type by using struct and typedef.
Classes, however, can provide much more than just a collection of
data, as you'll discover in the rest of today's lesson.

When you write a Java program, you design and construct a set of classes. Then when your program runs,
instances of those classes are created and discarded as needed. Your task, as a Java programmer, is to create
the right set of classes to accomplish what your program needs to accomplish.

Fortunately, you don't have to start from the very beginning: The Java environment comes with a standard set
of classes (called a class library) that implement a lot of the basic behavior you need-not only for basic
programming tasks (classes to provide basic math functions, arrays, strings, and so on), but also for graphics
and networking behavior. In many cases, the Java class libraries may be enough so that all you have to do in
your Java program is create a single class that uses the standard class libraries. For complicated Java programs,
you may have to create a whole set of classes with defined interactions between them.

New Term
A class library is a collection of classes intended to be reused
repeatedly in different programs. The standard Java class libraries
contain quite a few classes for accomplishing basic programming
tasks in Java.

Day 2-- Object-Oriented Programming and Java

file:///G|/ebooks/1575211831/ch2.htm (3 of 19) [11/06/2000 7:46:49 PM]



Behavior and Attributes
Every class you write in Java has two basic features: attributes and behavior. In this section you'll learn about
each one as it applies to a theoretical simple class called Motorcycle. To finish up this section, you'll create
the Java code to implement a representation of a motorcycle.

Attributes

Attributes are the individual things that differentiate one object from another and determine the appearance,
state, or other qualities of that object. Let's create a theoretical class called Motorcycle. A motorcycle class
might include the following attributes and have these typical values:

Color: red, green, silver, brown●   

Style: cruiser, sport bike, standard●   

Make: Honda, BMW, Bultaco●   

Attributes of an object can also include information about its state; for example, you could have features for
engine condition (off or on) or current gear selected.

Attributes are defined in classes by variables. Those variables' types and names are defined in the class, and
each object can have its own values for those variables. Because each instance of a class can have different
values for its variables, these variables are often called instance variables.

New Term
An instance variable defines the attributes of the object. Instance
variables' types and names are defined in the class, but their values
are set and changed in the object.

Instance variables may be initially set when an object is created and stay constant throughout the life of the
object, or they may be able to change at will as the program runs. Change the value of the variable, and you
change an object's attributes.

In addition to instance variables, there are also class variables, which apply to the class itself and to all its
instances. Unlike instance variables, whose values are stored in the instance, class variables' values are stored
in the class itself. You'll learn about class variables later on this week and more specifics about instance
variables tomorrow.

Behavior

A class's behavior determines how an instance of that class operates; for example, how it will "react" if asked
to do something by another class or object or if its internal state changes. Behavior is the only way objects can
do anything to themselves or have anything done to them. For example, to go back to the theoretical
Motorcycle class, here are some behaviors that the Motorcycle class might have:

Start the engine●   

Stop the engine●   

Speed up●   

Change gear●   

Stall●   

Day 2-- Object-Oriented Programming and Java

file:///G|/ebooks/1575211831/ch2.htm (4 of 19) [11/06/2000 7:46:49 PM]



To define an object's behavior, you create methods, a set of Java statements that accomplish some task.
Methods look and behave just like functions in other languages but are defined and accessible solely inside a
class. Java does not have functions defined outside classes (as C++ does).

New Term
Methods are functions defined inside classes that operate on instances
of those classes.

While methods can be used solely to operate on an individual object, methods are also used between objects to
communicate with each other. A class or an object can call methods in another class or object to communicate
changes in the environment or to ask that object to change its state.

Just as there are instance and class variables, there are also instance and class methods. Instance methods
(which are so common that they're usually just called methods) apply and operate on an instance of a class;
class methods apply and operate on the class itself. You'll learn more about class methods later on this week.

Creating a Class

Up to this point, today's lesson has been pretty theoretical. In this section, you'll create a working example of
the Motorcycle class so that you can see how instance variables and methods are defined in a class in Java.
You'll also create a Java application that creates a new instance of the Motorcycle class and shows its
instance variables.

Note
I'm not going to go into a lot of detail about the actual syntax of this
example here. Don't worry too much about it if you're not really sure
what's going on; it will become clear to you later on this week. All
you really need to worry about in this example is understanding the
basic parts of this class definition.

Ready? Let's start with a basic class definition. Open the text editor you've been using to create Java source
code and enter the following (remember, upper- and lowercase matters):

class Motorcycle {

}

Congratulations! You've now created a class. Of course, it doesn't do very much at the moment, but that's a
Java class at its very simplest.

First, let's create some instance variables for this class-three of them, to be specific. Just below the first line,
add the following three lines:

String make;
String color;
boolean engineState = false;

Here you've created three instance variables: Two, make and color, can contain String objects (a string is
the generic term for a series of characters; String, with a capital S, is part of that standard class library

Day 2-- Object-Oriented Programming and Java

file:///G|/ebooks/1575211831/ch2.htm (5 of 19) [11/06/2000 7:46:49 PM]



mentioned earlier). The third, engineState, is a boolean variable that refers to whether the engine is off
or on; a value of false means that the engine is off, and true means that the engine is on. Note that boolean
is lowercase b.

New Term
A boolean is a value of either true or false.

Technical Note
boolean in Java is a real data type that can have the values true or
false. Unlike in C, booleans are not numbers. You'll hear about this
again tomorrow so that you won't forget.

Now let's add some behavior (methods) to the class. There are all kinds of things a motorcycle can do, but to
keep things short, let's add just one method-a method that starts the engine. Add the following lines below the
instance variables in your class definition:

void startEngine() {
    if (engineState == true)
        System.out.println("The engine is already on.");
    else {
        engineState = true;
        System.out.println("The engine is now on.");
    }
}

The startEngine() method tests to see whether the engine is already running (in the part engineState
== true) and, if it is, merely prints a message to that effect. If the engine isn't already running, it changes the
state of the engine to true (turning the engine on) and then prints a message. Finally, because the
startEngine() method doesn't return a value, its definition includes the word void at the beginning. (You
can also define methods to return values; you'll learn more about method definitions on Day 6, "Creating
Classes and Applications in Java.")

Tip
Here and throughout this book, whenever I refer to the name of a
method, I'll add empty parentheses to the end of the name (for
example, as I did in the first sentence of the previous paragraph: "The
startEngine() method…" This is a convention used in the
programming community at large to indicate that a particular name is
a method and not a variable. The parentheses are silent.

With your methods and variables in place, save the program to a file called Motorcycle.java (remember
that you should always name your Java source files the same names as the class they define). Listing 2.1 shows
what your program should look like so far.

Listing 2.1. The Motorcycle.java file.

 1:class Motorcycle {
 2:
 3: String make;

Day 2-- Object-Oriented Programming and Java

file:///G|/ebooks/1575211831/ch2.htm (6 of 19) [11/06/2000 7:46:49 PM]



 4: String color;
 5: boolean engineState = false;
 6:
 7: void startEngine() {
 8:     if (engineState == true)
 9:         System.out.println("The engine is already on.");
10:     else {
11:         engineState = true;
12:         System.out.println("The engine is now on.");
13:     }
14: }
15:}

Tip
The indentation of each part of the class isn't important to the Java
compiler. Using some form of indentation, however, makes your class
definition easier for you and other people to read. The indentation
used here, with instance variables and methods indented from the
class definition, is the style used throughout this book. The Java class
libraries use a similar indentation. You can choose any indentation
style that you like.

Before you compile this class, let's add one more method just below the startEngine() method (that is,
between lines 14 and 15). The showAtts() method is used to print the current values of all the instance
variables in an instance of your Motorcycle class. Here's what it looks like:

void showAtts() {
    System.out.println("This motorcycle is a "
        + color + " " + make);
    if (engineState == true)
        System.out.println("The engine is on.");
    else System.out.println("The engine is off.");
}

The showAtts() method prints two lines to the screen: the make and color of the motorcycle object and
whether the engine is on or off.

Now you have a Java class with three instance variables and two methods defined. Save that file again, and
compile it using one of the following methods:

Note
After this point, I'm going to assume you know how to compile and
run Java programs. I won't repeat this information after this.

Windows
From inside a DOS shell, CD to the directory containing your Java
source file, and use the javac command to compile it:

Day 2-- Object-Oriented Programming and Java

file:///G|/ebooks/1575211831/ch2.htm (7 of 19) [11/06/2000 7:46:49 PM]



javac Motorcycle.java

Macintosh
Drag and drop the Motorcycle.java file onto the Java Compiler
icon.

Salaris
From a command line, CD to the directory containing your Java
source file, and use the javac command to compile it:

javac Motorcycle.java

When you run this little program using the java or Java Runner programs, you'll get an error. Why? When
you run a compiled Java class directly, Java assumes that the class is an application and looks for a main()
method. Because we haven't defined a main() method inside the class, the Java interpreter (java) gives you
an error something like one of these two errors:

In class Motorcycle: void main(String argv[]) is not defined
Exception in thread "main":  java.lang.UnknownError

To do something with the Motorcycle class-for example, to create instances of that class and play with
them-you're going to need to create a separate Java applet or application that uses this class or add a main()
method to this one. For simplicity's sake, let's do the latter. Listing 2.2 shows the main() method you'll add
to the Motorcycle class. You'll want to add this method to your Motorcycle.java source file just
before the last closing brace (}), underneath the startEngine() and showAtts() methods.

Listing 2.2. The main() method for Motorcycle.java.

 1: public static void main (String args[]) {
 2:    Motorcycle m = new Motorcycle();
 3:    m.make = "Yamaha RZ350";
 4:    m.color = "yellow";
 5:    System.out.println("Calling showAtts...");
 6:    m.showAtts();
 7:    System.out.println("--------");
 8:    System.out.println("Starting engine...");
 9:    m.startEngine();
10:    System.out.println("--------");
11:    System.out.println("Calling showAtts...");
12:    m.showAtts();
13:    System.out.println("--------");
14:    System.out.println("Starting engine...");
15:    m.startEngine();
16:}

With the main() method in place, the Motorcycle class is now an official application, and you can
compile it again and this time it'll run. Here's how the output should look:

Day 2-- Object-Oriented Programming and Java

file:///G|/ebooks/1575211831/ch2.htm (8 of 19) [11/06/2000 7:46:49 PM]



Calling showAtts...
This motorcycle is a yellow Yamaha RZ350
The engine is off.
--------
Starting engine...
The engine is now on.
--------
Calling showAtts...
This motorcycle is a yellow Yamaha RZ350
The engine is on.
--------
Starting engine...
The engine is already on.

Analysis
The contents of the main() method are all going to look very new to
you, so let's go through it line by line so that you at least have a basic
idea of what it does (you'll get details about the specifics of all of this
tomorrow and the day after).

The first line declares the main() method. The first line of the main() method always looks like this; you'll
learn the specifics of each part later this week.

Line 2, Motorcycle m = new Motorcycle();, creates a new instance of the Motorcycle class and
stores a reference to it in the variable m. Remember, you don't usually operate directly on classes in your Java
programs; instead, you create objects from those classes and then call methods in those objects.

Lines 3 and 4 set the instance variables for this Motorcycle object: The make is now a Yamaha RZ350 (a
very pretty motorcycle from the mid-1980s), and the color is yellow.

Lines 5 and 6 call the showAtts() method, defined in your Motorcycle object. (Actually, only 6 does; 5
just prints a message that you're about to call this method.) The new motorcycle object then prints out the
values of its instance variables-the make and color as you set in the previous lines-and shows that the engine
is off.

Line 7 prints a divider line to the screen; this is just for prettier output.

Line 9 calls the startEngine() method in the motorcycle object to start the engine. The engine should
now be on.

Line 11 prints the values of the instance variables again. This time, the report should say the engine is now on.

Line 15 tries to start the engine again, just for fun. Because the engine is already on, this should print the
message The engine is already on.

Listing 2.3 shows the final Motorcycle class, in case you've been having trouble compiling and running the
one you've got (and remember, this example and all the examples in this book are available on the CD that

Day 2-- Object-Oriented Programming and Java

file:///G|/ebooks/1575211831/ch2.htm (9 of 19) [11/06/2000 7:46:49 PM]



accompanies the book):

Listing 2.3. The final version of Motorcycle.java.

 1: class Motorcycle {
 2: 
 3:    String make;
 4:    String color;
 5:    boolean engineState;
 6: 
 7:    void startEngine() {
 8:       if (engineState == true)
 9:           System.out.println("The engine is already on.");
10:       else {
11:           engineState = true;
12:           System.out.println("The engine is now on.");
13:       }
14:    }
15:    
16:   void showAtts() {
17:       System.out.println("This motorcycle is a "
18:          + color + " " + make);
19:       if (engineState == true)
20:         System.out.println("The engine is on.");
21:       else System.out.println("The engine is off.");
22:    }
23: 
24:    public static void main (String args[]) {
25:       Motorcycle m = new Motorcycle();
26:       m.make = "Yamaha RZ350";
27:       m.color = "yellow";
28:       System.out.println("Calling showAtts...");
29:       m.showAtts();
30:      System.out.println("------");
31:       System.out.println("Starting engine...");
32:       m.startEngine();
33:       System.out.println("------");
34:       System.out.println("Calling showAtts...");
35:       m.showAtts();
36:       System.out.println("------");
37:       System.out.println("Starting engine...");
38:       m.startEngine();
39:    }
40:}

Day 2-- Object-Oriented Programming and Java

file:///G|/ebooks/1575211831/ch2.htm (10 of 19) [11/06/2000 7:46:49 PM]



Inheritance, Interfaces, and Packages
Now that you have a basic grasp of classes, objects, methods, variables, and how to put them all together in a
Java program, it's time to confuse you again. Inheritance, interfaces, and packages are all mechanisms for
organizing classes and class behaviors. The Java class libraries use all these concepts, and the best class
libraries you write for your own programs will also use these concepts.

Inheritance

Inheritance is one of the most crucial concepts in object-oriented programming, and it has a very direct effect
on how you design and write your Java classes. Inheritance is a powerful mechanism that means when you
write a class you only have to specify how that class is different from some other class; inheritance will give
you automatic access to the information contained in that other class.

With inheritance, all classes-those you write, those from other class libraries that you use, and those from the
standard utility classes as well-are arranged in a strict hierarchy (see Figure 2.2). Each class has a superclass
(the class above it in the hierarchy), and each class can have one or more subclasses (classes below that class
in the hierarchy). Classes further down in the hierarchy are said to inherit from classes further up in the
hierarchy.

Figure 2.2 : A class hierarchy.

Subclasses inherit all the methods and variables from their superclasses-that is, in any particular class, if the
superclass defines behavior that your class needs, you don't have to redefine it or copy that code from some
other class. Your class automatically gets that behavior from its superclass, that superclass gets behavior from
its superclass, and so on all the way up the hierarchy. Your class becomes a combination of all the features of
the classes above it in the hierarchy.

New Term
Inheritance is a concept in object-oriented programming where all
classes are arranged in a strict hierarchy. Each class in the hierarchy
has superclasses (classes above it in the hierarchy) and any number of
subclasses (classes below it in the hierarchy). Subclasses inherit
attributes and behavior from their superclasses.

At the top of the Java class hierarchy is the class Object; all classes inherit from this one superclass.
Object is the most general class in the hierarchy; it defines behavior inherited by all the classes in Java. Each
class further down in the hierarchy adds more information and becomes more tailored to a specific purpose. In
this way, you can think of a class hierarchy as defining very abstract concepts at the top of the hierarchy and
those ideas becoming more concrete the farther down the chain of superclasses you go.

Most of the time when you write new Java classes, you'll want to create a class that has all the information
some other class has, plus some extra information. For example, you may want a version of a Button with its
own built-in label. To get all the Button information, all you have to do is define your class to inherit from
Button. Your class will automatically get all the behavior defined in Button (and in Button's
superclasses), so all you have to worry about are the things that make your class different from Button itself.
This mechanism for defining new classes as the differences between them and their superclasses is called
subclassing.

Subclassing involves creating a new class that inherits from some other class in the class hierarchy. Using

Day 2-- Object-Oriented Programming and Java

file:///G|/ebooks/1575211831/ch2.htm (11 of 19) [11/06/2000 7:46:49 PM]



subclassing, you only need to define the differences between your class and its parent; the additional behavior
is all available to your class through inheritance.

New Term
Subclassing is the process of creating a new class that inherits from
some other already-existing class.

What if your class defines an entirely new behavior and isn't really a subclass of another class? Your class can
also inherit directly from Object, which still allows it to fit neatly into the Java class hierarchy. In fact, if you
create a class definition that doesn't indicate its superclass in the first line, Java automatically assumes you're
inheriting from Object. The Motorcycle class you created in the previous section inherited from
Object.

Creating a Class Hierarchy

If you're creating a larger set of classes for a very complex program, it makes sense for your classes not only to
inherit from the existing class hierarchy, but also to make up a hierarchy themselves. This may take some
planning beforehand when you're trying to figure out how to organize your Java code, but the advantages are
significant once it's done:

When you develop your classes in a hierarchy, you can factor out information common to multiple
classes in superclasses, and then reuse that superclass's information over and over again. Each subclass
gets that common information from its superclass.

●   

Changing (or inserting) a class further up in the hierarchy automatically changes the behavior of its
subclasses-no need to change or recompile any of the lower classes because they get the new
information through inheritance and not by copying any of the code.

●   

For example, let's go back to that Motorcycle class and pretend you created a Java program to implement
all the features of a motorcycle. It's done, it works, and everything is fine. Now, your next task is to create a
Java class called Car.

Car and Motorcycle have many similar features-both are vehicles driven by engines. Both have
transmissions, headlamps, and speedometers. So your first impulse may be to open your Motorcycle class
file and copy over a lot of the information you already defined into the new class Car.

A far better plan is to factor out the common information for Car and Motorcycle into a more general class
hierarchy. This may be a lot of work just for the classes Motorcycle and Car, but once you add Bicycle,
Scooter, Truck, and so on, having common behavior in a reusable superclass significantly reduces the
amount of work you have to do overall.

Let's design a class hierarchy that might serve this purpose. Starting at the top is the class Object, which is
the root of all Java classes. The most general class to which a motorcycle and a car both belong might be called
Vehicle. A vehicle, generally, is defined as a thing that propels someone from one place to another. In the
Vehicle class, you define only the behavior that enables someone to be propelled from point a to point b,
and nothing more.

Below Vehicle? How about two classes: PersonPoweredVehicle and EnginePoweredVehicle?
EnginePoweredVehicle is different from Vehicle because it has an engine, and the behaviors might
include stopping and starting the engine, having certain amounts of gasoline and oil, and perhaps the speed or
gear in which the engine is running. Person-powered vehicles have some kind of mechanism for translating
people motion into vehicle motion-pedals, for example. Figure 2.3 shows what you have so far.

Day 2-- Object-Oriented Programming and Java

file:///G|/ebooks/1575211831/ch2.htm (12 of 19) [11/06/2000 7:46:49 PM]



Figure 2.3 : The basic vehicle hierarchy.

Now let's become even more specific. With EnginePoweredVehicle, you might have several classes:
Motorcycle, Car, Truck, and so on. Or you can factor out still more behavior and have intermediate
classes for TwoWheeled and FourWheeled vehicles, with different behaviors for each (see Figure 2.4).

Figure 2.4 : Two-wheeled and four-wheeled vehicles.

Finally, with a subclass for the two-wheeled engine-powered vehicles, you can have a class for motorcycles.
Alternatively, you could additionally define scooters and mopeds, both of which are two-wheeled
engine-powered vehicles but have different qualities from motorcycles.

Where do qualities such as make or color come in? Wherever you want them to go-or, more usually, where
they fit most naturally in the class hierarchy. You can define the make and color on Vehicle, and all the
subclasses will have those variables as well. The point to remember is that you have to define a feature or a
behavior only once in the hierarchy; it's automatically reused by each subclass.

How Inheritance Works

How does inheritance work? How is it that instances of one class can automatically get variables and methods
from the classes further up in the hierarchy?

For instance variables, when you create a new instance of a class, you get a "slot" for each variable defined in
the current class and for each variable defined in all its superclasses. In this way, all the classes combine to
form a template for the current object, and then each object fills in the information appropriate to its situation.

Methods operate similarly: New objects have access to all the method names of its class and its superclasses,
but method definitions are chosen dynamically when a method is called. That is, if you call a method on a
particular object, Java first checks the object's class for the definition of that method. If it's not defined in the
object's class, it looks in that class's superclass, and so on up the chain until the method definition is found (see
Figure 2.5).

Figure 2.5 : How methods are located.

Things get complicated when a subclass defines a method that has the same signature (name, number, and type
of arguments) as a method defined in a superclass. In this case, the method definition that is found first
(starting at the bottom and working upward toward the top of the hierarchy) is the one that is actually executed.
Therefore, you can intentionally define a method in a subclass that has the same signature as a method in a
superclass, which then "hides" the superclass's method. This is called overriding a method. You'll learn all
about methods on Day 7, "More About Methods."

New Term
Overriding a method is creating a method in a subclass that has the
same signature (name, number, and type of arguments) as a method in
a superclass. That new method then hides the superclass's method
(see Figure 2.6).

Figure 2.6 : Overriding methods.

Day 2-- Object-Oriented Programming and Java

file:///G|/ebooks/1575211831/ch2.htm (13 of 19) [11/06/2000 7:46:50 PM]



Single and Multiple Inheritance

Java's form of inheritance, as you learned in the previous sections, is called single inheritance. Single
inheritance means that each Java class can have only one superclass (although any given superclass can have
multiple subclasses).

In other object-oriented programming languages, such as C++, classes can have more than one superclass, and
they inherit combined variables and methods from all those classes. This is called multiple inheritance.
Multiple inheritance can provide enormous power in terms of being able to create classes that factor just about
all imaginable behavior, but it can also significantly complicate class definitions and the code to produce them.
Java makes inheritance simpler by being only singly inherited.

Interfaces and Packages

There are two remaining concepts to discuss here: packages and interfaces. Both are advanced topics for
implementing and designing groups of classes and class behavior. You'll learn about both interfaces and
packages on Day 16, "Packages and Interfaces," but they are worth at least introducing here.

Recall that each Java class has only a single superclass, and it inherits variables and methods from that
superclass and all its superclasses. Although single inheritance makes the relationship between classes and the
functionality those classes implement easy to understand and to design, it can also be somewhat restrictive-in
particular, when you have similar behavior that needs to be duplicated across different "branches" of the class
hierarchy. Java solves this problem of shared behavior by using the concept of interfaces, which collect
method names into one place and then allow you to add those methods as a group to the various classes that
need them. Note that interfaces contain only method names and interfaces (arguments, for example), not actual
definitions.

Although a single Java class can have only one superclass (due to single inheritance), that class can also
implement any number of interfaces. By implementing an interface, a class provides method implementations
(definitions) for the method names defined by the interface. If two very disparate classes implement the same
interface, they can both respond to the same method calls (as defined by that interface), although what each
class actually does in response to those method calls may be very different.

New Term
An interface is a collection of method names, without definitions, that
can be added to classes to provide additional behavior not included
with those methods the class defined itself or inherited from its
superclasses.

You don't need to know very much about interfaces right now. You'll learn more as the book progresses, so if
all this is very confusing, don't panic!

The final new Java concept for today is packages. Packages in Java are a way of grouping together related
classes and interfaces in a single library or collection. Packages enable modular groups of classes to be
available only if they are needed and eliminate potential conflicts between class names in different groups of
classes.

You'll learn all about packages, including how to create and use them, in Week 3. For now, there are only a
few things you need to know:

The class libraries in the Java Developer's Kit are contained in a package called java. The classes in●   

Day 2-- Object-Oriented Programming and Java

file:///G|/ebooks/1575211831/ch2.htm (14 of 19) [11/06/2000 7:46:50 PM]



the java package are guaranteed to be available in any Java implementation and are the only classes
guaranteed to be available across different implementations. The java package itself contains other
packages for classes that define the language, the input and output classes, some basic networking, the
window toolkit functions, and classes that define applets. Classes in other packages (for example,
classes in the sun or netscape packages) may be available only in specific implementations.

By default, your Java classes have access to only the classes in java.lang (the base language package
inside the java package). To use classes from any other package, you have to either refer to them
explicitly by package name or import them into your source file.

●   

To refer to a class within a package, list all the packages that class is contained in and the class name, all
separated by periods (.). For example, take the Color class, which is contained in the awt package
(awt stands for Abstract Windowing Toolkit). The awt package, in turn, is inside the java package.
To refer to the Color class in your program, you use the notation java.awt.Color.

●   

Creating a Subclass

To finish up today, let's create a class that is a subclass of another class and override some methods. You'll also
get a basic feel for how packages work in this example.

Probably the most typical instance of creating a subclass, at least when you first start programming in Java, is
creating an applet. All applets are subclasses of the class Applet (which is part of the java.applet
package). By creating a subclass of Applet, you automatically get all the behavior from the window toolkit
and the layout classes that enable your applet to be drawn in the right place on the page and to interact with
system operations, such as keypresses and mouse clicks.

In this example, you'll create an applet similar to the Hello World applet from yesterday, but one that draws the
Hello string in a larger font and a different color. To start this example, let's first construct the class
definition itself. Let's go to your text editor, and enter the following class definition:

public class HelloAgainApplet extends java.applet.Applet {

}

Here, you're creating a class called HelloAgainApplet. Note the part that says extends
java.applet.Applet-that's the part that says your applet class is a subclass of the Applet class. Note
that because the Applet class is contained in the java.applet package, you don't have automatic access
to that class, and you have to refer to it explicitly by package and class name.

The other part of this class definition is the public keyword. Public means that your class is available to the
Java system at large once it is loaded. Most of the time you need to make a class public only if you want it
to be visible to all the other classes in your Java program, but applets, in particular, must be declared to be
public. (You'll learn more about public classes in Week 3.)

A class definition with nothing in it doesn't really have much of a point; without adding or overriding any of its
superclasses' variables or methods, there's no reason to create a subclass at all. Let's add some information to
this class, inside the two enclosing braces, to make it different from its superclass.

First, add an instance variable to contain a Font object:

Font f = new Font("TimesRoman", Font.BOLD, 36);

Day 2-- Object-Oriented Programming and Java

file:///G|/ebooks/1575211831/ch2.htm (15 of 19) [11/06/2000 7:46:50 PM]



The f instance variable now contains a new instance of the class Font, part of the java.awt package. This
particular Font object is a Times Roman font, boldface, 36 points high. In the previous Hello World applet,
the font used for the text was the default font: 12-point Times Roman. Using a Font object, you can change
the font of the text you draw in your applet.

By creating an instance variable to hold this font object, you make it available to all the methods in your class.
Now let's create a method that uses it.

When you write applets, there are several "standard" methods defined in the applet superclasses that you will
commonly override in your applet class. These include methods to initialize the applet, to make it start
running, to handle operations such as mouse movements or mouse clicks, or to clean up when the applet stops
running. One of those standard methods is the paint() method, which actually displays your applet
onscreen. The default definition of paint() doesn't do anything-it's an empty method. By overriding
paint(), you tell the applet just what to draw on the screen. Here's a definition of paint():

public void paint(Graphics g) {
    g.setFont(f);
    g.setColor(Color.red);
    g.drawString("Hello again!", 5, 40);
}

There are two things to know about the paint() method. First, note that this method is declared public,
just as the applet itself was. The paint() method is actually public for a different reason-because the
method it's overriding is also public. If a superclass's method is defined as public, your override method
also has to be public, or you'll get an error when you compile the class.

Second, note that the paint() method takes a single argument: an instance of the Graphics class. The
Graphics class provides platform-independent behavior for rendering fonts, colors, and behavior for
drawing basic lines and shapes. You'll learn a lot more about the Graphics class in Week 2, when you create
more extensive applets.

Inside your paint() method, you've done three things:

You've told the graphics object that the default drawing font will be the one contained in the instance
variable f.

●   

You've told the graphics object that the default color is an instance of the Color class for the color red.●   

Finally, you've drawn your "Hello Again!" string onto the screen, at the x and y positions of 5 and
25. The string will be rendered in the new font and color.

●   

For an applet this simple, this is all you need to do. Here's what the applet looks like so far:

public class HelloAgainApplet extends java.applet.Applet {

  Font f = new Font("TimesRoman",Font.BOLD,36);

  public void paint(Graphics g) {
    g.setFont(f);
    g.setColor(Color.red);
    g.drawString("Hello again!", 5, 40);
  }

Day 2-- Object-Oriented Programming and Java

file:///G|/ebooks/1575211831/ch2.htm (16 of 19) [11/06/2000 7:46:50 PM]



}

If you've been paying close attention, you'll notice that something is wrong with this example up to this point.
If you don't know what it is, try saving this file (remember, save it to the same name as the class:
HelloAgainApplet.java) and compiling it. You should get a bunch of errors similar to this one:

HelloAgainApplet.java:7: Class Graphics not found in type declaration.

Why are you getting these errors? Because the classes you're referring to in this class, such as Graphics and
Font, are part of a package that isn't available by default. Remember that the only package you have access to
automatically in your Java programs is java.lang. You referred to the Applet class in the first line of the
class definition by referring to its full package name (java.applet.Applet). Further on in the program,
however, you referred to all kinds of other classes as if they were available. The compiler catches this and tells
you that you don't have access to those other classes.

There are two ways to solve this problem: Refer to all external classes by full package name or import the
appropriate class or package at the beginning of your class file. Which one you choose to do is mostly a matter
of choice, although if you find yourself referring to a class in another package lots of times, you may want to
import it to cut down on the amount of typing.

In this example, you'll import the classes you need. There are three of them: Graphics, Font, and Color.
All three are part of the java.awt package. Here are the lines to import these classes. These lines go at the
top of your program, before the actual class definition:

import java.awt.Graphics;
import java.awt.Font;
import java.awt.Color;

Tip
You also can import an entire package of public classes by using
an asterisk (*) in place of a specific class name. For example, to
import all the classes in the awt package, you can use this line:

import java.awt.*;

Now, with the proper classes imported into your program, HelloAgainApplet.java should compile
cleanly to a class file. Listing 2.4 shows the final version to double-check.

Listing 2.4. The final version of HelloAgainApplet.java.

 1:import java.awt.Graphics;
 2:import java.awt.Font;
 3:import java.awt.Color;
 4:
 5:public class HelloAgainApplet extends java.applet.Applet {
 6:
 7:  Font f = new Font("TimesRoman",Font.BOLD,36);
 8:
 9:  public void paint(Graphics g) {

Day 2-- Object-Oriented Programming and Java

file:///G|/ebooks/1575211831/ch2.htm (17 of 19) [11/06/2000 7:46:50 PM]



10:    g.setFont(f);
11:    g.setColor(Color.red);
12:    g.drawString("Hello again!", 5, 40);
13:  }
14:}

To test it, create an HTML file with the <APPLET> tag as you did yesterday. Here's an HTML file to use:

<HTML>
<HEAD>
<TITLE>Another Applet</TITLE>
</HEAD>
<BODY>
<P>My second Java applet says:
<BR><APPLET CODE="HelloAgainApplet.class" WIDTH=200 HEIGHT=50>
</APPLET>
</BODY>
</HTML>

For this HTML example, your Java class file is in the same directory as this HTML file. Save the file to
HelloAgainApplet.html and fire up your Java-enabled browser or the Java applet viewer. Figure 2.7
shows the result you should be getting (the "Hello Again!" string is red).

Figure 2.7 : The HelloAgain applet.

Summary
If this is your first encounter with object-oriented programming, a lot of the information in this lesson is going
to seem really theoretical and overwhelming. Fear not-the further along in this book you get, and the more Java
classes and applications you create, the easier it is to understand.

One of the biggest hurdles of object-oriented programming is not necessarily the concepts; it's their names.
OOP has lots of jargon surrounding it. To summarize today's material, here's a glossary of terms and concepts
you learned today:

class: A template for an object, which contains variables and methods representing behavior and
attributes. Classes can inherit variables and methods from other classes.

class method: A method defined in a class, which operates on the class itself and can be called via
the class or any of its instances.

class variable: A variable that is "owned" by the class and all its instances as a whole and is
stored in the class.

instance: The same thing as an object; each object is an instance of some class.

instance method: A method defined in a class, which operates on an instance of that class.
Instance methods are usually called just methods.

instance variable: A variable that is owned by an individual instance and whose value is stored in
the instance.

interface: A collection of abstract behavior specifications that individual classes can then

Day 2-- Object-Oriented Programming and Java

file:///G|/ebooks/1575211831/ch2.htm (18 of 19) [11/06/2000 7:46:50 PM]



implement.

object: A concrete instance of some class. Multiple objects that are instances of the same class
have access to the same methods, but often have different values for their instance variables.

package: A collection of classes and interfaces. Classes from packages other than java.lang
must be explicitly imported or referred to by full package name.

subclass: A class lower in the inheritance hierarchy than its parent, the superclass. When you
create a new class, it's often called subclassing.

superclass: A class further up in the inheritance hierarchy than its child, the subclass.

Q&A

Q: Methods are effectively functions that are defined inside classes. If they look like functions and
act like functions, why aren't they called functions?

A: Some object-oriented programming languages do call them functions (C++ calls them member
functions). Other object-oriented languages differentiate between functions inside and outside a body
of a class or object, where having separate terms is important to understanding how each works.
Because the difference is relevant in other languages and because the term method is now in such
common use in object-oriented technology, Java uses the word as well.

Q: I understand instance variables and methods, but not the idea of class variables and methods.
A: Most everything you do in a Java program will be with objects. Some behaviors and attributes,

however, make more sense if they are stored in the class itself rather than in the object. For example,
to create a new instance of a class, you need a method that is defined and available in the class itself.
(Otherwise, how can you create an object? You need an object to call the method, but you don't have
an object yet.) Class variables, on the other hand, are often used when you have an attribute whose
value you want to share with all the instances of a class.

Most of the time, you'll use instance variables and methods. You'll learn more about class variables
and methods later this week.

   

Day 2-- Object-Oriented Programming and Java

file:///G|/ebooks/1575211831/ch2.htm (19 of 19) [11/06/2000 7:46:50 PM]



file:///G|/ebooks/1575211831/f2-1.gif

file:///G|/ebooks/1575211831/f2-1.gif [11/06/2000 7:46:50 PM]



Day 6

Creating Classes and Applications in Java
by Laura Lemay

CONTENTS
Defining Classes●   

Creating Instance and Class Variables

Defining Instance Variables❍   

Constants❍   

Class Variables❍   

●   

Creating Methods

Defining Methods❍   

The this Keyword❍   

Variable Scope and Method Definitions❍   

Passing Arguments to Methods❍   

Class Methods❍   

●   

Creating Java Applications

Helper Classes❍   

●   

Java Applications and Command-Line Arguments

Passing Arguments to Java Programs❍   

Handling Arguments in Your Java Program❍   

●   

Summary●   

Q&A●   

In just about every lesson up to this point you've been creating Java applications-writing classes, creating
instance variables and methods, and running those applications to perform simple tasks. Also up to this
point, you've focused either on the very broad (general object-oriented theory) or the very minute
(arithmetic and other expressions). Today you'll pull it all together and learn how and why to create classes
by using the following basics:

The parts of a class definition●   

Declaring and using instance variables●   

Defining and using methods●   

Creating Java applications, including the main() method and how to pass arguments to a Java●   

Day 6 --Creating Classes and Applications in Java 

file:///G|/ebooks/1575211831/ch6.htm (1 of 16) [11/06/2000 7:46:54 PM]



program from a command line

Defining Classes
Defining classes is pretty easy; you've seen how to do it a bunch of times in previous lessons. To define a
class, use the class keyword and the name of the class:

class MyClassName {
...
}

By default, classes inherit from the Object class. If this class is a subclass of another specific class (that
is, inherits from another class), use extends to indicate the superclass of this class:

class myClassName extends mySuperClassName {
...
}

Note
Java 1.1 will give you the ability to nest a class definition inside other
classes-a useful construction when you're defining "adapter classes"
that implement an interface. The flow of control from the inner class
then moves automatically to the outer class. For more details (beyond
this sketchy description), see the information at the 1.1 Preview Page
at
http://java.sun.com/products/JDK/1.1/designspecs/.

Creating Instance and Class Variables
A class definition with nothing in it is pretty dull; usually, when you create a class, you have something you
want to add to make that class different from its superclasses. Inside each class definition are declarations
and definitions for variables or methods or both-for the class and for each instance. In this section, you'll
learn all about instance and class variables; the next section talks about methods.

Defining Instance Variables

On Day 3, "Java Basics," you learned how to declare and initialize local variables-that is, variables inside
method definitions. Instance variables, fortunately, are declared and defined in almost exactly the same way
as local variables; the main difference is their location in the class definition. Variables are considered
instance variables if they are declared outside a method definition. Customarily, however, most instance
variables are defined just after the first line of the class definition. For example, Listing 6.1 shows a simple
class definition for the class Bicycle, which inherits from the class PersonPoweredVehicle. This
class definition contains five instance variables:

Day 6 --Creating Classes and Applications in Java 

file:///G|/ebooks/1575211831/ch6.htm (2 of 16) [11/06/2000 7:46:54 PM]

http://java.sun.com/products/JDK/1.1/designspecs


bikeType-The kind of bicycle this bicycle is-for example, Mountain or Street●   

chainGear-The number of gears in the front●   

rearCogs-The number of minor gears on the rear axle●   

currentGearFront and currentGearRear-The gear the bike is currently in, both front and
rear

●   

Listing 6.1. The Bicycle class.

1: class Bicycle extends PersonPoweredVehicle {
2:     String bikeType;
3:     int chainGear;
4:     int rearCogs;
5:     int currentGearFront;
6:     int currentGearRear;
7: }

Constants

A constant variable or constant is a variable whose value never changes (which may seem strange given the
meaning of the word variable). Constants are useful for defining shared values for all the methods of an
object-for giving meaningful names to objectwide values that will never change. In Java, you can create
constants only for instance or class variables, not for local variables.

New Term
A constant is a variable whose value never changes.

To declare a constant, use the final keyword before the variable declaration and include an initial value
for that variable:

final float pi = 3.141592;
final boolean debug = false;
final int maxsize = 40000;

Technical Note
The only way to define constants in Java is by using the final
keyword. Neither the C and C++ constructs for #define nor
const are available in Java, although the const keyword is
reserved to prevent you from accidentally using it.

Constants can be useful for naming various states of an object and then testing for those states. For
example, suppose you have a test label that can be aligned left, right, or center. You can define those values
as constant integers:

Day 6 --Creating Classes and Applications in Java 

file:///G|/ebooks/1575211831/ch6.htm (3 of 16) [11/06/2000 7:46:54 PM]



final int LEFT = 0;
final int RIGHT = 1;
final int CENTER = 2;

The variable alignment is then also declared as an int:

int alignment;

Then, later in the body of a method definition, you can either set the alignment:

this.alignment = CENTER;

or test for a given alignment:

switch (this.alignment) {
    case LEFT: // deal with left alignment
               ...
               break;
    case RIGHT: // deal with right alignment
                ...
                break;
    case CENTER: // deal with center alignment
                 ...
                 break;
}

Class Variables

As you have learned in previous lessons, class variables are global to a class and to all that class's instances.
You can think of class variables as being even more global than instance variables. Class variables are good
for communicating between different objects with the same class, or for keeping track of global states
among a set of objects.

To declare a class variable, use the static keyword in the class declaration:

static int sum;
static final int maxObjects = 10;

Creating Methods
Methods, as you learned on Day 2, "Object-Oriented Programming and Java," define an object's
behavior-what happens when that object is created and the various operations that object can perform
during its lifetime. In this section, you'll get a basic introduction to method definition and how methods
work; tomorrow, you'll go into more detail about advanced things you can do with methods.

Day 6 --Creating Classes and Applications in Java 

file:///G|/ebooks/1575211831/ch6.htm (4 of 16) [11/06/2000 7:46:54 PM]



Defining Methods

Method definitions have four basic parts:

The name of the method●   

The type of object or primitive type the method returns●   

A list of parameters●   

The body of the method●   

Note
To keep things simple today, I've left off two optional parts of the
method definition: a modifier such as public or private, and the
throws keyword, which indicates the exceptions a method can
throw. You'll learn about these parts of a method definition in Week
3.

The first three parts of the method definition form what's called the method's signature and indicate the
most important information about the method itself.

In other languages, the name of the method (or function, subroutine, or procedure) is enough to distinguish
it from other methods in the program. In Java, you can have different methods that have the same name but
a different return type or argument list, so all these parts of the method definition are important. This is
called method overloading, and you'll learn more about it tomorrow.

New Term
A method's signature is a combination of the name of the method, the
type of object or primitive data type this method returns, and a list of
parameters.

Here's what a basic method definition looks like:

returntype methodname(type1 arg1, type2 arg2, type3 arg3..) {
    ...
}

The returntype is the type of value this method returns. It can be one of the primitive types, a class
name, or void if the method does not return a value at all.

Note that if this method returns an array object, the array brackets can go either after the return type or after
the parameter list; because the former way is considerably easier to read, it is used in the examples today
(and throughout this book):

int[] makeRange(int lower, int upper) {...}

The method's parameter list is a set of variable declarations, separated by commas, inside parentheses.
These parameters become local variables in the body of the method, whose values are the objects or values
of primitives passed in when the method is called.

Inside the body of the method you can have statements, expressions, method calls to other objects,

Day 6 --Creating Classes and Applications in Java 

file:///G|/ebooks/1575211831/ch6.htm (5 of 16) [11/06/2000 7:46:54 PM]



conditionals, loops, and so on-everything you've learned about in the previous lessons.

If your method has a real return type (that is, it has not been declared to return void), somewhere inside
the body of the method you need to explicitly return a value. Use the return keyword to do this. Listing
6.2 shows an example of a class that defines a makeRange() method. makeRange() takes two
integers-a lower bound and an upper bound-and creates an array that contains all the integers between those
two boundaries (inclusive).

Listing 6.2. The RangeClass class.

 1: class RangeClass {
 2:     int[] makeRange(int lower, int upper) {
 3:         int arr[] = new int[ (upper - lower) + 1 ];
 4: 
 5:         for (int i = 0; i < arr.length; i++) {
 6:             arr[i] = lower++;
 7:         }
 8:         return arr;
 9:     }
10:         
11:     public static void main(String arg[]) {
12:         int theArray[];
13:         RangeClass theRange = new RangeClass();
14: 
15:         theArray = theRange.makeRange(1, 10);
16:         System.out.print("The array: [ ");
17:         for (int i = 0; i < theArray.length; i++) {
18:             System.out.print(theArray[i] + " ");
19:         }
20:         System.out.println("]");
21:     }
22: 
23: }

The array: [ 1 2 3 4 5 6 7 8 9 10 ]

Analysis
The main() method in this class tests the makeRange() method
by creating a range where the lower and upper boundaries of the
range are 1 and 10, respectively (see line 6), and then uses a for
loop to print the values of the new array.

Day 6 --Creating Classes and Applications in Java 

file:///G|/ebooks/1575211831/ch6.htm (6 of 16) [11/06/2000 7:46:54 PM]



The this Keyword

In the body of a method definition, you may want to refer to the current object-the object in which the
method is contained in the first place-to refer to that object's instance variables or to pass the current object
as an argument to another method. To refer to the current object in these cases, you can use the this
keyword. this can be used anywhere the current object might appear-in dot notation to refer to the object's
instance variables, as an argument to a method, as the return value for the current method, and so on. Here's
an example:

t = this.x;          // the x instance variable for this object
this.myMethod(this); // call the myMethod method, defined in
                     // this class, and pass it the current
                     // object
return this;         // return the current object

In many cases you may be able to omit the this keyword entirely. You can refer to both instance variables
and method calls defined in the current class simply by name; the this is implicit in those references. So
the first two examples could be written like this:

t = x          // the x instance variable for this object
myMethod(this) // call the myMethod method, defined in this
               // class

Note
Omitting the this keyword for instance variables depends on
whether there are no variables of the same name declared in the local
scope. See the next section for more details on variable scope.

Keep in mind that because this is a reference to the current instance of a class, you should only use it
inside the body of an instance method definition. Class methods-that is, methods declared with the static
keyword-cannot use this.

Variable Scope and Method Definitions

When you declare a variable, that variable always has a limited scope. Variable scope determines where
that variable can be used. Variables with a local scope, for example, can only be used inside the block in
which they were defined. Instance variables have a scope that extends to the entire class so they can be used
by any of the methods within that class.

New Term
Variable scope determines where a variable can be used.

When you refer to a variable within your method definitions, Java checks for a definition of that variable
first in the current scope (which may be a block, for example, inside a loop), then in the outer scopes up to
the current method definition. If that variable is not a local variable, Java then checks for a definition of that

Day 6 --Creating Classes and Applications in Java 

file:///G|/ebooks/1575211831/ch6.htm (7 of 16) [11/06/2000 7:46:54 PM]



variable as an instance or class variable in the current class, and then, finally, in each superclass in turn.

Because of the way Java checks for the scope of a given variable, it is possible for you to create a variable
in a lower scope such that a definition of that same variable "hides" the original value of that variable. This
can introduce subtle and confusing bugs into your code.

For example, note the small Java program in Listing 6.3.

Listing 6.3. A variable scope example.

 1: class ScopeTest {
 2:     int test = 10;
 3: 
 4:     void printTest () {
 5:         int test = 20;
 6:         System.out.println("test = " + test);
 7:     }
 8:     
 9:     public static void main (String args[]) {
10:        ScopeTest st = new ScopeTest();
11:        st.printTest();
12:     }
13: }

Analysis
In this class, you have two variables with the same name and
definition: The first, an instance variable, has the name test and is
initialized to the value 10. The second is a local variable with the
same name, but with the value 20. Because the local variable hides
the instance variable, the println() method will print that test is
20.

The easiest way to get around this problem is to make sure you don't use the same names for local variables
as you do for instance variables. Another way to get around this particular problem, however, is to use
this.test to refer to the instance variable, and just test to refer to the local variable. By referring
explicitly to the instance variable by its object scope you avoid the conflict.

A more insidious example of this variable naming problem occurs when you redefine a variable in a
subclass that already occurs in a superclass. This can create very subtle bugs in your code-for example, you
may call methods that are intended to change the value of an instance variable, but that change the wrong
one. Another bug might occur when you cast an object from one class to another-the value of your instance
variable may mysteriously change (because it was getting that value from the superclass instead of from
your class). The best way to avoid this behavior is to make sure that when you define variables in a subclass
you're aware of the variables in each of that class's superclasses and you don't duplicate what is already
there.

Day 6 --Creating Classes and Applications in Java 

file:///G|/ebooks/1575211831/ch6.htm (8 of 16) [11/06/2000 7:46:54 PM]



Passing Arguments to Methods

When you call a method with object parameters, the variables you pass into the body of the method are
passed by reference, which means that whatever you do to those objects inside the method affects the
original objects as well. This includes arrays and all the objects that arrays contain; when you pass an array
into a method and modify its contents, the original array is affected. (Note that primitive types are passed by
value.)

Listing 6.4 is an example to demonstrate how this works.

Listing 6.4. The PassByReference class.

 1: class PassByReference {
 2:     int onetoZero(int arg[]) {
 3:         int count = 0;
 4: 
 5:         for (int i = 0; i < arg.length; i++) {
 6:             if (arg[i] == 1) {
 7:                 count++;
 8:                 arg[i] = 0;
 9:             }
10:         }
11:         return count;
12:     }
13:     public static void main (String arg[]) {
14        int arr[] = { 1, 3, 4, 5, 1, 1, 7 };
15:        PassByReference test = new PassByReference();
16:        int numOnes;
17:        
18:        System.out.print("Values of the array: [ ");
19:        for (int i = 0; i < arr.length; i++) {
20:           System.out.print(arr[i] + " ");
21:        }
22:        System.out.println("]");
23:     
24        numOnes = test.onetoZero(arr);
25:        System.out.println("Number of Ones = " + numOnes);
26:        System.out.print("New values of the array: [ ");
27:        for (int i = 0; i < arr.length; i++) {
28:            System.out.print(arr[i] + " ");
29:        }
30:        System.out.println("]");
31:     }
32:}

Day 6 --Creating Classes and Applications in Java 

file:///G|/ebooks/1575211831/ch6.htm (9 of 16) [11/06/2000 7:46:54 PM]



Values of the array: [ 1 3 4 5 1 1 7 ]
Number of Ones = 3
New values of the array: [ 0 3 4 5 0 0 7 ]

Analysis
Note the method definition for the onetoZero() method in lines 2
to 12, which takes a single array as an argument. The
onetoZero() method does two things:

It counts the number of 1s in the array and returns that value.●   

If it finds a 1, it substitutes a 0 in its place in the array.●   

The main() method in the PassByReference class tests the use of the onetoZero() method. Let's
go over the main() method line by line so that you can see what is going on and why the output shows
what it does.

Lines 14 through 16 set up the initial variables for this example. The first one is an array of integers; the
second one is an instance of the class PassByReference, which is stored in the variable test. The third
is a simple integer to hold the number of ones in the array.

Lines 18 through 22 print out the initial values of the array; you can see the output of these lines in the first
line of the output.

Line 24 is where the real work takes place; this is where you call the onetoZero() method, defined in
the object test, and pass it the array stored in arr. This method returns the number of ones in the array,
which you'll then assign to the variable numOnes.

Got it so far? Line 25 prints out the number of 1s (that is, the value you got back from the onetoZero()
method). It returns 3, as you would expect.

The last bunch of lines print out the array values. Because a reference to the array object is passed to the
method, changing the array inside that method changes that original copy of the array. Printing out the
values in lines 27 through 30 proves this-that last line of output shows that all the 1s in the array have been
changed to 0s.

Class Methods

Just as you have class and instance variables, you also have class and instance methods, and the differences
between the two types of methods are analogous. Class methods are available to any instance of the class
itself and can be made available to other classes. Therefore, some class methods can be used anywhere,
regardless of whether an instance of the class exists.

For example, the Java class libraries include a class called Math. The Math class defines a whole set of
math operations that can be used in any program or the various number types:

Day 6 --Creating Classes and Applications in Java 

file:///G|/ebooks/1575211831/ch6.htm (10 of 16) [11/06/2000 7:46:54 PM]



float root = Math.sqrt(453.0);
System.out.print("The larger of x and y is " + Math.max(x, y));

To define class methods, use the static keyword in front of the method definition, just as you would
create a class variable. For example, that max class method might have a signature like this:

static int max(int arg1, int arg2) { ... }

Java supplies "wrapper" classes for each of the primitive data types-for example, classes for Integer,
Float, and boolean. Using class methods defined in those classes, you can convert to and from objects
and primitive types. For example, the parseInt() class method in the Integer class takes a string and
a radix (base) and returns the value of that string as an integer:

int count = Integer.parseInt("42", 10) // returns 42

Most methods that operate on a particular object, or that affect that object, should be defined as instance
methods. Methods that provide some general utility but do not directly affect an instance of that class are
better declared as class methods.

Creating Java Applications
Now that you know how to create classes, objects, and class and instance variables and methods, all that's
left is to put it together into something that can actually run-in other words, to create a Java application.

Applications, to refresh your memory, are Java programs that run on their own. Applications are different
from applets, which require a Java-enabled browser to view them. Much of what you've been creating up to
this point have been Java applications; next week you'll dive into how to create applets. (Applets require a
bit more background in order to get them to interact with the browser and draw and update with the
graphics system. You'll learn all of this next week.)

A Java application consists of one or more classes and can be as large or as small as you want it to be.
While all the Java applications you've created up to this point do nothing but output some characters to the
screen or to a window, you can also create Java applications that use windows, graphics, and user interface
elements, just as applets do (you'll learn how to do this next week). The only thing you need to make a Java
application run, however, is one class that serves as the "jumping-off" point for the rest of your Java
program. If your program is small enough, it may need only the one class.

The jumping-off class for your application needs only one thing: a main() method. When you run your
compiled Java class (using the Java interpreter), the main() method is the first thing that gets called. None
of this should be much of a surprise to you at this point; you've been creating Java applications with
main() methods all along.

The signature for the main() method always looks like this:

public static void main(String args[]) {...}

Here's a run-down of the parts of the main() method:

public means that this method is available to other classes and objects. The main() method must●   

Day 6 --Creating Classes and Applications in Java 

file:///G|/ebooks/1575211831/ch6.htm (11 of 16) [11/06/2000 7:46:54 PM]



be declared public. You'll learn more about public and private methods in Week 3.

static means that this is a class method.●   

void means that the main() method doesn't return anything.●   

main() takes one parameter: an array of strings. This argument is used for command-line
arguments, which you'll learn about in the next section.

●   

The body of the main() method contains any code you need to get your application started: initializing
variables or creating instances of any classes you may have declared.

When Java executes the main() method, keep in mind that main() is a class method-the class that holds
it is not automatically instantiated when your program runs. If you want to treat that class as an object, you
have to instantiate it in the main() method yourself (all the examples up to this point have done this).

Helper Classes

Your Java application can have only one class, or, in the case of most larger programs, it may be made up
of several classes, where different instances of each class are created and used while the application is
running. You can create as many classes as you want for your program, and as long as they are in the same
directory or listed in your CLASSPATH, Java will be able to find them when your program runs. Note,
however, that only the one jumping-off class, only the class you use with the Java bytecode interpreter
needs a main() method. Remember, main() is used only so that Java can start up the program and
create an initial object; after that, the methods inside the various classes and objects take over. While you
can include main() methods in helper classes, they will be ignored when the program actually runs.

Java Applications and Command-Line Arguments
Because Java applications are standalone programs, it's useful to be able to pass arguments or options to a
program to determine how the program is going to run, or to enable a generic program to operate on many
different kinds of input. Command-line arguments can be used for many different purposes-for example, to
turn on debugging input, to indicate a filename to read or write from, or for any other information that you
might want your Java program to know.

Passing Arguments to Java Programs

How you pass arguments to a Java application varies based on the platform you're running Java on. On
Windows and UNIX, you can pass arguments to the Java program via the command line; in the Macintosh,
the Java Runner gives you a special window to type those arguments in.

Windows or Solaris
To pass arguments to a Java program on Windows or Solaris, append
them to the command line when you run your Java program:

java Myprogram argumentOne 2 three

Macintosh
To pass arguments to a Java program on the Macintosh, double-click
the compiled Java class file. The Java Runner will start up, and you'll
get the dialog box shown in Figure 6.1.

Day 6 --Creating Classes and Applications in Java 

file:///G|/ebooks/1575211831/ch6.htm (12 of 16) [11/06/2000 7:46:54 PM]



Figure 6.1: Java Runner arguments.

Enter your arguments, separated by spaces, into this box.

In these examples, you've passed three arguments to your program: argumentOne, the number 2, and
three. Note that a space separates arguments, so if you use the phrase Java is cool as your
arguments, you'll get three of them.

To group arguments, surround them with double-quotes. So, for example, the argument "Java is
cool" produces one argument for your program to deal with. The double-quotes are stripped off before the
argument gets to your Java program.

Handling Arguments in Your Java Program

How does Java handle arguments? It stores them in an array of strings, which is passed to the main()
method in your Java program. Remember the signature for main():

public static void main (String args[]) {...}

Here, args is the name of the array of strings that contains the list of arguments. You can actually call it
anything you want.

Inside your main() method, you can then handle the arguments your program was given by iterating over
the array of arguments and handling those arguments any way you want. For example, Listing 6.5 is a really
simple class that prints out the arguments it gets, one per line.

Listing 6.5. The EchoArgs class.

1: class EchoArgs {
2:     public static void main(String args[]) {
3:         for (int i = 0; i < args.length; i++) {
4:             System.out.println("Argument " + i + ": " + args[i]);
5:         }
6:     }
7: }

The following is some sample input and output from this program:

java EchoArgs 1 2 3 jump

Argument 0: 1
Argument 1: 2

Day 6 --Creating Classes and Applications in Java 

file:///G|/ebooks/1575211831/ch6.htm (13 of 16) [11/06/2000 7:46:54 PM]



Argument 2: 3
Argument 3: jump

java EchoArgs "foo bar" zap twaddle 5

Argument 0: foo bar
Argument 1: zap
Argument 2: twaddle
Argument 3: 5

Note how the arguments are grouped in the second input example; putting quotes around foo bar causes
that argument to be treated as one unit inside the argument array.

Technical Note
The array of arguments in Java is not analogous to argv in C and
UNIX. In particular, arg[0], the first element in the array of
arguments, is the first command-line argument after the name of the
class-not the name of the program as it would be in C. Be careful of
this as you write your Java programs.

An important thing to note about the arguments you pass into a Java program is that those arguments will be
stored in an array of strings. This means that any arguments you pass to your Java program are strings
stored in the argument array. To treat them as non-strings, you'll have to convert them to whatever type you
want them to be.

For example, suppose you have a very simple Java program called SumAverage that takes any number of
numeric arguments and returns the sum and the average of those arguments. Listing 6.6 shows a first pass at
this program. Don't try compiling this one; just look at the code and see if you can figure out what it does.

Listing 6.6. A first try at the SumAverage class.

 1: class SumAverage {
 2:     public static void main (String args[]) {
 3:         int sum = 0;
 4: 
 5:         for (int i = 0; i < args.length; i++) {
 6:             sum += args[i];
 7:         }
 8: 
 9:         System.out.println("Sum is: " + sum);
10:         System.out.println("Average is: " +
11:             (float)sum / args.length);
12:     }

Day 6 --Creating Classes and Applications in Java 

file:///G|/ebooks/1575211831/ch6.htm (14 of 16) [11/06/2000 7:46:54 PM]



13: }

At first glance, this program seems rather straightforward-a for loop iterates over the array of arguments,
summing them, and then the sum and the average are printed out as the last step.

What happens when you try and compile this? You get an error similar to this one:

SumAverage.java:6: Incompatible type for +=. 
Can't convert java.lang.String to int.
    sum += args[i];

You get this error because the argument array is an array of strings. Even though you passed integers into
the program from the command line, those integers were converted to strings before they were stored in the
array. To be able to sum those integers, you have to convert them back from strings to integers. There's a
class method for the Integer class, called parseInt, that does just this. If you change line 6 to use that
method, everything works just fine:

sum += Integer.parseInt(args[i]);

Now, compiling the program produces no errors and running it with various arguments returns the expected
results. For example, java SumAverage 1 2 3 returns the following output:

Sum is: 6
Average is: 2

Summary
Today you put together everything you've come across in the preceding days of this week about how to
create Java classes and use them in Java applications. This includes the following:

Instance and class variables, which hold the attributes of the class and its instances. You have learned
how to declare them, how they are different from regular local variables, and how to declare
constants.

●   

Instance and class methods, which define a class's behavior. You have learned how to define
methods, including the parts of a method's signature, how to return values from a method, how
arguments are passed in and out of methods, and how to use the this keyword to refer to the current
object.

●   

Java applications-all about the main() method and how it works, as well as how to pass arguments
into a Java application from a command line.

●   

Day 6 --Creating Classes and Applications in Java 

file:///G|/ebooks/1575211831/ch6.htm (15 of 16) [11/06/2000 7:46:54 PM]



Q&A

Q: I tried creating a constant variable inside a method, and I got a compiler error when I tried it.
What was I doing wrong?

A: You can create only constant (final) class or instance variables; local variables cannot be
constant.

Q: static and final are not exactly the most descriptive words for creating class variables,
class methods, and constants. Why not use class and const?

A: static comes from Java's C++ heritage; C++ uses the static keyword to retain memory for
class variables and methods (and, in fact, they aren't called class methods and variables in C++:
static member functions and variables are more common terms).

final, however, is new. final is used in a more general way for classes and methods to indicate
that those things cannot be subclassed or overridden. Using the final keyword for variables is
consistent with that behavior. final variables are not quite the same as constant variables in C++,
which is why the const keyword is not used.

Q: In my class, I have an instance variable called origin. I also have a local variable called
origin in a method, which, because of variable scope, gets hidden by the local variable. Is
there any way to get hold of the instance variable's value?

A: The easiest way is not to name your local variables the same names as your instance variables. If
you feel you must, you can use this.origin to refer to the instance variable and origin to
refer to the local variable.

Q: I want to pass command-line arguments to an applet. How do I do this?
A: You're writing applets already? Been skipping ahead, have you? The answer is that you use HTML

attributes to pass arguments to an applet, not the command line (you don't have a command line for
applets). You'll learn how to do this next week.

Q: I wrote a program to take four arguments, but if I give it too few arguments, it crashes with a
runtime error.

A: Testing for the number and type of arguments your program expects is up to you in your Java
program; Java won't do it for you. If your program requires four arguments, test that you have
indeed been given four arguments, and return an error message if you haven't.

   

Day 6 --Creating Classes and Applications in Java 

file:///G|/ebooks/1575211831/ch6.htm (16 of 16) [11/06/2000 7:46:54 PM]



Day 3

Java Basics
by Laura Lemay

CONTENTS
Statements and Expressions●   

Variables and Data Types

Declaring Variables❍   

Notes on Variable Names❍   

Variable Types❍   

Assigning Values to Variables❍   

●   

Comments●   

Literals

Number Literals❍   

Boolean Literals❍   

Character Literals❍   

String Literals❍   

●   

Expressions and Operators

Arithmetic❍   

More About Assignment❍   

Incrementing and Decrementing❍   

Comparisons❍   

Logical Operators❍   

Bitwise Operators❍   

Operator Precedence❍   

●   

String Arithmetic●   

Summary●   

Q&A●   

Already this week you've learned about Java programming in very broad terms-what a Java program and
an executable look like, and how to create simple classes. For the remainder of this week, you're going to

Day 3 -- Java Basics

file:///G|/ebooks/1575211831/ch3.htm (1 of 20) [11/06/2000 7:46:58 PM]



get down to details and deal with the specifics of what the Java language looks like.

Today you won't define any classes or objects or worry about how any of them communicate inside a
Java program. Rather, you'll draw closer and examine simple Java statements-the basic things you can do
in Java within a method definition such as main().

Today you'll learn about the following:

Java statements and expressions●   

Variables and data types●   

Comments●   

Literals●   

Arithmetic●   

Comparisons●   

Logical operators●   

Technical Note
Java looks a lot like C++, and-by extension-like C. Much of the
syntax will be very familiar to you if you are used to working in these
languages. If you are an experienced C or C++ programmer, you may
want to pay special attention to the technical notes (such as this one),
because they provide information about the specific differences
between these and other traditional languages and Java.

Statements and Expressions
A statement indicates the simplest tasks you can accomplish in Java; a statement forms a single Java
operation. All the following are simple Java statements:

int i = 1;
import java.awt.Font;
System.out.println("This motorcycle is a "
    + color + " " + make);
m.engineState = true;

Statements sometimes return values-for example, when you add two numbers together or test to see
whether one value is equal to another. These kind of statements are called expressions. You'll learn about
these later today.

White space in Java statements, as with C, is unimportant. A statement can be contained on a single line
or on multiple lines, and the Java compiler will be able to read it just fine. The most important thing to
remember about Java statements is that each one ends with a semicolon (;). Forget the semicolon, and
your Java program won't compile.

Java also has compound statements, or blocks, which can be placed wherever a single statement can.
Block statements are surrounded by braces ({}). You'll learn more about blocks on Day 5, "Arrays,

Day 3 -- Java Basics

file:///G|/ebooks/1575211831/ch3.htm (2 of 20) [11/06/2000 7:46:58 PM]



Conditionals, and Loops."

Variables and Data Types
Variables are locations in memory in which values can be stored. Each one has a name, a type, and a
value. Before you can use a variable, you have to declare it. After it is declared, you can then assign
values to it (you can also declare and assign a value to a variable at the same time, as you'll learn in this
section).

Java actually has three kinds of variables: instance variables, class variables, and local variables.

Instance variables, as you learned yesterday, are used to define the attributes of a particular object. Class
variables are similar to instance variables, except their values apply to all that class's instances (and to the
class itself) rather than having different values for each object.

Local variables are declared and used inside method definitions, for example, for index counters in loops,
as temporary variables, or to hold values that you need only inside the method definition itself. They can
also be used inside blocks, which you'll learn about on Day 5. Once the method (or block) finishes
executing, the variable definition and its value cease to exist. Use local variables to store information
needed by a single method and instance variables to store information needed by multiple methods in the
object.

Although all three kinds of variables are declared in much the same ways, class and instance variables
are accessed and assigned in slightly different ways from local variables. Today you'll focus on variables
as used within method definitions; tomorrow you'll learn how to deal with instance and class variables.

Note
Unlike other languages, Java does not have global variables-that is,
variables that are global to all parts of a program. Instance and class
variables can be used to communicate global information between
and among objects. Remember that Java is an object-oriented
language, so you should think in terms of objects and how they
interact, rather than in terms of programs.

Declaring Variables

To use any variable in a Java program, you must first declare it. Variable declarations consist of a type
and a variable name:

int myAge;
String myName;
boolean isTired;

Variable definitions can go anywhere in a method definition (that is, anywhere a regular Java statement
can go), although they are most commonly declared at the beginning of the definition before they are
used:

Day 3 -- Java Basics

file:///G|/ebooks/1575211831/ch3.htm (3 of 20) [11/06/2000 7:46:58 PM]



public static void main (String args[]) {
    int count;
    String title;
    boolean isAsleep;
...
}

You can string together variable names with the same type on one line:

int x, y, z;
String firstName, LastName;

You can also give each variable an initial value when you declare it:

int myAge, mySize, numShoes = 28;
String myName = "Laura";
boolean isTired = true;
int a = 4, b = 5, c = 6;

If there are multiple variables on the same line with only one initializer (as in the first of the previous
examples), the initial value applies to only the last variable in a declaration. You can also group
individual variables and initializers on the same line using commas, as with the last example.

Local variables must be given values before they can be used (your Java program will not compile if you
try to use an unassigned local variable). For this reason, it's a good idea always to give local variables
initial values. Instance and class variable definitions do not have this restriction. (Their initial value
depends on the type of the variable: null for instances of classes, 0 for numeric variables, '\0' for
characters, and false for booleans.)

Notes on Variable Names

Variable names in Java can start with a letter, an underscore (_), or a dollar sign ($). They cannot start
with a number. After the first character, your variable names can include any letter or number. Symbols,
such as %, *, @, and so on, are often reserved for operators in Java, so be careful when using symbols in
variable names.

In addition, the Java language uses the Unicode character set. Unicode is a character set definition that
not only offers characters in the standard ASCII character set, but also includes several thousand other
characters for representing most international alphabets. This means that you can use accented characters
and other glyphs as legal characters in variable names, as long as they have a Unicode character number
above 00C0.

Warning

Day 3 -- Java Basics

file:///G|/ebooks/1575211831/ch3.htm (4 of 20) [11/06/2000 7:46:58 PM]



The Unicode specification is a two-volume set of lists of thousands of
characters. If you don't understand Unicode, or don't think you have a
use for it, it's safest just to use plain numbers and letters in your
variable names. You'll learn a little more about Unicode later.

Finally, note that the Java language is case sensitive, which means that uppercase letters are different
from lowercase letters. This means that the variable X is different from the variable x, and a rose is not
a Rose is not a ROSE. Keep this in mind as you write your own Java programs and as you read Java
code other people have written.

By convention, Java variables have meaningful names, often made up of several words combined. The
first word is lowercase, but all following words have an initial uppercase letter:

Button theButton;
long reallyBigNumber;
boolean currentWeatherStateOfPlanetXShortVersion;

Variable Types

In addition to the variable name, each variable declaration must have a type, which defines what values
that variable can hold. The variable type can be one of three things:

One of the eight primitive data types●   

The name of a class or interface●   

An array●   

You'll learn about how to declare and use array variables on Day 5; this lesson focuses on the primitive
and class types.

Primitive Types

The eight primitive data types handle common types for integers, floating-point numbers, characters, and
boolean values (true or false). They're called primitive because they're built into the system and are
not actual objects, which makes them more efficient to use. Note that these data types are
machine-independent, which means that you can rely on their sizes and characteristics to be consistent
across your Java programs.

There are four Java integer types, each with a different range of values (as listed in Table 3.1). All are
signed, which means they can hold either positive or negative numbers. Which type you choose for your
variables depends on the range of values you expect that variable to hold; if a value becomes too big for
the variable type, it is silently truncated.

Table 3.1. Integer types.

Type Size Range
byte 8 bits -128 to 127
short 16 bits -32,768 to 32,767

Day 3 -- Java Basics

file:///G|/ebooks/1575211831/ch3.htm (5 of 20) [11/06/2000 7:46:58 PM]



int 32 bits -2,147,483,648 to 2,147,483,647
long 64 bits -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

Floating-point numbers are used for numbers with a decimal part. Java floating-point numbers are
compliant with IEEE 754 (an international standard for defining floating-point numbers and arithmetic).
There are two floating-point types: float (32 bits, single precision) and double (64 bits, double
precision).

The char type is used for individual characters. Because Java uses the Unicode character set, the char
type has 16 bits of precision, unsigned.

Finally, the boolean type can have one of two values, true or false. Note that unlike in other C-like
languages, boolean is not a number, nor can it be treated as one. All tests of boolean variables should
test for true or false.

Note that all the primitive types are in lowercase. Be careful when you use them in your programs that
you do use the lowercase, because there are also classes with the same names (and an initial capital
letter) that have different behavior-so, for example, the primitive type boolean is different from the
Boolean class. You'll learn more about these special classes and what they're used for on Day 4,
"Working with Objects."

Class Types

In addition to the eight primitive data types, variables in Java can also be declared to hold an instance of
a particular class:

String LastName;
Font basicFont;
OvalShape myOval;

Each of these variables can hold instances of the named class or of any of its subclasses. The latter is
useful when you want a variable to be able to hold different instances of related classes. For example,
let's say you had a set of fruit classes-Apple, Pear, Strawberry, and so on- all of which inherited
from the general class Fruit. By declaring a variable of type Fruit, that variable can then hold
instances of any of the Fruit classes. Declaring a variable of type Object means that variable can
hold any object.

Technical Note
Java does not have a typedef statement (as in C and C++). To
declare new types in Java, you declare a new class; then variables can
be declared to be of that class's type.

Day 3 -- Java Basics

file:///G|/ebooks/1575211831/ch3.htm (6 of 20) [11/06/2000 7:46:58 PM]



Assigning Values to Variables

Once a variable has been declared, you can assign a value to that variable by using the assignment
operator =, like this:

size = 14;
tooMuchCaffiene = true;

Comments
Java has three kinds of comments: two for regular comments in source code and one for the special
documentation system javadoc.

The symbols /* and */ surround multiline comments, as in C or C++. All text between the two
delimiters is ignored:

/* I don't know how I wrote this next part; I was working
    really late one night and it just sort of appeared. I
    suspect the code elves did it for me. It might be wise
    not to try and change it.
*/

These comments cannot be nested; that is, you cannot have a comment inside a comment.

Double-slashes (//) can be used for a single line of comment. All the text up to the end of the line is
ignored:

int vices = 7; // are there really only 7 vices?

The final type of comment begins with /** and ends with */. The contents of these special comments
are used by the javadoc system, but are otherwise used identically to the first type of comment.
javadoc is used to generate API documentation from the code. You'll learn more about javadoc on
Day 22, "Java Programming Tools."

Literals
Literal is a programming language term that essentially means that what you type is what you get. For
example, if you type 4 in a Java program, you automatically get an integer with the value 4. If you type
'a', you get a character with the value a. Literals are used to indicate simple values in your Java
programs.

New Term
A literal is a simple value where "what you type is what you get."
Numbers, characters, and strings are all examples of literals.

Day 3 -- Java Basics

file:///G|/ebooks/1575211831/ch3.htm (7 of 20) [11/06/2000 7:46:58 PM]



Literals may seem intuitive most of the time, but there are some special cases of literals in Java for
different kinds of numbers, characters, strings, and boolean values.

Number Literals

There are several integer literals. 4, for example, is a decimal integer literal of type int (although you
can assign it to a variable of type byte or short because it's small enough to fit into those types). A
decimal integer literal larger than an int is automatically of type long. You also can force a smaller
number to a long by appending an L or l to that number (for example, 4L is a long integer of value
4). Negative integers are preceded by a minus sign-for example, -45.

Integers can also be expressed as octal or hexadecimal: A leading 0 indicates that a number is octal-for
example, 0777 or 0004. A leading 0x (or 0X) means that it is in hex (0xFF, 0XAf45). Hexadecimal
numbers can contain regular digits (0-9) or upper- or lowercase hex digits (a-f or A-F).

Floating-point literals usually have two parts, the integer part and the decimal part-for example,
5.77777. A floating-point literal results in a floating-point number of type double, regardless of the
precision of the number. You can force the number to the type float by appending the letter f (or F) to
that number-for example, 2.56F.

You can use exponents in floating-point literals using the letter e or E followed by the exponent (which
can be a negative number): 10e45 or .36E-2.

Boolean Literals

Boolean literals consist of the keywords true and false. These keywords can be used anywhere you
need a test or as the only possible values for boolean variables.

Character Literals

Character literals are expressed by a single character surrounded by single quotes: 'a', '#', '3', and
so on. Characters are stored as 16-bit Unicode characters. Table 3.2 lists the special codes that can
represent nonprintable characters, as well as characters from the Unicode character set. The letter d in the
octal, hex, and Unicode escapes represents a number or a hexadecimal digit (a-f or A-F).

Table 3.2. Character escape codes.

Escape Meaning
\n Newline
\t Tab
\b Backspace
\r Carriage return
\f Formfeed
\\ Backslash
\' Single quote
\" Double quote

Day 3 -- Java Basics

file:///G|/ebooks/1575211831/ch3.htm (8 of 20) [11/06/2000 7:46:58 PM]



\ddd Octal
\xdd Hexadecimal
\udddd Unicode character

Technical Note
C and C++ programmers should note that Java does not include
character codes for \a (bell) or \v (vertical tab).

String Literals

A combination of characters is a string. Strings in Java are instances of the class String. Strings are not
simply arrays of characters as they are in C or C++, although they do have many array-like
characteristics (for example, you can test their length, and access and change individual characters).
Because string objects are real objects in Java, they have methods that enable you to combine, test, and
modify strings very easily.

String literals consist of a series of characters inside double quotes:

"Hi, I'm a string literal."
"" //an empty string

Strings can contain character constants such as newline, tab, and Unicode characters:

"A string with a \t tab in it"
"Nested strings are \"strings inside of\" other strings"
"This string brought to you by Java\u2122"

In the last example, the Unicode code sequence for \u2122 produces a trademark symbol ( ).

Note
Just because you can represent a character using a Unicode escape
does not mean your computer can display that character-the computer
or operating system you are running may not support Unicode, or the
font you're using may not have a glyph (picture) for that character.
All that Unicode escapes in Java provide is a way to encode Unicode
characters for systems that support Unicode.

Java 1.1 will provide better capabilities for the display of Unicode
characters and for handling international character sets.

When you use a string literal in your Java program, Java automatically creates an instance of the class
String for you with the value you give it. Strings are unusual in this respect; the other literals do not
behave in this way (none of the primitive data types are actual objects), and usually creating a new object
involves explicitly creating a new instance of a class. You'll learn more about strings, the String class,
and the things you can do with strings later today and tomorrow.

Day 3 -- Java Basics

file:///G|/ebooks/1575211831/ch3.htm (9 of 20) [11/06/2000 7:46:58 PM]



Expressions and Operators
Expressions are the simplest form of statement in Java that actually accomplishes something: All
expressions, when evaluated, return a value (other statements don't necessarily do so). Arithmetic and
tests for equality and magnitude are common examples of expressions. Because they return a value, you
can assign that result to a variable or test that value in other Java statements.

Most of the expressions in Java use operators. Operators are special symbols for things like arithmetic,
various forms of assignment, increment and decrement, and logical operations.

New Term
Expressions are statements that return a value.

New Term
Operators are special symbols that are commonly used in expressions.

Arithmetic

Java has five operators for basic arithmetic (see Table 3.3).

Table 3.3. Arithmetic operators.

Operator Meaning Example
+ Addition 3 + 4

- Subtraction 5 - 7

* Multiplication 5 * 5

/ Division 14 / 7

% Modulus 20 % 7

Each operator takes two operands, one on either side of the operator. The subtraction operator (-) can
also be used to negate a single operand.

Integer division results in an integer. Because integers don't have decimal fractions, any remainder is
ignored. The expression 31 / 9, for example, results in 3 (9 goes into 31 only 3 times).

Modulus (%) gives the remainder once the operands have been evenly divided. For example, 31 % 9
results in 4 because 9 goes into 31 three times, with 4 left over.

Note that the result type of most arithmetic operations involving integers is an int regardless of the
original type of the operands (shorts and bytes are both automatically converted to int). If either or
both operands is of type long, the result is of type long. If one operand is an integer and another is a
floating-point number, the result is a floating point. (If you're interested in the details of how Java
promotes and converts numeric types from one type to another, you may want to check out the Java
Language Specification on Sun's official Java Web site at http://java.sun.com/; that's more
detail than I want to cover here.)

Listing 3.1 is an example of simple arithmetic in Java.

Day 3 -- Java Basics

file:///G|/ebooks/1575211831/ch3.htm (10 of 20) [11/06/2000 7:46:58 PM]

http://java.sun.com/


Listing 3.1. Simple arithmetic.

 1: class ArithmeticTest {
 2: public static void main (String args[]) {
 3:     short x = 6;
 4:     int y = 4;
 5:     float a = 12.5f;
 6:     float b = 7f;
 7: 
 8:     System.out.println("x is " + x + ", y is " + y);
 9:     System.out.println("x + y = " + (x + y));
10:     System.out.println("x - y = " + (x - y));
11:     System.out.println("x / y = " + (x / y));
12:     System.out.println("x % y = " + (x % y));
13: 
14:     System.out.println("a is " + a + ", b is " + b);
15:     System.out.println("a / b = " + (a / b));
16: }
17: }

x is 6, y is 4
x + y = 10
x - y = 2
x / y = 1
x % y = 2
a is 12.5, b is 7
a / b = 1.78571

Analysis
In this simple Java application (note the main() method), you
initially define four variables in lines 3 through 6: x and y, which are
integers (type int), and a and b, which are floating-point numbers
(type float). Keep in mind that the default type for floating-point
literals (such as 12.5) is double, so to make sure these are
numbers of type float, you have to use an f after each one (lines 5
and 6).

The remainder of the program merely does some math with integers and floating-point numbers and
prints out the results.

There is one other thing to mention about this program: the method System.out.println().

Day 3 -- Java Basics

file:///G|/ebooks/1575211831/ch3.htm (11 of 20) [11/06/2000 7:46:58 PM]



You've seen this method on previous days, but you haven't really learned exactly what it does. The
System.out.println() method merely prints a message to the standard output of your system-to
the screen, to a special window, or maybe just to a special log file, depending on your system and the
development environment you're running. The System.out.println() method takes a single
argument-a string-but you can use + to concatenate multiple values into a single string, as you'll learn
later today.

More About Assignment

Variable assignment is a form of expression; in fact, because one assignment expression results in a
value, you can string them together like this:

x = y = z = 0;

In this example, all three variables now have the value 0.

The right side of an assignment expression is always evaluated before the assignment takes place. This
means that expressions such as x = x + 2 do the right thing; 2 is added to the value of x, and then
that new value is reassigned to x. In fact, this sort of operation is so common that Java has several
operators to do a shorthand version of this, borrowed from C and C++. Table 3.4 shows these shorthand
assignment operators.

Table 3.4. Assignment operators.

Expression Meaning
x += y x = x + y
x -= y x = x - y
x *= y x = x * y
x /= y x = x / y

Technical Note
Technically, the shorthand assignment and longhand expressions are
not exactly equivalent, particularly in cases where x or y may
themselves be complicated expressions and your code relies on side
effects of those expressions. In most instances, however, they are
functionally equivalent. For more information about very complicated
expressions, evaluation order, and side effects, you may want to
consult the Java Language Specification.

Incrementing and Decrementing

As in C and C++, the ++ and -- operators are used to increment or decrement a variable's value by 1.
For example, x++ increments the value of x by 1 just as if you had used the expression x = x + 1.
Similarly x-- decrements the value of x by 1. (Unlike C and C++, Java allows x to be floating point.)

These increment and decrement operators can be prefixed or postfixed; that is, the ++ or -- can appear
before or after the value it increments or decrements. For simple increment or decrement expressions,

Day 3 -- Java Basics

file:///G|/ebooks/1575211831/ch3.htm (12 of 20) [11/06/2000 7:46:58 PM]



which one you use isn't overly important. In complex assignments, where you are assigning the result of
an increment or decrement expression, which one you use makes a difference.

Take, for example, the following two expressions:

y = x++;
y = ++x;

These two expressions yield very different results because of the difference between prefix and postfix.
When you use postfix operators (x++ or x--), y gets the value of x before x is changed; using prefix,
the value of x is assigned to y after the change has occurred. Listing 3.2 is a Java example of how all this
works.

Listing 3.2. Test of prefix and postfix increment operators.

 1: class PrePostFixTest {
 2: 
 3: public static void main (String args[]) {
 4:     int x = 0;
 5:     int y = 0;
 6: 
 7:     System.out.println("x and y are " + x + " and " + y );
 8:     x++;
 9:     System.out.println("x++ results in " + x);
10:     ++x;
11:     System.out.println("++x results in " + x);
12:     System.out.println("Resetting x back to 0.");
13:     x = 0;
14:     System.out.println("------------");
15:     y = x++;
16:     System.out.println("y = x++ (postfix) results in:");
17:     System.out.println("x is " + x);
18:     System.out.println("y is " + y);
19:     System.out.println("------------");
20: 
21:     y = ++x;
22:     System.out.println("y = ++x (prefix) results in:");
23:     System.out.println("x is " + x);
24:     System.out.println("y is " + y);
25:     System.out.println("------------");
26: 
27: }
28: }

Day 3 -- Java Basics

file:///G|/ebooks/1575211831/ch3.htm (13 of 20) [11/06/2000 7:46:58 PM]



x and y are 0 and 0
x++ results in 1
++x results in 2
Resetting x back to 0.
------------
y = x++ (postfix) results in:
x is 1
y is 0
------------
y = ++x (prefix) results in:
x is 2
y is 2
------------

In the first part of this example, you increment x alone using both prefix and postfix increment
operators. In each, x is incremented by 1 each time. In this simple form, using either prefix or
postfix works the same way.

In the second part of this example, you use the expression y = x++, in which the postfix increment
operator is used. In this result, the value of x is incremented after that value is assigned to y. Hence the
result: y is assigned the original value of x (0), and then x is incremented by 1.

In the third part, you use the prefix expression y = ++x. Here, the reverse occurs: x is incremented
before its value is assigned to y. Because x is 1 from the previous step, its value is incremented (to 2),
and then that value is assigned to y. Both x and y end up being 2.

Technical Note
Technically, this description is not entirely correct. In reality, Java
always completely evaluates all expressions on the right of an
expression before assigning that value to a variable, so the concept of
"assigning x to y before x is incremented" isn't precisely right.
Instead, Java takes the value of x and "remembers" it, evaluates
(increments) x, and then assigns the original value of x to y. Although
in most simple cases this distinction may not be important, for more
complex expressions with side effects, it may change the behavior of
the expression overall. See the Language Specification for many more
details about expression evaluation in Java.

Comparisons

Java has several expressions for testing equality and magnitude. All of these expressions return a boolean
value (that is, true or false). Table 3.5 shows the comparison operators.

Table 3.5. Comparison operators.

Operator Meaning Example

Day 3 -- Java Basics

file:///G|/ebooks/1575211831/ch3.htm (14 of 20) [11/06/2000 7:46:58 PM]



== Equal x == 3
!= Not equal x != 3

< Less than x < 3

> Greater than x > 3

<= Less than or equal to x <= 3

>= Greater than or equal to x >= 3

Logical Operators

Expressions that result in boolean values (for example, the comparison operators) can be combined by
using logical operators that represent the logical combinations AND, OR, XOR, and logical NOT.

For AND combinations, use either the & or && operators. The entire expression will be true only if both
expressions on either side of the operator are also true; if either expression is false, the entire expression
is false. The difference between the two operators is in expression evaluation. Using &, both sides of the
expression are evaluated regardless of the outcome. Using &&, if the left side of the expression is false,
the entire expression is assumed to be false (the value of the right side doesn't matter), so the expression
returns false, and the right side of the expression is never evaluated. (This is often called a
"short-circuited" expression.)

For OR expressions, use either | or ||. OR expressions result in true if either or both of the expressions
on either side is also true; if both expression operands are false, the expression is false. As with & and
&&, the single | evaluates both sides of the expression regardless of the outcome; and || is
short-circuited: If the left expression is true, the expression returns true and the right side is never
evaluated.

In addition, there is the XOR operator ^, which returns true only if its operands are different (one true
and one false, or vice versa) and false otherwise (even if both are true).

In general, only the && and || are commonly used as actual logical combinations. &, |, and ^ are more
commonly used for bitwise logical operations.

For NOT, use the ! operator with a single expression argument. The value of the NOT expression is the
negation of the expression; if x is true, !x is false.

Bitwise Operators

Finally, here's a short summary of the bitwise operators in Java. Most of these expressions are inherited
from C and C++ and are used to perform operations on individual bits in integers. This book does not go
into bitwise operations; it's an advanced topic covered better in books on C or C++. Table 3.6
summarizes the bitwise operators.

Table 3.6. Bitwise operators.

Operator Meaning
& Bitwise AND

Day 3 -- Java Basics

file:///G|/ebooks/1575211831/ch3.htm (15 of 20) [11/06/2000 7:46:58 PM]



| Bitwise OR
^ Bitwise XOR
<< Left shift
>> Right shift
>>> Zero fill right shift
~ Bitwise complement
<<= Left shift assignment (x = x << y)
>>= Right shift assignment (x = x >> y)
>>>= Zero fill right shift assignment (x = x

>>> y)
x&=y AND assignment (x = x & y)
x|=y OR assignment (x = x | y)
x^=y XOR assignment (x = x ^ y)

Operator Precedence

Operator precedence determines the order in which expressions are evaluated. This, in some cases, can
determine the overall value of the expression. For example, take the following expression:

y = 6 + 4 / 2

Depending on whether the 6 + 4 expression or the 4 / 2 expression is evaluated first, the value of y
can end up being 5 or 8. Operator precedence determines the order in which expressions are evaluated,
so you can predict the outcome of an expression. In general, increment and decrement are evaluated
before arithmetic, arithmetic expressions are evaluated before comparisons, and comparisons are
evaluated before logical expressions. Assignment expressions are evaluated last.

Table 3.7 shows the specific precedence of the various operators in Java. Operators further up in the table
are evaluated first; operators on the same line have the same precedence and are evaluated left to right
based on how they appear in the expression itself. For example, given that same expression y = 6 + 4
/ 2, you now know, according to this table, that division is evaluated before addition, so the value of y
will be 8.

Table 3.7. Operator precedence.

Operator Notes
. [] () Parentheses (()) are used to group expressions; dot

(.) is used for access to methods and variables
within objects and classes (discussed tomorrow);
square brackets ([]) are used for arrays (this is
discussed later on in the week)

Day 3 -- Java Basics

file:///G|/ebooks/1575211831/ch3.htm (16 of 20) [11/06/2000 7:46:58 PM]



++ -- ! ~
instanceof

The instanceof operator returns true or
false based on whether the object is an instance
of the named class or any of that class's subclasses
(discussed tomorrow)

new (type)expression The new operator is used for creating new instances
of classes; () in this case is for casting a value to
another type (you'll learn about both of these
tomorrow)

* / % Multiplication, division, modulus
+ - Addition, subtraction
<< >> >>> Bitwise left and right shift
< > <= >= Relational comparison tests
== != Equality
& AND

^ XOR

| OR

&& Logical AND
|| Logical OR
? : Shorthand for if...then...else (discussed on

Day 5)

= += -= *= /= %= ^= Various assignments
&= |= <<= >>= >>>= More assignments

You can always change the order in which expressions are evaluated by using parentheses around the
expressions you want to evaluate first. You can nest parentheses to make sure expressions evaluate in the
order you want them to (the innermost parenthetic expression is evaluated first). The following
expression results in a value of 5, because the 6 + 4 expression is evaluated first, and then the result of
that expression (10) is divided by 2:

y = (6 + 4) / 2

Parentheses also can be useful in cases where the precedence of an expression isn't immediately clear-in
other words, they can make your code easier to read. Adding parentheses doesn't hurt, so if they help you
figure out how expressions are evaluated, go ahead and use them.

String Arithmetic
One special expression in Java is the use of the addition operator (+) to create and concatenate strings. In
most of the examples shown today and in earlier lessons, you've seen lots of lines that looked something
like this:

System.out.println(name + " is a " + color + " beetle");

Day 3 -- Java Basics

file:///G|/ebooks/1575211831/ch3.htm (17 of 20) [11/06/2000 7:46:58 PM]



The output of that line (to the standard output) is a single string, with the values of the variables (name
and color), inserted in the appropriate spots in the string. So what's going on here?

The + operator, when used with strings and other objects, creates a single string that contains the
concatenation of all its operands. If any of the operands in string concatenation is not a string, it is
automatically converted to a string, making it easy to create these sorts of output lines.

Technical Note
An object or type can be converted to a string if you implement the
method toString(). All objects have a default string
representation, but most classes override toString() to provide a
more meaningful printable representation.

String concatenation makes lines such as the previous one especially easy to construct. To create a string,
just add all the parts together-the descriptions plus the variables-and print it to the standard output, to the
screen, to an applet, or anywhere.

The += operator, which you learned about earlier, also works for strings. For example, take the following
expression:

myName += " Jr.";

This expression is equivalent to this:

myName = myName + " Jr.";

just as it would be for numbers. In this case, it changes the value of myName, which might be something
like John Smith to have a Jr. at the end (John Smith Jr.).

Summary
As you have learned in the last two lessons, a Java program is made up primarily of classes and objects.
Classes and objects, in turn, are made up of methods and variables, and methods are made up of
statements and expressions. It is those last two things that you've learned about today; the basic building
blocks that enable you to create classes and methods and build them up to a full-fledged Java program.

Today, you have learned about variables, how to declare them and assign values to them; literals for
easily creating numbers, characters, and strings; and operators for arithmetic, tests, and other simple
operations. With this basic syntax, you can move on tomorrow to learning about working with objects
and building simple, useful Java programs.

To finish up this summary, Table 3.8 is a list of all the operators you have learned about today so that
you can refer back to them.

Table 3.8. Operator summary.

Operator Meaning

Day 3 -- Java Basics

file:///G|/ebooks/1575211831/ch3.htm (18 of 20) [11/06/2000 7:46:58 PM]



+ Addition
- Subtraction
* Multiplication
/ Division
% Modulus
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal

!= Not equal
&& Logical AND
|| Logical OR
! Logical NOT
& AND

| OR

^ XOR

<< Left shift
>> Right shift
>>> Zero fill right shift
~ Complement
= Assignment
++ Increment
---- Decrement
+= Add and assign
-= Subtract and assign
*= Multiply and assign
/= Divide and assign
%= Modulus and assign
&= AND and assign
|= OR and assign
<<= Left shift and assign
^= XOR and assign
>>= Right shift and assign
>>>= Zero fill right shift and assign

Day 3 -- Java Basics

file:///G|/ebooks/1575211831/ch3.htm (19 of 20) [11/06/2000 7:46:59 PM]



Q&A

Q: I didn't see any way to define constants.
A: You can't create local constants in Java; you can create only constant instance and class

variables. You'll learn how to do this tomorrow.
Q: What happens if you assign an integer value to a variable that is too large for that variable

to hold?
A: Logically, you would think that the variable is just converted to the next larger type, but this isn't

what happens. What does happen is called overflow. This means that if a number becomes too
big for its variable, that number wraps around to the smallest possible negative number for that
type and starts counting upward toward zero again.

Because this can result in some very confusing (and wrong) results, make sure that you declare
the right integer type for all your numbers. If there's a chance a number will overflow its type,
use the next larger type instead.

Q: How can you find out the type of a given variable?
A: If you're using any of the primitive types (int, float, boolean), and so on, you can't. If you

care about the type, you can convert the value to some other type by using casting. (You'll learn
about this tomorrow.)

If you're using class types, you can use the instanceof operator, which you'll learn more
about tomorrow.

Q: Why does Java have all these shorthand operators for arithmetic and assignment? It's
really hard to read that way.

A: The syntax of Java is based on C++, and therefore on C. One of C's implicit goals is the
capability of doing very powerful things with a minimum of typing. Because of this, shorthand
operators, such as the wide array of assignments, are common.

There's no rule that says you have to use these operators in your own programs, however. If you
find your code to be more readable using the long form, no one will come to your house and
make you change it.

Q: You covered simple math in this section using operators. I'm assuming that Java has ways
of doing more complex math operations?

A: You assume correctly. A special class in the java.lang package, called java.lang.Math,
has a number of methods for exponential, trigonometric, and other basic math operations. In fact,
because you call these methods using the Math class itself, these are prime examples of class
methods. You'll learn more about this tomorrow.

   

Day 3 -- Java Basics

file:///G|/ebooks/1575211831/ch3.htm (20 of 20) [11/06/2000 7:46:59 PM]



Day 5

Arrays, Conditionals, and Loops
by Laura Lemay

CONTENTS
Arrays

Declaring Array Variables❍   

Creating Array Objects❍   

Accessing Array Elements❍   

Changing Array Elements❍   

Multidimensional Arrays❍   

●   

Block Statements●   

if Conditionals

The Conditional Operator❍   

●   

switch Conditionals●   

for Loops●   

while and do Loops

while Loops❍   

do...while Loops❍   

●   

Breaking Out of Loops

Labeled Loops❍   

●   

Summary●   

Q&A●   

Although you could write Java programs using what you've learned so far, those programs would be pretty dull. Much
of the good stuff in Java or in any programming language results when you have arrays to store values in and
control-flow constructs (loops and conditionals) to execute different bits of a program based on tests. Today, you'll
find out about the following:

Arrays, one of the most useful objects in Java, which enable you to collect objects or primitive types into an
easy-to-manage list

●   

Block statements, for grouping together related statements●   

if and switch, for conditional tests●   

for and while loops, for iteration or repeating a statement or statements multiple times●   

Day 5 -- Arrays, Conditionals, and Loops

file:///G|/ebooks/1575211831/ch5.htm (1 of 20) [11/06/2000 7:47:05 PM]



Arrays
Arrays in Java, as in other languages, are a way to store collections of items into a single unit. The array has some
number of slots, each of which holds an individual item. You can add and delete items to those slots as needed. Unlike
in other languages, however, arrays in Java are actual objects that can be passed around and treated just like other
objects.

New Time
An array is a collection of items. Each slot in the array can hold an
object or a primitive value. Arrays in Java are objects that can be
treated just like other objects in the language.

Arrays can contain any type of element value (primitive types or objects), but you can't store different types in a single
array. You can have an array of integers or an array of strings or an array of arrays, but you can't have an array that
contains, for example, both strings and integers.

To create an array in Java, you use three steps:

Declare a variable to hold the array.1.  

Create a new array object and assign it to the array variable.2.  

Store things in that array.3.  

Declaring Array Variables

The first step in creating an array is creating a variable that will hold the array, just as you would any other variable.
Array variables indicate the type of object the array will hold (just as they do for any variable) and the name of the
array, followed by empty brackets ([]). The following are all typical array variable declarations:

String difficultWords[];

Point hits[];

int temps[];

An alternate method of defining an array variable is to put the brackets after the type instead of after the variable.
They are equivalent, but this latter form is often much more readable. So, for example, these three declarations could
be written like this:

String[] difficultWords;

Point[] hits;

int[] temps;

Creating Array Objects

The second step is to create an array object and assign it to that variable. There are two ways to do this:

Using new●   

Directly initializing the contents of that array●   

The first way is to use the new operator to create a new instance of an array:

Day 5 -- Arrays, Conditionals, and Loops

file:///G|/ebooks/1575211831/ch5.htm (2 of 20) [11/06/2000 7:47:05 PM]



String[] names = new String[10];

That line creates a new array of Strings with 10 slots (sometimes called elements). When you create a new array
object using new, you must indicate how many slots that array will hold. This line does not put actual String
objects in the slots-you'll have to do that later.

Array objects can contain primitive types such as integers or booleans, just as they can contain objects:

int[] temps = new int[99];

When you create an array object using new, all its slots are initialized for you (0 for numeric arrays, false for
boolean, '\0' for character arrays, and null for objects). You can then assign actual values or objects to the slots in
that array. You can also create an array and initialize its contents at the same time. Instead of using new to create the
new array object, enclose the elements of the array inside braces, separated by commas:

String[] chiles = { "jalapeno", "anaheim", "serrano",
    "habanero", "thai" };

Technical Note
Note that the Java keyword null refers to a null object (and can be
used for any object reference). It is not equivalent to zero or the
'\0' character as the NULL constant is in C.

Each of the elements inside the braces must be of the same type and must be the same type as the variable that holds
that array (the Java compiler will complain if they're not). An array the size of the number of elements you've included
will be automatically created for you. This example creates an array of String objects named chiles that contains
five elements.

Accessing Array Elements

Once you have an array with initial values, you can test and change the values in each slot of that array. To get at a
value stored within an array, use the array subscript expression ([]):

myArray[subscript];

The myArray part of this expression is a variable holding an array object, although it can also be an expression that
results in an array. The subscript part of the expression, inside the brackets, specifies the number of the slot within
the array to access. Array subscripts start with 0, as they do in C and C++. So, an array with 10 elements has 10 array
slots accessed using subscript 0 to 9.

Note that all array subscripts are checked when your Java program is run to make sure that they are inside the
boundaries of the array (greater than or equal to 0 but less than the array's length). Unlike in C, it is impossible in Java
to access or assign a value to an array slot outside the boundaries of the array (thereby avoiding a lot of the common
problems and bugs that result from overrunning the bounds of an array in C-like languages). Note the following two
statements, for example:

String[] arr = new String[10];
arr[10] = "eggplant";

A program with that last statement in it produces an error at that line when you try to run it. (Actually, to be more
technically correct, it throws an exception. You'll learn more about exceptions on Day 18, "Multithreading.") The

Day 5 -- Arrays, Conditionals, and Loops

file:///G|/ebooks/1575211831/ch5.htm (3 of 20) [11/06/2000 7:47:05 PM]



array stored in arr has only 10 slots numbered from 0, the element at subscript 10 doesn't exist.

If the array subscript is calculated at runtime (for example, as part of a loop) and ends up outside the boundaries of the
array, the Java interpreter also produces an error.

How can you keep from accidentally overrunning the end of an array in your own programs? You can test for the
length of the array in your programs using the length instance variable-it's available for all array objects, regardless
of type:

int len = arr.length // returns 10

However, just to reiterate: The length of the array is 10, but its subscript can only go up to 9. Arrays start numbering
from 0. Whenever you work with arrays, keep this in mind and subtract 1 from the length of the array to get its largest
element.

Changing Array Elements

To assign an element value to a particular array slot, merely put an assignment statement after the array access
expression:

myarray[1] = 15;
sentence[0] = "The";
sentence[10] = sentence[0];

An important thing to note is that an array of objects in Java is an array of references to those objects (similar in some
ways to an array of pointers in C or C++). When you assign a value to a slot in an array, you're creating a reference to
that object, just as you do for a plain variable. When you move values around inside arrays (as in that last line), you
just reassign the reference; you don't copy the value from one slot to another. Arrays of primitive types such as ints
or floats do copy the values from one slot to another.

Arrays of references to objects, as opposed to the objects themselves, are particularly useful because you can have
multiple references to the same objects both inside and outside arrays. For example, you can assign an object
contained in an array to a variable and refer to that same object by using either the variable or the array position.

Got it? Arrays are pretty simple to create and modify, but they provide an enormous amount of functionality for Java.
You'll find yourself running into arrays a lot the more you use Java.

To finish up the discussion on arrays, here's a simple program that shows how to create, initialize, modify, and
examine parts of an array. Listing 5.1 has the code.

Listing 5.1. Various simple array operations.

 1: class ArrayTest {
 2:
 3:    String[] firstNames = { "Dennis", "Grace", "Bjarne", "James" };
 4:    String[] lastNames = new String[firstNames.length];
 5: 
 6:    void printNames() {
 7:      int i = 0;
 8:       System.out.println(firstNames[i] 
 9:          + " " + lastNames[i]);   
10:      i++;
11:       System.out.println(firstNames[i] 

Day 5 -- Arrays, Conditionals, and Loops

file:///G|/ebooks/1575211831/ch5.htm (4 of 20) [11/06/2000 7:47:05 PM]



12:         + " " + lastNames[i]);
13:       i++;   
14:       System.out.println(firstNames[i] 
15:          + " " + lastNames[i]);
16:       i++;   
17:      System.out.println(firstNames[i] 
18:          + " " + lastNames[i]);
19:    }
20:   
21:    public static void main (String args[]) {
22:      ArrayTest a = new ArrayTest();
23:       a.printNames();
24:       System.out.println("----------");
25:       a.lastNames[0] = "Ritchie";
26:       a.lastNames[1] = "Hopper";
27:      a.lastNames[2] = "Stroustrup";
28:       a.lastNames[3] = "Gosling";
29:       a.printNames();    
30:   }
31:}

Dennis null
Grace null
Bjarne null
James null
----------
Dennis Ritchie
Grace Hopper
Bjarne Stroustrup
James Gosling

Analysis
This somewhat verbose example shows you how to create and use
arrays. The class we've created here, ArrayTest, has two instance
variables that hold arrays of String objects. The first, called
firstNames, is declared and initialized in the same line (line 3) to
contain four strings. The second instance variable, lastNames, is
declared and created in line 4, but no initial values are placed in the
slots. Note also that we created the lastNames array to have
exactly the same number of slots as the firstNames array by using
the firstNames.length variable as the initial array index. The
length instance variable on array objects returns the number of
slots in the array.

The ArrayTest class also has two methods: printNames() and main(). printNames(), defined in lines 6
through 19, is a utility method that does nothing but go through the firstNames and lastNames arrays
sequentially, printing the values of each slot, one name per line. Note that the array index we've defined here (i) is

Day 5 -- Arrays, Conditionals, and Loops

file:///G|/ebooks/1575211831/ch5.htm (5 of 20) [11/06/2000 7:47:05 PM]



initially set to 0 because Java array slots all start numbering from 0.

Finally, there is main(), which performs the actual actions of this example. The main() method here does four
things:

Line 22 creates an initial instance of ArrayTest, so we can set and modify its instance variables and call its
methods.

●   

Line 23 calls printNames() to show what the object looks like initially. The result is the first four lines of
the output; note that the firstNames array was initialized, but the values in lastNames are all null. If
you don't initialize an array when you declare it, the values of the initial slots will be empty (or, actually, null
for object arrays, 0 for numbers, and false for booleans).

●   

Lines 25 through 28 set the values of each of the slots in the lastNames array to actual strings.●   

Finally, line 29 calls printNames() once again to show that the lastNames array is now full of values,
and each first and last name prints as you would expect. The results are shown in the last four lines of the
output.

●   

Note
Who are the people in this example? They're inventors of computer
programming languages. Dennis Ritchie is the inventor of C, Bjarne
Stroustrup did C++, Grace Hopper is credited with COBOL, and,
finally, James Gosling is the principal designer of Java.

One other note I should make about Listing 5.1 is that it's a terrible example of programming style. Usually when you
deal with arrays you do not hard code the number of elements into the code as we have here; instead you use a loop to
go through each element of the array in turn. This makes the code a lot shorter and, in many cases, easier to read.
You'll learn about loops later in this section, and we'll rewrite this example so that it works more flexibly.

Multidimensional Arrays

One last thing to note about arrays before we move on to the rest of this lesson is about multidimensional arrays. Java
does not directly support multidimensional arrays. However, you can declare and create an array of arrays (and those
arrays can contain arrays, and so on, for however many dimensions you need) and access the arrays as you would
C-style multidimensional arrays:

int coords[][] = new int[12][12];
coords[0][0] = 1;
coords[0][1] = 2;

Block Statements
Before we launch into the last two-thirds of this lesson, let's take a small detour into a topic I haven't mentioned a
whole lot up to this point (but that will be important later on): block statements.

A block statement is simply a group of Java statements surrounded by braces ({}). You've seen blocks a whole lot
already; you've used a block statement to contain the variables and methods in a class definition, and inside that block
you've also used blocks to hold the body of a method definition. The opening brace opens the block, and the closing
brace closes the nearest closing block. Easy, right?

You can also use blocks even further, inside method definitions. The rule is that you can use a block anywhere a
single statement would go. Each statement inside the block is then executed sequentially.

New Term

Day 5 -- Arrays, Conditionals, and Loops

file:///G|/ebooks/1575211831/ch5.htm (6 of 20) [11/06/2000 7:47:05 PM]



A block statement is a group of individual Java statements enclosed
in braces ({}). You can put a block statement anywhere a single
statement can go.

So what's the difference between using a group of individual statements and using a block? The block creates a new
local variable scope for the statements inside it. This means that you can declare and use local variables inside a block,
and those variables will cease to exist after the block is finished executing. For example, here's a block inside a
method definition that declares a new variable y. You cannot use y outside the block in which it's declared:

void testblock() {
    int x = 10;
    { // start of block
      int y = 50;
      System.out.println("inside the block:");
      System.out.println("x:" + x);
      System.out.println("y:" + y);
    } // end of block
}

Blocks are not usually used in this way-alone in a method definition, with random variable declarations inside them.
You've mostly seen blocks up to this point surrounding class and method definitions, but another very common use of
block statements is in the control flow constructs you'll learn about in the remainder of today's lesson.

if Conditionals
The if conditional statement is used when you want to execute different bits of code based on a simple test. if
conditions are nearly identical to if statements in C: They contain the keyword if, followed by a boolean test,
followed by either a single statement or a block statement to execute if the test is true. Here's a simple example that
prints the message x is smaller than y only if the value of x is less than the value of y:

if (x < y)
    System.out.println("x is smaller than y");

An optional else keyword provides the alternative statement to execute if the test is false:

if (x < y)
    System.out.println("x is smaller than y");
else System.out.println("y is bigger");

New Term
The if conditional executes different bits of code based on the result
of a single boolean test.

Technical Note
The difference between if conditionals in Java and C or C++ is that
the test must return a boolean value (true or false). Unlike in C,
the test cannot return an integer.

Using if, you can only include a single statement as the code to execute after the test (in this case, the
System.out.println() method for each one). But because a block can appear anywhere a single statement can,

Day 5 -- Arrays, Conditionals, and Loops

file:///G|/ebooks/1575211831/ch5.htm (7 of 20) [11/06/2000 7:47:05 PM]



if you want to do more than just one thing (as you usually will), you can enclose those statements inside a block:

if (engineState == true ) 
    System.out.println("Engine is already on.");
else {
    System.out.println("Now starting Engine.");
    if (gasLevel >= 1)
        engineState = true;
    else System.out.println("Low on gas! Can't start engine.");
}

This example uses the test (engineState == true). For boolean tests of this type, a common shortcut is merely
to include the first part of the expression rather than explicitly test its value against true or false. Because it's a
boolean variable, it automatically returns true or false all by itself, so you don't have to explicitly test it for that
value. Here's a shorter version of the previous code, with the test replaced with the shorthand version:

if (engineState)
    System.out.println("Engine is on.");
else System.out.println("Engine is off.");

Listing 5.2 shows another simple example-this one in full application form. The Peeper class contains one utility
method called peepMe(), which tests a value to see if it's even. If it is, it prints Peep! to the screen.

Listing 5.2. The Peeper class.

 1: class Peeper {
 2:
 3:    void peepMe(int val) {
 4:       System.out.println("Value is " 
 5:          + val + ". ");
 6:       if (val % 2 == 0) 
 7:         System.out.println("Peep!");
 8:    }
 9:    
10:   public static void main (String args[]) {
11:      Peeper p = new Peeper();
12:      
13:       p.peepMe(1);      
14:       p.peepMe(2);
15:        p.peepMe(54);
16:       p.peepMe(77);
17:      p.peepMe(1346);
18:    }
19: }

Value is 1.
Value is 2.
Peep!

Day 5 -- Arrays, Conditionals, and Loops

file:///G|/ebooks/1575211831/ch5.htm (8 of 20) [11/06/2000 7:47:05 PM]



Value is 54.
Peep!
Value is 77.
Value is 1346.
Peep!

Analysis
The heart of the Peeper class is the peepMe() method (lines 3
through 8), where values are tested and an appropriate message is
printed. Unlike the methods you've defined in previous examples,
note that the definition of peepMe() includes a single integer
argument (see line 3). The peepMe() method starts by printing out
the value that was passed to it. Then that argument is tested, using an
if conditional, to see if it's an even number. (The modulus test, as
you'll remember from Day 3, "Java Basics," returns the remainder of
the division of its operands. So if the remainder of a number divided
by 2 is 0, it's an even number.) If the number is even, Peep! is
printed (you'll learn more about defining methods with arguments
tomorrow).

We'll use a main() method, as always, in this application to create a new instance of Peeper and test it, calling the
peepMe() method repeatedly with different values. In the output, only the values that are even get a Peep!
message.

The Conditional Operator

An alternative to using the if and else keywords in a conditional statement is to use the conditional operator,
sometimes called the ternary operator (ternary means three; the conditional operator has three parts).

The conditional operator is an expression, meaning that it returns a value (unlike the more general if, which can only
result in a statement or block being executed). The conditional operator is most useful for very short or simple
conditionals and looks like this:

test ? trueresult : falseresult;

test is a boolean expression that returns true or false, just like the test in the if statement. If the test is true,
the conditional operator returns the value of trueresult; if it's false, it returns the value of falseresult. For
example, the following conditional tests the values of x and y, returns the smaller of the two, and assigns that value to
the variable smaller:

int smaller = x < y ? x : y;

The conditional operator has a very low precedence; that is, it's usually evaluated only after all its subexpressions are
evaluated. The only operators lower in precedence are the assign-ment operators. See the precedence chart in Day 3's
lesson for a refresher on precedence of all the operators.

switch Conditionals
A common programming practice in any language is to test a variable against some value, and if it doesn't match that
value, to test it again against a different value, and if it doesn't match that one to make yet another test, and so on until

Day 5 -- Arrays, Conditionals, and Loops

file:///G|/ebooks/1575211831/ch5.htm (9 of 20) [11/06/2000 7:47:05 PM]



it matches with the right result. Using only if statements, this can become unwieldy, depending on how it's formatted
and how many different options you have to test. For example, you might end up with a set of if statements
something like this or longer:

if (oper == '+')
  addargs(arg1, arg2);
else if (oper == '-')
   subargs(arg1, arg2);
else if (oper == '*')
   multargs(arg1, arg2);
else if (oper == '/')
   divargs(arg1, arg2);

This form of if statement is called a nested if because each else statement in turn contains yet another if, and so
on, until all possible tests have been made.

Many languages have a shorthand version of the nested if that is (somewhat) easier to read and allows you to group
the tests and actions. Called a switch or case statement, in Java it's called switch and behaves as it does in C:

switch (test) {
    case valueOne:     
      resultOne;
      break;
    case valueTwo:     
      resultTwo;
      break;
    case valueThree:   
      resultThree;
      break;
    ...
    default: defaultresult;
}

In the switch statement, the test (a variable or expression that evaluates to a byte, char, short, or int) is
compared with each of the case values (valueOne, valueTwo, and so on) in turn. If a match is found, the statement
(or statements) after the test is executed. If no match is found, the default statement is executed. The default is
optional, so if there isn't a match in any of the cases and default doesn't exist, the switch statement completes
without doing anything.

Note that the significant limitation of the switch in Java is that the tests and values can be only simple primitive
types (and then only primitive types that are automatically castable to int). You cannot use larger primitive types
(long, float), strings, or other objects within a switch, nor can you test for any relationship other than simple
equality. This limits the usefulness of switch; nested ifs can work for any kind of test on any type.

Here's a simple example of a switch statement similar to the nested if shown earlier:

switch (oper) {
    case '+':
        addargs(arg1, arg2);
        break;
    case '-':
        subargs(arg1, arg2);

Day 5 -- Arrays, Conditionals, and Loops

file:///G|/ebooks/1575211831/ch5.htm (10 of 20) [11/06/2000 7:47:05 PM]



        break;
    case '*':
        multargs(arg1, arg2);
        break;
    case '/':
        divargs(arg1, arg2);
        break;
 }

There are two things to be aware of in this example: The first is that after each case, you can include a single result
statement or as many as you need. Unlike with if, you don't need to surround multiple statements with braces for it to
work. The second thing to note about this example is the break statement included at the end of every case. Without
the explicit break, once a match is made, the statements for that match (and also all the statements further down in the
switch for all the other cases) are executed until a break or the end of the switch is found. In some cases, this
may be exactly what you want to do, but in most cases, you'll want to make sure to include the break so that only the
statements you want to be executed are actually executed (break, which you'll learn about in the section "Breaking Out
of Loops," stops execution at the current point and jumps to the code outside of the next closing bracket (})).

One handy use of allowing a switch to continue processing statements after a match is found occurs when you want
multiple values to match to the same statements. In this instance, you can use multiple case lines with no result, and
the switch will execute the first statement it finds. For example, in the following switch statement, the string "x
is an even number." is printed if x has a value of 2, 4, 6, or 8. All other values of x print the string "x is
an odd number.":

switch (x) {
    case 2:
    case 4:
    case 6:
    case 8: 
       System.out.println("x is an even number.");
       break;
    default: System.out.println("x is an odd number.");
}

Listing 5.3 shows yet another example of a switch. This class, called NumberReader, converts integer values to
their actual English word equivalents using a method called convertIt().

Listing 5.3. The NumberReader class.

 1: class NumberReader {
 2:
 3:    String convertNum(int val) {
 4:       switch (val) {
 5:          case 0: return "zero ";
 6:          case 1: return "one ";
 7:         case 2: return "two ";
 8:          case 3: return "three ";
 9:          case 4: return "four ";
10:         case 5: return "five ";
11:         case 6: return "six ";
12:         case 7: return "seven ";
13:          case 8: return "eight ";

Day 5 -- Arrays, Conditionals, and Loops

file:///G|/ebooks/1575211831/ch5.htm (11 of 20) [11/06/2000 7:47:05 PM]



14:          case 9: return "nine ";
15:          default: return " ";
16:       }
17:   }
18:    
19:    public static void main (String args[]) {
20:      NumberReader n = new NumberReader();
21:      String num = n.convertNum(4) + n.convertNum(1)  + n.convertNum(5);
22:      System.out.println("415 converts to " + num);
23:   }
24:}

415 converts to four one five

Analysis
The heart of this example is, of course, the main switch statement in
the middle of the convert Num ( ) method in lines 4 through 16. This
switch statement takes the integer argument that was passed into
convert Nm ( ) and, when it finds a match, returns the appropriate
string value. (Note that this method is defined to return a string as
opposed to the other methods you've defined up to this point, which
didn't return anything. You'll learn more about this tomorrow.)

So where are the break statements? You don't need them here because you're using return instead. return is
similar to break except that it breaks out of the entire method definition and returns a single value. Again, you'll
learn more about this tomorrow when you learn all about how to define methods.

At this point you've probably seen enough main() methods to know what's going on, but let's run through this one
quickly.

Line 20 creates a new instance of the NumberReader class.

Line 21 defines a string called num that will be the concatenation of the string values of three numbers. Each number
is converted using a call to the convertNum() method.

Finally, line 22 prints out the result.

for Loops
The for loop, as in C, repeats a statement or block of statements until a condition is matched. for loops are
frequently used for simple iterations in which you repeat a block of statements a certain number of times and then
stop, but you can use for loops for just about any kind of loop.

The for loop in Java looks roughly like this:

for (initialization; test; increment) {
    statements;
}

Day 5 -- Arrays, Conditionals, and Loops

file:///G|/ebooks/1575211831/ch5.htm (12 of 20) [11/06/2000 7:47:05 PM]



The start of the for loop has three parts:

initialization is an expression that initializes the start of the loop. If you have a loop index variable to
keep track of how many times the loop has occurred, this expression might declare and initialize it-for example,
int i = 0. Variables that you declare in this part of the for loop are local to the loop itself; they cease
existing after the loop is finished executing.

●   

test is the test that occurs before each pass of the loop. The test must be a boolean expression or function that
returns a boolean value-for example, i < 10. If the test is true, the loop executes. Once the test is false,
the loop stops executing.

●   

increment is any expression or function call. Commonly, the increment is used to change the value of the
loop index to bring the state of the loop closer to returning false and completing.

●   

The statement part of the for loop is the statements that are executed each time the loop iterates. Just as with if, you
can only include one statement, although a block will work just fine as well.

Remember the example in the section on arrays where I said that iterating over the contents of an array is usually done
with a loop? Here's an example of a for loop that does just that-it initializes all the values of a String array to null
strings:

String strArray[] = new String[10]; \\ the array
int i; // loop index

for (i = 0; i < strArray.length; i++)
    strArray[i] = "";

In this example, the variable I keeps track of the number of times the loop has occurred; it also makes a convenient
index for the array itself. Here, we start the for loop with an index of I. The test for when the for loop will end is
whether the current index is less than the length of the array (once the index is bigger than the array, you should stop),
and the increment is simply to add 1 to the index each time. Then, for every loop you can put a null string ("") into
the array at the given slot.

Any of the parts of the for loop can be empty statements; that is, you can simply include a semicolon with no
expression or statement, and that part of the for loop will be ignored. Note that if you do use a null statement in your
for loop, you may have to initialize or increment any loop variables or loop indices yourself elsewhere in the
program.

You can also have an empty statement for the body of your for loop, if everything you want to do is in the first line
of that loop. For example, here's one that finds the first prime number higher than 4000 (it calls a method called
notPrime(), which will theoretically have a way of figuring that out):

for (i = 4001; notPrime(i); i += 2)
    ;

Note that a common mistake in C that also occurs in Java is to accidentally put a semicolon after the first line of the
for loop:

for (i = 0; i < 10; i++);
    System.out.println("Loop!");

Because the first semicolon ends the loop with an empty statement, the loop doesn't actually do anything. The
println() function will be printed only once because it's actually outside the for loop entirely. Be careful not to
make this mistake in your own Java programs.

To finish up for loops, let's rewrite that example with the names from the array section. The original example is long

Day 5 -- Arrays, Conditionals, and Loops

file:///G|/ebooks/1575211831/ch5.htm (13 of 20) [11/06/2000 7:47:05 PM]



and repetitive and only works with an array four elements long. This version, shown in Listing 5.4, is shorter and more
flexible (but it returns the same output).

Listing 5.4. A modified array test with loops.

 1: class NamesLoop {
 2:
 3:    String[] firstNames = { "Dennis", "Grace", "Bjarne", "James" };
 4:    String[] lastNames = new String[firstNames.length];
 5: 
 6:    void printNames() {
 7:      for (int i = 0; i < firstNames.length; i++) 
 8:          System.out.println(firstNames[i] + " " + lastNames[i]);   
 9:    }
10:   
11:   public static void main (String args[]) {
12:      ArrayTest a = new ArrayTest();
13:       a.printNames();
14:       System.out.println("----------");
15:       a.lastNames[0] = "Ritchie";
16:       a.lastNames[1] = "Hopper";
17:      a.lastNames[2] = "Stroustrup";
18:       a.lastNames[3] = "Gosling";
19:       
20:      a.printNames();    
21:}
22:}

Dennis null
Grace null
Bjarne null
James null
----------
Dennis Ritchie
Grace Hopper
Bjarne Stroustrup
James Gosling

Analysis
The only difference between this example and Listing 5.1 is in the
printNames() method. Instead of going through the array slots
one by one, this example uses a for loop to iterate through the array
one slot at a time, stopping at the last element in the array. Using a
more general-purpose loop to iterate over an array allows you to use
printNames() for any array of any size and still have it print all
the elements.

Day 5 -- Arrays, Conditionals, and Loops

file:///G|/ebooks/1575211831/ch5.htm (14 of 20) [11/06/2000 7:47:05 PM]



while and do Loops
Finally, there are while and do loops. while and do loops, like for loops, repeat the execution of a block of Java
code until a specific condition is met. Whether you use a for loop, a while, or a do is mostly a matter of your
programming style.

while and do loops are exactly the same as in C and C++ except that their test conditions must be booleans.

while Loops

The while loop is used to repeat a statement or block of statements as long as a particular condition is true. while
loops look like this:

while (condition) {
    bodyOfLoop;
}

The condition is a boolean test because it is in the if and for constructions. If the test returns true, the while loop
executes the statements in bodyOfLoop and then tests the condition again, repeating until the condition is false.
I've shown the while loop here with a block statement because it's most commonly used, although you can use a
single statement in place of the block.

Listing 5.5 shows an example of a while loop that copies the elements of an array of integers (in array1) to an
array of floats (in array2), casting each element to a float as it goes. The one catch is that if any of the
elements in the first array is 0, the loop will immediately exit at that point.

Listing 5.5. while loops to copy array elements.

 1: class CopyArrayWhile {
 2:   public static void main (String args[]) {
 3:       int[] array1 = { 5, 7, 3, 6, 0, 3, 2, 1 };
 4:       float[] array2 = new float[array1.length];
 5:       
 6:        System.out.print("array1: [ ");
 7:       for (int i = 0; i < array1.length; i++) {
 8:          System.out.print(array1[i] + " ");
 9:        }
10:       System.out.println("]");
11:   
12:       System.out.print("array2: [ ");
13:       int count = 0;
14:       while ( count < array1.length && array1[count] != 0) {   
15:              array2[count] = (float) array1[count];
16:              System.out.print(array2[count++] + " ");
17:      }
18:        System.out.println("]");
19:    }
20:}

Day 5 -- Arrays, Conditionals, and Loops

file:///G|/ebooks/1575211831/ch5.htm (15 of 20) [11/06/2000 7:47:05 PM]



array1: [ 5 7 3 6 0 3 2 1 ]
array2: [ 5 7 3 6 ]

I've done all the work here in main() to make things shorter. Here's what's going on here:

Lines 3 and 4, declare the arrays; array1 is an array of ints, which I've initialized to some suitable numbers.
array2, or floats, is the same length as array1, but doesn't have any initial values.

Lines 6 through 10 are for output purposes; they simply iterate through array1 using a for loop to print out its
values.

Lines 13 through 17 are where the interesting stuff happens. This bunch of statements both assigns the values of
array2 (converting the numbers to floats along the array) and prints it out at the same time. We start with a count
variable, which keeps track of the array index elements. The test in the while loop keeps track of the two conditions
for existing the loop, where those two conditions are running out of elements in array1 or encountering a 0 in
array1 (remember, that was part of the original description of what this program does). We can use the logical
conditional && to keep track of the test; remember that && makes sure both conditions are true before the entire
expression is true. If either one is false, the expression returns false and the loop exits.

So what goes on in this particular example? The output shows that the first four elements in array1 were copied to
array2, but there was a 0 in the middle that stopped the loop from going any further. Without the 0, array2
should end up with all the same elements as array1.

Note that if the while loop's test is initially false the first time it is tested (for example, if the first element in that
first array is 0), the body of the while loop will never be executed. If you need to execute the loop at least once, you
can do one of two things:

Duplicate the body of the loop outside the while loop.●   

Use a do loop (which is described in the following section).●   

The do loop is considered the better solution of the two.●   

do...while Loops

The do loop is just like a while loop, except that do executes a given statement or block until the condition is
false. The main difference is that while loops test the condition before looping, making it possible that the body
of the loop will never execute if the condition is false the first time it's tested. do loops run the body of the loop at
least once before testing the condition. do loops look like this:

do {
    bodyOfLoop;
} while (condition);

Here, the bodyOfLoop part is the statements that are executed with each iteration. It's shown here with a block
statement because it's most commonly used that way, but you can substitute the braces for a single statement as you
can with the other control-flow constructs. The condition is a boolean test. If it returns true, the loop is run again. If
it returns false, the loop exits. Keep in mind that with do loops, the body of the loop executes at least once.

Listing 5.6 shows a simple example of a do loop that prints a message each time the loop iterates (10 times, for this
example):

Listing 5.6. A simple do loop.

 1: class DoTest {

Day 5 -- Arrays, Conditionals, and Loops

file:///G|/ebooks/1575211831/ch5.htm (16 of 20) [11/06/2000 7:47:05 PM]



 2:    public static void main (String args[]) {
 3:      int x = 1;
 4:  
 5:      do {
 6:        System.out.println("Looping, round " + x);
 7:        x++;
 8:      } while (x <= 10);
 9:    }
10: }

Looping, round 1
Looping, round 2
Looping, round 3
Looping, round 4
Looping, round 5
Looping, round 6
Looping, round 7
Looping, round 8
Looping, round 9
Looping, round 10

Breaking Out of Loops
In all the loops (for, while, and do), the loop ends when the condition you're testing for is met. What happens if
something odd occurs within the body of the loop and you want to exit the loop early? For that, you can use the
break and continue keywords.

You've already seen break as part of the switch statement; it stops execution of the switch, and the program
continues. The break keyword, when used with a loop, does the same thing-it immediately halts execution of the
current loop. If you've nested loops within loops, execution picks up in the next outer loop; otherwise, the program
merely continues executing the next statement after the loop.

For example, take that while loop that copied elements from an integer array into an array of floats until the end of
the array or until a 0 is reached. You can instead test for that latter case inside the body of the while and then use a
break to exit the loop:

int count = 0;
while (count < array1.length) {
    if (array1[count] == 0) {
        break;
    }
    array2[count] = (float) array1[count++];
}

continue is similar to break except that instead of halting execution of the loop entirely, the loop starts over at the
next iteration. For do and while loops, this means that the execution of the block starts over again; for for loops,
the increment and test expressions are evaluated and then the block is executed. continue is useful when you want
to special-case elements within a loop. With the previous example of copying one array to another, you can test for

Day 5 -- Arrays, Conditionals, and Loops

file:///G|/ebooks/1575211831/ch5.htm (17 of 20) [11/06/2000 7:47:05 PM]



whether the current element is 0 and restart the loop if you find it so that the resulting array will never contain zero.
Note that because you're skipping elements in the first array, you now have to keep track of two different array
counters:

int count1 = 0;
int count2 = 0;
while (count < array1.length) {
    if (array1[count1] == 0)  {
       continue;
        count1++
    }
    array2[count2++] = (float)array1[count1++];
}

Labeled Loops

Both break and continue can have an optional label that tells Java where to break to. Without a label, break
jumps outside the nearest loop (to an enclosing loop or to the next statement outside the loop), and continue
restarts the enclosing loop. Using labeled breaks and continues, you can break to specific points outside nested
loops or continue a loop outside the current loop.

To use a labeled loop, add the label before the initial part of the loop, with a colon between them. Then, when you use
break or continue, add the name of the label after the keyword itself:

out:
    for (int i = 0; i <10; i++) {
        while (x < 50) {
            if (i * x == 400)
                break out;
            ...
        }
        ...
    }

In this snippet of code, the label out labels the outer loop. Then, inside both the for and the while loops, when a
particular condition is met, a break causes the execution to break out of both loops and continue executing any code
after both loops.

Here's another example: The program shown in Listing 5.7 contains a nested for loop. Inside the innermost loop, if
the summed values of the two counters is greater than 4, both loops exit at once.

Listing 5.7. A labeled loop example.

 1: class LabelTest {
 2:    public static void main (String arg[]) {
 3:  
 4:      foo: 
 5:      for (int i = 1; i <= 5; i++)
 6:        for (int j = 1; j <= 3; j++) {
 7:           System.out.println("i is " + i + ", j is " + j);
 8:           if (( i + j) > 4) 
 9:           break foo;

Day 5 -- Arrays, Conditionals, and Loops

file:///G|/ebooks/1575211831/ch5.htm (18 of 20) [11/06/2000 7:47:05 PM]



10:        }
11:      System.out.println("end of loops");
12:    }
13:}

i is 1, j is 1
i is 1, j is 2
i is 1, j is 3
i is 2, j is 1
i is 2, j is 2
i is 2, j is 3
end of loops

As you can see, the loop iterated until the sum of i and j was greater than 4, and then both loops exited back to the
outer block and the final message was printed.

Summary
Today you have learned about three main topics that you'll most likely use quite often in your own Java programs:
arrays, conditionals, and loops.

You have learned how to declare an array variable, create and assign an array object to that variable, and access and
change elements within that array.

Conditionals include the if and switch statements, with which you can branch to different parts of your program
based on a boolean test.

Finally, you have learned about the for, while, and do loops, each of which enable you to execute a portion of your
program repeatedly until a given condition is met.

Now that you've learned the small stuff, all that's left is to go over the bigger issues of declaring classes and creating
methods within which instances of those classes can communicate with each other by calling methods. Get to bed
early tonight, because tomorrow is going to be a wild ride.

Q&A

Q: If arrays are objects, and you use new to create them, and they have an instance variable length, where
is the Array class? I didn't see it in the Java class libraries.

A: Arrays are implemented kind of weirdly in Java. The Array class is constructed automatically when your
Java program runs; Array provides the basic framework for arrays, including the length variable.
Additionally, each primitive type and object has an implicit subclass of Array that represents an array of that
class or object. When you create a new array object, it may not have an actual class, but it behaves as if it
does.

Q: When you create an array, you have to give it the number of slots that the array has. What happens if
you get halfway through your program and you've run out of slots in the array? Does the array get
bigger automatically?

Day 5 -- Arrays, Conditionals, and Loops

file:///G|/ebooks/1575211831/ch5.htm (19 of 20) [11/06/2000 7:47:05 PM]



A: No, arrays stay the same size throughout their existence. And, as I noted in the part of this lesson on arrays,
you cannot access slots outside the bounds of the array, so adding extra elements to a full array will cause an
error.

So what do you do if an array is full? You have to do it the hard way: Create a new array that's bigger than the
initial one and copy all the elements from the old array to the new.

Optionally, you can use a data structure other than an array if you expect to have widely varying numbers of
elements in the array. The Vector class, part of the java.util package, is a growable collection you can
use in place of an array.

Q: Does Java have gotos?
A: The Java language defines the keyword goto, but it is not currently used for anything. In other words,

no-Java does not have gotos.
Q: I declared a variable inside a block statement for an if. When the if was done, the definition of that

variable vanished. Where did it go?
A: In technical terms, block statements form a new lexical scope. What this means is that if you declare a

variable inside a block, it's only visible and usable inside that block. When the block finishes executing, all
the variables you declared go away.

It's a good idea to declare most of your variables in the outermost block in which they'll be needed-usually at
the top of a block statement. The exception might be very simple variables, such as index counters in for
loops, where declaring them in the first line of the for loop is an easy shortcut.

Q: Why can't you use switch with strings?
A: Strings are objects, and switch in Java works only for the primitive types byte, char, short, and int.

To compare strings, you have to use nested ifs, which enable more general expression tests, including string
comparison.

Q: It seems to me that a lot of for loops could be written as while loops, and vice versa.
A: True. The for loop is actually a special case of while that enables you to iterate a loop a specific number of

times. You could just as easily do this with a while and then increment a counter inside the loop. Either
works equally well. This is mostly just a question of programming style and personal choice.

   

Day 5 -- Arrays, Conditionals, and Loops

file:///G|/ebooks/1575211831/ch5.htm (20 of 20) [11/06/2000 7:47:05 PM]



Day 4

Working with Objects
by Laura Lemay

CONTENTS
Creating New Objects

Using new❍   

What new Does❍   

A Note on Memory Management❍   

●   

Accessing and Setting Class and Instance Variables

Getting Values❍   

Changing Values❍   

Class Variables❍   

●   

Calling Methods

Class Methods❍   

●   

References to Objects●   

Casting and Converting Objects and Primitive Types

Casting Primitive Types❍   

Casting Objects❍   

Converting Primitive Types to Objects and Vice Versa❍   

●   

Odds and Ends

Comparing Objects❍   

Determining the Class of an Object❍   

●   

Class and Object Reflection (Java 1.1)●   

The Java Class Library●   

Summary●   

Q&A●   

Let's start today's lesson with an obvious statement: Because Java is an object-oriented language, you're
going to be dealing with a lot of objects. You'll create them, modify them, move them around, change
their variables, call their methods, combine them with other objects-and, of course, develop classes and
use your own objects in the mix.

Day 4 -- Working with Objects

file:///G|/ebooks/1575211831/ch4.htm (1 of 20) [11/06/2000 7:47:09 PM]



Today, therefore, you'll learn all about the Java object in its natural habitat. Today's topics include

Creating instances of classes●   

Testing and modifying class and instance variables in your new instance●   

Calling methods in that object●   

Casting (converting) objects and other data types from one class to another●   

Other odds and ends about working with objects●   

An overview of the Java class libraries●   

Creating New Objects
When you write a Java program, you define a set of classes. As you learned on Day 2, "Object-Oriented
Programming and Java," classes are templates for objects; for the most part, you merely use the class to
create instances and then work with those instances. In this section, therefore, you'll learn how to create a
new object from any given class.

Remember strings from yesterday? You learned that using a string literal-a series of characters enclosed in
double-quotes-creates a new instance of the class String with the value of that string.

The String class is unusual in that respect-although it's a class, there's an easy way to create instances of
that class using a literal. The other classes don't have that shortcut; to create instances of those classes you
have to do so explicitly by using the new operator.

Note
What about the literals for numbers and characters? Don't they create
objects, too? Actually, they don't. The primitive data types for
numbers and characters create numbers and characters, but for
efficiency, they aren't actually objects. You can put object wrappers
around them if you need to treat them like objects (you'll learn how to
do this in "Casting and `Converting Objects and Primitive Types").

Using new

To create a new object, you use the new operator with the name of the class you want to create an instance
of, then parentheses after that. The following examples create new instances of the classes String,
Random, and Motorcycle, and store those new instances in variables of the appropriate types:

String str = new String();

Random r = new Random();

Motorcycle m2 = new Motorcycle();

The parentheses are important; don't leave them off. The parentheses can be empty (as in these examples),
in which case the most simple, basic object is created; or the parentheses can contain arguments that

Day 4 -- Working with Objects

file:///G|/ebooks/1575211831/ch4.htm (2 of 20) [11/06/2000 7:47:09 PM]



determine the initial values of instance variables or other initial qualities of that object:

Date dt = new Date(90, 4, 1, 4, 30);

Point pt = new Point(0,0);

The number and type of arguments you can use inside the parentheses with new are defined by the class
itself using a special method called a constructor (you'll learn more about constructors later today). If you
try and create a new instance of a class with the wrong number or type of arguments (or if you give it no
arguments and it needs some), then you'll get an error when you try to compile your Java program.

Here's an example of creating several different types of objects using different numbers and types of
arguments. The Date class, part of the java.util package, creates objects that represent the current
date. Listing 4.1 is a Java program that shows three different ways of creating a Date object using new.

Listing 4.1. Laura's Date program.

 1: import java.util.Date;
 2: 
 3: class CreateDates {
 4: 
 5:     public static void main(String args[]) {
 6:         Date d1, d2, d3;
 7: 
 8:         d1 = new Date();
 9:         System.out.println("Date 1: " + d1);
10: 
11:         d2 = new Date(71, 7, 1, 7, 30);
12:         System.out.println("Date 2: " + d2);
13: 
14:         d3 = new Date("April 3 1993 3:24 PM");
15:         System.out.println("Date 3: " + d3);
16:     }
17: }

Date 1: Tue Feb 13 09:36:56 PST 1996
Date 2: Sun Aug 01 07:30:00 PDT 1971
Date 3: Sat Apr 03 15:24:00 PST 1993

Analysis

Day 4 -- Working with Objects

file:///G|/ebooks/1575211831/ch4.htm (3 of 20) [11/06/2000 7:47:09 PM]



In this example, three different date objects are created using different
arguments to the class listed after new. The first instance (line 8) uses
new Date() with no arguments, which creates a Date object for
today's date (the first line of the output shows a sample; your output
will, of course, read the current date and time for you).

The second Date object you create in this example has five integer arguments. The arguments represent a
date: year, month, day, hours, and minutes. And, as the output shows, this creates a Date object for that
particular date: Sunday, August 1, 1971, at 7:30 a.m.

Note
Java numbers months starting from 0. So although you might expect
the seventh month to be July, month 7 in Java is indeed August.

The third version of Date takes one argument, a string, representing the date as a text string. When the
Date object is created, that string is parsed, and a Date object with that date and time is created (see the
third line of output). The date string can take many different formats; see the API documentation for the
Date class (part of the java.util package) for information about what strings you can use.

What new Does

When you use the new operator, the new instance of the given class is created, and memory is allocated
for it. In addition (and most importantly), a special method defined in the given class is called to initialize
the object and set up any initial values it needs. This special method is called a constructor. Constructors
are special methods, defined in classes, that create and initialize new instances of classes.

New Term
Constructors are special methods that initialize a new object, set its
variables, create any other objects that object needs, and generally
perform any other operations the object needs to initialize itself.

Multiple constructor definitions in a class can each have a different number or type of arguments-then,
when you use new, you can specify different arguments in the argument list, and the right constructor for
those arguments will be called. That's how each of those different versions of new that you used in the
CreateDates class can create different Date objects.

When you create your own classes, you can define as many constructors as you need to implement that
class's behavior. You'll learn how to create constructors on Day 7, "More About Methods."

A Note on Memory Management

Memory management in Java is dynamic and automatic. When you create a new object in Java, Java
automatically allocates the right amount of memory for that object in the heap. You don't have to allocate
any memory for any objects explicitly; Java does it for you.

What happens when you're finished with that object? How do you de-allocate the memory that object
uses? The answer, again, is that memory management is automatic. Once you're done with an object, you

Day 4 -- Working with Objects

file:///G|/ebooks/1575211831/ch4.htm (4 of 20) [11/06/2000 7:47:09 PM]



reassign all the variables that might hold that object and remove it from any arrays, thereby making the
object unusable. Java has a "garbage collector" that looks for unused objects and reclaims the memory that
those objects are using. You don't have to do any explicit freeing of memory; you just have to make sure
you're not still holding onto an object you want to get rid of. You'll learn more specific details about the
Java garbage collector and how it works on Day 21, "Under the Hood."

New Term
A garbage collector is a special thing built into the Java environment
that looks for unused objects. If it finds any, it automatically removes
those objects and frees the memory those objects were using.

Accessing and Setting Class and Instance Variables
Now you have your very own object, and that object may have class or instance variables defined in it.
How do you work with those variables? Easy! Class and instance variables behave in exactly the same
ways as the local variables you learned about yesterday; you just refer to them slightly differently than you
do regular variables in your code.

Getting Values

To get to the value of an instance variable, you use an expression in what's called dot notation. With dot
notation, the reference to an instance or class variable has two parts: the object on the left side of the dot
and the variable on the right side of the dot.

New Term
Dot notation is an expression used to get at instance variables and
methods inside a given object.

For example, if you have an object assigned to the variable myObject, and that object has a variable
called var, you refer to that variable's value like this:

myObject.var;

This form for accessing variables is an expression (it returns a value), and both sides of the dot can also be
expressions. This means that you can nest instance variable access. If that var instance variable itself
holds an object and that object has its own instance variable called state, you could refer to it like this:

myObject.var.state;

Dot expressions are evaluated left to right, so you start with myObject's variable var, which points to
another object with the variable state. You end up with the value of that state variable after the entire
expression is done evaluating.

Day 4 -- Working with Objects

file:///G|/ebooks/1575211831/ch4.htm (5 of 20) [11/06/2000 7:47:09 PM]



Changing Values

Assigning a value to that variable is equally easy-just tack an assignment operator on the right side of the
expression:

myObject.var.state = true;

Listing 4.2 is an example of a program that tests and modifies the instance variables in a Point object.
Point is part of the java.awt package and refers to a coordinate point with an x and a y value.

Listing 4.2. The TestPoint Class.

 1: import java.awt.Point;
 2: 
 3: class TestPoint {
 4: public static void main(String args[]) {
 5:     Point thePoint = new Point(10,10);
 6:
 7:     System.out.println("X is " + thePoint.x);
 8:     System.out.println("Y is " + thePoint.y);
 9:
10:     System.out.println("Setting X to 5.");
11:     thePoint.x = 5;
12:     System.out.println("Setting Y to 15.");
13:     thePoint.y = 15;
14:
15:     System.out.println("X is " + thePoint.x);
16:     System.out.println("Y is " + thePoint.y);
17:
18:  }
19:}

X is 10
Y is 10
Setting X to 5.
Setting Y to 15.
X is 5
Y is 15

Analysis

Day 4 -- Working with Objects

file:///G|/ebooks/1575211831/ch4.htm (6 of 20) [11/06/2000 7:47:09 PM]



In this example, you first create an instance of Point where X and Y
are both 10 (line 6). Lines 8 and 9 print out those individual values,
and you can see dot notation at work there. Lines 11 through 14
change the values of those variables to 5 and 15, respectively.
Finally, lines 16 and 17 print out the values of X and Y again to show
how they've changed.

Class Variables

Class variables, as you've already learned, are variables that are defined and stored in the class itself. Their
values, therefore, apply to the class and to all its instances.

With instance variables, each new instance of the class gets a new copy of the instance variables that class
defines. Each instance can then change the values of those instance variables without affecting any other
instances. With class variables, there is only one copy of that variable. Every instance of the class has
access to that variable, but there is only one value. Changing the value of that variable changes it for all
the instances of that class.

You define class variables by including the static keyword before the variable itself. You'll learn more
about this on Day 6, "Creating Classes and Applications in Java." For example, take the following partial
class definition:

class FamilyMember {
    static String surname = "Johnson";
    String name;
    int age;
    ...
}

Instances of the class FamilyMember each have their own values for name and age. But the class
variable surname has only one value for all family members. Change surname, and all the instances of
FamilyMember are affected.

To access class variables, you use the same dot notation as you do with instance variables. To get or
change the value of the class variable, you can use either the instance or the name of the class on the left
side of the dot. Both of the lines of output in this example print the same value:

FamilyMember dad = new FamilyMember();
System.out.println("Family's surname is: " + dad.surname);
System.out.println("Family's surname is: " + FamilyMember.surname);

Because you can use an instance to change the value of a class variable, it's easy to become confused
about class variables and where their values are coming from (remember that the value of a class variable
affects all the instances). For this reason, it's a good idea to use the name of the class when you refer to a
class variable-it makes your code easier to read and strange results easier to debug.

Day 4 -- Working with Objects

file:///G|/ebooks/1575211831/ch4.htm (7 of 20) [11/06/2000 7:47:09 PM]



Calling Methods
Calling a method is similar to referring to an object's instance variables: Method calls to objects also use
dot notation. The object itself whose method you're calling is on the left side of the dot; the name of the
method and its arguments are on the right side of the dot:

myObject.methodOne(arg1, arg2, arg3);

Note that all calls to methods must have parentheses after them, even if that method takes no arguments:

myObject.methodNoArgs();

If the method you've called returns an object that itself has methods, you can nest methods as you would
variables. This next example calls the getName() method, which is defined in the object returned by the
getClass() method, which was defined in myObject. Got it?

myObject.getClass().getName();

You can combine nested method calls and instance variable references as well (in this case you're calling
the methodTwo() method, which is defined in the object stored by the var instance variable, which in
turn is part of the myObject object):

myObject.var.methodTwo(arg1, arg2);

System.out.println(), the method you've been using through the book this far to print out bits of
text, is a great example of nesting variables and methods. The System class (part of the java.lang
package) describes system-specific behavior. System.out is a class variable that contains an instance of
the class PrintStream that points to the standard output of the system. PrintStream instances have
a println() method that prints a string to that output stream.

Listing 4.3 shows an example of calling some methods defined in the String class. Strings include
methods for string tests and modification, similar to what you would expect in a string library in other
languages.

Listing 4.3. Several uses of String methods.

 1: class TestString {
 2: 
 3:     public static void main(String args[]) {
 4:         String str = "Now is the winter of our discontent";
 5: 
 6:         System.out.println("The string is: " + str);
 7:         System.out.println("Length of this string: "
 8:                 + str.length());
 9:         System.out.println("The character at position 5: "
10:                 + str.charAt(5));

Day 4 -- Working with Objects

file:///G|/ebooks/1575211831/ch4.htm (8 of 20) [11/06/2000 7:47:09 PM]



11:         System.out.println("The substring from 11 to 17: "
12:                 + str.substring(11, 17));
13:         System.out.println("The index of the character d: "
14:                 + str.indexOf('d'));
15:         System.out.print("The index of the beginning of the ");
16:         System.out.println("substring \"winter\": "
17:                 + str.indexOf("winter"));
18:         System.out.println("The string in upper case: "
19:                 + str.toUpperCase());
20:     }
21: }

The string is: Now is the winter of our discontent
Length of this string: 35
The character at position 5: s
The substring from positions 11 to 17: winter
The index of the character d: 25
The index of the beginning of the substring "winter": 11
The string in upper case: NOW IS THE WINTER OF OUR DISCONTENT

Analysis
In line 4, you create a new instance of String by using a string
literal (it's easier that way than using new and then putting the
characters in individually). The remainder of the program simply calls
different string methods to do different operations on that string:

Line 6 prints the value of the string we created in line 4: "Now is the winter of our
discontent".

●   

Line 7 calls the length() method in the new String object. This string has 35 characters.●   

Line 9 calls the charAt() method, which returns the character at the given position in the string.
Note that string positions start at 0, so the character at position 5 is s.

●   

Line 11 calls the substring() method, which takes two integers indicating a range and returns
the substring at those starting and ending points. The substring() method can also be called
with only one argument, which returns the substring from that position to the end of the string.

●   

Line 13 calls the indexOf() method, which returns the position of the first instance of the given
character (here, 'd').

●   

Line 15 shows a different use of the indexOf() method, which takes a string argument and
returns the index of the beginning of that string.

●   

Finally, line 19 uses the toUpperCase() method to return a copy of the string in all uppercase.●   

Day 4 -- Working with Objects

file:///G|/ebooks/1575211831/ch4.htm (9 of 20) [11/06/2000 7:47:09 PM]



Class Methods

Class methods, like class variables, apply to the class as a whole and not to its instances. Class methods
are commonly used for general utility methods that may not operate directly on an instance of that class,
but fit with that class conceptually. For example, the String class contains a class method called
valueOf(), which can take one of many different types of arguments (integers, booleans, other objects,
and so on). The valueOf() method then returns a new instance of String containing the string value
of the argument it was given. This method doesn't operate directly on an existing instance of String, but
getting a string from another object or data type is definitely a String-like operation, and it makes sense
to define it in the String class.

Class methods can also be useful for gathering general methods together in one place (the class). For
example, the Math class, defined in the java.lang package, contains a large set of mathematical
operations as class methods-there are no instances of the class Math, but you can still use its methods
with numeric or boolean arguments. For example, the class method Math.max() takes two arguments
and returns the larger of the two. You don't need to create a new instance of Math; just call the method
anywhere you need it, like this:

in biggerOne = Math.max(x, y);

To call a class method, you use dot notation as you do with instance methods. As with class variables, you
can use either an instance of the class or the class itself on the left site of the dot. However, for the same
reasons noted in the discussion on class variables, using the name of the class for class methods makes
your code easier to read. The last two lines in this example produce the same result (the string "5"):

String s, s2;
s = "foo";
s2 = s.valueOf(5);
s2 = String.valueOf(5);

References to Objects
As you work with objects, one important thing going on behind the scenes is the use of references to those
objects. When you assign objects to variables, or pass objects as arguments to methods, you are passing
references to those objects, not the objects themselves or copies of those objects.

An example should make this clearer. Examine Listing 4.4, which shows a simple example of how
references work.

Listing 4.4. A references example.

 1: import java.awt.Point;
 2:
 3: class ReferencesTest {
 4:     public static void main (String args[]) {
 5:        Point pt1, pt2;

Day 4 -- Working with Objects

file:///G|/ebooks/1575211831/ch4.htm (10 of 20) [11/06/2000 7:47:09 PM]



 6:         pt1 = new Point(100, 100);
 7:         pt2 = pt1;
 8: 
 9:         pt1.x = 200;
10:         pt1.y = 200;
11:         System.out.println("Point1: " + pt1.x + ", " + pt1.y);
12:         System.out.println("Point2: " + pt2.x + ", " + pt2.y);
13:     }
14: }

Point1: 200, 200
Point2: 200, 200

Analysis
In the first part of this program, you declare two variables of type
Point (line 5), create a new Point object to pt1 (line 6), and
finally, assign the value of pt1 to pt2 (line 7).

Now, here's the challenge. After changing pt1's x and y instance variables in lines 9 and 10, what will
pt2 look like?

As you can see, pt2's x and y instance variables were also changed, even though you never explicitly
changed them. When you assign the value of pt1 to pt2, you actually create a reference from pt2 to the
same object to which pt1 refers (see Figure 4.1). Change the object that pt2 refers to, and you also
change the object that pt1 points to, because both are references to the same object.

Figure 4.1 : References to objects.

Note
If you actually do want pt1 and pt2 to point to separate objects, you
should use new Point() for both lines to create separate objects.

The fact that Java uses references becomes particularly important when you pass arguments to methods.
You'll learn more about this later today, but keep these references in mind.

Technical Note
There are no explicit pointers or pointer arithmetic in Java as there are
in C-like languages-just references. However, with these references,
and with Java arrays, you have most of the capabilities that you have
with pointers without the confusion and lurking bugs that explicit
pointers can create.

Day 4 -- Working with Objects

file:///G|/ebooks/1575211831/ch4.htm (11 of 20) [11/06/2000 7:47:09 PM]



Casting and Converting Objects and Primitive
Types
Sometimes in your Java programs you may have a value stored somewhere that is the wrong type for what
you want to do with it. Maybe it's an instance of the wrong class, or perhaps it's a float and you want it
to be an int. To convert the value of one type to another, you use casting. Casting is a programming term
that means, effectively, converting a value or an object from one type to another. The result of a cast is a
new value or object; casting does not change the original object or value.

New Time
Casting converts the value of an object or primitive type into another
type.

Although the concept of casting is a simple one, the rules for what types in Java can be converted to what
other types are complicated by the fact that Java has both primitive types (int, float, boolean), and
object types (String, Point, Window, and so on). There are three forms of casts and conversions to
talk about in this section:

Casting between primitive types: int to float or float to double●   

Casting between object types: an instance of a class to an instance of another class●   

Converting primitive types to objects and then extracting primitive values back out of those objects●   

Casting Primitive Types

Casting between primitive types allows you to "convert" the value of one type to another primitive
type-for example, to assign a number of one type to a variable of another type. Casting between primitive
types most commonly occurs with the numeric types; boolean values cannot be cast to any other primitive
type.

Often, if the type you are casting to is "larger" than the type of the value you're converting, you may not
have to use an explicit cast. You can often automatically treat a byte or a character as an int, for
example, or an int as a long, an int as a float, or anything as a double automatically. In most
cases, because the larger type provides more precision than the smaller, no loss of information occurs
when the value is cast. The exception is casting integers to floating-point values; casting an int or a
long to a float or a long to a double may cause some loss of precision.

To convert a large value to smaller type, you must use an explicit cast, because converting that value may
result in a loss of precision. Explicit casts look like this:

(typename)value

In this form, typename is the name of the type you're converting to (for example: short, int, float,
boolean), and value is an expression that results in the value you want to convert. So, for example, in
this expression the value of x is divided by the value of y and the result is cast to an int:

(int) (x / y);

Day 4 -- Working with Objects

file:///G|/ebooks/1575211831/ch4.htm (12 of 20) [11/06/2000 7:47:09 PM]



Note that because the precedence of casting is higher than that of arithmetic, you have to use parentheses
here; otherwise, the value of x would be cast first and then divided by y (which might very well be a very
different result).

Casting Objects

Instances of classes can also be cast to instances of other classes, with one restriction: The class of the
object you're casting and the class you're casting it to must be related by inheritance; that is, you can cast
an object only to an instance of its class's sub- or superclass-not to any random class.

Analogous to converting a primitive value to a larger type, some objects may not need to be cast
explicitly. In particular, because subclasses contain all the same information as their superclass, you can
use an instance of a subclass anywhere a superclass is expected. (Did you just have to read that sentence
four times before you understood it? I had to rewrite it a whole lot of times before it became even that
simple. Bear with me, its not that bad. Let's try an example.) Suppose you have a method that takes two
arguments: one of type Object, and one of type Number. You don't have to pass instances of those
particular classes to that method. For the Object argument, you can pass any subclass of Object (any
object, in other words), and for the Number argument you can pass in any instance of any subclass of
Number (Integer, Boolean, Float, and so on); you don't have to explicitly convert them first.

Casting downward in the class hierarchy is automatic, but casting upward is not. Converting an instance of
a subclass to an instance of a superclass loses the information the original subclass provided and requires
an explicit cast. To cast an object to another class, you use the same casting operation that you used for
base types:

(classname)object

In this case, classname is the name of the class you want to cast the object to, and object is a
reference to the object you're casting. Note that casting creates a reference to the old object of the type
classname; the old object still continues to exist as it did before.

Here's a (fictitious) example of a cast of an instance of the class GreenApple to an instance of the class
Apple (where GreenApple is theoretically a subclass of Apple with more information to define the
apple as green):

GreenApple a;
Apple a2;
a = new GreenApple();
a2 = (Apple) a;

In addition to casting objects to classes, you can also cast objects to interfaces-but only if that object's
class or one of its superclasses actually implements that interface. Casting an object to an interface means
that you can call one of that interface's methods even if that object's class does not actually implement that
interface. You'll learn more about interfaces in Week 3.

Day 4 -- Working with Objects

file:///G|/ebooks/1575211831/ch4.htm (13 of 20) [11/06/2000 7:47:09 PM]



Converting Primitive Types to Objects and Vice Versa

Now you know how to cast a primitive type to another primitive type and how to cast between classes.
How can you cast one to the other?

You can't! Primitive types and objects are very different things in Java and you can't automatically cast or
convert between the two. However, the java.lang package includes several special classes that
correspond to each primitive data type: Integer for ints, Float for floats, Boolean for
booleans, and so on. Note that the class names have an initial capital letter, and the primitive types are
lowercase. Java treats these names very differently, so don't confuse them, or your methods and variables
won't behave the way you expect.

Using class methods defined in these classes, you can create an object-equivalent for all the primitive
types using new. The following line of code creates an instance of the Integer class with the value 35:

Integer intObject = new Integer(35);

Once you have actual objects, you can treat those values as objects. Then, when you want the primitive
values back again, there are methods for that as well-for example, the intValue() method extracts an
int primitive value from an Integer object:

int theInt = intObject.intValue();  // returns 35

See the Java API documentation for these special classes for specifics on the methods for converting
primitives to and from objects.

Note
In Java 1.0 there are special type classes for Boolean,
Character, Double, Float, Integer, and Long. Java 1.1
adds classes for Byte and Short, as well as a special wrapper class
for Void. The latter classes are used primarily for object reflection.

Odds and Ends
This section is a catchall for other information about working with objects, particularly the following:

Comparing objects●   

Finding out the class of any given object●   

Testing to see whether an object is an instance of a given class●   

Comparing Objects

Yesterday you learned about operators for comparing values: equals, not equals, less than, and so on. Most
of these operators work only on primitive types, not on objects. If you try to use other values as operands,
the Java compiler produces errors.

The exception to this rule is with the operators for equality: == (equal) and != (not equal). These

Day 4 -- Working with Objects

file:///G|/ebooks/1575211831/ch4.htm (14 of 20) [11/06/2000 7:47:09 PM]



operators, when used with objects, test whether the two operands refer to exactly the same object in
memory.

What should you do if you want to be able to compare instances of your class and have meaningful
results? You have to implement special methods in your class, and you have to call those methods using
those method names.

Technical Note
Java does not have the concept of operator overloading-that is, the
ability to redefine the behavior of the built-in operators using methods
in your own classes. The built-in operators remain defined only for
numbers.

A good example of this is the String class. It is possible to have two strings, two independent objects in
memory with the same values-that is, the same characters in the same order. According to the == operator,
however, those two String objects will not be equal, because, although their contents are the same, they
are not the same object.

The String class, therefore, defines a method called equals() that tests each character in the string
and returns true if the two strings have the same values. Listing 4.5 illustrates this.

Listing 4.5. A test of string equality.

 1: class EqualsTest {
 2: public static void main(String args[]) {
 3:         String str1, str2;
 4:         str1 = "she sells sea shells by the sea shore.";
 5:         str2 = str1;
 6:  
 7:        System.out.println("String1: " + str1);
 8:         System.out.println("String2: " + str2);
 9:         System.out.println("Same object? " + (str1 == str2));
10:  
11:        str2 = new String(str1);
12:  
13:        System.out.println("String1: " + str1);
14:         System.out.println("String2: " + str2);
15:         System.out.println("Same object? " + (str1 == str2));
16:         System.out.println("Same value? " + str1.equals(str2));
17:     }
18:  }

String1: she sells sea shells by the sea shore.
String2: she sells sea shells by the sea shore.

Day 4 -- Working with Objects

file:///G|/ebooks/1575211831/ch4.htm (15 of 20) [11/06/2000 7:47:09 PM]



Same object? true
String1: she sells sea shells by the sea shore.
String2: she sells sea shells by the sea shore.
Same object? false
Same value? true

Analysis
The first part of this program (lines 4 through 6) declares two
variables (str1 and str2) assigns the literal she sells sea
shells by the sea shore. to str1, and then assigns that
value to str2. As you learned earlier when we talked about object
references, now str1 and str2 point to the same object, and the
equality test at line 10 proves that.

In the second part, you create a new string object with the same value as str1 and assign str2 to that
new string object. Now you have two different string objects in str1 and str2, both with the same
value. Testing them to see whether they're the same object by using the == operator (line 16) returns the
expected answer (false-they are not the same object in memory), as does testing them using the
equals() method (line 17) (true-they have the same values).

Technical Note
Why can't you just use another literal when you change str2, rather
than using new? String literals are optimized in Java-if you create a
string using a literal, and then use another literal with the same
characters, Java knows enough to give you the first String object
back. Both strings are the same objects-to create two separate objects
you have to go out of your way.

Determining the Class of an Object

Want to find out the class of an object? Here's the way to do it for an object assigned to the variable obj:

String name = obj.getClass().getName();

What does this do? The getClass() method is defined in the Object class, and as such is available
for all objects. The result of that method is a Class object (where Class is itself a class), which has a
method called getName(). getName() returns a string representing the name of the class.

Another test that might be useful to you is the instanceof operator. instanceof has two operands:
an object on the left and the name of a class on the right. The expression returns true or false based on
whether the object is an instance of the named class or any of that class's subclasses:

"foo" instanceof String // true
Point pt = new Point(10, 10);
pt instanceof String // false

Day 4 -- Working with Objects

file:///G|/ebooks/1575211831/ch4.htm (16 of 20) [11/06/2000 7:47:09 PM]



The instanceof operator can also be used for interfaces; if an object implements an interface, the
instanceof operator with that interface name on the right side returns true. You'll learn all about
interfaces in Week 3.

Class and Object Reflection (Java 1.1)
Reflection, also known as introspection, is a somewhat lofty term to describe the ability to "look inside" a
class or an object and get information about that object's variables and methods as well as actually set and
get the values of those variables and to call methods. Object reflection is useful for tools such as class
browsers or debuggers, where getting at the information of an object on-the-fly allows you to explore what
that object can do, or for component-based programs such as Java Beans, where the ability for one object
to query another object about what it can do (and then ask it to do something) is useful to building larger
applications.

The classes that support reflection of Java classes and objects will be part of the core Java 1.1 API (they
are not available in the 1.0.2 version of the JDK). A new package, java.lang.reflect, will contain
new classes to support reflection, which include the following:

Field, for managing and finding out information about class and instance variables●   

Method, for managing class and instance methods●   

Constructor, for managing the special methods for creating new instances of classes (you'll
learn more about constructors on Day 7)

●   

Array, for managing arrays●   

Modifier, for decoding modifier information about classes, variables and methods (more about
modifiers on Day 15, "Modifiers, Access Control, and Class Design")

●   

In addition, there will be a number of new methods available in the Class class to help tie together the
various reflection classes.

You can find out more about the new reflection classes and methods from
http://java.sun.com/products/JDK/1.1/designspecs/reflection/.

The Java Class Library
To finish up today, let's look at the Java class library. Actually, you've had some experience with some of
the Java classes already, so they shouldn't seem that strange.

The Java class library provides the set of classes that are guaranteed to be available in any commercial
Java environment (for example, in any Java development environment or in browsers such as Netscape).
Those classes are in the java package and include all the classes you've seen so far in this book, plus a
whole lot more classes you'll learn about later on in this book (and more you may not learn about at all).

The Java Developer's Kit comes with documentation for all of the Java class library, which includes
descriptions of each class's instance variables, methods, constructors, interfaces, and so on. You can get to
this documentation (called the Java Application Programmer's Interface, or API) via the Web at
http://java.sun.com:80/products/JDK/CurrentRelease/api/packages.html. A

Day 4 -- Working with Objects

file:///G|/ebooks/1575211831/ch4.htm (17 of 20) [11/06/2000 7:47:09 PM]

http://java.sun.com/products/JDK/1.1/designspecs/reflection/
http://java.sun.com/products/JDK/CurrentRelease/api/packages.html


shorter summary of the Java API is in appendix C as well. Exploring the Java class library and its methods
and instance variables is a great way to figure out what Java can and cannot do, as well as how it can
become a starting point for your own development.

Here are the class packages that are part of the Java class library:

java.lang-Classes that apply to the language itself, including the Object class, the String
class, and the System class. It also contains the special classes for the primitive types (Integer,
Character, Float, and so on). You'll get at least a glance at most of the classes in this package
in this first week.

●   

java.util-Utility classes, such as Date, as well as simple collection classes, such as Vector
and Hashtable. You'll learn more about these classes in the Bonus Week.

●   

java.io-Input and output classes for writing to and reading from streams (such as standard input
and output) and for handling files. Day 19, "Streams and I/O," describes the classes in this package.

●   

java.net-Classes for networking support, including Socket and URL (a class to represent
references to documents on the World Wide Web). You'll learn a little about networking on Day 14,
"Windows, Networking, and Other Tidbits," and then on Day 26, "Client/Server Networking in
Java."

●   

java.awt-This is the Abstract Windowing Toolkit. It contains classes to implement graphical
user interface features, including classes for Window, Menu, Button, Font, CheckBox, and so
on. It also includes mechanisms for managing system events and for processing images (in the
java.awt.Image package). You'll learn all about the awt in Week 2.

●   

java.applet-Classes to implement Java applets.●   

In addition to the Java classes, your development environment may also include additional classes that
provide other utilities or functionality. Although these classes may be useful, because they are not part of
the standard Java library, they may not be available to other people trying to run your Java program unless
you explicitly include those classes with your program. This is particularly important for applets, because
applets are expected to be able to run on any platform, using any Java-enabled browser. Only classes
inside the java package are guaranteed to be available on all browsers and Java environments.

Summary
Objects, objects everywhere. Today, you've learned all about how to deal with objects: how to create
them, how to find out and change the values of their variables, and how to call their methods. You have
also learned how to copy and compare them and how to convert them into other objects. Finally, you have
learned a bit about the Java class libraries-which give you a whole slew of classes to play with in your
own programs.

You now have the fundamentals of how to deal with most simple things in the Java language. All you
have left are arrays, conditionals, and loops, which you'll learn about tomorrow. Then you'll learn how to
define and use classes in Java applications on Day 6, and launch directly into applets next week. With just
about everything you do in your Java programs, you'll always come back to objects.

Day 4 -- Working with Objects

file:///G|/ebooks/1575211831/ch4.htm (18 of 20) [11/06/2000 7:47:09 PM]



Q&A

Q: I'm confused about the differences between objects and the primitive data types, such as
int and boolean.

A: The primitive types in the language (byte, short, int, long, float, double, boolean,
and char) represent the smallest things in the language. They are not objects, although in many
ways they can be handled like objects-they can be assigned to variables and passed in and out of
methods. Most of the operations that work exclusively on objects, however, will not work with
primitive types.

Objects are instances of classes and, as such, are usually much more complex data types than
simple numbers and characters, often containing numbers and characters as instance or class
variables.

Q: No pointers in Java? If you don't have pointers, how are you supposed to do something like
linked lists, where you have a pointer from one nose to another so you can traverse them?

A: Java doesn't have no pointers at all; it has no explicit pointers. Object references are, effectively,
pointers. So to create something like a linked list, you would create a class called Node, which
would have an instance variable also of type Node. Then to link together node objects all you
need to do is assign a node object to the instance variable of the object just before it in the list.
Because object references are pointers, linked lists set up this way will behave as you would
expect them to.

Q: In the section on calling methods, you had examples of calling a method with a different
number of arguments each time-and it gave a different kind of result. How is that possible?

A: That's called method overloading. Overloading means that the same method can have different
behavior based on the arguments it's called with-and the number and type of arguments can vary.
When you define methods in your own classes, you define separate method signatures with
different sets of arguments and different definitions. When a method is called, Java figures out
which definition to execute based on the number and type of arguments with which you called it.

You'll learn all about this on Day 6.
Q: No operator overloading in Java? Why not? I thought Java was based on C++, and C++ has

operator overloading.
A: Java was indeed based on C++, but it was also designed to be simple, so many of C++'s features

have been removed. The argument against operator overloading is that because the operator can
be defined to mean anything; it makes it very difficult to figure out what any given operator is
doing at any one time. This can result in entirely unreadable code. When you use a method, you
know it can mean many things to many classes, but when you use an operator you would like to
know that it always means the same thing. Given the potential for abuse, the designers of Java felt
it was one of the C++ features that was best left out.

Day 4 -- Working with Objects

file:///G|/ebooks/1575211831/ch4.htm (19 of 20) [11/06/2000 7:47:09 PM]



   

Day 4 -- Working with Objects

file:///G|/ebooks/1575211831/ch4.htm (20 of 20) [11/06/2000 7:47:09 PM]



Day 7

More About Methods
by Laura Lemay

CONTENTS
Creating Methods with the Same Name, Different Arguments●   

Constructor Methods

Basic Constructors❍   

Calling Another Constructor❍   

Overloading Constructors❍   

●   

Overriding Methods

Creating Methods That Override Existing Methods❍   

Calling the Original Method❍   

Overriding Constructors❍   

●   

Finalizer Methods●   

Summary●   

Q&A●   

Methods are arguably the most important part of any object-oriented language. Whereas classes and objects provide the
framework, and class and instance variables provide a way of holding that class's or object's attributes, the methods actually
provide an object's behavior and define how that object interacts with other objects in the system.

Yesterday you learned a little about defining methods. With what you learned yesterday, you could create lots of Java
programs, but you'd be missing some of the features of methods that make them really powerful and that make your objects
and classes more efficient and easier to understand. Today you'll learn about these additional features, including the
following:

Overloading methods-that is, creating methods with multiple signatures and definitions but with the same name●   

Creating constructor methods-methods that enable you to initialize objects to set up their initial state when created●   

Overriding methods-creating a different definition for a method that has been defined in a superclass●   

Using finalizer methods-a way for an object to clean up after itself before it is removed from the system●   

Creating Methods with the Same Name, Different Arguments
Yesterday you learned how to create methods with a single name and a single signature. Methods in Java can also be
overloaded-that is, you can create methods that have the same name, but different signatures and different definitions. Method
overloading allows instances of your class to have a simpler interface to other objects (no need for entirely different methods
with different names that do essentially the same thing) and to behave differently based on the input to that method. For
example, an overloaded draw() method could be used to draw just about anything, whether it were a circle or a point or an
image. The same method name, with different arguments, could be used for all cases.

When you call a method in an object, Java matches up the method name and the number and type of arguments to choose
which method definition to execute.

New Term

Day 7 -- More About Methods

file:///G|/ebooks/1575211831/ch7.htm (1 of 13) [11/06/2000 7:47:12 PM]



Method overloading is creating multiple methods with the same name
but with different signatures and definitions. Java uses the number
and type of arguments to choose which method definition to execute.

To create an overloaded method, all you need to do is create several different method definitions in your class, all with the
same name, but with different parameter lists (either in number or type of arguments). Java allows method overloading as
long as each parameter list is unique for the same method name.

Note that Java differentiates overloaded methods based on the number and type of parameters to that method, not on the
method's return type. That is, if you try to create two methods with the same name and same parameter list, but different
return types, you'll get a compiler error. Also, the variable names you choose for each parameter to the method are
irrelevant-all that matters is the number and the type.

Here's an example of creating an overloaded method. Listing 7.1 shows a simple class definition for a class called MyRect,
which defines a rectangular shape. The MyRect class has four instance variables to define the upper-left and lower-right
corners of the rectangle: x1, y1, x2, and y2.

Note
Why did I call it MyRect instead of just Rectangle? The
java.awt package has a class called Rectangle that implements
much of this same behavior. I called this class MyRect to prevent
confusion between the two classes.

Listing 7.1. The MyRect class.

 1: class MyRect {
 2:     int x1 = 0;
 3:     int y1 = 0;
 4:     int x2 = 0;
 5:     int y2 = 0;
 6: }

Note
Don't try to compile this example yet. Actually, it'll compile just fine,
but it won't run because it doesn't (yet) have a main() method.
When you're finished building this class definition, the final version
can be compiled and run.

When a new instance of the myRect class is initially created, all its instance variables are initialized to 0. Let's define a
buildRecpt() method that takes four integer arguments and "resizes" the rectangle to have the appropriate values for its
corners, returning the resulting rectangle object (note that because the arguments have the same names as the instance
variables, you have to make sure to use this to refer to them):

MyRect buildRect(int x1, int y1, int x2, int y2) {
    this.x1 = x1;
    this.y1 = y1;
    this.x2 = x2;
    this.y2 = y2;
    return this;
}

What if you want to define a rectangle's dimensions in a different way-for example, by using Point objects rather than
individual coordinates? You can overload buildRect() so that its parameter list takes two Point objects (note that you'll
also need to import the java.awt.Point class at the top of your source file so Java can find it):

Day 7 -- More About Methods

file:///G|/ebooks/1575211831/ch7.htm (2 of 13) [11/06/2000 7:47:12 PM]



MyRect buildRect(Point topLeft, Point bottomRight) {
    x1 = topLeft.x;
    y1 = topLeft.y;
    x2 = bottomRight.x;
    y2 = bottomRight.y;
    return this;
}

Perhaps you want to define the rectangle using a top corner and a width and height. You can do that, too. Just create a
different definition for buildRect():

MyRect buildRect(Point topLeft, int w, int h) {
    x1 = topLeft.x;
    y1 = topLeft.y;
    x2 = (x1 + w);
    y2 = (y1 + h);
    return this;
}

To finish up this example, let's create a method-called printRect()-to print out the rectangle's coordinates, and a main()
method to test it all (just to prove that this does indeed work). Listing 7.2 shows the completed class definition with all its
methods: three buildRect() methods, one printRect(), and one main().

Listing 7.2. The complete MyRect class.

 1:import java.awt.Point;
 2: 
 3:class MyRect {
 4:    int x1 = 0;
 5:    int y1 = 0;
 6:    int x2 = 0;
 7:    int y2 = 0;
 8: 
 9:    MyRect buildRect(int x1, int y1, int x2, int y2) {
10:        this.x1 = x1;
11:        this.y1 = y1;
12:        this.x2 = x2;
13:        this.y2 = y2;
14:        return this;
15:    }
16: 
17:    MyRect buildRect(Point topLeft, Point bottomRight) {
18:        x1 = topLeft.x;
19:        y1 = topLeft.y;
20:        x2 = bottomRight.x;
21:        y2 = bottomRight.y;
22:        return this;
23:    }
24: 
25:    MyRect buildRect(Point topLeft, int w, int h) {
26:        x1 = topLeft.x;
27:        y1 = topLeft.y;
28:        x2 = (x1 + w);
29:        y2 = (y1 + h);

Day 7 -- More About Methods

file:///G|/ebooks/1575211831/ch7.htm (3 of 13) [11/06/2000 7:47:12 PM]



30:        return this;
31:    }
32: 
33:    void printRect(){
34:        System.out.print("MyRect: <" + x1 + ", " + y1);
35:        System.out.println(", " + x2 + ", " + y2 + ">");
36:    }
37: 
38:    public static void main(String args[]) {
39:        MyRect rect = new MyRect();
40: 
41:        System.out.println("Calling buildRect with coordinates 25,25 
        50,50:");
42:         rect.buildRect(25, 25, 50, 50);
43:         rect.printRect();
44:         System.out.println("----------");
45: 
46:         System.out.println("Calling buildRect w/points (10,10), (20,20):");
47:         rect.buildRect(new Point(10,10), new Point(20,20));
48:         rect.printRect();
49:         System.out.println("----------");
50: 
51:         System.out.print("Calling buildRect w/1 point (10,10),");
52:         System.out.println(" width (50) and height (50):");
53: 
54:         rect.buildRect(new Point(10,10), 50, 50);
55:         rect.printRect();
56:        System.out.println("----------");
57:    }
58: }

Calling buildRect with coordinates 25,25 50,50:
MyRect: <25, 25, 50, 50>
----------
Calling buildRect w/points (10,10), (20,20):
MyRect: <10, 10, 20, 20>
----------
Calling buildRect w/1 point (10,10), width (50) and height (50):
MyRect: <10, 10, 60, 60>
----------

As you can see from this example, all the buildRect() methods work based on the arguments with which they are called.
You can define as many versions of a method as you need to in your own classes to implement the behavior you need for that
class.

Constructor Methods
In addition to regular methods, you can also define constructor methods in your class definition. Constructor methods are
used to initialize new objects when they're created. Unlike regular methods, you can't call a constructor method by calling it
directly; instead, constructor methods are called by Java automatically when you create a new object. As you learned on Day
4, "Working with Objects," when you use new, Java does three things:

Day 7 -- More About Methods

file:///G|/ebooks/1575211831/ch7.htm (4 of 13) [11/06/2000 7:47:12 PM]



Allocates memory for the new object●   

Initializes that object's instance variables, either to their initial values or to a default (0 for numbers, null for objects,
false for booleans, '\0' for characters)

●   

Calls the class's constructor method (which may be one of several methods)●   

New Term
Constructor methods are special methods that are called automatically
by Java to initialize a new object.

If a class doesn't have any special constructor methods defined, you'll still end up with a new object, but you might have to set
its instance variables or call other methods that the object needs to initialize itself. All the examples you've created up to this
point have behaved like this.

By defining constructor methods in your own classes, you can set initial values of instance variables, call methods based on
those variables or on other objects, or calculate initial properties of your object. You can also overload constructors, as you
would regular methods, to create an object that has specific properties based on the arguments you give in the new
expression.

Basic Constructors

Constructors look a lot like regular methods, with two basic differences:

Constructors always have the same name as the class.●   

Constructors don't have a return type.●   

For example, Listing 7.3 shows a simple class called Person. The constructor method for Person takes two arguments: a
string object representing a person's name and an integer for the person's age.

`

Listing 7.3. The Person class.

 1: class Person {
 2:     String name;
 3:     int age;
 4: 
 5:    Person(String n, int a) {
 6:         name = n;
 7:         age = a;
 8:     }
 9: 
10:    void printPerson() {
11:        System.out.print("Hi, my name is " + name);
12:        System.out.println(". I am " + age + " years old.");
13:    }
14: 
15:  public static void main (String args[]) {
16:     Person p;
17:     p = new Person("Laura", 20);
18:     p.printPerson();
19:     System.out.println("--------");
20:     p = new Person("Tommy", 3);
21:     p.printPerson();
22:     System.out.println("--------");
23:  }
24:}

Day 7 -- More About Methods

file:///G|/ebooks/1575211831/ch7.htm (5 of 13) [11/06/2000 7:47:12 PM]



Hi, my name is Laura. I am 20 years old.
--------
Hi, my name is Tommy. I am 3 years old.
--------

The person class has three methods: The first is the constructor method, defined in lines 5 to 8, which initializes the class's
two instance variables based on the arguments to new. The Person class also includes a method called printPerson()
so that the object can "introduce" itself, and a main() method to test each of these things.

Calling Another Constructor

Some constructors you write may be supersets of other constructors defined in your class; that is, they might have the same
behavior plus a little bit more. Rather than duplicating identical behavior in multiple constructor methods in your class, it
makes sense to be able to just call that first constructor from inside the body of the second constructor. Java provides a special
syntax for doing this. To call a constructor defined on the current class, use the this keyword as if it were a method name,
with the arguments just after it, like this:

this(arg1, arg2, arg3...);

The arguments to this() are, of course, the arguments to the constructor.

Overloading Constructors

Like regular methods, constructors can also take varying numbers and types of parameters, enabling you to create your object
with exactly the properties you want it to have, or for it to be able to calculate properties from different kinds of input.

For example, the buildRect() methods you defined in the MyRect class earlier today would make excellent constructors
because they're initializing an object's instance variables to the appropriate values. So, for example, instead of the original
buildRect() method you had defined (which took four parameters for the coordinates of the corners), you could create a
constructor instead. Listing 7.4 shows a new class, MyRect2, that has all the same functionality of the original MyRect,
except with overloaded constructor methods instead of the overloaded buildRect() method. The output shown at the end
is also the same output as for the previous MyRect class; only the code to produce it has changed.

Listing 7.4. The MyRect2 class (with constructors).

 1: import java.awt.Point;
 2: 
 3: class MyRect2 {
 4:     int x1 = 0;
 5:     int y1 = 0;
 6:     int x2 = 0;
 7:     int y2 = 0;
 8: 
 9:     MyRect2(int x1, int y1, int x2, int y2) {
10:         this.x1 = x1;
11:         this.y1 = y1;
12:         this.x2 = x2;
13:         this.y2 = y2;
14:     }
15: 
16:     MyRect2(Point topLeft, Point bottomRight) {
17:         x1 = topLeft.x;

Day 7 -- More About Methods

file:///G|/ebooks/1575211831/ch7.htm (6 of 13) [11/06/2000 7:47:12 PM]



18:         y1 = topLeft.y;
19:         x2 = bottomRight.x;
20:         y2 = bottomRight.y;
21:     }
22: 
23:     MyRect2(Point topLeft, int w, int h) {
24:         x1 = topLeft.x;
25:         y1 = topLeft.y;
26:         x2 = (x1 + w);
27:         y2 = (y1 + h);
28:     }
29: 
30:     void printRect() {
31:         System.out.print("MyRect: <" + x1 + ", " + y1);
32:         System.out.println(", " + x2 + ", " + y2 + ">");
33:     }
34: 
35:     public static void main(String args[]) {
36:         MyRect2 rect;
37: 
38:         System.out.println("Calling MyRect2 with coordinates 25,25 50,50:");
39:         rect = new MyRect2(25, 25, 50,50);
40:         rect.printRect();
41:         System.out.println("----------");
42: 
43:         System.out.println("Calling MyRect2 w/points (10,10), (20,20):");
44:         rect= new MyRect2(new Point(10,10), new Point(20,20));
45:         rect.printRect();
46:         System.out.println("----------");
47: 
48:         System.out.print("Calling MyRect2 w/1 point (10,10)");
49:         System.out.println(" width (50) and height (50):");
50:         rect = new MyRect2(new Point(10,10), 50, 50);
51:         rect.printRect();
52:         System.out.println("----------");
53: 
54:     }
55: }

Calling MyRect2 with coordinates 25,25 50,50:
MyRect: <25, 25, 50, 50>
----------
Calling MyRect2 w/points (10,10), (20,20):
MyRect: <10, 10, 20, 20>
----------
Calling MyRect2 w/1 point (10,10), width (50) and height (50):
MyRect: <10, 10, 60, 60>
----------

Day 7 -- More About Methods

file:///G|/ebooks/1575211831/ch7.htm (7 of 13) [11/06/2000 7:47:12 PM]



Overriding Methods
When you call an object's method, Java looks for that method definition in the class of that object, and if it doesn't find a
match with the right signature, it passes the method call up the class hierarchy until a definition is found. Method inheritance
means that you can use methods in subclasses without having to duplicate the code.

However, there may be times when you want an object to respond to the same methods but have different behavior when that
method is called. In this case, you can override that method. Overriding a method involves defining a method in a subclass
that has the same signature as a method in a superclass. Then, when that method is called, the method in the subclass is found
and executed instead of the one in the superclass.

Creating Methods That Override Existing Methods

To override a method, all you have to do is create a method in your subclass that has the same signature (name, return type,
and parameter list) as a method defined by one of your class's superclasses. Because Java executes the first method definition
it finds that matches the signature, this effectively "hides" the original method definition. Here's a simple example; Listing 7.5
shows a simple class with a method called printMe(), which prints out the name of the class and the values of its instance
variables.

Listing 7.5. The PrintClass class.

 1: class PrintClass {
 2:     int x = 0;
 3:     int y = 1;
 4: 
 5:     void printMe() {
 6:         System.out.println("x is " + x + ", y is " + y);
 7:         System.out.println("I am an instance of the class " +
 8:         this.getClass().getName());
 9:     }
10: }

Listing 7.6 shows a class called PrintSubClass that is a subclass of (extends) PrintClass. The only difference
between PrintClass and PrintSubClass is that the latter has a z instance variable.

Listing 7.6. The PrintSubClass class.

1: class PrintSubClass extends PrintClass {
2:     int z = 3;
3: 
4:     public static void main(String args[]) {
5:         PrintSubClass obj = new PrintSubClass();
6:         obj.printMe();
7:     }
8: }

x is 0, y is 1
I am an instance of the class PrintSubClass

In the main() method of PrintSubClass, you create a PrintSubClass object and call the printMe() method.
Note that PrintSubClass doesn't define this method, so Java looks for it in each of PrintSubClass's superclasses-and

Day 7 -- More About Methods

file:///G|/ebooks/1575211831/ch7.htm (8 of 13) [11/06/2000 7:47:12 PM]



finds it, in this case, in PrintClass. Unfortunately, because printMe() is still defined in PrintClass, it doesn't print
the z instance variable.

Note
There's an important feature of PrintClass I should point out: It
doesn't have a main() method. It doesn't need one; it isn't an
application. PrintClass is simply a utility class for the
PrintSubClass class, which is an application and therefore has a
main() method. Only the class that you're actually executing the
Java interpreter on needs a main() method.

Now, let's create a third class. PrintSubClass2 is nearly identical to PrintSubClass, but you override the
printMe() method to include the z variable. Listing 7.7 shows this class.

Listing 7.7. The PrintSubClass2 class.

 1: class PrintSubClass2 extends PrintClass {
 2:     int z = 3;
 3: 
 4:     void printMe() {
 5:         System.out.println("x is " + x + ", y is " + y +
 6:                ", z is " + z);
 7:         System.out.println("I am an instance of the class " +
 8:                this.getClass().getName());
 9:     }
10: 
11:     public static void main(String args[]) {
12:         PrintSubClass2 obj = new PrintSubClass2();
13:         obj.printMe();
14:     }
15: }

Now when you instantiate this class and call the printMe() method, the version of printMe() you defined for this class
is called instead of the one in the superclass PrintClass (as you can see in this output):

x is 0, y is 1, z is 3
I am an instance of the class PrintSubClass2

Calling the Original Method

Usually, there are two reasons why you want to override a method that a superclass has already implemented:

To replace the definition of that original method completely●   

To augment the original method with additional behavior●   

You've already learned about the first one; by overriding a method and giving that method a new definition, you've hidden the
original method definition. But sometimes you may just want to add behavior to the original definition rather than erase it
altogether. This is particularly useful where you end up duplicating behavior in both the original method and the method that
overrides it; by being able to call the original method in the body of the overridden method, you can add only what you need.

To call the original method from inside a method definition, use the super keyword to pass the method call up the hierarchy:

void myMethod (String a, String b) {

Day 7 -- More About Methods

file:///G|/ebooks/1575211831/ch7.htm (9 of 13) [11/06/2000 7:47:12 PM]



    // do stuff here
    super.myMethod(a, b);
    // maybe do more stuff here
}

The super keyword, somewhat like the this keyword, is a placeholder for this class's superclass. You can use it anywhere
you can use this, but to refer to the superclass rather than to the current class.

For example, Listing 7.8 shows the two different printMe() methods used in the previous example.

Listing 7.8. The printMe() methods.

 1: // from PrintClass
 2: void printMe() {
 3:         System.out.println("x is " + x + ", y is " + y);
 4:         System.out.println("I am an instance of the class" +
 5:                this.getClass().getName());
 6:     }
 7: }
 8: 
 9: //from PrintSubClass2
10:     void printMe() {
11:         System.out.println("x is " + x + ", y is " + y + ", z is " + z);
12:         System.out.println("I am an instance of the class " +
13:                this.getClass().getName());
14:     }

Rather than duplicating most of the behavior of the superclass's method in the subclass, you can rearrange the superclass's
method so that additional behavior can easily be added:

// from PrintClass
void printMe() {
    System.out.println("I am an instance of the class" +
                 this.getClass().getName());
    System.out.println("x is " + x);
    System.out.println("y is " + y);
}

Then, in the subclass, when you override printMe(), you can merely call the original method and then add the extra stuff:

// From PrintSubClass2
void printMe() {
    super.printMe();
    System.out.println("z is " + z);
}

Here's the output of calling printMe() on an instance of the subclass:

I am an instance of the class PrintSubClass2
X is 0
Y is 1
Z is 3

Day 7 -- More About Methods

file:///G|/ebooks/1575211831/ch7.htm (10 of 13) [11/06/2000 7:47:12 PM]



Overriding Constructors

Because constructors have the same name as the current class, you cannot technically override a superclass's constructors. If
you want a constructor in a subclass with the same number and type of arguments as in the superclass, you'll have to define
that constructor in your own class.

However, when you create your constructors you will almost always want to call your superclass's constructors to make sure
that the inherited parts of your object get initialized the way your superclass intends them to be. By explicitly calling your
superclasses constructors in this way you can create constructors that effectively override or overload your superclass's
constructors.

To call a regular method in a superclass, you use the form super.methodname(arguments). Because with
constructors you don't have a method name to call, you have to use a different form:

super(arg1, arg2, ...);

Note that Java has a specific rule for the use of super(): It must be the very first thing in your constructor definition. If you
don't call super() explicitly in your constructor, Java will do it for you-using super() with no arguments.

Similar to using this(...) in a constructor, super(...) calls a constructor method for the immediate superclass with
the appropriate arguments (which may, in turn, call the constructor of its superclass, and so on). Note that a constructor with
that signature has to exist in the superclass in order for the call to super() to work. The Java compiler will check this when
you try to compile the source file.

Note that you don't have to call the constructor in your superclass that has exactly the same signature as the constructor in
your class; you only have to call the constructor for the values you need initialized. In fact, you can create a class that has
constructors with entirely different signatures from any of the superclass's constructors.

Listing 7.9 shows a class called NamedPoint, which extends the class Point from Java's awt package. The Point class
has only one constructor, which takes an x and a y argument and returns a Point object. NamedPoint has an additional
instance variable (a string for the name) and defines a constructor to initialize x, y, and the name.

Listing 7.9. The NamedPoint class.

1: import java.awt.Point;
2: class NamedPoint extends Point {
3:     String name;
4:
5:     NamedPoint(int x, int y, String name) {
6:        super(x,y);
7:        this.name = name;
8:     }
9:     public static void main (String arg[]) {
10:      NamedPoint np = new NamedPoint(5, 5, "SmallPoint");
11:      System.out.println("x is " + np.x);
12:      System.out.println("y is " + np.y);
13:      System.out.println("Name is " + np.name);
14:    }
15:}

x is 5
y is 5
name is SmallPoint

Day 7 -- More About Methods

file:///G|/ebooks/1575211831/ch7.htm (11 of 13) [11/06/2000 7:47:12 PM]



The constructor defined here for NamedPoint (lines 5 through 8) calls Point's constructor method to initialize Point's
instance variables (x and y). Although you can just as easily initialize x and y yourself, you may not know what other things
Point is doing to initialize itself, so it's always a good idea to pass constructors up the hierarchy to make sure everything is
set up correctly.

Finalizer Methods
Finalizer methods are almost the opposite of constructor methods; whereas a constructor method is used to initialize an
object, finalizer methods are called just before the object is garbage-collected and its memory reclaimed.

The finalizer method is named simply finalize(). The Object class defines a default finalizer method, which does
nothing. To create a finalizer method for your own classes, override the finalize() method using this signature:

protected void finalize() throws Throwable {
    super.finalize();
}

Note
The throws Throwable part of this method definition refers to the
errors that might occur when this method is called. Errors in Java are
called exceptions; you'll learn more about them on Day 17,
"Exceptions." For now, all you need to do is include these keywords
in the method definition.

Inside the body of that finalize() method, include any cleaning up you want to do for that object. You can also call
super.finalize() to allow your class's superclasses to finalize your object, if necessary (it's a good idea to do so just to
make sure that everyone gets a chance to deal with the object if they need to).

You can always call the finalize() method yourself at any time; it's just a plain method like any other. However, calling
finalize() does not trigger an object to be garbage-collected. Only removing all references to an object will cause it to be
marked for deleting.

Finalizer methods are best used for optimizing the removal of an object-for example, by removing references to other objects,
by releasing external resources that have been acquired (for example, external files), or for other behaviors that may make it
easier for that object to be removed. In most cases, you will not need to use finalize() at all. See Day 21, "Under the
Hood," for more about garbage collection and finalize().

Summary
Today you have learned all kinds of techniques for using, reusing, defining, and redefining methods. You have learned how to
overload a method name so that the same method can have different behaviors based on the arguments with which it's called.
You've learned about constructor methods, which are used to initialize a new object when it's created. You have learned about
method inheritance and how to override methods that have been defined in a class's superclasses. Finally, you have learned
about finalizer methods, which can be used to clean up after an object just before that object is garbage-collected and its
memory reclaimed.

Congratulations on completing your first week of Teach Yourself Java in 21 Days! Starting next week, you'll apply
everything you've learned this week to writing Java applets and to working with more advanced concepts in putting together
Java programs and working with the standard Java class libraries.

Day 7 -- More About Methods

file:///G|/ebooks/1575211831/ch7.htm (12 of 13) [11/06/2000 7:47:12 PM]



Q&A

Q: I created two methods with the following signatures:

int total(int arg1, int arg2, int arg3) {...}
float total(int arg1, int arg2, int arg3) {...}

The Java compiler complains when I try to compile the class with these method definitions. But their
signatures are different. What have I done wrong?

A: Method overloading in Java works only if the parameter lists are different-either in number or type of arguments.
Return type is not relevant for method overloading. Think about it-if you had two methods with exactly the same
parameter list, how would Java know which one to call?

Q: Can I overload overridden methods (that is, can I create methods that have the same name as an inherited
method, but a different parameter list)?

A: Sure! As long as parameter lists vary, it doesn't matter whether you've defined a new method name or one that you've
inherited from a superclass.

   

Day 7 -- More About Methods

file:///G|/ebooks/1575211831/ch7.htm (13 of 13) [11/06/2000 7:47:12 PM]



file:///G|/ebooks/1575211831/f4-1.gif

file:///G|/ebooks/1575211831/f4-1.gif [11/06/2000 7:47:13 PM]



file:///G|/ebooks/1575211831/f6-1.gif

file:///G|/ebooks/1575211831/f6-1.gif [11/06/2000 7:47:14 PM]



file:///G|/ebooks/1575211831/f2-2.gif

file:///G|/ebooks/1575211831/f2-2.gif [11/06/2000 7:47:14 PM]



file:///G|/ebooks/1575211831/f2-3.gif

file:///G|/ebooks/1575211831/f2-3.gif [11/06/2000 7:47:15 PM]



file:///G|/ebooks/1575211831/f2-4.gif

file:///G|/ebooks/1575211831/f2-4.gif [11/06/2000 7:47:17 PM]



file:///G|/ebooks/1575211831/f2-5.gif

file:///G|/ebooks/1575211831/f2-5.gif [11/06/2000 7:47:19 PM]



file:///G|/ebooks/1575211831/f2-6.gif

file:///G|/ebooks/1575211831/f2-6.gif [11/06/2000 7:47:20 PM]



file:///G|/ebooks/1575211831/f2-7.gif

file:///G|/ebooks/1575211831/f2-7.gif [11/06/2000 7:47:20 PM]



file:///G|/ebooks/1575211831/f16-1.gif

file:///G|/ebooks/1575211831/f16-1.gif [11/06/2000 7:47:21 PM]



file:///G|/ebooks/1575211831/f10-1.gif

file:///G|/ebooks/1575211831/f10-1.gif [11/06/2000 7:47:22 PM]



file:///G|/ebooks/1575211831/f10-2.gif

file:///G|/ebooks/1575211831/f10-2.gif [11/06/2000 7:47:23 PM]



file:///G|/ebooks/1575211831/f10-3.gif

file:///G|/ebooks/1575211831/f10-3.gif [11/06/2000 7:47:23 PM]



file:///G|/ebooks/1575211831/f14-7.gif

file:///G|/ebooks/1575211831/f14-7.gif [11/06/2000 7:47:25 PM]



file:///G|/ebooks/1575211831/f8-1.gif

file:///G|/ebooks/1575211831/f8-1.gif [11/06/2000 7:47:26 PM]



file:///G|/ebooks/1575211831/f8-2.gif

file:///G|/ebooks/1575211831/f8-2.gif [11/06/2000 7:47:26 PM]



file:///G|/ebooks/1575211831/f8-3.gif

file:///G|/ebooks/1575211831/f8-3.gif [11/06/2000 7:47:27 PM]



file:///G|/ebooks/1575211831/f8-4.gif

file:///G|/ebooks/1575211831/f8-4.gif [11/06/2000 7:47:27 PM]



file:///G|/ebooks/1575211831/f8-5.gif

file:///G|/ebooks/1575211831/f8-5.gif [11/06/2000 7:47:27 PM]



file:///G|/ebooks/1575211831/f8-6.gif

file:///G|/ebooks/1575211831/f8-6.gif [11/06/2000 7:47:28 PM]



file:///G|/ebooks/1575211831/f8-7.gif

file:///G|/ebooks/1575211831/f8-7.gif [11/06/2000 7:47:28 PM]



file:///G|/ebooks/1575211831/f25-2.gif

file:///G|/ebooks/1575211831/f25-2.gif [11/06/2000 7:47:29 PM]



file:///G|/ebooks/1575211831/f25-3.gif

file:///G|/ebooks/1575211831/f25-3.gif [11/06/2000 7:47:29 PM]



file:///G|/ebooks/1575211831/f25-4.gif

file:///G|/ebooks/1575211831/f25-4.gif [11/06/2000 7:47:30 PM]



file:///G|/ebooks/1575211831/f25-5.gif

file:///G|/ebooks/1575211831/f25-5.gif [11/06/2000 7:47:30 PM]



file:///G|/ebooks/1575211831/f25-6.gif

file:///G|/ebooks/1575211831/f25-6.gif [11/06/2000 7:47:30 PM]



Day 28

Emerging Technologies
by Michael Morrison

CONTENTS
Java Beans

The Goal of Java Beans❍   

How Java Beans Relates to Java❍   

The Java Beans API❍   

●   

JavaOS

Overhead❍   

Industry Support❍   

●   

Java Microprocessors

picoJAVA❍   

microJAVA❍   

UltraJAVA❍   

●   

Summary●   

Q&A●   

This last lesson of the bonus week peers into the crystal ball and takes a look at some of the emerging
Java technologies. Today you'll learn about a few of the latest groundbreaking Java technologies and
what impact they will have on Java as we know it. By looking into the future, you can better gauge where
to aim your resources in the present, so today's lesson attempts to give you a rough sketch of a few of the
major new and pending products that will no doubt play a significant role in the future of Java.

Today's lesson covers the following major topics:

Java Beans components●   

The JavaOS operating system●   

Java microprocessors●   

The Java technologies you'll learn about today are still in their early stages as of this writing, which
means I can give you only a preliminary look at what they have to offer. Nevertheless, you should still be
able to take from this lesson a better understanding of where Java is headed and what it might mean to
your own development efforts.

Day 28 -- Emerging Technologies

file:///G|/ebooks/1575211831/ch28.htm (1 of 11) [11/06/2000 7:47:33 PM]



Java Beans
For some time now, the software development community has been pushing the idea of reusable
components. In case you've missed the hype, a component is a reusable piece of software that can be
easily assembled to create applications with much greater development efficiency. This notion of reusing
carefully packaged software was borrowed to some extent from the assembly-line approach that became
so popular in the United States during the industrial revolution, well before the modern computer era.
The idea as applied to software is to build small, reusable components once and then reuse them as much
as possible, thereby streamlining the entire development process.

New Term
A software component is a piece of software isolated into a discrete,
easily reusable structure.

Although component software has its merits, fully reusable software has yet to really establish itself; this
is so for a variety of reasons, not the least of which is the fact that the software industry is still very
young compared to the industries carved out in the industrial revolution. It stands to reason that it should
take time to iron out the kinks in the whole software- production process. If you're like me, you'll
embrace the rapid changes taking place in the software world and relish the fact that you are a part of a
revolution of sorts-an information revolution. But I digress!

Perhaps the largest difficulty component software has had to face is the wide range of disparate
microprocessors and operating systems in use today. There have been a variety of reasonable attempts at
component software, but they've always been limited to a specific operating system. Microsoft's VBX
and OCX component architectures have had great success in the pc world, but they've done little to
bridge the gap between other types of operating systems. Weighing in the amount of work required to get
an inherently platform-dependent component technology running on a wide range of operating systems,
it makes sense that Microsoft has focused solely on the pc market.

Note
Actually, Microsoft's new ActiveX technology, which is based on its
OCX technology, aims to provide an all-purpose component
technology compatible across a wide range of platforms. However,
considering the dependency of ActiveX on 32-bit Windows code, it
has yet to be seen how Microsoft will solve the platform-dependency
issue. Maybe they are just waiting around for everyone to switch to
Windows 95/NT?

Prior to the explosion of the Internet, the platform-dependency issue wasn't all that big a deal. pc
developers didn't necessarily care too much that their products wouldn't run on a Solaris system. Okay,
some pc developers hedged their bets and ported their applications to the Macintosh platform, but most
with considerable development efforts. The whole scenario changed with the operating system melting
pot created by the Internet. The result was a renewed interest in developing software that everyone can
use, regardless of which operating system they happen to be running. Java has been a major factor in
making truly platform-independent software development a reality. However, until recently Java has not
provided an answer to the issue of component software-we'll get to that in just a moment.

Day 28 -- Emerging Technologies

file:///G|/ebooks/1575211831/ch28.htm (2 of 11) [11/06/2000 7:47:33 PM]



As if the platform-dependency issue weren't enough, some existing component technologies also suffer
from having to be developed in a particular programming language or for a particular development
environment. Just as platform dependency cripples components at runtime, limiting component
development to a particular programming language or development environment equally cripples
components at the development end. Software developers want to be able to decide for themselves which
language is the most appropriate for a particular task. Likewise, developers want to be able to select the
development environment that best fits their needs, rather than being forced to use one based on the
constraints of a component technology.

So any realistic long-term component technology must deal with both the issue of platform dependency
and language dependency. This brings me to the topic at hand: Java Beans. JavaSoft's Java Beans
technology is a component technology that answers both of these problems directly. The Java Beans
technology promises to take the component software assembly paradigm to a new level. As of this
writing, the Java Beans specification is under development with a preliminary release to follow soon
after.

Java Beans is being implemented as an architecture- and platform-independent API for creating and
using dynamic Java software components. Java Beans picks up where other component technologies
have left off, using the portable Java platform as the basis for providing a complete component software
solution that is readily applicable to the online world.

The Goal of Java Beans

Following the rapid success of the Java runtime system and programming language, JavaSoft realized the
importance of developing a complete component technology solution. Its answer is the Java Beans
technology, whose design goals can be summarized by the following list of requirements:

Compact and easy to create and use●   

Fully portable●   

Built on the inherent strengths of Java●   

Robust distributed computing mechanisms●   

Support for flexible design-time component editors●   

The first requirement of Java Beans-to be very compact-is based on the fact that the Java Beans
components will often be used in distributed environments where entire components may be transferred
across a low-bandwidth Internet connection. Clearly, components must be as compact as possible to
facilitate a reasonable transfer time. The second part of this goal relates to the ease with which the
components are built and used. It's not such a stretch to imagine components that are easy to use, but
creating a component architecture that makes it easy to build components is a different issue altogether.
Existing attempts at component software have often been plagued by complex programming APIs that
make it difficult for developers to create components without chronic headaches. So Java Beans
components must be not only easy to use, but also easy to develop. For you and me, this is a critical
requirement because it means fewer ulcers and more time to embellish components with frilly features.

Java Beans components are largely based on the class structure already in use with traditional Java applet
programming, which is an enormous benefit to those of us heavily investing our time and energy in
learning Java. JavaSoft has promised that Java applets designed around the awt package will easily scale

Day 28 -- Emerging Technologies

file:///G|/ebooks/1575211831/ch28.htm (3 of 11) [11/06/2000 7:47:34 PM]



to new Java Beans components. This also has the positive side effect of making Java Beans components
very compact, since Java applets are already very efficient in terms of size.

The second major goal of Java Beans is to be fully portable; you learned the importance of this at the
beginning of this lesson. JavaSoft is in the process of finalizing a Java Beans API that defines the
specific component framework for Java Beans components. The Java Beans API coupled with the
platform-independent Java system it is based on will together comprise the platform-independent
component solution alluded to earlier. As a result, developers will not need to worry about including
platform-specific libraries with their Java applets. The result will be reusable components that will unify
the world of computing under one happy, peaceful umbrella. OK, maybe that's asking a little too
much-I'll settle for just being able to develop a component and have it run unmodified on any
Java-supported system.

The existing Java architecture already offers a wide range of benefits easily applied to components. One
of the more important, but rarely mentioned, features of Java is its built-in class discovery mechanism,
which allows objects to interact with each other dynamically. This results in a system where objects can
be integrated with each other independently of their respective origins or development history. The class
discovery mechanism is not just a neat feature of Java; it is a necessary requirement in any component
architecture. It is fortunate for Java Beans that this functionality is already provided by Java at no
additional cost. Other component architectures have had to implement messy registration mechanisms to
achieve the same result.

Another example of Java Beans inheriting existing Java functionality is persistence, which is the
capability of an object to store and retrieve its internal state. Persistence is handled automatically in Java
Beans by simply using the serialization mechanism already present in Java. Alternately, developers can
create customized persistence solutions whenever necessary.

New Term
Persistence is the capability of an object or component to store and
retrieve its internal state.

New Term
Serialization is the process of storing or retrieving information
through a standard protocol.

Although not a core element of the Java Beans architecture, support for distributed computing is a major
issue with Java Beans. Because distributed computing requires relatively complex solutions as a result of
the complex nature of distributed systems, Java Beans leverages the usage of external distributed
approaches based on need. In other words, Java Beans allows developers to use distributed computing
mechanisms whenever necessary, but it doesn't overburden itself with core support for distributed
computing. This may seem like the Java Beans architects are being lazy, but in fact it is this very design
approach that allows Java Beans components to be very compact, since distributed computing solutions
inevitably require much more overhead.

Java Beans component developers have the option of selecting a distributed computing approach that
best fits their needs. JavaSoft provides a distributed computing solution in its Remote Method Invocation
(RMI) technology, but Java Beans developers are in no way handcuffed to this solution. Other options
include CORBA (Common Object Request Broker Architecture) and Microsoft's DCOM (Distributed

Day 28 -- Emerging Technologies

file:///G|/ebooks/1575211831/ch28.htm (4 of 11) [11/06/2000 7:47:34 PM]



Component Object Model), among others. The point is that distributed computing has been cleanly
abstracted from Java Beans to keep things tight while still allowing developers that require distributed
support a wide range of options.

The final design goal of Java Beans deals with design-time issues and how developers build applications
using Java Beans components. The Java Beans architecture includes support for specifying design-time
properties and editing mechanisms to better facilitate visual editing of Java Beans components. The
result is that developers will be able to use visual tools to assemble and modify Java Beans components
in a seamless fashion, much the way existing pc visual tools work with components such as VBX or
OCX controls. In this way, component developers specify the way in which the components are to be
used and manipulated in a development environment. This feature alone will officially usher in the usage
of professional visual editors and significantly boost the productivity of applications developers.

How Java Beans Relates to Java

Many developers not completely familiar with the idea of software components will likely be confused
by Java Beans's relationship to Java. Hasn't Java been touted as an object-oriented technology capable of
serving up reusable objects? Yes and no. Yes, Java provides a means of building reusable objects, but
there are few rules or standards governing how objects interact with each other. Java Beans builds on the
existing design of Java by specifying a rich set of mechanisms for interaction between objects, along
with common actions most objects will need to support, such as persistence and event handling.

The current Java component model, although not bad, is relatively limited when it comes to delivering
true reusability and interoperability. At the object level, there is really no straightforward mechanism for
creating reusable Java objects that can interact with other objects dynamically in a consistent fashion.
The closest thing you can do in Java is to create applets and attempt to allow them to communicate with
each other on a Web page, which isn't a very straightforward task. Java Beans provides the framework by
which this communication can take place with ease. Even more important is the fact that Java Beans
components can be easily tweaked via a standard set of well-defined properties. Basically, Java Beans
merges the power of full-blown Java applets with the compactness and reusability of Java awt
components, such as buttons.

Java Beans components aren't limited to visual objects such as buttons, however. You can just as easily
develop nonvisual Java Beans components that perform some background function in concert with other
components. In this way, Java Beans merges the power of visual Java applets with nonvisual Java
applications under a consistent component framework.

Note
A nonvisual component is any component that doesn't have visible
output. When thinking of components in terms of awt objects like
buttons and menus, this may seem a little strange. However, keep in
mind that a component is simply a tightly packaged program and has
no specific requirement of being visual. A good example of a
nonvisual component is a timer component, which fires timing events
at specified intervals. Timer components are very popular in other
component development environments, such as Microsoft Visual
Basic.

Day 28 -- Emerging Technologies

file:///G|/ebooks/1575211831/ch28.htm (5 of 11) [11/06/2000 7:47:34 PM]



You can use together a variety of Java Beans components without necessarily writing any code by using
visual tools. This ability to use a variety of components together regardless of their origin is an
enhancement to the current Java model. You can certainly use other prebuilt objects in Java, but you
must have an intimate knowledge of the object's interface. Additionally, you must integrate the object
into your code programmatically. Java Beans components expose their own interfaces visually, providing
a means to edit their properties without programming. Furthermore, using a visual editor, you can simply
"drop" a Java Beans component directly into an application without writing any code. This is an entirely
new level of flexibility and reuse not previously possible in Java alone.

The Java Beans API

Okay, I've rambled enough about Java Beans from the standpoint of what it does and why it's cool. Let's
focus now on some specifics regarding how all this is possible. Keep in mind that Java Beans is
ultimately a programming interface, meaning that all its features are implemented as extensions to the
standard Java class library. So all the functionality provided by Java Beans is actually implemented in the
Java Beans API. The Java Beans API itself is a suite of smaller APIs devoted to specific functions, or
services. Following is a list of the main component services in the Java Beans API that are necessary to
facilitate all the features you've been learning about today:

GUI merging●   

Persistence●   

Event handling●   

Introspection●   

Application builder support●   

By understanding these services and how they work, you'll have much more insight into exactly what
type of technology Java Beans is. Each of these services is implemented in the form of smaller APIs
contained within the larger Java Beans API. The next few sections are devoted to each of these APIs and
why they are necessary elements of the Java Beans architecture.

GUI Merging

The GUI-merging APIs provide a means for a component to merge its GUI elements with the container
document, which is usually just the Web page containing the component. Most container documents have
menus and toolbars that need to display any special features provided by the component. The
GUI-merging APIs allow the component to add features to the container document's menu and toolbar.
These APIs also define the mechanism facilitating space negotiations between components and their
containers. In other words, the GUI-merging APIs also define the layout properties for components.

New Term
A container document is a document (typically HTML) containing
Java Beans components that serves as a parent for all the components
it contains. Container documents typically are responsible for
managing the main menu and toolbar, among other things.

Persistence

Day 28 -- Emerging Technologies

file:///G|/ebooks/1575211831/ch28.htm (6 of 11) [11/06/2000 7:47:34 PM]



The persistence APIs specify the mechanism by which components can be stored and retrieved within the
context of a containing document. By default, components inherit the automatic serialization mechanism
provided by Java. Developers are also free to design more elaborate persistence solutions based on the
specific needs of their components.

Event Handling

The event-handling APIs specify an event-driven architecture that defines how components interact with
each other. The Java awt already includes a powerful event-handling model, which serves as the basis for
the event-handling component APIs. These APIs are critical in allowing components the freedom to
interact with each other in a consistent fashion.

Introspection

The introspection APIs define the techniques by which components make their internal structure readily
available at design time. These APIs consist of the functionality necessary to allow development tools to
query a component for its internal state, including the interfaces, methods, and member variables that
comprise the component. The APIs are divided into two distinct sections, based on the level at which
they are being used. For example, the low-level introspection APIs allow development tools direct access
to component internals, which is a function you wouldn't necessarily want in the hands of component
users. This brings us to the high-level APIs. The high-level APIs use the low-level APIs to determine
which parts of a component are exported for user modification. So although development tools will
undoubtedly make use of both APIs, they will use the high-level APIs only when providing component
information to the user.

Application Builder Support

The application builder support APIs provide the overhead necessary for editing and manipulating
components at design time. These APIs are used largely by visual development tools to provide a means
to visually lay out and edit components while constructing an application. The section of a component
providing visual editing capabilities is specifically designed to be physically separate from the
component itself. This is so standalone runtime components can be as compact as possible. In a purely
runtime environment, components are transferred with only the necessary runtime component.
Developers wanting to use the design-time component facilities can easily acquire the design-time
portion of the component.

JavaOS
Even though Java has been touted largely as a neat new programming language, it is in fact much more
than that. Java is also a very powerful and compact runtime system that in many ways mimics the
facilities provided by a full-blown operating system. Knowing this, it wasn't a complete surprise to some
that JavaSoft decided to build a complete operating system around the Java technology. This new
operating system is called JavaOS, and is described by JavaSoft as "a highly compact operating system
designed to run Java applications directly on microprocessors in anything from net computers to pagers."

The status of the JavaOS project is still largely under wraps as of this writing, but there is enough

Day 28 -- Emerging Technologies

file:///G|/ebooks/1575211831/ch28.htm (7 of 11) [11/06/2000 7:47:34 PM]



information out to at least get an idea of where JavaSoft is headed with it. First and foremost, JavaOS is
expected to ride the wave created by Java and its insanely rapid success. However, don't let that
statement mislead you into thinking that JavaOS is any less legitimate than the technology on which it is
built. The idea of building a complete operating system on top of the existing Java technology makes
perfect sense. And if JavaSoft puts as much thought into JavaOS as it did into Java, it will no doubt be a
very interesting operating system.

The applications of a compact, efficient operating system that can natively run Java programs are far and
wide. In fact, JavaSoft has already made mention of a variety of devices to which the JavaOS technology
could be easily applied. These devices include everything from networked computers to cellular
telephones-basically any device that could benefit from a compact operating system and support for a
powerful programming language like Java.

Overhead

JavaOS has been described by JavaSoft as just enough of an operating system to run the Java virtual
machine. With this minimal design goal, it stands to reason that JavaSoft is largely targeting electronic
devices with the JavaOS technology. As part of this approach, JavaOS is specifically designed to be fully
ROMable, meaning that it will work well in the embedded systems common to electronic devices.

New Term
A ROMable software technology is one that can be implemented in
read-only memory (ROM). ROM is commonly used in electronic
devices to store executable system code, since there is typically no
other storage means beyond random access memory (RAM), which is
temporary.

New Term
An embedded system is a scaled-down computer system programmed
to perform a particular function within an electronic device.

JavaSoft has made mention of JavaOS being able to run with as little as 512KB of ROM and 256KB of
RAM in an embedded environment. Likewise, an entire JavaOS system running on a networked
computer requires only 3MB of ROM and 4MB of RAM. These last figures include space for JavaOS,
the HotJava Web browser, and a cache for downloading Web content and applets. JavaOS's minimal
requirements set the stage for some unique products such as compact personal digital assistants (PDAs)
with complete Internet support.

Industry Support

Because of the success of Java, JavaOS is able to enjoy industry support prior to its availability in even a
preliminary form. An impressive group of technology companies have already announced plans to
license JavaOS. Likewise, an equally important group of software tools companies have announced plans
to provide development tools for JavaOS. These two areas of support provide the one-two punch
necessary for JavaOS to be a success.

JavaSoft is already working with the software tools companies to define a set of APIs for developing

Day 28 -- Emerging Technologies

file:///G|/ebooks/1575211831/ch28.htm (8 of 11) [11/06/2000 7:47:34 PM]



applications for JavaOS. Major players on the Java development scene have already announced
intentions to enhance their development environments to support JavaOS embedded systems
development. This is a pretty major step in the embedded programming world, where many development
tools are still fairly primitive compared to the visual tools used by computer applications developers.

Note
On a similar front, both the Solaris and Windows platforms are slated
to include full support for Java at the operating-system level.
However, this support will be aimed more at supporting the Java
runtime system than serving as an implementation of JavaOS.

Java Microprocessors
As if Sun weren't branching out enough with JavaOS, it recently surprised the microprocessor world by
announcing the development of a line of microprocessors that are optimized for Java. Microprocessors
aren't new to Sun, whose Sun Microelectronics division is responsible for the popular SPARC line of
microprocessors. However, the idea of Sun Microelectronics developing microprocessors specifically to
support Java no doubt caught a lot of people off guard, including other microprocessor companies!

Note
Just so you don't get confused, both JavaSoft and Sun
Microelectronics are divisions of Sun Microsystems. So whenever I
refer to Sun I'm referring to the overall company.

Java microprocessors are quite obviously yet another move on Sun's part to capitalize on the success of
Java. However, like JavaOS, Sun legitimately has an interesting and potentially lucrative angle in
developing Java microprocessors. Also like JavaOS, the primary target application for Java
microprocessors is in embedded systems. Speed is a critical factor in embedded systems, primarily due to
the limited horsepower available in such small systems. Java microprocessors have the potential to
significantly increase performance since they are being designed around the highly efficient Java
technology. Contrast this with other embedded microprocessors that typically have a more general
design.

Sun is pushing Java microprocessors based on a new microprocessor product paradigm: simple, secure,
and small. Add to this Sun's promise of delivering Java microprocessors at a fraction of the cost of
traditional microprocessors. Sun is clearly appealing to the consumer electronics market, where a
compact, low-cost microprocessor would probably rock a lot of boats. Sun has also announced the
development of a full range of component- and board-level products to support the microprocessors.

Even though the prospect of a Java microprocessor might seem strange at first, it's not hard to see the
motivation. By 1999, the average American home is expected to contain between 50 and 100
microcontrollers. Worldwide, there are also expected to be more than 145 million cellular phone users,
with each phone containing at least one microcontroller. And each microcontroller contains at least one
microprocessor. Are you starting to get the picture?

New Term

Day 28 -- Emerging Technologies

file:///G|/ebooks/1575211831/ch28.htm (9 of 11) [11/06/2000 7:47:34 PM]



A microcontroller is a miniature computer system, usually
implemented on a single circuit board, scaled down to support a
limited function such as those required by electronic devices.

The Java processor family is slated to consist of three lines of microprocessors:

picoJAVA●   

microJAVA●   

UltraJAVA●   

The next few sections describe these different processor lines and which applications each is targeting.

picoJAVA

The low-end line of Java microprocessors is called picoJAVA and serves as the basic design on which all
the microprocessors are based. The picoJAVA core is designed to provide the best price/performance
microprocessor that fully supports the Java virtual machine. The picoJAVA line of microprocessors is
expected to have a per-processor cost of under $25, establishing it as a prime target for cellular phone
applications, among many other consumer electronics products.

microJAVA

The next processor line above picoJAVA is microJAVA, which builds application-specific I/O, memory,
communications, and control functions onto the picoJAVA core. microJAVA processors are expected to
cost anywhere from $25 to $100, which makes them good candidates for a wide range of network
devices such as telecommunications equipment, along with other non-network applications such as
printers and video games.

UltraJAVA

The high-end line of Java microprocessors is called UltraJAVA and is designed to be the very fastest
Java processors available. The UltraJAVA processor line includes support for advanced graphics by
virtue of Sun's Visual Instruction Set (VIS), which defines high-performance hardware graphics
extensions. Not surprisingly, the UltraJAVA line of processors is primarily targeting high-end 3D
graphics and multimedia applications. With an expected cost starting at $100, the UltraJAVA processor
line may still be a bargain.

Summary
Today you have taken stock of the future of Java by learning about some technologies that are built on
the stable framework of Java. Although these technologies may not necessarily affect your Java
development efforts anytime soon, they will still play a critical role in Java reaching maturity as a stable
technology. You began the lesson by learning about Java Beans, which is a new software technology that
promises to bring reusable software components to Java. You then moved on to JavaOS, which is a new
operating system based entirely on the Java virtual machine. You finished up the lesson with a look at the

Day 28 -- Emerging Technologies

file:///G|/ebooks/1575211831/ch28.htm (10 of 11) [11/06/2000 7:47:34 PM]



new Java microprocessors, which aim to be first silicon Java implementation.

This lesson concludes your bonus week. Throughout this week you've learned a great deal of information
that isn't entirely related, except for the fact that Java is at the heart of it all. I encourage you to use this
information as a foundation to learn more about Java programming and the emerging technologies that
will enhance it in the future.

Q&A

Q: What is the difference between a Java Beans component and a regular Java class?
A: A Java Beans component is a regular Java class built on the Java Beans API. More specifically, a

Java Beans component adds to the standard Java class structure the ability to interact with other
components, a well-defined mechanism for exposing information about itself, and a means by
which it can be visually edited.

Q: What is an example of a container document?
A: A good example of a container document is an HTML page. Understand that the role of a

container document goes beyond just being a document in the sense that an HTML document
consists of HTML code. In regard to Java Beans components, a container document provides
much of the overhead of the parent application, such as managing the main menu and toolbar. In
this case, the parent application is the Web browser the document is being viewed in.

Q: Will JavaOS compete with established desktop operating systems like Windows 95 or the
Macintosh OS?

A: I'm not going to make any absolute statements here, but it looks extremely unlikely that Sun
would ever position JavaOS as an operating system that would compete in the personal computer
market-or any desktop computer market, for that matter. By design, JavaOS is targeted toward
more compact systems, such as those prevalent in consumer electronics products.

Q: Will JavaOS and Java microprocessors change the Java language in any way?
A: No. The Java language is frozen as of version 1.02, meaning that any additions to the language

must come in the form of new APIs rather than modifications to the core API. It is unlikely that
either JavaOS or Java microprocessors would need to modify the design of the Java language,
anyway.

   

Day 28 -- Emerging Technologies

file:///G|/ebooks/1575211831/ch28.htm (11 of 11) [11/06/2000 7:47:34 PM]



appendix A

Language Summary
by Laura Lemay

CONTENTS
Reserved Words●   

Comments●   

Literals●   

Variable Declaration●   

Variable Assignment●   

Operators●   

Objects●   

Arrays●   

Loops and Conditionals●   

Class Definitions●   

Method and Constructor Definitions●   

Packages, Interfaces, and Importing●   

Exceptions and Guarding●   

This appendix contains a summary or quick reference for the Java language, as described in this book.

Technical Note
This is not a grammar overview, nor is it a technical overview of the
language itself. It's a quick reference to be used after you already
know the basics of how the language works. If you need a technical
description of the language, your best bet is to visit the Java Web site
(http://java.sun.com) and download the actual specification,
which includes a full BNF grammar.

Language keywords and symbols are shown in a monospace font. Arguments and other parts to be
substituted are in italic monospace.

Optional parts are indicated by brackets (except in the array syntax section). If there are several options
that are mutually exclusive, they are shown separated by pipes ([|]) like this:

appendix A -- Language Summary

file:///G|/ebooks/1575211831/ch29.htm (1 of 8) [11/06/2000 7:47:35 PM]

http://java.sun.com/


[ public | private | protected ] type varname

Reserved Words
The following words are reserved for use by the Java language itself (some of them are reserved but not
currently used). You cannot use these words to refer to classes, methods, or variable names:

abstract float public
boolean for return
break goto short
byte if static
case implements super
catch import switch
char instanceof synchronize
class int this
const interface throw
continue long throws
do native transient
double new try
else null void
extends packa volatilege
final private while
finally protected  

Comments

/* this is a multiline comment */
// this is a single-line comment
/** Javadoc comment */

Literals

number Type int
number[l | L] Type long
0xhex Hex integer
0Xhex Hex integer
0octal Octal integer
[ number ].number Type double
number[ f | f] Type float

appendix A -- Language Summary

file:///G|/ebooks/1575211831/ch29.htm (2 of 8) [11/06/2000 7:47:35 PM]



number[ d | D] Type double
[ + | - ] number Signed
numberenumber Exponent
numberEnumber Exponent
'character' Single character
"characters" String
"" Empty string
\b Backspace
\t Tab
\n Line feed
\f Form feed
\r Carriage return
\" Double quote
\' Single quote
\\ Backslash
\uNNNN Unicode escape (NNNN is hex)
true Boolean
false Boolean

Variable Declaration

[ byte | short | int | long ]
varname

Integers (pick one
type)

[ float | double ] varname Floats (pick one
type)

char varname Characters
boolean varname Boolean
classname varname Class types
interfacename varname Interface types
type varname, varname, varname Multiple variables

The following options are available only for class and instance variables. Any of these options can be
used with a variable declaration:

[ static ] variableDeclaration Class variable
[ final ] variableDeclaration Constants
[ public | private | protected ]
variableDeclaration

Access control

[volatile] varname Modified
asynchronously

appendix A -- Language Summary

file:///G|/ebooks/1575211831/ch29.htm (3 of 8) [11/06/2000 7:47:35 PM]



[transient] varname Not persistent (not
yet implemented)

Variable Assignment

variable = value Assignment
variable++ Postfix increment
++variable Prefix increment
variable-- Postfix decrement
--variable Prefix decrement
variable += value Add and assign
variable -= value Subtract and assign
variable *= value Multiply and assign
variable /= value Divide and assign
variable %= value Modulus and assign
variable &= value AND and assign
variable |= value OR and assign
variable ^= value XOR and assign
variable <<= value Left-shift and assign
variable >>= value Right-shift and assign
variable >>>= value Zero-fill right-shift and assign

Operators

arg + arg Addition
arg - arg Subtraction
arg * arg Multiplication
arg / arg Division
arg % arg Modulus
arg < arg Less than
arg > arg Greater than
arg <= arg Less than or equal to
arg >= arg Greater than or equal to
arg == arg Equal
arg != arg Not equal
arg && arg Logical AND
arg || arg Logical OR
! arg Logical NOT

appendix A -- Language Summary

file:///G|/ebooks/1575211831/ch29.htm (4 of 8) [11/06/2000 7:47:35 PM]



arg & arg AND
arg | arg OR
arg ^ arg XOR
arg << arg Left-shift
arg >> arg Right-shift
arg >>> arg Zero-fill right-shift
~ arg Complement
(type)thing Casting
arg instanceof class Instance of
test ? trueOp : falseOp Ternary (if) operator

Objects

new class() Creates new
instance

new class(arg,arg,arg...) New instance with
parameters

object.variable Instance variable
object.classvar Class variable
Class.classvar Class variable
object.method() Instance method (no

args)
object.method(arg,arg,arg...) Instance method
object.classmethod() Class method (no

args)
object.classmethod(arg,arg,arg...) Class method
Class.classmethod() Class method (no

args)
Class.classmethod(arg,arg,arg...) Class method

Arrays

Note
The brackets in this section are parts of the array creation or access
statements. They do not denote optional parts as they do in other parts
of this appendix.

Type varname[] Array variable
type[] varname Array variable
new type[numElements] New array object

appendix A -- Language Summary

file:///G|/ebooks/1575211831/ch29.htm (5 of 8) [11/06/2000 7:47:35 PM]



array[index] Element access
array.length Length of array

Loops and Conditionals

if ( test) block Conditional
if ( test ) block else block Conditional with else
switch (test) {
    case value : statements
    case value : statements
    ...
    default : statement
}

switch (only with
integer or char types)

for (initializer; test; change )
block

for loop

while ( test ) block while loop
do block

while (test)

do loop

break [ label ] break from loop or
switch

continue [ label ] continue loop
label: Labeled loop

Class Definitions

class classname block Simple class definition
Any of the following optional modifiers can be added to the class definition:
[ final ] class classname
block

Cannot be subclassed

[ abstract ] class classname
block

Cannot be instantiated

[ public ] class classname
block

Accessible outside package

class classname [ extends
Superclass ] block

Define superclass

class classname [ implements
interfaces ] block

Implement one or more interfaces

appendix A -- Language Summary

file:///G|/ebooks/1575211831/ch29.htm (6 of 8) [11/06/2000 7:47:35 PM]



Method and Constructor Definitions
The basic method looks like this, where returnType is a type name, a class name, or void.

ReturnType methodName() block Basic method
returnType methodName(parameter,
parameter, ...) block

Method with
parameters

Method parameters look like this:

type parameterName

Method variations can include any of the following optional keywords:

[ abstract ] returnType methodName()
block

Abstract method

[ static ] returnType methodName() block Class method
[ native ] returnType methodName() block Native method
[ final ] returnType methodName() block final method

[ synchronized ] returnType methodName()
block

Thread lock before
executing

[ public | private | protected ]
returnType methodName()

Access control

Constructors look like this:

classname() block Basic constructor
classname(parameter, parameter,
parameter...) block

Constructor with
parameters

[ public | private | protected]
classname() block

Access control

In the method/constructor body you can use these references and methods:

this Refers to current object
super Refers to superclass
super.methodName() Calls a superclass's method
this(...) Calls class's constructor
super(...) Calls superclass's constructor
return [ value ] Returns a value

appendix A -- Language Summary

file:///G|/ebooks/1575211831/ch29.htm (7 of 8) [11/06/2000 7:47:35 PM]



Packages, Interfaces, and Importing

import package.className Imports specific class name
import package.* Imports all public classes in package

package packagename Classes in this file belong to this
package

interface interfaceName [ extends anotherInterface ]
block

[ public ] interface interfaceName block

[ abstract ] interface interfaceName block

Exceptions and Guarding

synchronized ( object )
block

Waits for lock on object

try block Guarded statements
catch ( exception ) block Executed if exception is thrown
[ finally block ] Cleanup code

try block
[ catch ( exception ) block
]
finally block

Same as previous example (can use
optional catch or finally, or both)

   

appendix A -- Language Summary

file:///G|/ebooks/1575211831/ch29.htm (8 of 8) [11/06/2000 7:47:35 PM]



appendix B

Class Hierarchy Diagrams

CONTENTS
About These Diagrams●   

About These Diagrams
The diagrams in this appendix are class hierarchy diagrams for the package java and for all the
subpackages recursively below it in the Java 1.0 binary release.

Each page contains the class hierarchy for one package (or a subtree of a particularly large package) with
all its interfaces included, and each class in this tree is shown attached to its superclasses, even if they are
on another page. A detailed key is located on the first page of this appendix.

I supplemented the API documentation by looking through all the source files to find all the (missing)
package classes and their relationships.

I've heard there are various programs that auto-layout hierarchies for you, but I did these the
old-fashioned way (in other words, I earned it, as J.H. used to say). One nice side effect is that these
diagrams should be more readable than a computer would produce, though you will have to live with my
aesthetic choices. I chose, for example, to attach lines through the center of each class node, something
which I think looks and feels better overall but which on occasion can be a little confusing. Follow lines
through the center of the classes (not at the corners, nor along any line not passing through the center) to
connect the dots mentally.

Class Hierarchy Diagrams

java.applet●   

java.lang●   

java.lang-errors●   

java.lang-exceptions●   

java.io●   

java.net●   

java.awt●   

java.awt-components●   

appendix B -- Class Hierarchy Diagrams

file:///G|/ebooks/1575211831/ch30.htm (1 of 2) [11/06/2000 7:47:36 PM]



java.awt-layouts●   

java.awt.image●   

java.awt.peer●   

java.util●   

   

appendix B -- Class Hierarchy Diagrams

file:///G|/ebooks/1575211831/ch30.htm (2 of 2) [11/06/2000 7:47:36 PM]



file:///G|/ebooks/1575211831/fb-1.gif

file:///G|/ebooks/1575211831/fb-1.gif (1 of 2) [11/06/2000 7:47:38 PM]



file:///G|/ebooks/1575211831/fb-1.gif

file:///G|/ebooks/1575211831/fb-1.gif (2 of 2) [11/06/2000 7:47:38 PM]



file:///G|/ebooks/1575211831/fb-2.gif

file:///G|/ebooks/1575211831/fb-2.gif (1 of 2) [11/06/2000 7:47:40 PM]



file:///G|/ebooks/1575211831/fb-2.gif

file:///G|/ebooks/1575211831/fb-2.gif (2 of 2) [11/06/2000 7:47:40 PM]



file:///G|/ebooks/1575211831/fb-3.gif

file:///G|/ebooks/1575211831/fb-3.gif (1 of 2) [11/06/2000 7:47:41 PM]



file:///G|/ebooks/1575211831/fb-3.gif

file:///G|/ebooks/1575211831/fb-3.gif (2 of 2) [11/06/2000 7:47:41 PM]



file:///G|/ebooks/1575211831/fb-4.gif

file:///G|/ebooks/1575211831/fb-4.gif [11/06/2000 7:47:42 PM]



file:///G|/ebooks/1575211831/fb-5.gif

file:///G|/ebooks/1575211831/fb-5.gif [11/06/2000 7:47:44 PM]



file:///G|/ebooks/1575211831/fb-6.gif

file:///G|/ebooks/1575211831/fb-6.gif (1 of 2) [11/06/2000 7:47:46 PM]



file:///G|/ebooks/1575211831/fb-6.gif

file:///G|/ebooks/1575211831/fb-6.gif (2 of 2) [11/06/2000 7:47:46 PM]



file:///G|/ebooks/1575211831/fb-7.gif

file:///G|/ebooks/1575211831/fb-7.gif (1 of 2) [11/06/2000 7:47:48 PM]



file:///G|/ebooks/1575211831/fb-7.gif

file:///G|/ebooks/1575211831/fb-7.gif (2 of 2) [11/06/2000 7:47:48 PM]



file:///G|/ebooks/1575211831/fb-8.gif

file:///G|/ebooks/1575211831/fb-8.gif (1 of 2) [11/06/2000 7:47:50 PM]



file:///G|/ebooks/1575211831/fb-8.gif

file:///G|/ebooks/1575211831/fb-8.gif (2 of 2) [11/06/2000 7:47:50 PM]



file:///G|/ebooks/1575211831/fb-9.gif

file:///G|/ebooks/1575211831/fb-9.gif [11/06/2000 7:47:51 PM]



file:///G|/ebooks/1575211831/fb-10.gif

file:///G|/ebooks/1575211831/fb-10.gif [11/06/2000 7:47:52 PM]



file:///G|/ebooks/1575211831/fb-11.gif

file:///G|/ebooks/1575211831/fb-11.gif (1 of 2) [11/06/2000 7:47:53 PM]



file:///G|/ebooks/1575211831/fb-11.gif

file:///G|/ebooks/1575211831/fb-11.gif (2 of 2) [11/06/2000 7:47:53 PM]



file:///G|/ebooks/1575211831/fb-12.gif

file:///G|/ebooks/1575211831/fb-12.gif (1 of 2) [11/06/2000 7:47:55 PM]



file:///G|/ebooks/1575211831/fb-12.gif

file:///G|/ebooks/1575211831/fb-12.gif (2 of 2) [11/06/2000 7:47:55 PM]



appendix C

The Java Class Library
by Laura Lemay

CONTENTS
java.lang

Interfaces❍   

Classes❍   

●   

java.util

Interfaces❍   

Classes❍   

●   

java.io

Interfaces❍   

Classes❍   

●   

java.net

Interfaces❍   

Classes❍   

●   

java.awt

Interfaces❍   

Classes❍   

●   

java.awt.image

Interfaces❍   

Classes❍   

●   

java.awt.peer●   

java.applet

Interfaces❍   

Classes❍   

●   

This appendix provides a general overview of the classes available in the standard Java packages (that is,
the classes that are guaranteed to be available in any Java implementation). This appendix is intended for
general reference; for more information about class inheritance and the exceptions defined for each

appendix C -- The Java Class Library

file:///G|/ebooks/1575211831/ch31.htm (1 of 8) [11/06/2000 7:47:57 PM]



package, see appendix B, "Class Hierarchy Diagrams." For more specific information about each class
and the methods within each class, see the API documentation from Sun at http://java.sun.com.
A copy of the 1.0 API documentation is on the CD-ROM included with this book.

java.lang

The java.lang package contains the classes and interfaces that make up the core Java language.

Interfaces

Cloneable Interface indicating that an object may be copied or cloned
Runnable Methods for classes that want to run as threads

Classes

Boolean Object wrapper for boolean values
Character Object wrapper for char values
Class Runtime representations of classes
ClassLoader Abstract behavior for handling loading of classes
Compiler System class that gives access to the Java compiler
Double Object wrapper for double values
Float Object wrapper for float values
Integer Object wrapper for int values
Long Object wrapper for long values
Math Utility class for math operations
Number Abstract superclass of all number classes (Integer, Float, and

so on)
Object Generic Object class, at top of inheritance hierarchy
Process Abstract behavior for processes such as those spawned using

methods in the System class
Runtime Access to the Java runtime
SecurityManager Abstract behavior for implementing security policies
String Character strings
StringBuffer Mutable strings
System Access to Java's system-level behavior, provided in a

platform-independent way
Thread Methods for managing threads and classes that run in threads
ThreadDeath Class of object thrown when a thread is asynchronously terminated
ThreadGroup A group of threads
Throwable Generic exception class; all objects thrown must be a Throwable

appendix C -- The Java Class Library

file:///G|/ebooks/1575211831/ch31.htm (2 of 8) [11/06/2000 7:47:57 PM]

http://java.sun.com/


java.util

The java.util package contains various utility classes and interfaces, including random numbers,
system properties, and other useful classes.

Interfaces

Enumeration Methods for enumerating sets of values
Observer Methods for allowing classes to observe Observable objects

Classes

BitSet A set of bits
Date The current system date, as well as methods for generating and

parsing dates
Dictionary An abstract class that maps between keys and values (superclass

of HashTable)
HashTable A hash table
Observable An abstract class for observable objects
Properties A hash table that contains behavior for setting and retrieving

persistent properties of the system or of a class
Random Utilities for generating random numbers
Stack A stack (a last-in-first-out queue)
StringTokenizer Utilities for splitting strings into a sequence of individual "tokens"
Vector A growable array of Objects

java.io

The java.io package provides input and output classes and interfaces for streams and files.

Interfaces

DataInput Methods for reading machine-independent typed input streams
DataOutput Methods for writing machine-independent typed output streams
FilenameFilter Methods for filtering filenames

Classes

BufferedInputStream A buffered input stream
BufferedOutputStream A buffered output stream
ByteArrayInputStream An input stream from a byte array
ByteArrayOutputStream An output stream to a byte array

appendix C -- The Java Class Library

file:///G|/ebooks/1575211831/ch31.htm (3 of 8) [11/06/2000 7:47:57 PM]



DataInputStream Enables you to read primitive Java types (ints, chars,
booleans, and so on) from a stream in a machine-independent
way

DataOutputStream Enables you to write primitive Java data types (ints, chars,
booleans, and so on) to a stream in a machine-independent way

File Represents a file on the host's file system
FileDescriptor Holds onto the UNIX-like file descriptor of a file or socket
FileInputStream An input stream from a file, constructed using a filename or

descriptor
FileOutputStream An output stream to a file, constructed using a filename or

descriptor
FilterInputStream Abstract class that provides a filter for input streams (and for

adding stream functionality such as buffering)
FilterOutputStream Abstract class that provides a filter for output streams (and for

adding stream functionality such as buffering)
InputStream An abstract class representing an input stream of bytes; the parent

of all input streams in this package
LineNumberInputStream An input stream that keeps track of line numbers
OutputStream An abstract class representing an output stream of bytes; the parent

of all output streams in this package
PipedInputStream A piped input stream, which should be connected to a

PipedOutputStream to be useful
PipedOutputStream A piped output stream, which should be connected to a

PipedInputStream to be useful (together they provide safe
communication between threads)

PrintStream An output stream for printing (used by
System.out.println(...))

PushbackInputStream An input stream with a 1-byte push-back buffer
RandomAccessFile Provides random access to a file, constructed from filenames,

descriptors, or objects
SequenceInputStream Converts a sequence of input streams into a single input steam
StreamTokenizer Converts an input stream into a sequence of individual tokens
StringBufferInputStream An input stream from a String object

java.net

The java.net package contains classes and interfaces for performing network operations, such as
sockets and URLs.

Interfaces

ContentHandlerFactory Methods for creating ContentHandler objects

appendix C -- The Java Class Library

file:///G|/ebooks/1575211831/ch31.htm (4 of 8) [11/06/2000 7:47:57 PM]



SocketImplFactory Methods for creating socket implementations (instance of the
SocketImpl class)

URLStreamHandlerFactory Methods for creating URLStreamHandler objects

Classes

ContentHandler Abstract behavior for reading data from a URL connection and
constructing the appropriate local object, based on MIME types

DatagramPacket A datagram packet (UDP)
DatagramSocket A datagram socket
InetAddress An object representation of an Internet host (host name, IP

address)
ServerSocket A server-side socket
Socket A socket
SocketImpl An abstract class for specific socket implementations
URL An object representation of a URL
URLConnection Abstract behavior for a socket that can handle various Web-based

protocols (http, ftp, and so on)
URLEncoder Turns strings into x-www-form-urlencoded format
URLStreamHandler Abstract class for managing streams to object referenced by

URLs

java.awt

The java.awt package contains the classes and interfaces that make up the Abstract Windowing
Toolkit (awt).

Interfaces

LayoutManager Methods for laying out containers
MenuContainer Methods for menu-related containers

Classes

BorderLayout A layout manager for arranging items in border formation
Button A UI pushbutton
Canvas A canvas for drawing and performing other graphics operations
CardLayout A layout manager for HyperCard-like metaphors
Checkbox A check box
CheckboxGroup A group of exclusive check boxes (radio buttons)
CheckboxMenuItem A toggle menu item
Choice A pop-up menu of choices
Color An abstract representation of a color

appendix C -- The Java Class Library

file:///G|/ebooks/1575211831/ch31.htm (5 of 8) [11/06/2000 7:47:57 PM]



Component The abstract generic class for all UI components
Container Abstract behavior for a component that can hold other

components or containers
Dialog A window for brief interactions with users
Dimension An object representing width and height
Event An object representing events caused by the system or based on

user input
FileDialog A dialog for getting filenames from the local file system
FlowLayout A layout manager that lays out objects from left to right in rows
Font An abstract representation of a font
FontMetrics Abstract class for holding information about a specific font's

character shapes and height and width information
Frame A top-level window with a title
Graphics Abstract behavior for representing a graphics context, and for

drawing and painting shapes and objects
GridBagConstraints Constraints for components laid out using GridBagLayout
GridBagLayout A layout manager that aligns components horizontally and

vertically based on their values from GridBagConstraints
GridLayout A layout manager with rows and columns; elements are added to

each cell in the grid
Image An abstract representation of a bitmap image
Insets Distances from the outer border of the window; used to lay out

components
Label A text label for UI components
List A scrolling list
MediaTracker A way to keep track of the status of media objects being loaded

over the Net
Menu A menu, which can contain menu items and is a container on a

menu bar
MenuBar A menu bar (container for menus)
MenuComponent The abstract superclass of all menu elements
MenuItem An individual menu item
Panel A container that is displayed
Point An object representing a point (x and y coordinates)
Polygon An object representing a set of points
Rectangle An object representing a rectangle (x and y coordinates for the

top corner, plus width and height)
Scrollbar A UI scrollbar object
TextArea A multiline, scrollable, editable text field
TextComponent The superclass of all editable text components
TextField A fixed-size editable text field
Toolkit Abstract behavior for binding the abstract awt classes to a

platform-specific toolkit implemen-tation

appendix C -- The Java Class Library

file:///G|/ebooks/1575211831/ch31.htm (6 of 8) [11/06/2000 7:47:57 PM]



Window A top-level window, and the superclass of the Frame and
Dialog classes

java.awt.image

The java.awt.image package is a subpackage of the awt that provides classes for managing bitmap
images.

Interfaces

ImageConsumer Methods for receiving image data created by an
ImageProducer

ImageObserver Methods to track the loading and construction of an image
ImageProducer Methods for producing image data received by an

ImageConsumer

Classes

ColorModel An abstract class for managing color information for images
CropImageFilter A filter for cropping images to a particular size
DirectColorModel A specific color model for managing and translating pixel color

values
FilteredImageSource An ImageProducer that takes an image and an

ImageFilter object and produces an image for an
ImageConsumer

ImageFilter A filter that takes image data from an ImageProducer,
modifies it in some way, and hands it off to a ImageConsumer

IndexColorModel A specific color model for managing and translating color values
in a fixed-color map

MemoryImageSource An image producer that gets its image from memory; used after
constructing an image by hand

PixelGrabber An ImageConsumer that retrieves a subset of the pixels in an
image

RGBImageFilter Abstract behavior for a filter that modifies the RGB values of
pixels in RGB images

java.awt.peer

The java.awt.peer package is a subpackage of awt that provides the (hidden) platform-specific awt
classes (for example, for Motif, Macintosh, or Windows 95) with platform-independent interfaces to
implement. Thus, callers using these interfaces need not know which platform's window system these
hidden awt classes are currently implementing.

appendix C -- The Java Class Library

file:///G|/ebooks/1575211831/ch31.htm (7 of 8) [11/06/2000 7:47:57 PM]



Each class in the awt that inherits from either Component or MenuComponent has a corresponding
peer class. Each of those classes is the name of the Component with -Peer added (for example,
ButtonPeer, DialogPeer, and WindowPeer). Because each one provides similar behavior, they
are not enumerated here.

java.applet

The java.applet package provides applet-specific behavior.

Interfaces

AppletContext Methods to refer to the applet's context
AppletStub Methods for implementing applet viewers
AudioClip Methods for playing audio files

Classes

Applet The base applet class

   

appendix C -- The Java Class Library

file:///G|/ebooks/1575211831/ch31.htm (8 of 8) [11/06/2000 7:47:57 PM]



appendix D

Bytecodes Reference

CONTENTS
The _quick Bytecodes●   

Let's look at a (progressively less and less) detailed description of each class of bytecodes.

For each bytecode, some brief text describes its function and a textual "picture" of the stack, both before and after the
bytecode has been executed, is shown. This text picture will look like the following:

..., value1, value2 => ..., value3

This means that the bytecode expects two operands-value1 and value2-to be on the top of the stack, pops them both off
the stack, operates on them to produce value3, and pushes value3 back onto the top of the stack. You should read each
stack from right to left, with the rightmost value being the top of the stack. The ... is read as "the rest of the stack below,"
which is irrelevant to the current bytecode. All operands on the stack are 32 bits wide.

Because most bytecodes take their arguments from the stack and place their results back there, the brief text descriptions
that follow only say something about the source or destination of values if they are not on the stack. For example, the
description "Load integer from local variable." means that the integer is loaded onto the stack, and
"Integer add." intends its integers to be taken from-and the result returned to-the stack.

Bytecodes that don't affect control flow simply move the pc onto the next bytecode that follows in sequence. Those that do
affect the pc say so explicitly. Whenever you see byte1, byte2, and so forth, it refers to the first byte, second byte, and
so on, that follow the opcode byte itself. After such a bytecode is executed, the pc automatically advances over these
operand bytes to start the next bytecode in sequence.

Note
The next few sections are in "reference manual style," presenting each
bytecode separately in all its (often redundant) detail; each bytecode
is presented as an operation followed by an explanation. Later
sections begin to collapse and coalesce this verbose style into
something shorter and more readable. The verbose form is shown at
first because the online reference manuals will look more like it, and
because it drives home the point that each bytecode "function" comes
in many, nearly identical bytecodes, one for each primitive type in
Java.

Pushing Constants onto the Stack

bipush        ... => ..., value

Push 1-byte signed integer. byte1 is interpreted as a signed 8-bit value. This value is expanded to an int and pushed
onto the operand stack.

sipush        ... => ..., value

appendix D -- Bytecodes Reference

file:///G|/ebooks/1575211831/ch32.htm (1 of 16) [11/06/2000 7:48:00 PM]



Push 2-byte signed integer. byte1 and byte2 are assembled into a signed 16-bit value. This value is expanded to an
int and pushed onto the operand stack.

ldc1          ... => ..., item

Push item from constant pool. byte1 is used as an unsigned 8-bit index into the constant pool of the current class. The
item at that index is resolved and pushed onto the stack.

ldc2          ... => ..., item

Push item from constant pool. byte1 and byte2 are used to construct an unsigned 16-bit index into the constant pool of
the current class. The item at that index is resolved and pushed onto the stack.

ldc2w         ... => ..., constant-word1, constant-word2

Push long or double from constant pool. byte1 and byte2 are used to construct an unsigned 16-bit index into the
constant pool of the current class. The two-word constant at that index is resolved and pushed onto the stack.

aconst_null   ... => ..., null

Push the null object reference onto the stack.

iconst_m1     ... => ..., -1

Push the int -1 onto the stack.

iconst_<I>    ... => ..., <I>

Push the int <I> onto the stack. There are six of these bytecodes, one for each of the integers 0-5: iconst_0,
iconst_1, iconst_2, iconst_3, iconst_4, and iconst_5.

lconst_<L>    ... => ..., <L>-word1, <L>-word2

Push the long <L> onto the stack. There are two of these bytecodes, one for each of the integers 0 and 1: lconst_0 and
lconst_1.

fconst_<F>    ... => ..., <F>

Push the float <F> onto the stack. There are three of these bytecodes, one for each of the integers 0-2: fconst_0,
fconst_1, and fconst_2.

dconst_<D>    ... => ..., <D>-word1, <D>-word2

Push the double <D> onto the stack. There are two of these bytecodes, one for each of the integers 0 and 1: dconst_0,
and dconst_1.

Loading Local Variables onto the Stack

iload         ... => ..., value

Load int from local variable. Local variable byte1 in the current Java frame must contain an int. The value of that
variable is pushed onto the operand stack.

iload_<I>     ... => ..., value

appendix D -- Bytecodes Reference

file:///G|/ebooks/1575211831/ch32.htm (2 of 16) [11/06/2000 7:48:00 PM]



Load int from local variable. Local variable <I> in the current Java frame must contain an int. The value of that
variable is pushed onto the operand stack. There are four of these bytecodes, one for each of the integers 0-3: iload_0,
iload_1, iload_2, and iload_3.

lload         ... => ..., value-word1, value-word2

Load long from local variable. Local variables byte1 and byte1 + 1 in the current Java frame must together contain a
long integer. The values contained in those variables are pushed onto the operand stack.

lload_<L>     ... => ..., value-word1, value-word2

Load long from local variable. Local variables <L> and <L> + 1 in the current Java frame must together contain a long
integer. The value contained in those variables is pushed onto the operand stack. There are four of these bytecodes, one for
each of the integers 0-3: lload_0, lload_1, lload_2, and lload_3.

fload         ... => ..., value

Load float from local variable. Local variable byte1 in the current Java frame must contain a single-precision
floating-point number. The value of that variable is pushed onto the operand stack.

fload_<F>     ... => ..., value

Load float from local variable. Local variable <F> in the current Java frame must contain a single-precision
floating-point number. The value of that variable is pushed onto the operand stack. There are four of these bytecodes, one
for each of the integers 0-3: fload_0, fload_1, fload_2, and fload_3.

dload         ... => ..., value-word1, value-word2

Load double from local variable. Local variables byte1 and byte1 + 1 in the current Java frame must together
contain a double-precision floating-point number. The value contained in those variables is pushed onto the operand stack.

dload_<D>     ... => ..., value-word1, value-word2

Load double from local variable. Local variables <D> and <D> + 1 in the current Java frame must together contain a
double-precision floating-point number. The value contained in those variables is pushed onto the operand stack. There are
four of these bytecodes, one for each of the integers 0-3: dload_0, dload1, dload_2, and dload_3.

aload         ... => ..., value

Load object reference from local variable. Local variable byte1 in the current Java frame must contain a return address or
reference to an object or array. The value of that variable is pushed onto the operand stack.

aload_<A>     ... => ..., value

Load object reference from local variable. Local variable <A> in the current Java frame must contain a return address or
reference to an object. The value of that variable is pushed onto the operand stack. There are four of these bytecodes, one for
each of the integers 0-3: aload_0, aload_1, aload_2, and aload_3.

Storing Stack Values into Local Variables

istore        ..., value => ...

Store int into local variable. value must be an int. Local variable byte1 in the current Java frame is set to value.

appendix D -- Bytecodes Reference

file:///G|/ebooks/1575211831/ch32.htm (3 of 16) [11/06/2000 7:48:00 PM]



istore_<I>    ..., value => ...

Store int into local variable. value must be an int. Local variable <I> in the current Java frame is set to value. There
are four of these bytecodes, one for each of the integers 0-3: istore_0, istore_1, istore_2, and istore_3.

lstore        ..., value-word1, value-word2 => ...

Store long into local variable. value must be a long integer. Local variables byte1 and byte1 + 1 in the current Java
frame are set to value.

lstore_<L>    ..., value-word1, value-word2 => ...

Store long into local variable. value must be a long integer. Local variables <L> and <L> + 1 in the current Java frame
are set to value. There are four of these bytecodes, one for each of the integers 0-3: lstore_0, lstore_1, lstore_2,
and lstore_3.

fstore        ..., value => ...

Store float into local variable. value must be a single-precision floating-point number. Local variable byte1 in the
current Java frame is set to value.

fstore_<F>    ..., value => ...

Store float into local variable. value must be a single-precision floating-point number. Local variable <F> in the
current Java frame is set to value. There are four of these bytecodes, one for each of the integers 0-3: fstore_0,
fstore_1, fstore_2, and fstore_3.

dstore        ..., value-word1, value-word2 => ...

Store double into local variable. value must be a double-precision floating-point number. Local variables byte1 and
byte1 + 1 in the current Java frame are set to value.

dstore_<D>    ..., value-word1, value-word2 => ...

Store double into local variable. value must be a double-precision floating-point number. Local variables <D> and <D>
+ 1 in the current Java frame are set to value. There are four of these bytecodes, one for each of the integers 0-3:
dstore_0, dstore_1, dstore_2, and dstore_3.

astore        ..., handle => ...

Store object reference into local variable. handle must be a return address or a reference to an object. Local variable
byte1 in the current Java frame is set to value.

astore_<A>    ..., handle => ...

Store object reference into local variable. handle must be a return address or a reference to an object. Local variable <A>
in the current Java frame is set to value. There are four of these bytecodes, one for each of the integers 0-3: astore_0,
astore_1, astore_2, and astore_3.

iinc          -no change-

Increment local variable by constant. Local variable byte1 in the current Java frame must contain an int. Its value is
incremented by the value byte2, where byte2 is treated as a signed 8-bit quantity.

Managing Arrays

appendix D -- Bytecodes Reference

file:///G|/ebooks/1575211831/ch32.htm (4 of 16) [11/06/2000 7:48:00 PM]



newarray        ..., size => result

Allocate new array. size must be an int; it represents the number of elements in the new array. byte1 is an internal code
that indicates the type of array to allocate. Possible values for byte1 are as follows: T_BOOLEAN (4), T_chAR (5),
T_FLOAT (6), T_DOUBLE (7), T_BYTE (8), T_SHORT (9), T_INT (10), and T_LONG (11).

An attempt is made to allocate a new array of the indicated type, capable of holding size elements. This will be the
result. If size is less than zero, a NegativeArraySizeException is thrown. If there is not enough memory to
allocate the array, an OutOfMemoryError is thrown. All elements of the array are initialized to their default values.

anewarray       ..., size => result

Allocate new array of objects. size must be an int; it represents the number of elements in the new array. byte1 and
byte2 are used to construct an index into the constant pool of the current class. The item at that index is resolved. The
resulting entry must be a class.

An attempt is made to allocate a new array of the indicated class type, capable of holding size elements. This will be the
result. If size is less than 0, a NegativeArraySizeException is thrown. If there is not enough memory to
allocate the array, an OutOfMemoryError is thrown. All elements of the array are initialized to null.

Note
anewarray is used to create a single dimension of an array of
objects. For example, the request new Thread[7] generates the
following bytecodes:

    bipush 7
    anewarray <Class "java.lang.Thread">

anewarray can also be used to create the outermost dimension of a
multidimensional array. For example, the array declaration new
int[6][] generates this:

    bipush 6
    anewarray <Class "[I">

(See the section "Method Signatures" for more information on strings
such as "[I".)

multianewarray  ..., size1 size2...sizeN => result

Allocate new multidimensional array. Each size<I> must be an int; each represents the number of elements in a
dimension of the array. byte1 and byte2 are used to construct an index into the constant pool of the current class. The
item at that index is resolved. The resulting entry must be an array class of one or more dimensions.

byte3 is a positive integer representing the number of dimensions being created. It must be less than or equal to the
number of dimensions of the array class. byte3 is also the number of elements that are popped off the stack. All must be
ints greater than or equal to zero. These are used as the sizes of the dimensions. An attempt is made to allocate a new array
of the indicated class type, capable of holding size<1> * size<2> * ... * <sizeN> elements. This will be the
result. If any of the size<I> arguments on the stack is less than zero, a NegativeArraySizeException is
thrown. If there is not enough memory to allocate the array, an OutOfMemoryError is thrown.

Note

appendix D -- Bytecodes Reference

file:///G|/ebooks/1575211831/ch32.htm (5 of 16) [11/06/2000 7:48:00 PM]



new int[6][3][] generates these bytecodes:

    bipush 6
    bipush 3
    multianewarray <Class "[[[I"> 2

It's more efficient to use newarray or anewarray when creating
arrays of single dimension.

arraylength     ..., array => ..., length

Get length of array. array must be a reference to an array object. The length of the array is determined and replaces
array on the top of the stack. If array is null, a NullPointerException is thrown.

iaload          ..., array, index => ..., value
laload          ..., array, index => ..., value-word1, value-word2
faload          ..., array, index => ..., value
daload          ..., array, index => ..., value-word1, value-word2
aaload          ..., array, index => ..., value
baload          ..., array, index => ..., value
caload          ..., array, index => ..., value
saload          ..., array, index => ..., value

Load <type> from array. array must be an array of <type>s. index must be an int. The <type> value at
position number index in array is retrieved and pushed onto the top of the stack. If array is null, a
NullPointerException is thrown. If index is not within the bounds of array, an
ArrayIndexOutOfBoundsException is thrown. <type> is, in turn, int, long, float, double, object
reference, byte, char, and short. <type>s long and double have two word values, as you've seen in previous
load bytecodes.

iastore         ..., array, index, value => ...
lastore         ..., array, index, value-word1, value-word2 => ...
fastore         ..., array, index, value => ...
dastore         ..., array, index, value-word1, value-word2 => ...
aastore         ..., array, index, value => ...
bastore         ..., array, index, value => ...
castore         ..., array, index, value => ...
sastore         ..., array, index, value => ...

Store into <type> array. array must be an array of <type>s, index must be an int, and value a <type>. The
<type> value is stored at position index in array. If array is null, a NullPointerException is thrown. If
index is not within the bounds of array, an ArrayIndexOutOfBoundsException is thrown. <type> is, in turn,
int, long, float, double, object reference, byte, char, and short. <type>s long and double have two word
values, as you've seen in previous store bytecodes.

Stack Operations

nop        -no change-

Do nothing.

pop        ..., any => ...

Pop the top word from the stack.

appendix D -- Bytecodes Reference

file:///G|/ebooks/1575211831/ch32.htm (6 of 16) [11/06/2000 7:48:00 PM]



pop2       ..., any2, any1 => ...

Pop the top two words from the stack.

dup        ..., any => ..., any, any

Duplicate the top word on the stack.

dup2       ..., any2, any1 => ..., any2, any1, any2,any1

Duplicate the top two words on the stack.

dup_x1     ..., any2, any1 => ..., any1, any2,any1

Duplicate the top word on the stack and insert the copy two words down in the stack.

dup2_x1    ..., any3, any2, any1 => ..., any2, any1, any3,any2,any1

Duplicate the top two words on the stack and insert the copies two words down in the stack.

dup_x2     ..., any3, any2, any1 => ..., any1, any3,any2,any1

Duplicate the top word on the stack and insert the copy three words down in the stack.

dup2_x2    ..., any4, any3, any2, any1 => ..., any2, any1, any4,any3,any2,any1

Duplicate the top two words on the stack and insert the copies three words down in the stack.

swap       ..., any2, any1 => ..., any1, any2

Swap the top two elements on the stack.

Arithmetic Operations

iadd       ..., v1, v2 => ..., result
ladd       ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2
fadd       ..., v1, v2 => ..., result
dadd       ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2

v1 and v2 must be <type>s. The vs are added and are replaced on the stack by their <type> sum. <type> is, in turn,
int, long, float, and double.

isub       ..., v1, v2 => ..., result
lsub       ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2
fsub       ..., v1, v2 => ..., result
dsub       ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2

v1 and v2 must be <type>s. v2 is subtracted from v1, and both vs are replaced on the stack by their <type> difference.
<type> is, in turn, int, long, float, and double.

imul       ..., v1, v2 => ..., result
lmul       ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2
fmul       ..., v1, v2 => ..., result
dmul       ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2

appendix D -- Bytecodes Reference

file:///G|/ebooks/1575211831/ch32.htm (7 of 16) [11/06/2000 7:48:00 PM]



v1 and v2 must be <type>s. Both vs are replaced on the stack by their <type> product. <type> is, in turn, int, long,
float, and double.

idiv       ..., v1, v2 => ..., result
ldiv       ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2
fdiv       ..., v1, v2 => ..., result
ddiv       ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2

v1 and v2 must be <type>s. v2 is divided by v1, and both vs are replaced on the stack by their <type> quotient. An
attempt to divide by zero results in an ArithmeticException being thrown. <type> is, in turn, int, long, float,
and double.

irem       ..., v1, v2 => ..., result
lrem       ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2
frem       ..., v1, v2 => ..., result
drem       ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2

v1 and v2 must be <type>s. v2 is divided by v1, and both vs are replaced on the stack by their <type> remainder. An
attempt to divide by zero results in an ArithmeticException being thrown. <type> is, in turn, int, long, float,
and double.

ineg       ..., value => ..., result
lneg       ..., value-word1, value-word2 => ..., result-word1, result-word2
fneg       ..., value => ..., result
dneg       ..., value-word1, value-word2 => ..., result-word1, result-word2

value must be a <type>. It is replaced on the stack by its arithmetic negation. <type> is, in turn, int, long, float,
and double.

Note
Now that you're familiar with the look of the bytecodes, the
summaries that follow will become shorter and shorter (for space
reasons). You can always get any desired level of detail from the full
virtual machine specification in the latest Java release.

Logical Operations

ishl       ..., v1, v2 => ..., result
lshl       ..., v1-word1, v1-word2, v2 => ..., r-word1, r-word2
ishr       ..., v1, v2 => ..., result
lshr       ..., v1-word1, v1-word2, v2 => ..., r-word1, r-word2
iushr      ..., v1, v2 => ..., result
lushr      ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2

For types int and long: arithmetic shift left, shift right, and logical shift right.

iand       ..., v1, v2 => ..., result
land       ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2
ior        ..., v1, v2 => ..., result
lor        ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2
ixor       ..., v1, v2 => ..., result
lxor       ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., r-word1, r-word2

For types int and long: bitwise AND, OR, and XOR.

appendix D -- Bytecodes Reference

file:///G|/ebooks/1575211831/ch32.htm (8 of 16) [11/06/2000 7:48:00 PM]



Conversion Operations

i2l         ..., value => ..., result-word1, result-word2
i2f         ..., value => ..., result
i2d         ..., value => ..., result-word1, result-word2
l2i         ..., value-word1, value-word2 => ..., result
l2f         ..., value-word1, value-word2 => ..., result
l2d         ..., value-word1, value-word2 => ..., result-word1, result-word2
f2i         ..., value => ..., result
f2l         ..., value => ..., result-word1, result-word2
f2d         ..., value => ..., result-word1, result-word2
d2i         ..., value-word1, value-word2 => ..., result
d2l         ..., value-word1, value-word2 => ..., result-word1, result-word2
d2f         ..., value-word1, value-word2 => ..., result

int2byte    ..., value => ..., result
int2char    ..., value => ..., result
int2short   ..., value => ..., result

These bytecodes convert from a value of type <lhs> to a result of type <rhs>. <lhs> and <rhs> can be any of i,
l, f, and d, which represent int, long, float, and double, respectively. The final three bytecodes convert types that
are self-explanatory.

Transfer of Control

ifeq        ..., value => ...
ifne        ..., value => ...
iflt        ..., value => ...
ifgt        ..., value => ...
ifle        ..., value => ...
ifge        ..., value => ...

if_icmpeq   ..., value1, value2 => ...
if_icmpne   ..., value1, value2 => ...
if_icmplt   ..., value1, value2 => ...
if_icmpgt   ..., value1, value2 => ...
if_icmple   ..., value1, value2 => ...
if_icmpge   ..., value1, value2 => ...

ifnull      ..., value => ...
ifnonnull   ..., value => ...

When value <rel> 0 is true in the first set of bytecodes, value1 <rel> value2 is true in the second set, or
value is null (or not null) in the third, byte1 and byte2 are used to construct a signed 16-bit offset. Execution
proceeds at that offset from the pc. Otherwise, execution proceeds at the bytecode following. <rel> is one of eq, ne, lt,
gt, le, and ge, which represent equal, not equal, less than, greater than, less than or equal, and greater than or equal,
respectively.

lcmp        ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., result

fcmpl       ..., v1, v2 => ..., result
dcmpl       ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., result

appendix D -- Bytecodes Reference

file:///G|/ebooks/1575211831/ch32.htm (9 of 16) [11/06/2000 7:48:00 PM]



fcmpg       ..., v1, v2 => ..., result
dcmpg       ..., v1-word1, v1-word2, v2-word1, v2-word2 => ..., result

v1 and v2 must be long, float, or double. They are both popped from the stack and compared. If v1 is greater than
v2, the int value 1 is pushed onto the stack. If v1 is equal to v2, 0 is pushed onto the stack. If v1 is less than v2, -1 is
pushed onto the stack. For floating-point, if either v1 or v2 is NaN, -1 is pushed onto the stack for the first pair of
bytecodes, +1 for the second pair.

if_acmpeq   ..., value1, value2 => ...
if_acmpne   ..., value1, value2 => ...

Branch if object references are equal/not equal. value1 and value2 must be references to objects. They are both popped
from the stack. If value1 is equal/not equal to value2, byte1 and byte2 are used to construct a signed 16-bit offset.
Execution proceeds at that offset from the pc. Otherwise, execution proceeds at the bytecode following.

goto        -no change-
goto_w      -no change-

Branch always. byte1 and byte2 (plus byte3 and byte4 for goto_w) are used to construct a signed 16-bit (32-bit)
offset. Execution proceeds at that offset from the pc.

jsr         ... => ..., return-address
jsr-w       ... => ..., return-address

Jump subroutine. The address of the bytecode immediately following the jsr is pushed onto the stack. byte1 and byte2
(plus byte3 and byte4 for goto_w) are used to construct a signed 16-bit (32-bit) offset. Execution proceeds at that offset
from the pc.

ret         -no change-
ret2_w      -no change-

Return from subroutine. Local variable byte1 (plus byte2 for ret_w are assembled into a 16-bit index) in the current
Java frame must contain a return address. The contents of that local variable are written into the pc.

Note
jsr pushes the address onto the stack, and ret gets it out of a local
variable. This asymmetry is intentional. The jsr and ret bytecodes
are used in the implementation of Java's finally keyword.

Method Return

return      ... => [empty]q

Return (void) from method. All values on the operand stack are discarded. The interpreter then returns control to its caller.

ireturn     ..., value => [empty]
lreturn     ..., value-word1, value-word2 => [empty]
freturn     ..., value => [empty]
dreturn     ..., value-word1, value-word2 => [empty]
areturn     ..., value => [empty]

Return <type> from method. value must be a <type>. The value is pushed onto the stack of the previous execution
environment. Any other values on the operand stack are discarded. The interpreter then returns control to its caller. <type>

appendix D -- Bytecodes Reference

file:///G|/ebooks/1575211831/ch32.htm (10 of 16) [11/06/2000 7:48:00 PM]



is, in turn, int, long, float, double, and object reference.

Note
The stack behavior of the "return" bytecodes may be confusing to
anyone expecting the Java operand stack to be just like the C stack.
Java's operand stack actually consists of a number of noncontiguous
segments, each corresponding to a method call. A return bytecode
empties the Java operand stack segment corresponding to the frame of
the returning call, but does not affect the segment of any parent calls.

Table Jumping

tableswitch   ..., index => ...

tableswitch is a variable-length bytecode. Immediately after the tableswitch opcode, zero to three 0 bytes are
inserted as padding so that the next byte begins at an address that is a multiple of four. After the padding are a series of
signed 4-byte quantities: default-offset, low, high, and then (high - low + 1) further signed 4-byte offsets.
These offsets are treated as a 0-based jump table.

The index must be an int. If index is less than low or index is greater than high, default-offset is added to
the pc. Otherwise, the (index - low)th element of the jump table is extracted and added to the pc.

lookupswitch  ..., key => ...

lookupswitch is a variable-length bytecode. Immediately after the lookupswitch opcode, zero to three 0 bytes are
inserted as padding so that the next byte begins at an address that is a multiple of four. Immediately after the padding is a
series of pairs of signed 4-byte quantities. The first pair is special; it contains the default-offset and the number of
pairs that follow. Each subsequent pair consists of a match and an offset.

The key on the stack must be an int. This key is compared to each of the matches. If it is equal to one of them, the
corresponding offset is added to the pc. If the key does not match any of the matches, the default-offset is
added to the pc.

Manipulating Object Fields

putfield      ..., handle, value => ...
putfield      ..., handle, value-word1, value-word2 => ...

Set field in object. byte1 and byte2 are used to construct an index into the constant pool of the current class. The
constant pool item is a field reference to a class name and a field name. The item is resolved to a field block pointer
containing the field's width and offset (both in bytes).

The field at that offset from the start of the instance pointed to by handle will be set to the value on the top of the stack.
The first stack picture is for 32-bit, and the second for 64-bit-wide fields. This bytecode handles both. If handle is null, a
NullPointerException is thrown. If the specified field is a static field, an
IncompatibleClassChangeError is thrown.

getfield      ..., handle => ..., value
getfield      ..., handle => ..., value-word1, value-word2

Fetch field from object. byte1 and byte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a class name and a field name. The item is resolved to a field block pointer
containing the field's width and offset (both in bytes).

handle must be a reference to an object. The value at offset into the object referenced by handle replaces handle on

appendix D -- Bytecodes Reference

file:///G|/ebooks/1575211831/ch32.htm (11 of 16) [11/06/2000 7:48:00 PM]



the top of the stack. The first stack picture is for 32-bit, and the second for 64-bit-wide fields. This bytecode handles both. If
the specified field is a static field, an IncompatibleClassChangeError is thrown.

putstatic     ..., value => ...
putstatic     ..., value-word1, value-word2 => ...

Set static field in class. byte1 and byte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a static field of a class. That field will be set to have the value on the top of
the stack. The first stack picture is for 32-bit, and the second for 64-bit-wide fields. This bytecode handles both. If the
specified field is not a static field, an IncompatibleClassChangeError is thrown.

getstatic     ..., => ..., value_
getstatic     ..., => ..., value-word1, value-word2

Get static field from class. byte1 and byte2 are used to construct an index into the constant pool of the current class. The
constant pool item will be a field reference to a static field of a class. The value of that field is placed on the top of the
stack. The first stack picture is for 32-bit, and the second for 64-bit-wide fields. This bytecode handles both. If the specified
field is not a static field, an IncompatibleClassChangeError is thrown.

Method Invocation

invokevirtual     ..., handle, [arg1, [arg2, ...]], ... => ...

Invoke instance method based on runtime type. The operand stack must contain a reference to an object and some number of
arguments. byte1 and byte2 are used to construct an index into the constant pool of the current class. The item at that
index in the constant pool contains the complete method signature. A pointer to the object's method table is retrieved from
the object reference. The method signature is looked up in the method table. The method signature is guaranteed to exactly
match one of the method signatures in the table.

The result of the lookup is an index into the method table of the named class that's used to look in the method table of the
object's runtime type, where a pointer to the method block for the matched method is found. The method block indicates the
type of method (native, synchronized, and so on) and the number of arguments (nargs) expected on the operand
stack.

If the method is marked synchronized, the monitor associated with handle is entered.

The base of the local variables array for the new Java stack frame is set to point to handle on the stack, making handle
and the supplied arguments (arg1, arg2, and so on) the first nargs local variables of the new frame. The total number of
local variables used by the method is determined, and the execution environment of the new frame is pushed after leaving
sufficient room for the locals. The base of the operand stack for this method invocation is set to the first word after the
execution environment. Finally, execution continues with the first bytecode of the matched method.

If handle is null, a NullPointerException is thrown. If during the method invocation a stack overflow is
detected, a StackOverflowError is thrown.

invokenonvirtual  ..., handle, [arg1, [arg2, ...]], ... => ...

Invoke instance method based on compile-time type. The operand stack must contain a reference (handle) to an object and
some number of arguments. byte1 and byte2 are used to construct an index into the constant pool of the current class.
The item at that index in the constant pool contains the complete method signature and class. The method signature is
looked up in the method table of the class indicated. The method signature is guaranteed to exactly match one of the method
signatures in the table.

The result of the lookup is a method block. The method block indicates the type of method (native, synchronized,
and so on) and the number of arguments (nargs) expected on the operand stack. (The last three paragraphs are identical to
the previous bytecode.)

appendix D -- Bytecodes Reference

file:///G|/ebooks/1575211831/ch32.htm (12 of 16) [11/06/2000 7:48:00 PM]



invokestatic      ..., , [arg1, [arg2, ...]], ... => ...

Invoke class (static) method. The operand stack must contain some number of arguments. byte1 and byte2 are used
to construct an index into the constant pool of the current class. The item at that index in the constant pool contains the
complete method signature and class. The method signature is looked up in the method table of the class indicated. The
method signature is guaranteed to match one of the method signatures in the class's method table exactly.

The result of the lookup is a method block. The method block indicates the type of method (native, synchronized,
and so on) and the number of arguments (nargs) expected on the operand stack.

If the method is marked synchronized, the monitor associated with the class is entered. (The last two paragraphs are
identical to those in invokevirtual, except that no NullPointerException can be thrown.)

invokeinterface   ..., handle, [arg1, [arg2, ...]], ...=> ...

Invoke interface method. The operand stack must contain a reference (handle) to an object and some number of
arguments. byte1 and byte2 are used to construct an index into the constant pool of the current class. The item at that
index in the constant pool contains the complete method signature. A pointer to the object's method table is retrieved from
the object reference. The method signature is looked up in the method table. The method signature is guaranteed to exactly
match one of the method signatures in the table.

The result of the lookup is a method block. The method block indicates the type of method (native, synchronized,
and so on) but, unlike the other "invoke" bytecodes, the number of available arguments (nargs) is taken from byte3;
byte4 is reserved for future use. (The last three paragraphs are identical to those in invokevirtual.)

Exception Handling

Sathrow            ..., handle => [undefined]

Throw exception. handle must be a handle to an exception object. That exception, which must be an instance of
Throwable (or a subclass), is thrown. The current Java stack frame is searched for the most recent catch clause that
handles the exception. If a matching "catch list" entry is found, the pc is reset to the address indicated by the catch-list
pointer, and execution continues there.

If no appropriate catch clause is found in the current stack frame, that frame is popped and the exception is rethrown,
starting the process all over again in the parent frame. If handle is null, a NullPointerException is thrown
instead.

Miscellaneous Object Operations

new               ... => ..., handle

Create new object. byte1 and byte2 are used to construct an index into the constant pool of the current class. The item at
that index should be a class name that can be resolved to a class pointer. A new instance of that class is then created and a
reference (handle) for the instance is placed on the top of the stack.

checkcast         ..., handle => ..., [handle | ...]

Make sure object is of given type. handle must be a reference to an object. byte1 and byte2 are used to construct an
index into the constant pool of the current class. The string at that index of the constant pool is presumed to be a class name
that can be resolved to a class pointer.

checkcast determines whether handle can be cast to a reference to an object of that class. (A null handle can be
cast to any class.) If handle can be legally cast, execution proceeds at the next bytecode, and the handle remains on the

appendix D -- Bytecodes Reference

file:///G|/ebooks/1575211831/ch32.htm (13 of 16) [11/06/2000 7:48:00 PM]



stack. If not, a ClassCastException is thrown and the stack is emptied.

instanceof        ..., handle => ..., result

Determine whether object is of given type. handle must be a reference to an object. byte1 and byte2 are used to
construct an index into the constant pool of the current class. The string at that index of the constant pool is presumed to be a
class name that can be resolved to a class pointer.

If handle is null, the result is 0 (false). Otherwise, instanceof determines whether handle can be cast to a
reference to an object of that class. The result is 1 (true) if it can, and 0 (false) otherwise.

Monitors

monitorenter      ..., handle => ...

Enter monitored region of code. handle must be a reference to an object. The interpreter attempts to obtain exclusive
access via a lock mechanism to handle. If another thread already has handle locked, the current thread waits until the
handle is unlocked. If the current thread already has handle locked, execution continues normally. If handle has no
lock on it, this bytecode obtains an exclusive lock. (A null in either bytecode throws NullPointerException.)

Smonitorexit       ..., handle => ...

Exit monitored region of code. handle must be a reference to an object. The lock on handle is released. If this is the last
lock that this thread has on that handle (one thread is allowed to have multiple locks on a single handle), other threads
that are waiting for handle are allowed to proceed. (A null in either bytecode throws NullPointerException.)

Debugging

breakpoint        -no change-

Call breakpoint handler. The breakpoint bytecode is used to overwrite a bytecode to force control temporarily back to the
debugger prior to the effect of the overwritten bytecode. The original bytecode's operands (if any) are not overwritten, and
the original bytecode is restored when the breakpoint bytecode is removed.

The _quick Bytecodes

The following discussion, straight out of the Java virtual machine documentation, shows you an example of the cleverness
mentioned earlier that's needed to make a bytecode interpreter fast:

The following set of pseudo-bytecodes, suffixed by _quick, are all variants of standard Java bytecodes. They
are used by the runtime to improve the execution speed of the bytecode interpreter. They aren't officially part of
the virtual machine specification and are invisible outside a Java virtual machine implementation. However,
inside that implementation they have proven to be an effective op-timization.

First, you should know that the javac Java compiler still generates only non-_quick bytecodes. Second, all
bytecodes that have a _quick variant reference the constant pool. When _quick optimization is turned on,
each non-_quick bytecode (that has a _quick variant) resolves the specified item in the constant pool,
signals an error if the item in the constant pool could not be resolved for some reason, turns itself into the
_quick variant of itself, and then performs its intended operation.

This is identical to the actions of the non-_quick bytecode, except for the step of overwriting itself with its
_quick variant. The _quick variant of a bytecode assumes that the item in the constant pool has already
been resolved, and that this resolution did not produce any errors. It simply performs the intended operation on
the resolved item.

Thus, as your bytecodes are being interpreted, they are automatically getting faster and faster! Here are all the _quick

appendix D -- Bytecodes Reference

file:///G|/ebooks/1575211831/ch32.htm (14 of 16) [11/06/2000 7:48:00 PM]



variants in the current Java runtime:

ldc1_quick
ldc2_quick
ldc2w_quick

anewarray_quick
multinewarray_quick

putfield_quick
putfield2_quick
getfield_quick
getfield2_quick
putstatic_quick
putstatic2_quick
getstatic_quick
getstatic2_quick

invokevirtual_quick
invokevirtualobject_quick
invokenonvirtual_quick
invokestatic_quick
invokeinterface_quick

new_quick
checkcast_quick
instanceof_quick

If you'd like to go back in this appendix and look at what each of these does, you can find the name of the original bytecode
on which a _quick variant is based simply by removing the _quick from its name. The bytecodes putstatic,
getstatic, putfield, and getfield have two _quick variants each, one for each stack picture in their original
descriptions. invokevirtual has two variants: one for objects and one for arrays (to do fast lookups in
java.lang.Object).

Note
One last note on the _quick optimization, regarding the unusual
handling of the constant pool (for detail fanatics only): When a class
is read in, an array constant_pool[] of size nconstants is
created and assigned to a field in the class. constant_pool[0] is
set to point to a dynamically allocated array that indicates which
fields in the constant_pool have already been resolved.
Constant_pool[1] through constant_pool[nconstants
- 1] are set to point at the "type" field that corresponds to this
constant item.

When a bytecode is executed that references the constant pool, an
index is generated, and constant_pool[0] is checked to see
whether the index has already been resolved. If so, the value of
constant_pool[index] is returned. If not, the value of
constant_pool[index] is resolved to be the actual pointer or
data, and overwrites whatever value was already in
constant_pool[index].

appendix D -- Bytecodes Reference

file:///G|/ebooks/1575211831/ch32.htm (15 of 16) [11/06/2000 7:48:00 PM]



   

appendix D -- Bytecodes Reference

file:///G|/ebooks/1575211831/ch32.htm (16 of 16) [11/06/2000 7:48:00 PM]



appendix E

java.applet Package Reference

CONTENTS
AppletContext●   

AppletStub●   

AudioClip●   

Applet●   

The java.applet package contains the necessary support for graphical Java applets that execute
within the confines of a Web page.

AppletContext

The AppletContext interface is provided to give information on an applet's environment. An
AppletContext interface can be obtained by calling the Applet class's getAppletContext
method.

getAudioClip

public abstract AudioClip getAudioClip(URL url)
getAudioClip retrieves an AudioClip based on the URL input parameter.
Parameters: url-a URL object containing location information for the clip to be retrieved.
Returns: An AudioClip object that can be played at a later time.

getImage

public abstract Image getImage(URL url)
getImage retrieves image information based on the URL input parameter. Note that this
function returns immediately and does not retrieve the entire image. This image will not be
retrieved until the Image object is actually needed.
Parameters: url-a URL object containing location information for the image to be
retrieved.
Returns: An Image object containing information about the URL passed in.

getApplet

public abstract Applet getApplet(String name)

appendix E -- java.applet Package Reference

file:///G|/ebooks/1575211831/ch33.htm (1 of 8) [11/06/2000 7:48:02 PM]



getApplet returns an Applet object from the current AppletContext based on the
input name argument.
Parameters: name-a String object representing an applet's name. This name should
correspond to the applet's HTML name attribute.
Returns: An Applet object or null if no applet exists with the designated name.

getApplets

public abstract Enumeration getApplets()
getApplets returns an Enumeration interface for all the applets on the current
AppletContext.
Returns: An Enumeration interface that can be used to retrieve all the applets on the
current applet context.

showDocument

public abstract void showDocument(URL url)
showDocument will load the URL argument into the current AppletContext if it is a
valid URL. This method may be ignored, depending on the applet context.
Parameters: url-a URL object containing location information for the image to be
retrieved.

showDocument

public abstract void showDocument(URL url, String target)
This showDocument method will load the URL argument into a target window or frame
depending on the target string. This method may be ignored, depending on the applet
context.
Parameters:
url-a URL object containing location information for the image to be retrieved.
target-the target string, which can be one of the following values:

"_self"-show in current frame.●   

"_parent"-show in parent frame.●   

"_top"-show in top-most frame.●   

"_blank"-show in new unnamed top-level window.●   

<other>-show in new top-level window named <other>.●   

showStatus

public abstract void showStatus(String status)
showStatus shows a status message using the applet's context.
Parameters: msg-a string containing the message to be displayed.

appendix E -- java.applet Package Reference

file:///G|/ebooks/1575211831/ch33.htm (2 of 8) [11/06/2000 7:48:02 PM]



AppletStub

The java.applet.AppletStub interface is most often used as an interface to build applet viewers,
browsers, or other tools that want to display applets within them. This interface is not normally
implemented by Java applet developers.

isActive

public abstract boolean isActive()
isActive is used to determine whether this applet is currently active.
Returns: true if the applet is active, false if not.

getDocumentBase

public abstract URL getDocumentBase()
getDocumentBase returns the URL of the current page that this applet is embedded in.
Returns: A URL object containing information about the current URL.

getCodeBase

public abstract URL getCodeBase()
getCodeBase returns the URL of the applet itself.
Returns: A URL object containing information about the applet's URL.

getParameter

public abstract String getParameter(String name)
getParameter returns the String value of the parameter passed in using the HTML
<PARAM> tag.

getAppletContext

public abstract AppletContext getAppletContext()
getAppletContext returns an AppletContext object. This object can be used to
determine information about the applet's runtime environment.
Returns: An AppletContext object.

appletResize

public abstract void appletResize(int width, int height)
appletResize is called when the applet wants to be resized.
Parameters:
width-an integer value specifying the applet's new width.
height-an integer value specifying the applet's new height.

appendix E -- java.applet Package Reference

file:///G|/ebooks/1575211831/ch33.htm (3 of 8) [11/06/2000 7:48:02 PM]



AudioClip

The AudioClip interface is used to provide high-level access to sound playback capabilities. This
interface, like AppletContext and AppletStub, is usually implemented only by applet viewers.

play

public abstract void play()
The play method plays audio files from the beginning until the end or stop method is
called.

loop

public abstract void loop()
The loop method plays audio files in a loop continuously.

stop

public abstract void stop()
The stop method stops the playing of an audio file.

Applet

Extends: Panel
This implies that every applet has some visual component. The basic visual component is a
panel in an HTML page.

Applet

public Applet()
This is the default constructor for the Applet class. This function creates a new applet.
Each applet should implement at a minimum the init or start methods to display
themselves on the screen and for initial setup.

setStub

public final void setStub(AppletStub stub)
setStub sets the AppletStub to the stub passed in. This function is called automatically
by the underlying system and usually is not called directly. The only time AppletStub
methods need to be implemented is if you are writing your own applet viewer or browser.
Parameters: stub-the underlying stub used to implement an applet viewer.

isActive

public boolean isActive()
isActive is used to determine whether this applet is currently active. An applet is set

appendix E -- java.applet Package Reference

file:///G|/ebooks/1575211831/ch33.htm (4 of 8) [11/06/2000 7:48:02 PM]



Active just before the Start method is called.

getDocumentBase

public URL getDocumentBase()
getDocumentBase returns the URL of the current page that this applet is embedded in.
Returns: A URL object containing information about the current URL.

getCodeBase

public URL getCodeBase()
getCodeBase returns the URL of the applet itself.
Returns: A URL object containing information about the applet's URL.

getParameter

public String getParameter(String name)
getParameter returns the String value of the parameter passed in using the HTML
<PARAM> tag.
Parameters: name-a case-sensitive string that matches (exactly!) the parameter name
passed in using the HTML PARAM tag.
Returns: A string value representing the PARAM tag's VALUE attribute.

getAppletContext

public AppletContext getAppletContext()
getAppletContext returns an AppletContext object. This object can be used to
determine information about the applet's runtime environment.
Returns: An AppletContext object.

resize

public void resize(int width, int height)
resize makes use of the Applet class's inheritance from the Panel class to resize the
applet based on the input values.
Parameters:
width-an integer value specifying the applet's new width.
height-an integer value specifying the applet's new height.

resize

public void resize(Dimension d)
This resize function accepts a Dimension object as its argument.
Parameters: d-a Dimension object that specifies the new size of the applet.

showStatus

appendix E -- java.applet Package Reference

file:///G|/ebooks/1575211831/ch33.htm (5 of 8) [11/06/2000 7:48:02 PM]



public void showStatus(String msg)
showStatus shows a status message using the applet's context.
Parameters: msg-a string containing the message to be displayed.

getImage

public Image getImage(URL url)
getImage retrieves image information based on the URL input parameter. Note that this
function returns immediately and does not retrieve the entire image. This image will not be
retrieved until the Image object is actually needed.
Parameters: url-a URL object containing location information for the image to be
retrieved.
Returns: An Image object containing information about the URL passed in.

getImage

public Image getImage(URL url, String name)
This getImage function accepts both the URL input parameter containing base location
information as well as a String input parameter containing the filename.
Parameters:
url-a URL object containing base location information for the image to be retrieved.
name-a string object containing a filename relative to the base URL passed using the
url argument.
Returns: An Image object containing information about the URL passed in.

getAudioClip

public AudioClip getAudioClip(URL url)
getAudioClip retrieves an AudioClip based on the URL input parameter.
Parameters: url-a URL object containing location information for the clip to be retrieved.
Returns: An AudioClip object that can be played at a later time.

getAudioClip

public AudioClip getAudioClip(URL url, String name)
This getAudioClip function accepts both the URL input parameter containing base
location information as well as a String input parameter containing the filename.
Parameters:
url-a URL object containing base location information for the AudioClip to be retrieved.
name-a string object containing a filename relative to the base URL passed using the
url argument.
Returns: An AudioClip object that can be played at a later time.

getAppletInfo

public String getAppletInfo()
getAppletInfo is provided for applet authors to return name, copyright, and version

appendix E -- java.applet Package Reference

file:///G|/ebooks/1575211831/ch33.htm (6 of 8) [11/06/2000 7:48:02 PM]



information for their applets. The default implementation returns null.
Returns: A String containing author, version, and copyright information (or anything
else) for the applet.

getParameterInfo

public String[][] getParameterInfo()
getParameterInfo is provided for applet authors to provide information on any
parameters that the applet may take as input. Conventional return values have the following
information: name, type, and comments. The default implementation returns a null
String array.
Returns: A String array where each element contains, by Java conventions, three values:
name, type, and comments. Each of these elements represent a parameter that the applet
takes as input.

play

public void play(URL url)
play is used to play an AudioClip at the location given by the URL input parameter.
Parameters: url-a URL object containing location information for the clip to be retrieved.

play

public void play(URL url, String name)
This play method is used to play an AudioClip given a base URL and a filename for
input parameters.
Parameters:
url-a URL object containing base location information for the AudioClip to be retrieved.
name-a string object containing a filename relative to the base URL passed using the
url argument.

init

public void init()
The init method is called automatically after the applet is created. This function never
needs to be called directly.

start

public void start()
The start method is called automatically to start the applet after it has been initialized.
This function never needs to be called directly. start is called when an applet is first
displayed on a screen, or when a page is revisited within a Web browser.

stop

public void stop()

appendix E -- java.applet Package Reference

file:///G|/ebooks/1575211831/ch33.htm (7 of 8) [11/06/2000 7:48:02 PM]



The stop method is called automatically to stop an applet from running. This function
never needs to be called directly unless the applet knows that it needs to stop executing.
stop is called when the Web page containing the applet is replaced by another Web page.

destroy

public void destroy()
The destroy method is called automatically when the applet's system resources are being
reclaimed. This function never needs to be called directly. destroy is called after the
stop method has finished.

   

appendix E -- java.applet Package Reference

file:///G|/ebooks/1575211831/ch33.htm (8 of 8) [11/06/2000 7:48:02 PM]



appendix F

java.awt Package Reference

CONTENTS
LayoutManager●   

MenuContainer●   

BorderLayout●   

Button●   

Canvas●   

CardLayout●   

Checkbox●   

CheckboxGroup●   

CheckboxMenuItem●   

Choice●   

Color●   

Component●   

Container●   

Dialog●   

Dimension●   

Event●   

FileDialog●   

FlowLayout●   

Font●   

FontMetrics●   

Frame●   

Graphics●   

GridBagConstraints●   

GridBagLayout●   

GridLayout●   

Image●   

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (1 of 104) [11/06/2000 7:48:20 PM]



Insets●   

Label●   

List●   

MediaTracker●   

Menu●   

MenuBar●   

MenuComponent●   

MenuItem●   

Panel●   

Point●   

Polygon●   

Rectangle●   

Scrollbar●   

TextArea●   

TextComponent●   

TextField●   

Toolkit●   

Window

awtException❍   

●   

awtError●   

The java.awt package contains what is known as the Java Abstract Windowing Toolkit. The classes
within this package make up the prebuilt graphical user interface components that are available to Java
developers through the Java Developer's Kit. Classes defined within this package include such useful
components as colors, fonts, and widgets such as buttons and scrollbars.

LayoutManager

The LayoutManager interface is provided so that it can be implemented by objects that know how to
lay out containers.

addLayoutComponent

void addLayoutComponent(String name, Component comp)
The addLayoutComponent method lays out the specified component within the layout
manager.
Parameters:

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (2 of 104) [11/06/2000 7:48:20 PM]



name-the name of the component to be laid out.
comp-the Component object to be laid out within the layout manager.

removeLayoutComponent

void removeLayoutComponent(Component comp)
The removeLayoutComponent method removes a specified component from the layout
manager.
Parameters: comp-the Component object that is to be removed from within the layout
manager.

preferredLayoutSize

Dimension preferredLayoutSize(Container parent)
The preferredLayoutSize method determines the preferred layout size for a specified
container.
Parameters: parent-a Container object that is to be laid out using the layout manager.
Returns: A Dimension object containing the preferred size of the Container
parameter.

minimumLayoutSize

Dimension minimumLayoutSize(Container parent)
The minimumLayoutSize method determines the minimum layout size for a specified
container.
Parameters: parent-a Container object that is to be laid out using the layout manager.
Returns: A Dimension object containing the minimum size of the Container
parameter.

layoutContainer

void layoutContainer(Container parent)
The layoutContainer method will lay out the specified Container object within the
layout manager.
Parameters: parent-a Container object that is to be laid out using the layout manager.

MenuContainer

The MenuContainer is an interface that is implemented by all menu-related containers.

getFont

Font getFont()
The getFont method returns the current font of the menu container.
Returns: The current Font object.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (3 of 104) [11/06/2000 7:48:20 PM]



postEvent

boolean postEvent(Event evt)
The postEvent method posts the specified event to the MenuContainer.
Parameters: evt-the Event object to be posted to the menu container.
Returns: A boolean value containing true if the event was handled, false if not.

remove

void remove(MenuComponent comp)
The remove method removes the specified MenuComponent object from the
MenuContainer.
Parameters: comp-the MenuComponent class to be removed from the
MenuContainer.

BorderLayout

Extends: Object
Implements: LayoutManager
A BorderLayout is used to lay out components on a panel by implementing the
LayoutManager interface. Components are laid out using members named North,
South, East, West, and Center.

BorderLayout Constructor

public BorderLayout()
This BorderLayout constructor constructs a BorderLayout layout manager.

BorderLayout Constructor

public BorderLayout(int hgap, int vgap)
This BorderLayout constructor constructs a BorderLayout layout manager using the
hgap and vgap values to set the horizontal and vertical gap sizes.
Parameters:
hgap-an integer value used to set the horizontal gap size.
vgap-an integer value used to set the vertical gap size.

addLayoutComponent

public void addLayoutComponent(String name, Component comp)
addLayoutComponent adds a component to the border layout according to that
component's name (North, South, East, West, or Center). The component's preferred
size is used for all layout types except Center.
Parameters:
name-a string value that must correspond to one of the following names: North, South,
East, West, or Center.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (4 of 104) [11/06/2000 7:48:20 PM]



comp-a Component object to be added to this layout manager.

removeLayoutComponent

public void removeLayoutComponent(Component comp)
removeLayoutComponent removes the specified component from the layout manager.
Parameters: comp-the Component object to be removed

minimumLayoutSize

public Dimension minimumLayoutSize(Container target)
minimumLayoutSize returns the minimum dimension needed to lay out the components
contained in the target parameter. Note that this function only determines the required
size based on visible components.
Parameters: target-a Container class containing components to be laid out.

preferredLayoutSize

public Dimension preferredLayoutSize(Container target)
preferredLayoutSize returns the preferred dimension needed to lay out the
components contained in the target parameter. This dimension is based on the individual
component's preferred sizes. Note that this function only determines the required size based
on visible components.
Parameters: target-a Container class containing components to be laid out.

layoutContainer

public void layoutContainer(Container target)
layoutContainer will lay out the components contained in the target Container
parameter. This method will reshape the components in the container based on the
requirements of the border layout itself.
Parameters: target-a Container class containing components to be laid out.

toString

public String toString()
toString returns a string representation of the BorderLayout class.
Returns: A String value containing the BorderLayout class's name plus its hgap and
vgap values.

Button

Extends: Component
A button can be placed on any type of layout because it derives directly from Component.

Button Constructor

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (5 of 104) [11/06/2000 7:48:20 PM]



public Button()
This BUTTON constructor constructs a simple button with no text label.

Button Constructor

public Button(String label)
This Button constructor constructs a simple button with a text label.
Parameters: label-a String value used to set the button's label.

addNotify

public synchronized void addNotify()
addNotify sets the peer of the button using the function
getToolkit.createButton. Using peer interfaces allows the user interface of the
button to be changed without changing its functionality.

getLabel

public String getLabel()
getLabel returns the button's label string.
Returns: A String value representing the button's label string.

setLabel

public void setLabel(String label)
setLabel modifies the button's label string.
Parameters: label-a String value representing the button's new label string.

Canvas

Extends: Component
A Canvas is used as a drawing surface for GUI applications.

addNotify

public synchronized void addNotify()
addNotify sets the peer of the canvas using the function
getToolkit.createCanvas. Using peer interfaces allows the user interface of the
canvas to be changed without changing its functionality.

paint

public void paint(Graphics g)
The paint method paints the canvas using the default background color (determine by
calling getBackground).

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (6 of 104) [11/06/2000 7:48:20 PM]



CardLayout

Extends: Object
Implements: LayoutManager
The CardLayout class is a layout manager that allows the addition of "cards," only one of
which may be visible at any given time. The user can "flip" through the cards.

CardLayout Constructor

public CardLayout()
This CardLayout constructor creates a new CardLayout layout manager.

CardLayout Constructor

public CardLayout(int hgap, int vgap)
This CardLayout constructor constructs a CardLayout layout manager using the hgap
and vgap values to set the horizontal and vertical gap sizes.
Parameters:
hgap-an integer value used to set the horizontal gap size.
vgap-an integer value used to set the vertical gap size.

addLayoutComponent

public void addLayoutComponent(String name, Component comp)
addLayoutComponent adds a component to the card layout.
Parameters:
name-a string value that corresponds to the component's name.
comp-a Component object to be added to this layout manager.

removeLayoutComponent

public void removeLayoutComponent(Component comp)
removeLayoutComponent removes the specified component from the layout manager.
Parameters: comp-the Component object to be removed.

minimumLayoutSize

public Dimension minimumLayoutSize(Container target)
minimumLayoutSize returns the minimum dimension needed to lay out the components
contained in the target parameter. Note that this function only determines the required
size based on visible components.
Parameters: target-a Container class containing components to be laid out.

preferredLayoutSize

public Dimension preferredLayoutSize(Container target)

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (7 of 104) [11/06/2000 7:48:20 PM]



preferredLayoutSize returns the preferred dimension needed to lay out the
components contained in the target parameter. This dimension is based on the individual
component's preferred sizes. Note that this function only determines the required size based
on visible components.
Parameters: target-a Container class containing components to be laid out.
LayoutContainer
public void layoutContainer(Container parent)
layoutContainer will lay out the components contained in the target Container
parameter. This method will reshape the components in the container based on the
requirements of the border layout itself.
Parameters: target-a Container class containing components to be laid out.

first

public void first(Container parent)
The first method shows the first component in the card layout (the first card).
Parameters: parent-the parent Container class containing the components to be
flipped through.

next

public void next(Container parent)
The next method shows the next component in the card layout (the next card).
Parameters: parent-the parent Container class containing the components to be
flipped through.

previous

public void previous (Container parent)
The previous method shows the previous component in the card layout (the previous
card).
Parameters: parent-the parent Container class containing the components to be
flipped through.

last

public void last(Container parent)
The last method shows the last component in the card layout (the last card).
Parameters: parent-the parent Container class containing the components to be
flipped through.

show

public void show(Container parent, String name)
The show method flips to the component specified in the name parameter.
Parameters:
parent-the parent Container class containing the components to be flipped through.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (8 of 104) [11/06/2000 7:48:20 PM]



name-a string value representing the name of the component to be displayed.

toString

public String toString()
toString returns a string representation of the card layout class.
Returns: A String value containing the card layout class's name plus its hgap and vgap
values.

Checkbox

Extends: Component
A Checkbox is a user interface component that is used to represent a true/false (or on/off)
value.

Checkbox Constructor

public Checkbox()
This Checkbox constructor constructs the simplest of all check boxes: one with no label,
no group, and a false state value.

Checkbox Constructor

public Checkbox(String label)
This Checkbox constructor constructs a check box using the label parameter to set the
check box's label. This check box will belong to no group and will be set to a false state
value.
Parameters: label-a string value representing the check box's label.

Checkbox Constructor

public Checkbox(String label, CheckboxGroup group, boolean
state)
This Checkbox constructor constructs a check box including the label, group, and initial
value.
Parameters:
label-a string value representing the check box's label.
group-a CheckboxGroup object that this check box will be a member of.
state-the initial state value for this check box.

addNotify

public synchronized void addNotify()
addNotify sets the peer of the check box using the function
getToolkit.createCheckbox. Using peer interfaces allows the user interface of the
check box to be changed without changing its functionality.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (9 of 104) [11/06/2000 7:48:20 PM]



getLabel

public String getLabel()
getLabel returns the check box's label string.
Returns: A String value representing the check box's label string.

setLabel

public void setLabel(String label)
setLabel modifies the check box's label string.
Parameters: label-a String value representing the check box's new label string.

getState

public boolean getState()
getState returns the check box's current state value.
Returns: A boolean value representing the check box's current state.

setState

public void setState(boolean state)
setState sets the check box to the value represented by the state parameter.
Parameters: state-a boolean value containing the new value of the check box's state.

getCheckboxGroup

public CheckboxGroup getCheckboxGroup()
The getCheckboxGroup method returns the CheckboxGroup that this check box is a
member of.
Returns: A CheckboxGroup class that this check box is a member of.

setCheckboxGroup

public void setCheckboxGroup(CheckboxGroup g)
The setCheckboxGroup method is used to add this check box to a CheckboxGroup.
Parameters: g-a CheckboxGroup class to which this check box is to be added.

CheckboxGroup

Extends: Object
A CheckboxGroup is used to group a set of Checkbox classes. When check boxes are
created within a CheckboxGroup, only one check box may be selected at one time.

CheckboxGroup Constructor

public CheckboxGroup()

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (10 of 104) [11/06/2000 7:48:20 PM]



This CheckboxGroup constructor constructs a CheckboxGroup instance with no check
box members.

getCurrent

public Checkbox getCurrent()
The getCurrent method returns the current check box.
Returns: A Checkbox object representing the currently selected check box.

setCurrent

public synchronized void setCurrent(Checkbox box)
The setCurrent method sets the current check box in this CheckboxGroup.
Parameters: box-the Checkbox object that is to be made current.

toString

public String toString()
toString returns a string containing Checkboxgroup information.
Returns: A string value containing the CheckboxGroup's name as well as the name of the
currently selected check box.

CheckboxMenuItem

Extends: MenuItem
A CheckboxMenuItem is a user interface component that can be added to a menu to
represent a boolean value selection.

CheckboxMenuItem Constructor

public CheckboxMenuItem(String label)
This CheckboxMenuItem constructor creates a CheckboxMenuItem with a text label
containing the string passed in.
Parameters: label-a string value representing the label of the CheckboxMenuItem to
be displayed.

addNotify

public synchronized void addNotify()
addNotify sets the peer of the CheckboxMenuItem using the function
getToolkit.createCheckboxMenuItem. Using peer interfaces allows the user
interface of the CheckboxMenuItem to be changed without changing its functionality.

getState

public boolean getState()

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (11 of 104) [11/06/2000 7:48:20 PM]



getState returns the state value of the CheckboxMenuItem's check box.
Returns: A boolean value representing the CheckboxMenuItem's check box state.

setState

public void setState(boolean t)
setState is used to set the CheckboxMenuItem's check box state value.
Parameters: t-a boolean value representing the CheckboxMenuItem's check box state
value.

paramString

public String paramString()
paramString returns a string containing CheckboxMenuItem information
Returns: A string value containing the CheckboxMenuItem's label as well as the state
value of the CheckboxMenuItem's check box.

Choice

Extends: Component
A Choice is a user interface component that displays a pop-up menu. The current selection
is displayed as the pop-up menu's title.

Choice Constructor

public Choice()
This Choice constructor creates a default Choice object that contains no information.

addNotify

public synchronized void addNotify()
addNotify sets the peer of the Choice using the function
getToolkit.createChoice. Using peer interfaces allows the user interface of the
Choice to be changed without changing its functionality.

countItems

public int countItems()
countItems returns the number of items (or choices) that are available in this Choice
object.
Returns: An integer value containing the number of items stored in this Choice object.

getItem

public String getItem(int index)
The getItem method returns the choice string at the index represented by the index value

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (12 of 104) [11/06/2000 7:48:20 PM]



passed in.
Parameters: index-an integer value representing the index of the string item to be
returned.
Returns: A String value representing the string at the index passed into this method.

addItem

public synchronized void addItem(String item)
addItem is used to add a String to a Choice object's internal list. The currently
selected item will be displayed in the Choice object's pop-up menu.
Parameters: item-a String object containing a string to be added to the choice list.
Throws: NullPointerException if the string item to be added is null.

getSelectedItem

public String getSelectedItem()
getSelectedItem returns the string value of the currently selected item.
Returns: A String value containing the currently selected item's string.

getSelectedIndex

public int getSelectedIndex()
getSelectedIndex returns the index of the currently selected item.
Returns: An integer value containing the index of the currently selected item.

select

public synchronized void select(int pos)
This select method selects the item at the position represented by the pos parameter.
Parameters: pos-an integer value representing the position of the item to be selected
Throws: IllegalArgumentException if the position value passed in is invalid.

select

public void select(String str)
This select method selects the item represented by the String parameter.
Parameters: str-a String value representing the string value of the choice to be selected.

Color

Extends: Object
The Color class is provided to encapsulate RGB (red-green-blue) color values.

Member Constants

public final static Color white

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (13 of 104) [11/06/2000 7:48:20 PM]



Static value representing the color white.

public final static Color lightGray
Static value representing the color light gray.

public final static Color gray
Static value representing the color gray.

public final static Color darkGray
Static value representing the color dark gray.

public final static Color black
Static value representing the color black.

public final static Color red
Static value representing the color red.

public final static Color pink
Static value representing the color pink.

public final static Color orange
Static value representing the color orange.

public final static Color yellow
Static value representing the color yellow.

public final static Color green
Static value representing the color green.

public final static Color magenta
Static value representing the color magenta.

public final static Color cyan
Static value representing the color cyan.

public final static Color blue
Static value representing the color blue.

Color Constructor

public Color(int r, int g, int b)
This Color constructor accepts as arguments individual red, green, and blue color values.
These values must be in the range 0-255.
Parameters:
r-the red color value.
g-the green color value.
b-the blue color value.

Color Constructor

public Color(int rgb)
This Color constructor creates a Color object based on the RGB color value passed in.
Parameters: rgb-an integer value containing the red, green, and blue color values that will
be used to create this Color object.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (14 of 104) [11/06/2000 7:48:20 PM]



Color Constructor

public Color(float r, float g, float b)
This Color constructor create a Color object based on the color values passed in. This
constructor is similar to the Color constructor that accepts integer red, green, and blue
inputs except that this Color constructor accepts float values. These values must be in
the
range 0-1.0.
Parameters:
r-the red color value.
g-the green color value.
b-the blue color value.

getRed

public int getRed()
The getRed method returns the red component of this color.
Returns: An integer value representing this color's red component.

getGreen

public int getGreen()
The getGreen method returns the green component of this color.
Returns: An integer value representing this color's green component.

getBlue

public int getBlue()
The getBlue method returns the blue component of this color.
Returns: An integer value representing this color's blue component.

getRGB

public int getRGB()
The getRGB method returns the RGB value of this color.
Returns: An integer value representing this color's RGB value in the default RGB color
model.

brighter

public Color brighter()
The brighter method brightens this color by modifying the RGB color value. This
method increases the individual red, green, and blue color components by a factor of
approximately 1.4.
Returns: A Color object representing a brighter version of the current color.

darker

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (15 of 104) [11/06/2000 7:48:20 PM]



public Color darker()
The darker method darkens this color by modifying the RGB color value. This method
decreases the individual red, green, and blue color components by a factor of approximately
1.4.
Returns: A Color object representing a darker version of the current color.

hashCode

public int hashCode()
hashCode returns this color's hash code. This is useful when storing colors in a hash table.
Returns: An integer value representing this color's hash code.

equals

public boolean equals(Object obj)
The equals method compares the Object parameter with this Color object. It returns a
boolean value representing the result of this comparison.
Parameters: obj-an Object object to be compared with this color.
Returns: A boolean value representing the result of the comparison of the Object
parameter to this color.

toString

public String toString()
toString returns a string representation of the Color class.
Returns: A String value containing the Color class's name plus its red, green, and blue
values.

getColor

public static Color getColor(String nm)
getColor returns the specified color property based on the name that is passed in.
Parameters: nm-the name of the color property.
Returns: A Color value representing the desired color property.

getColor

public static Color getColor(String nm, Color v)
getColor returns the specified Color property of the specified color.
Parameters:
nm-the name of the color property.
v-the specified color to be examined.
Returns: A Color value representing the desired color property.

getColor

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (16 of 104) [11/06/2000 7:48:21 PM]



public static Color getColor(String nm, int v)
getColor returns the specified Color property of the color value that is passed in.
Parameters:
nm-the name of the color property.
v-the color value.
Returns: A Color value representing the desired color property.

HSBtoRGB

public static int HSBtoRGB(float hue, float saturation, float
brightness)
HSB stands for hue, saturation, and brightness. To convert from an HSB value to an RGB
value, simply call this function with the appropriate arguments.
Parameters:
hue-the color's hue component.
saturation-the color's saturation component.
brightness-the color's brightness component.
Returns: An RGB value that corresponds to the HSB inputs.

RGBtoHSB

public static float[] RGBtoHSB(int r, int g, int b, float[]
hsbvals)
HSB stands for hue, saturation, and brightness. To convert from an RGB value to an HSB
value, simply call this function with the appropriate arguments.
Parameters:
r-the color's red component.
g-the color's green component.
b-the color's blue component.
hsbvals-an array that will be used to store the HSB result values.
Returns: An array containing the resultant HSB values.

getHSBColor

public static Color getHSBColor(float h, float s, float b)
The getHSBColor method returns a Color object representing the RGB value of the
input HSB parameters.
Parameters:
h-the color's hue component.
s-the color's saturation component.
b-the color's brightness component.
Returns: A Color object representing the RGB value of the input hue, saturation, and
brightness.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (17 of 104) [11/06/2000 7:48:21 PM]



Component

Extends: Object
Implements: ImageObserver
The Component class is used to represent a generic user interface component. All awt UI
components derive from the Component class.

getParent

public Container getParent()
getParent returns this component's parent (a Container class).
Returns: A Container class representing the component's parent.

getPeer

public ComponentPeer getPeer()
getPeer returns this component's peer (A ComponentPeer interface).
Returns: A ComponentPeer interface representing the component's peer.

getToolkit

public Toolkit getToolkit()
getToolkit returns the toolkit of this component. The toolkit is used to create the peer
for the component.
Returns: A Toolkit class. A toolkit is required to bind the abstract awt classes to a native
toolkit implementation.

isValid

public boolean isValid()
isValid determines whether this component is valid. A component is considered to be
invalid when it is first shown on the screen.
Returns: A boolean value representing the valid state of this component.

isVisible

public boolean isVisible()
isVisible determines whether this component is visible. A component is, by default,
visible until told otherwise. A component can be visible yet not show on the screen if the
component's container is invisible.
Returns: A boolean value representing the visible state of this component.

isShowing

public boolean isShowing()
isShowing determines whether this component is shown on the screen. A component can

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (18 of 104) [11/06/2000 7:48:21 PM]



be visible yet not show on the screen if the component's container is invisible.
Returns: A boolean value representing the show state of this component.

isEnabled

public boolean isEnabled()
isEnabled determines whether this component is currently enabled. By default,
components are enabled until told otherwise.
Returns: A boolean value representing the enabled state of this component.

location

public Point location()
location returns the location of this component in its parent's coordinate space. Note that
the Point object returned contains the top-left corner coordinates of this component.
Returns: A Point object containing the location of the component.

size

public Dimension size()
size returns the current size of the component.
Returns: A Dimension object containing the size of the component.

bounds

public Rectangle bounds()
bounds returns the bounding rectangle of the component.
Returns: A Rectangle object containing the boundaries for the component.

enable

public synchronized void enable()
The enable method is used to enable a component. When a component is disabled, it may
be "grayed out" or simply not respond to user inputs.

enable

public void enable(boolean cond)
This enable method is used to conditionally enable a component. When a component is
disabled, it may be "grayed out" or simply not respond to user inputs.
Parameters: cond-a boolean value representing the new enabled state of the component.

disable

public synchronized void disable()
The disable method disables a component. When a component is disabled, it may be
"grayed out" or simply not respond to user inputs.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (19 of 104) [11/06/2000 7:48:21 PM]



show

public synchronized void show()
show shows the component.

show

public void show(boolean cond)
This show method conditionally shows the component. If the input parameter is true, the
component will be shown. If the input parameter is false, the component will be hidden.
Parameters: cond-a boolean value representing the new visible state of the component.

hide

public synchronized void hide()
The hide method hides the component from view.

getForeground

public Color getForeground()
getForeground returns the foreground color of the component. If the component's
foreground color has not been set, the foreground color of its parent is returned.
Returns: A Color object representing the foreground color of this component.

setForeground

public synchronized void setForeground(Color c)
setForeground sets the foreground color of the component.
Parameters: c-the new foreground color of this component.

getBackground

public Color getBackground()
getBackground returns the background color of the component. If the component's
background color has not been set, the background color of its parent is returned.
Returns: A Color object representing the background color of this component.

setBackground

public synchronized void setBackground(Color c)
setBackground sets the background color of the component.
Parameters: c-the new background color of this component.

getFont

public Font getFont()
getFont returns the font of the component. If the component's font has not been set, the

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (20 of 104) [11/06/2000 7:48:21 PM]



font of its parent is returned.

setFont

public synchronized void setFont(Font f)
setFont sets the font of the component.
Parameters: f-the new font of this component.

getColorModel

public synchronized ColorModel getColorModel()
getColorModel gets the color model that will be used to display this component on an
output device.
Returns: A ColorModel object representing the color model used by this component.

move

public void move(int x, int y)
The move method moves a component to a new location within its parent's coordinate
space.
Parameters:
x-the new x coordinate of the component within its parent's coordinate space.
y-the new y coordinate of the component within its parent's coordinate space.

resize

public void resize(int width, int height)
resize resizes the component to the specified width and height.
Parameters:
width-the new width size of the component.
height-the new height size of the component.

resize

public void resize(Dimension d)
resize resizes the component to the specified dimension.
Parameters: d-a Dimension object representing the new size of the component.

reshape

public synchronized void reshape(int x, int y, int width, int
height)
reshape completely changes the bounding box of the component by changing its size and
location.
Parameters:
x-the new x coordinate of the component within its parent's coordinate space.
y-the new y coordinate of the component within its parent's coordinate space.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (21 of 104) [11/06/2000 7:48:21 PM]



width-the new width size of the component.
height-the new height size of the component.

preferredSize

public Dimension preferredSize()
The preferredSize method returns the preferred size of the component.
Returns: A Dimension object representing the preferred size of the component.

minimumSize

public Dimension minimumSize()
minimumSize returns the minimum size of the component.
Returns: A Dimension object representing the minimum size of the component.

layout

public void layout()
The layout method is called when the component needs to be laid out.

validate

public void validate()
validate validates a component by calling its layout method.

invalidate

public void invalidate()
invalidate invalidates a component, forcing the component and all parents above it to
be laid out.

getGraphics

public Graphics getGraphics()
getGraphics returns a Graphics context for the component. If the component is not
currently on the screen, this function will return null.
Returns: A Graphics object representing the component's graphics context.

getFontMetrics

public FontMetrics getFontMetrics(Font font)
getFontMetrics returns the current font metrics for a specified font. If the component is
not currently on the screen, this function will return null.
Parameters: font-a Font object to be examined.
Returns: A FontMetrics object representing the component's font metrics.

paint

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (22 of 104) [11/06/2000 7:48:21 PM]



public void paint(Graphics g)
The paint method paints the component on the screen using the Graphics context
parameter.
Parameters: g-the Graphics context that the component will paint itself onto.

update

public void update(Graphics g)
The update method repaints the component in response to a call to the repaint method.
Parameters: g-the Graphics context that the component will paint itself onto.

paintAll

public void paintAll(Graphics g)
The paintAll method is used to paint the component along with all of its subcomponents.
Parameters: g-the Graphics context that the component will paint itself onto.

repaint

public void repaint()
repaint is used to force a component to repaint itself. Calling this function will result in a
call to repaint.

repaint

public void repaint(long tm)
This repaint method is used to force a component to repaint itself in tm milliseconds.
Parameters: tm-the time span, in milliseconds, from the time this function was called that
the component will repaint itself.

repaint

public void repaint(int x, int y, int width, int height)
This repaint method will force the component to repaint part of its surface area based on
the input coordinates.
Parameters:
x-the x coordinate marking the surface area to be repainted.
y-the y coordinate marking the surface area to be repainted.
width-the width of the surface area to be repainted.
height-the height of the surface area to be repainted.

repaint

public void repaint(long tm, int x, int y, int width, int
height)
This repaint method will force the component to repaint part of its surface area based on
the input coordinates at a specified time in the future.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (23 of 104) [11/06/2000 7:48:21 PM]



Parameters:
tm-the time, in milliseconds, from the time this method was called that the component will
need to repaint itself.
x-the x coordinate marking the surface area to be repainted.
y-the y coordinate marking the surface area to be repainted.
width-the width of the surface area to be repainted.
height-the height of the surface area to be repainted.

print

public void print(Graphics g)
print prints the component using the Graphics context. The default implementation of
this method calls paint.
Parameters: g-the Graphics context to be printed on.

printAll

public void printAll(Graphics g)
printAll prints the component and all of its subcomponents using the Graphics
context.
Parameters: g-the Graphics context to be printed on.

imageUpdate

public boolean imageUpdate(Image img, int flags, int x, int
y, int w, int h)
imageUpdate repaints the component when the specified image has changed.
Parameters:
img-an Image object to be examined for changes.
flags-a flags parameter contains imaging flags such as FRAMEBITS, ALLBITS, and
SOMEBITS.
x-the x coordinate marking the surface area to be repainted.
y-the y coordinate marking the surface area to be repainted.
width-the width of the surface area to be repainted.
height-the height of the surface area to be repainted.
Returns: A boolean value that is true if the image has changed, false if not.

createImage

public Image createImage(ImageProducer producer)
createImage creates an Image using the specified image producer.
Parameters: producer-an ImageProducer interface that will be used to produce a new
image.
Returns: An Image object.
createImage
public Image createImage(int width, int height)

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (24 of 104) [11/06/2000 7:48:21 PM]



This createImage creates an offscreen Image object using the specified width and
height. This Image object can be used for things like double buffering.
Parameters:
width-the width of the Image object to be created.
height-the height of the Image object to be created.
Returns: An Image object.

prepareImage

public boolean prepareImage(Image image, ImageObserver
observer)
prepareImage prepares an image for rendering on this component. Because the Image
is downloaded using a separate thread, the ImageObserver interface is notified when the
image is ready to be rendered.
Parameters:
image-an Image object that will be rendered on this component.
observer-an Observer interface that will be notified when the Image is ready to be
rendered.
Returns: A boolean value that is true if the image has been prepared, false if not.

prepareImage

public boolean prepareImage(Image image, int width, int height,
ImageObserver observer)
This prepareImage method is similar to the prepareImage method documented
previously except that this method scales the image based on the width and height
parameters.
Parameters:
image-an Image object that will be rendered on this component.
width-the width of the image to be rendered.
height-the height of the image to be rendered.
observer-an Observer interface that will be notified when the Image is ready to be
rendered.
Returns: A boolean value that is true if the image has been prepared, false if not.

checkImage

public int checkImage(Image image, ImageObserver observer)
checkImage checks the status of the construction of the image to be rendered.
Parameters:
image-an Image object that will be rendered on this component.
observer-an Observer interface that will be notified when the Image is ready to be
rendered.
Returns: An integer value that is the boolean OR of the ImageObserver flags for the data
that is currently available.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (25 of 104) [11/06/2000 7:48:21 PM]



checkImage

public int checkImage(Image image, int width, int height,
ImageObserver
observer)
This checkImage method checks the status of the construction of a scaled representation
of this image.
Parameters:
image-an Image object that will be rendered on this component.
width-the width of the image to be checked.
height-the height of the image to be checked.
observer-an Observer interface that will be notified when the image is ready to be
rendered.
Returns: An integer value that is the boolean OR of the ImageObserver flags for the data
that is currently available.

inside

public synchronized boolean inside(int x, int y)
The inside method determines whether the x and y coordinates are within the bounding
rectangle of the component.
Parameters:
x-the x coordinate to be examined.
y-the y coordinate to be examined.
Returns: A boolean value representing the result of the coordinate check.

locate

public Component locate(int x, int y)
locate returns the Component at the specified x and y coordinates.
Parameters:
x-the x coordinate to be examined.
y-the y coordinate to be examined.
Returns: The Component that is found at the specified x and y coordinates.

deliverEvent

public void deliverEvent(Event e)
deliverEvent delivers an event to the component.
Parameters: e-an Event object encapsulating the event.

postEvent

public boolean postEvent(Event e)
postEvent posts an event to the component resulting in a call to handleEvent.
Parameters: e-an Event object encapsulating the event.
Returns: A boolean value that is true if the event was handled, false if not.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (26 of 104) [11/06/2000 7:48:21 PM]



handleEvent

public boolean handleEvent(Event evt)
handleEvent is used to handle individual events by the component.
Parameters: evt-an Event object encapsulating the event.
Returns: A boolean value that is true if the event was handled, false if not.

mouseDown

public boolean mouseDown(Event evt, int x, int y)
The mouseDown method is called if the mouse is down.
Parameters:
evt-an Event object encapsulating the event.
x-the x coordinate of the mouse down click point.
y-the y coordinate of the mouse down click point.
Returns: A boolean value that is true if the event was handled, false if not.

mouseDrag

public boolean mouseDrag(Event evt, int x, int y)
The mouseDrag method is called if the mouse is dragged.
Parameters:
evt-an Event object encapsulating the event.
x-the x coordinate of the current mouse point coordinate.
y-the y coordinate of the current mouse point coordinate.
Returns: A boolean value that is true if the event was handled, false if not.

mouseUp

public boolean mouseUp(Event evt, int x, int y)
The mouseUp method is called when the mouse button is let up.
Parameters:
evt-an Event object encapsulating the event.
x-the x coordinate of the mouse up point.
y-the y coordinate of the mouse up point.
Returns: A boolean value that is true if the event was handled, false if not.

mouseMove

public boolean mouseMove(Event evt, int x, int y)
The mouseMove method is called if the mouse is moved.
Parameters:
evt-an Event object encapsulating the event.
x-the x coordinate of the current mouse point coordinate.
y-the y coordinate of the current mouse point coordinate.
Returns: A boolean value that is true if the event was handled, false if not.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (27 of 104) [11/06/2000 7:48:21 PM]



mouseEnter

public boolean mouseEnter(Event evt, int x, int y)
The mouseEnter method is called if the mouse enters the component.
Parameters:
evt-an Event object encapsulating the event.
x-the x coordinate of the current mouse point coordinate.
y-the y coordinate of the current mouse point coordinate.
Returns: A boolean value that is true if the event was handled, false if not.

mouseExit

public boolean mouseExit(Event evt, int x, int y)
The mouseExit method is called if the mouse exits the component.
Parameters:
evt-an Event object encapsulating the event.
x-the x coordinate of the mouse exit point.
y-the y coordinate of the mouse exit point.
Returns: A boolean value that is true if the event was handled, false if not.

keyDown

public boolean keyDown(Event evt, int key)
The keyDown method is called when a key is pressed.
Parameters:
evt-an Event object encapsulating the event.
key-an integer value representing the code of the key that was pressed.
Returns: A boolean value that is true if the event was handled, false if not.

keyUp

public boolean keyUp(Event evt, int key)
The keyUp method is called when a key is let up.
Parameters:
evt-an Event object encapsulating the event.
key-an integer value representing the code of the key that was pressed.
Returns: A boolean value that is true if the event was handled, false if not.

action

public boolean action(Event evt, Object what)
The action method is called if an action occurs within the component.
Parameters:
evt-an Event object encapsulating the event.
what-an object representing the action that is occurring.
Returns: A boolean value that is true if the event was handled, false if not.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (28 of 104) [11/06/2000 7:48:21 PM]



addNotify

public void addNotify()
addNotify notifies a component to create a peer object.

removeNotify

public synchronized void removeNotify()
removeNotify notifies a component to destroy the peer object.

gotFocus

public boolean gotFocus(Event evt, Object what)
The gotFocus method is called when the component receives the input focus.
Parameters:
evt-an Event object encapsulating the event.
what-an object representing the action that is occurring.
Returns: A boolean value that is true if the event was handled, false if not.

lostFocus

public boolean lostFocus(Event evt, Object what)
The lostFocus method is called when the component loses the input focus.
Parameters:
evt-an Event object encapsulating the event.
what-an object representing the action that is occurring.
Returns: A boolean value that is true if the event was handled, false if not.

requestFocus

public void requestFocus()
The requestFocus method requests the current input focus. If this method is successful,
gotFocus will then be called.

nextFocus

public void nextFocus()
The nextFocus method switches the focus to the next component. The next component
can be determined by examining the tab order of the components on a form.

toString

public String toString()
toString returns a string representation of the Component class.
Returns: A String value containing the Component class's name plus its x, y, height,
and width values.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (29 of 104) [11/06/2000 7:48:21 PM]



list

public void list()
The list method prints a listing of the component to the print stream.

list

public void list(PrintStream out)
This list method prints a listing of the component to the specified output stream.
Parameters: out-a PrintStream object.

list

public void list(PrintStream out, int indent)
This list method prints a listing of the component to the specified output stream at the
specified indention.
Parameters:
out-a PrintStream object.
indent-an integer value representing the amount to be indented.

Container

Extends: Component
A Container class is defined as a class that can contain other components.
countComponents
public int countComponents()
countComponents returns the number of components contained within the container.
Returns: An integer value representing the number of components within the container.

getComponent

public synchronized Component getComponent(int n)
The getComponent method returns the component at the specified index.
Parameters: n-an integer value representing the index at which to retrieve a component.
Returns: A Component object within the container.

getComponents

public synchronized Component[] getComponents()
getComponents returns an array of Component objects contained within the
Container.
Returns: An array of Component objects contained within the container.

insets

public Insets insets()

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (30 of 104) [11/06/2000 7:48:21 PM]



The insets methods returns the borders of this container.
Returns: An Insets object representing the insets of the container.

add

public Component add(Component comp)
The add method adds a Component to the container at the end of the container's array of
components.
Parameters: comp-the component to be added.
Returns: The Component object that was added to the container's list.

add

public synchronized Component add(Component comp, int pos)
This add method adds a Component to the container at the specified index in the
container's array of components.
Parameters:
comp-the component to be added.
pos-the position the component is to be added at.
Returns: The Component object that was added to the container's list.

add

public synchronized Component add(String name, Component
comp)
This add method adds a Component using the Component argument and that
Component's name.
Parameters:
name-a String representing the name of the component.
comp-the component to be added.
Returns: The Component object that was added to the container's list.

remove

public synchronized void remove(Component comp)
The remove method removes the specified component from the Container's list.
Parameters: comp-the component to be removed.

removeAll

public synchronized void removeAll()
The removeAll method removes all components from within the Container.

getLayout

public LayoutManager getLayout()
getLayout returns this container's layout manager.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (31 of 104) [11/06/2000 7:48:21 PM]



Returns: A layout manager interface representing the container's LayoutManager.

setLayout

public void setLayout(LayoutManager mgr)
setLayout sets the current layout manager of the container.
Parameters: mgr-the layout manager that will control the layouts of this Container's
components.

layout

public synchronized void layout()
The layout method is called to perform a layout on this component.

validate

public synchronized void validate()
The validate method refreshes the container and all of the components within it by
validating the container and all of its components.

preferredSize

public synchronized Dimension preferredSize()
preferredSize returns the preferred size of this container.
Returns: A Dimension object representing the preferred size of this Container.

minimumSize

public synchronized Dimension minimumSize()
minimumSize returns the minimum size of this container.
Returns: A Dimension object representing the minimum size of this Container.

paintComponents

public void paintComponents(Graphics g)
The paintComponents method is used to paint each of the components within the
container.
Parameters: g-the Graphics context that the container's components will be painted on.

printComponents

public void printComponents(Graphics g)
The printComponents method is used to print each of the components within the
container.
Parameters: g-the Graphics context that the container's components will be printed on.

deliverEvent

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (32 of 104) [11/06/2000 7:48:21 PM]



public void deliverEvent(Event e)
deliverEvent locates the appropriate component within the container that the event
applies to and delivers the event to that component.
Parameters: e-the event to be delivered.

locate

public Component locate(int x, int y)
The locate method locates and returns the component that lies at the specified x and y
coordinates within the container.
Parameters:
x-the x coordinate of the component to be located.
y-the y coordinate of the component to be located.

addNotify

public synchronized void addNotify()
addNotify notifies the container to create a peer interface. This method will also notify
each of the container's components to do likewise.

removeNotify

public synchronized void removeNotify()
removeNotify notifies the container to remove its peer. This method will also notify
each of the container's components to do likewise.

list

public void list(PrintStream out, int indent)
The list method prints a list for each component within the container to the specified
output stream at the specified indentation.
Parameters:
out-a PrintStream object.
indent-an integer amount representing the value to indent the list.

Dialog

Extends: Window
The Dialog class is used to create a window that can be closed by the user. Dialogs are
normally temporary windows that are used for inputting information.

Dialog Constructor

public Dialog(Frame parent, boolean modal)
This Dialog constructor constructs a Dialog object from a parent Frame object. This
dialog is initially invisible.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (33 of 104) [11/06/2000 7:48:21 PM]



Parameters:
parent-the parent frame of the dialog.
modal-a boolean value designating this dialog to be either modal or nonmodal.

Dialog Constructor

public Dialog(Frame parent, String title, boolean modal)
This Dialog constructor constructs a Dialog object from a parent Frame object. This
dialog is initially invisible.
Parameters:
parent-the parent frame of the dialog.
title-a String value representing the title to be displayed for this dialog.
modal-a boolean value designating this dialog to be either modal or nonmodal.

addNotify

public synchronized void addNotify()
The addNotify method creates the dialog's peer. Making use of a peer interface allows
the dialog's appearance to be changed without changing its functionality.

isModal

public boolean isModal()
isModal returns the modal status of the dialog.
Returns: A boolean value representing the dialog's modal status. If this is true, the dialog
is modal. If false, the dialog is nonmodal.

getTitle

public String getTitle()
getTitle returns the dialog's title string.
Returns: A String value representing the title string of the dialog.

setTitle

public void setTitle(String title)
The setTitle method sets the dialog's title string.
Parameters: title-a String value representing the dialog's new title.

isResizable

public boolean isResizable()
The isResizable method is called to determine whether or not this dialog can be
resized.
Returns: A boolean value that is true if the dialog is resizable, false if it is not.

setResizable

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (34 of 104) [11/06/2000 7:48:21 PM]



public void setResizable(boolean resizable)
The setResizable method is used to change whether a dialog can be resized.
Parameters: resizable-a boolean value that is true if the dialog is to be resizable and
false if not.

Dimension

Extends: Object
A Dimension class is used to encapsulate an object's height and width.

Member Variables

public int width
The width instance variable contains the integer value representing the Dimension's
width value.

public int height
The height instance variable contains the integer value representing the Dimension's
height value.

Dimension Constructor

public Dimension()
This Dimension constructor constructs an empty Dimension object.

Dimension Constructor

public Dimension(Dimension d)
This Dimension constructor constructs a Dimension object from an existing
Dimension object.
Parameters: d-a Dimension object whose values will be used to create the new
dimension.

Dimension Constructor

public Dimension(int width, int height)
This Dimension constructor constructs a Dimension object based on the width and
height input parameters.
Parameters:
width-an integer value representing the width of the new dimension.
height-an integer value representing the height of the new dimension.

toString

public String toString()
The toString method is used to return a string representation of this Dimension object.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (35 of 104) [11/06/2000 7:48:21 PM]



Returns: A String containing this dimension's height and width values.

Event

Extends: Object
The Event class is used to encapsulate GUI event's in a platform-independent manner.

Member Constants

public static final int SHIFT_MASK
The SHIFT_MASK value represents the Shift Modifier constant.

public static final int CTRL_MASK
The CTRL_MASK value represents the Control Modifier constant.

public static final int META_MASK
The META_MASK value represents the Meta Modifier constant.

public static final int ALT_MASK
The ALT_MASK value represents the Alt Modifier constant.

public static final int HOME
The HOME value represents the Home key.

public static final int END
The END value represents the End key.

public static final int PGUP
The PGUP value represents the Page Up key.

public static final int PGDN
The PGDN value represents the Page Down key.

public static final int UP
The UP value represents the up-arrow key.

public static final int DOWN
The DOWN value represents the down-arrow key.

public static final int LEFT
The LEFT value represents the left-arrow key.

public static final int RIGHT
The RIGHT value represents the right-arrow key.

public static final int f1
The f1 value represents the f1 key.

public static final int f2
The f2 value represents the f2 key.

public static final int f3
The f3 value represents the f3 key.

public static final int f4
The f4 value represents the f4 key.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (36 of 104) [11/06/2000 7:48:21 PM]



public static final int f5
The f5 value represents the f5 key.

public static final int f6
The f6 value represents the f6 key.

public static final int f7
The f7 value represents the f7 key.

public static final int f8
The f8 value represents the f8 key.

public static final int f9
The f9 value represents the f9 key.

public static final int f10
The f10 value represents the f10 key.

public static final int f11
The f11 value represents the f11 key.

public static final int f12
The f12 value represents the f12 key.

public static final int WINDOW_DESTROY
The WINDOW_DESTROY value represents the destroy window event.

public static final int WINDOW_EXPOSE
The WINDOW_EXPOSE value represents the expose window event.

public static final int WINDOW_ICONIFY
The WINDOW_ICONIFY value represents the iconify window event.

public static final int WINDOW_DEICONIFY
The DEICONIFY_WINDOW value represents the deiconify window event.

public static final int WINDOW_MOVED
The WINDOW_MOVED value represents the window moved event.

public static final int KEY_PRESS
The KEY_PRESS value represents the keypress event.

public static final int KEY_RELEASE
The KEY_RELEASE value represents the key release event.

public static final int KEY_ACTION
The KEY_ACTION value represents the key action keyboard event.

public static final int KEY_ACTION_RELEASE
The KEY_ACTION_RELEASE value represents the key action release keyboard event.

public static final int MOUSE_DOWN
The MOUSE_DOWN value represents the mouse down event.

public static final int MOUSE_UP
The MOUSE_UP value represents the mouse up event.

public static final int MOUSE_MOVE
The MOUSE_MOVE value represents the mouse move event.

public static final int MOUSE_ENTER

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (37 of 104) [11/06/2000 7:48:21 PM]



The MOUSE_ENTER value represents the mouse enter event.

public static final int MOUSE_EXIT
The MOUSE_EXIT value represents the mouse exit event.

public static final int MOUSE_DRAG
The MOUSE_DRAG value represents the mouse drag event.

public static final int SCROLL_LINE_UP
The SCROLL_LINE_UP value represents the line up scroll event.

public static final int SCROLL_LINE_DOWN
The SCROLL_LINE_DOWN value represents the line down scroll event.

public static final int SCROLL_PAGE_UP
The SCROLL_PAGE_UP value represents the page up scroll event.

public static final int SCROLL_PAGE_DOWN
The SCROLL_PAGE_DOWN value represents the page down scroll event.

public static final int SCROLL_ABSOLUTE
The SCROLL_ABSOLUTE value represents the absolute scroll event.

public static final int LIST_SELECT
The LIST_SELECT value represents the select list event.

public static final int LIST_DESELECT
The LIST_DESELECT value represents the deselect list event.

public static final int ACTION_EVENT
The ACTION_EVENT value represents an action event.

public static final int LOAD_FILE
The LOAD_FILE value represents a file load event.

public static final int SAVE_FILE
The SAVE_FILE value represents a file save event.

public static final int GOT_FOCUS
The GOT_FOCUS value represents a got focus event.

public static final int LOST_FOCUS
The LOST_FOCUS value represents a lost focus event.

Member Variables

public Object target
The target instance variable represents the object that is the target of the event.

public long when
The when instance variable represents the time stamp of the event.

public int id
The id instance variable represents the type of the event.

public int x
The x instance variable represents the x coordinate of the event.

public int y

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (38 of 104) [11/06/2000 7:48:21 PM]



The y instance variable represents the y coordinate of the event.

public int key
The key instance variable represents the key that was pressed to trigger the keyboard event.

public int modifiers
The modifiers instance variable represents the state of the modifier keys.

public int clickCount
The clickCount instance variable represents the number of clicks during the mouse down
event. If this event wasn't triggered by a mouse down action, this value will be 0. It will be 1
for a single click, and 2 for a double click.

public Object arg
The arg instance variable represents an arbitrary argument.

public Event evt
The evt instance variable represents the next event. This is useful when multiple events will
be stored in an array or linked list.

Event Constructor

public Event(Object target, long when, int id, int x, int y,
int key, int modifiers, Object arg)
This Event constructor constructs an event using the target, current time, event ID,
location, key pressed and modifiers, and some argument.
Parameters:
target-the target object for the event.
when-the time stamp for the event.
id-the event type.
x-the x coordinate of the event.
y-the y coordinate of the event.
key-the key pressed that triggered a keyboard event.
modifiers-the state of the modifier keys.
arg-an arbitrary argument.

Event Constructor

public Event(Object target, long when, int id, int x, int y,
int key, int modifiers)
This Event constructor constructs an event using the target, current time, event ID,
location, key pressed, and modifiers.
Parameters:
target-the target object for the event.
when-the time stamp for the event.
id-the event type.
x-the x coordinate of the event.
y-the y coordinate of the event.
key-the key pressed that triggered a keyboard event.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (39 of 104) [11/06/2000 7:48:21 PM]



Event Constructor

public Event(Object target, int id, Object arg)
This Event constructor constructs an event using the target, event ID, and some argument.
Parameters:
target-the target object for the event.
id-the event type.
arg-an arbitrary argument.

translate

public void translate(int x, int y)
The translate method translates coordinates for a given component. If the object
sending this event has targeted a certain component, this method will translate the
coordinates to make sense for that particular component.
Parameters:
x-the x coordinate.
y-the y coordinate.

shiftDown

public boolean shiftDown()
The shiftDown method returns the current state of the Shift key.
Returns: A boolean value that is true if the Shift key is down, false if it is up.

controlDown

public boolean controlDown()
The controlDown method returns the current state of the Ctrl key.
Returns: A boolean value that is true if the Ctrl key is down, false if it is up.

metaDown

public boolean metaDown()
The metaDown method returns the current state of the Meta key.
Returns: A boolean value that is true if the meta key is down, false if it is up.

toString

public String toString()
The toString method returns the string representation of the current event.
Returns: A String value containing information on the event, including the id, x, y,
key, shiftDown, controlDown, and metaDown values.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (40 of 104) [11/06/2000 7:48:21 PM]



FileDialog

Extends: Dialog
A FileDialog is presented to a user in order for that user to select a file. This dialog is a
modal dialog, therefore the calling thread will be blocked until this dialog exits.

Member Constants

public static final int LOAD
The LOAD static value represents the file load variable.

public static final int SAVE
The SAVE static value represents the file save variable.

FileDialog Constructor

public FileDialog(Frame parent, String title)
This FileDialog constructor constructs a file dialog using a parent frame and a title
string.
Parameters:
parent-the parent frame of the file dialog.
title-a String containing the dialog's title.

FileDialog Constructor

public FileDialog(Frame parent, String title, int mode)
This FileDialog constructor constructs a file dialog using a parent frame, a title string,
and a mode value representing either a load or save dialog.
Parameters:
parent-the parent frame of the file dialog.
title-a String containing the dialog's title.
mode-an integer value representing the dialog mode (LOAD or SAVE).

addNotify

public synchronized void addNotify()
addNotify notifies FileDialog to create a peer. Using a peer interface allows the user
interface of the file dialog to be changed without changing its functionality.

getMode

public int getMode()
getMode returns the current mode of the file dialog.
Returns: An integer value representing the current mode (LOAD or SAVE) of the file dialog.

getDirectory

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (41 of 104) [11/06/2000 7:48:21 PM]



public String getDirectory()
The getDirectory method returns the current directory of the file dialog.
Returns: A String value representing FileDialog's current directory.

setDirectory

public void setDirectory(String dir)
The setDirectory method is used to set the current directory of the FileDialog.
Parameters: dir-a String value representing the directory to be set.

getFile

public String getFile()
The getFile method returns the currently selected file within FileDialog.
Returns: A String value representing the file dialog's current file.

setFile

public void setFile(String file)
The setFile method is used to set the current file of the file dialog.
Parameters: file-a String value representing the file to be set.

FlowLayout

Extends: Object
Implements: LayoutManager
A FlowLayout implements the LayoutManager interface. This class is used to lay out
buttons from left to right until no more buttons fit on the Panel.

Member Constants

public static final int LEFT
The LEFT static value represents the left alignment variable.

public static final int CENTER
The CENTER static value represents the center alignment variable.

public static final int RIGHT
The RIGHT static value represents the right alignment variable.

FlowLayout Constructor

public FlowLayout()
This FlowLayout constructor constructs a default FlowLayout class with a centered
alignment.

FlowLayout Constructor

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (42 of 104) [11/06/2000 7:48:21 PM]



public FlowLayout(int align)
This FlowLayout constructor constructs a FlowLayout class using the specified
alignment.
Parameters: align-the alignment value (LEFT, CENTER, or RIGHT).

FlowLayout Constructor

public FlowLayout(int align, int hgap, int vgap)
This FlowLayout constructor constructs a FlowLayout class using the specified
alignment and gap values.
Parameters:
align-the alignment value (LEFT, CENTER, or RIGHT).
hgap-the horizontal gap value.
vgap-the vertical gap value.

addLayoutComponent

public void addLayoutComponent(String name, Component comp)
The addLayoutComponent method adds a component to the FlowLayout class.
Parameters:
name-a String value representing the name of the Component to be added.
comp-the Component object to be added to FlowLayout.

removeLayoutComponent

public void removeLayoutComponent(Component comp)
removeLayoutComponent removes a component from the FlowLayout class.
Parameters: comp-a Component object to be removed from FlowLayout.

preferredLayoutSize

public Dimension preferredLayoutSize(Container target)
The preferredLayoutSize method returns the preferred size for this FlowLayout
given the components in the specified container.
Parameters: target-a Container object that will be examined to determine the
preferred layout size for this FlowLayout.
Returns: A Dimension class containing the preferred size of the FlowLayout.

minimumLayoutSize

public Dimension minimumLayoutSize(Container target)
The minimumLayoutSize method returns the minimum size for this FlowLayout
given the components in the specified container.
Parameters: target-a Container object that will be examined to determine the
minimum layout size for this FlowLayout.
Returns: A Dimension class containing the minimum size of the FlowLayout.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (43 of 104) [11/06/2000 7:48:21 PM]



layoutContainer

public void layoutContainer(Container target)
The layoutContainer method lays out the components within the specified container.
Parameters: target-a Container class containing a set of components that will be laid
out according to the FlowLayout rules.

toString

public String toString()
The toString method returns a string representation of the FlowLayout class.
Returns: A String containing information about the FlowLayout, including the
FlowLayout's name, alignment, hgap, and vgap values.

Font

Extends: Object
This class is used to encapsulate a font.

Member Constants

public static final int PLAIN
The PLAIN static value represents the plain style constant.

public static final int BOLD
The BOLD static value represents the bold style constant.

public static final int ITALIC
The ITALIC static value represents the italic style constant.

Font Constructor

public Font(String name, int style, int size)
The Font constructor constructs a font of the specified name, style, and size.
Parameters:
name-the name of the font to be created.
style-the style (PLAIN and/or BOLD and/or ITALIC) of the font to be created.
size-the size of the font to be created.

getFamily

public String getFamily()
getFamily returns the font family that this font belongs to.
Returns: A String value representing the font's family name.

getName

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (44 of 104) [11/06/2000 7:48:21 PM]



public String getName()
getName returns the name of the Font object.
Returns: A String value representing the name of the font.

getStyle

public int getStyle()
getStyle returns the style of the Font object.
Returns: An integer value representing the style of the font.

getSize

public int getSize()
getSize returns the size of the Font object.
Returns: An integer value representing the point size of the font.

isPlain

public boolean isPlain()
isPlain returns the plain style state of the Font.
Returns: A boolean value that is true if the font is plain, false if not.

isBold

public boolean isBold()
isBold returns the bold style state of the Font.
Returns: A boolean value that is true if the font is bold, false if not.

isItalic

public boolean isItalic()
isItalic returns the italic style state of the Font.
Returns: A boolean value that is true if the font is italic, false if not.

getFont

public static Font getFont(String nm)
getFont returns a Font based on the system properties list and the name passed in.
Parameters: nm-the name of the font to be returned from the system properties list.
Returns: A Font object based on the system properties list.

getFont

public static Font getFont(String nm, Font font)
This getFont method returns a Font based on the system properties list, the name passed
in, and a default font in case the specified name is not found.
Parameters:

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (45 of 104) [11/06/2000 7:48:21 PM]



nm-the name of the font to be returned from the system properties list.
font-the default font to be returned if the font specified by the nm variable is not found.
Returns: A Font object based on the system properties list.

hashCode

public int hashCode()
hashCode returns a hash code for this font.
Returns: An integer value representing the hash code for the font.

equals

public boolean equals(Object obj)
equals compares an object with the Font object.
Parameters: obj-the object to compare the font with.
Returns: A boolean value that is true if the objects are equal, false if not.

toString

public String toString()
The toString method is used to return a string representation of the font.
Returns: A String value containing the font family, name, style, and size values.

FontMetrics

Extends: Object
The FontMetrics class is used to encapsulate a FontMetrics object containing font
information.

getFont

public Font getFont()
The getFont method returns the font that these FontMetrics refer to.
Returns: A Font object.

getLeading

public int getLeading()
The getLeading method gets the line spacing of the font.
Returns: An integer value containing the standard leading, or line spacing, of the font. The
line spacing of a font is the space reserved between the descent of a text character and the
ascent of a text character below it.

getAscent

public int getAscent()

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (46 of 104) [11/06/2000 7:48:22 PM]



The getAscent method gets the ascent value for a font.
Returns: An integer value containing the ascent value for a font. This value is the distance
from the bottom of a character to its top.

getDescent

public int getDescent()
The getDescent method gets the descent value for a font.
Returns: An integer value containing the descent value for a font. This value is the bottom
coordinate of a character.

getHeight

public int getHeight()
The getHeight method gets the height of a line of text using the current Font.
Returns: An integer value containing the height of a line of text. This value is calculated by
adding the ascent, descent, and leading values.

getMaxAscent

public int getMaxAscent()
getMaxAscent returns the maximum value of a font's ascent.
Returns: An integer value containing the maximum value of a font's ascent for all of that
font's characters.

getMaxDescent

public int getMaxDescent()
getMaxDescent returns the maximum value of a font's descent.
Returns: An integer value containing the maximum value of a font's descent for all of that
font's characters.

getMaxDecent

public int getMaxDecent()
The getMaxDecent method is provided only for backward compatibility. It simply calls
the getMaxDescent method.
Returns: An integer value containing the maximum value of a font's descent for all of that
font's characters.

getMaxAdvance

public int getMaxAdvance()
The getMaxAdvance method gets the maximum amount for a character's advance value.
The advance is the amount that is advanced from the beginning of one character to the next
character.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (47 of 104) [11/06/2000 7:48:22 PM]



charWidth

public int charWidth(int ch)
charWidth returns the width of a particular character for the current font.
Parameters: ch-an integer value representing the character to be checked.
Returns: An integer value representing the width of the specified character.

charWidth

public int charWidth(char ch)
This charWidth method returns the width of a particular character for the current font.
Parameters: ch-a string value representing the character to be checked.
Returns: An integer value representing the width of the specified character.

stringWidth

public int stringWidth(String str)
The stringWidth method returns the width of a specified string using the current font.
Parameters: str-a string representing the characters to be checked.
Returns: An integer value representing the advance width of the specified string.

charsWidth

public int charsWidth(char data[], int off, int len)
The charsWidth method returns the width of a specified string of characters using the
current font.
Parameters:
data-an array of characters to be checked.
off-an integer value representing the offset into the array where the string will start.
len-the number of characters to be measured.
Returns: An integer value representing the advance width of the specified string.

bytesWidth

public int bytesWidth(byte data[], int off, int len)
The bytesWidth method returns the width of a specified array of bytes
Parameters:
data-an array of bytes to be checked.
off-an integer value representing the offset into the array where the string will start.
len-the number of bytes to be measured.
Returns: An integer value representing the advance width of the specified string.

getWidths

public int[] getWidths()
The getWidths method gets the advance widths of the first 256 characters of the font.
Returns: An integer array containing the advance widths of the first 256 characters of the

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (48 of 104) [11/06/2000 7:48:22 PM]



font.

toString

public String toString()
The toString method is used to return a string representation of the FontMetrics
class.
Returns: A String value containing the font metrics' name, font, ascent, descent, and
height.

Frame

Extends: Window
Implements: MenuContainer
A Frame class represents a basic window.

Member Constants

public static final int DEFAULT_CURSOR
The DEFAULT_CURSOR static value represents the default cursor.

public static final int CROSSHAIR_CURSOR
The CROSSHAIR_CURSOR static value represents the crosshair cursor.

public static final int TEXT_CURSOR
The TEXT_CURSOR static value represents the text cursor.

public static final int WAIT_CURSOR
The WAIT_CURSOR static value represents the wait cursor.

public static final int SW_RESIZE_CURSOR
The SW_RESIZE_CURSOR static value represents the southwest resize cursor.

public static final int SE_RESIZE_CURSOR
The SE_RESIZE_CURSOR static value represents the southeast resize cursor.

public static final int NW_RESIZE_CURSOR
The NW_RESIZE_CURSOR static value represents the northwest resize cursor.

public static final int NE_RESIZE_CURSOR
The NE_RESIZE_CURSOR static value represents the northeast resize cursor.

public static final int N_RESIZE_CURSOR
The N_RESIZE_CURSOR static value represents the north resize cursor.

public static final int S_RESIZE_CURSOR
The S_RESIZE_CURSOR static value represents the south resize cursor.

public static final int W_RESIZE_CURSOR
The W_RESIZE_CURSOR static value represents the west resize cursor.

public static final int E_RESIZE_CURSOR
The E_RESIZE_CURSOR static value represents the east resize cursor.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (49 of 104) [11/06/2000 7:48:22 PM]



public static final int HAND_CURSOR
The HAND_CURSOR static value represents the hand cursor.

public static final int MOVE_CURSOR
The MOVE_CURSOR static value represents the move cursor.

Frame Constructor

public Frame()
The Frame constructor constructs a default frame that is invisible and that uses the
BorderLayout layout manager.

Frame Constructor

public Frame(String title)
This Frame constructor constructs a default frame using the specified title that is invisible
and that uses the BorderLayout layout manager.
Parameters: title-a String value containing the frame's title string.

addNotify

public synchronized void addNotify()
The addNotify method creates a peer interface for the frame. Peer interfaces allow the
user interface of the frame to be changed without changing its functionality.

getTitle

public String getTitle()
getTitle returns the frame's title.
Returns: A String value representing the title of the frame.

setTitle

public void setTitle(String title)
setTitle sets the frame's title.
Parameters: title-a String value representing the title of the frame.

getIconImage

public Image getIconImage()
The getIconImage method returns an image representing the iconized image of the
frame.
Returns: An Image class representing the iconized image of the frame.

setIconImage

public void setIconImage(Image image)
setIconImage is used to set the image that will be used when the frame is iconized.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (50 of 104) [11/06/2000 7:48:22 PM]



Parameters: image-an Image class that will be displayed when the frame is iconized.

getMenuBar

public MenuBar getMenuBar()
The getMenuBar method returns the MenuBar object that is contained within this frame.
Returns: A MenuBar class that is displayed within this frame.

setMenuBar

public synchronized void setMenuBar(MenuBar mb)
setMenuBar sets the MenuBar class to be displayed within the frame.
Parameters: mb-a MenuBar object to be used for the frame's menu bar.

remove

public synchronized void remove(MenuComponent m)
The remove method removes the specified MenuComponent from the frame.
Parameters: A MenuComponent object that is to be removed from the frame.

dispose

public synchronized void dispose()
The dispose method disposes of the frame. This method first disposes of the frame's
menu bar, and then disposes of the frame itself.

isResizable

public boolean isResizable()
The isResizable method returns the frame's resizable state.
Returns: A boolean value that is true if the frame can be resized, false if not.

setResizable

public void setResizable(boolean resizable)
The setResizable method sets the frame's resizable state.
Returns: A boolean value that is true if the frame can be resized, false if not.

setCursor

public void setCursor(int cursorType)
The setCursor method sets the cursor to be displayed within the frame.
Returns: An integer value representing the cursor to be displayed, which can be any of the
frame's static values such as WAIT_CURSOR, MOVE_CURSOR, and so on.

getCursorType

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (51 of 104) [11/06/2000 7:48:22 PM]



public int getCursorType()
The getCursorType method returns the frame's current cursor type.
Returns: An integer value representing the current cursor type for the frame.

Graphics

Extends: Object
The Graphics class represents the base class for all types of graphics contexts.

create

public abstract Graphics create()
This abstract function creates a new Graphics object.

create

public Graphics create(int x, int y, int width, int height)
The create method creates a new Graphics object using the specified parameters.
Parameters:
x-the x coordinate of the graphics context.
y-the y coordinate of the graphics context.
width-the width of the graphics context.
height-the height of the graphics context.
Returns: A Graphics class corresponding to the create method's specifications.

translate

public abstract void translate(int x, int y)
The translate method translates the Graphics object to the new x and y origin
coordinates.
Parameters:
x-the new x origin coordinate.
y-the new y origin coordinate.

getColor

public abstract Color getColor()
The getColor method returns the current color.
Returns: A Color object representing the current color used for drawing operations.

setColor

public abstract void setColor(Color c)
The setColor method sets the current color.
Parameters: c-a Color object to be used for graphics drawing operations.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (52 of 104) [11/06/2000 7:48:22 PM]



setPaintMode

public abstract void setPaintMode()
The setPaintMode method sets the paint mode to overwrite the destination with the
current color.

setXORMode

public abstract void setXORMode(Color c1)
The setXORMode method sets the paint mode to XOR the current colors with the specified
color. This means that when redrawing over an existing area, colors that match the current
color will be changed to the specified color c1 and vice versa.
Parameters: c1-the Color object specified to be XOR'd with the current color.

getFont

public abstract Font getFont()
The getFont method returns the current font used for the graphics context.
Returns: A Font object representing the graphics context's current font.

setFont

public abstract void setFont(Font font)
The setFont method sets the graphics context's font.
Parameters: A Font object that will be used as the current font.

getFontMetrics

public FontMetrics getFontMetrics()
The getFontMetrics method will return the font metrics for the current font.
Returns: A FontMetrics object representing the font metrics for the current font.

getFontMetrics

public abstract FontMetrics getFontMetrics(Font f)
This getFontMetrics method will return the font metrics for the specified font.
Returns: A FontMetrics object representing the font metrics for the specified font.

getClipRect

public abstract Rectangle getClipRect()
The getClipRect method will return the current clipping rectangle for the Graphics
class.
Returns: A Rectangle object representing the current clipping rectangle.

clipRect

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (53 of 104) [11/06/2000 7:48:22 PM]



public abstract void clipRect(int x, int y, int width, int
height)
The clipRect method will set the current clipping rectangle for the Graphics class.
Parameters:
x-the x coordinate of the clipping rectangle.
y-the y coordinate of the clipping rectangle.
width-the width of the clipping rectangle.
height-the height of the clipping rectangle.

copyArea

public abstract void copyArea(int x, int y, int width, int
height, int dx,
int dy)
The copyArea method copies a specified section of the screen to another location.
Parameters:
x-the x coordinate of the region to be copied.
y-the y coordinate of the region to be copied.
width-the width of the region to be copied.
height-the height of the region to be copied.
dx-the horizontal distance of the region to be copied to.
dy-the vertical distance of the region to be copied to.
drawLine
public abstract void drawLine(int x1, int y1, int x2, int y2)
The drawLine method will draw a line on the graphics context from one point to another
point specified by the input parameters.
Parameters:
x1-the x coordinate of the line's starting point.
y1-the y coordinate of the line's starting point.
x2-the x coordinate of the line's ending point.
y2-the y coordinate of the line's ending point.

fillRect

public abstract void fillRect(int x, int y, int width, int
height)
The fillRect method fills the specified rectangular region with the current color.
Parameters:
x-the x coordinate of the rectangle to be filled.
y-the y coordinate of the rectangle to be filled.
width-the width of the rectangle to be filled.
height-the height of the rectangle to be filled.
drawRect
public void drawRect(int x, int y, int width, int height)
The drawRect method draws the outline of a rectangle using the current color and the
specified dimensions.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (54 of 104) [11/06/2000 7:48:22 PM]



Parameters:
x-the x coordinate of the rectangle to be drawn.
y-the y coordinate of the rectangle to be drawn.
width-the width of the rectangle to be drawn.
height-the height of the rectangle to be drawn.

clearRect

public abstract void clearRect(int x, int y, int width, int
height)
The clearRect method clears a rectangle by filling it with the current background color
of the current drawing surface.
Parameters:
x-the x coordinate of the rectangle to be cleared.
y-the y coordinate of the rectangle to be cleared.
width-the width of the rectangle to be cleared.
height-the height of the rectangle to be cleared.

drawRoundRect

public abstract void drawRoundRect(int x, int y, int width, int height,
int arcWidth, int arcHeight)
The drawRoundRect method draws the outline of a rectangle with rounded edges using
the current color and the specified coordinates.
Parameters:
x-the x coordinate of the rectangle to be drawn.
y-the y coordinate of the rectangle to be drawn.
width-the width of the rectangle to be drawn.
height-the height of the rectangle to be drawn.
arcWidth-the horizontal diameter of the arc at the four corners.
arcHeight-the vertical diameter of the arc at the four corners.

fillRoundRect

public abstract void fillRoundRect(int x, int y, int width,
int height, int arcWidth, int arcHeight)
The fillRoundRect method fills a rectangle with rounded edges using the current color
and the specified coordinates.
Parameters:
x-the x coordinate of the rectangle to be drawn.
y-the y coordinate of the rectangle to be drawn.
width-the width of the rectangle to be drawn.
height-the height of the rectangle to be drawn.
arcWidth-the horizontal diameter of the arc at the four corners.
arcHeight-the vertical diameter of the arc at the four corners.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (55 of 104) [11/06/2000 7:48:22 PM]



draw3DRect

public void draw3DRect(int x, int y, int width, int height,
boolean raised)
The draw3Drect method draws a highlighted 3D rectangle at a default viewing angle.
Parameters:
x-the x coordinate of the rectangle to be drawn.
y-the y coordinate of the rectangle to be drawn.
width-the width of the rectangle to be drawn.
height-the height of the rectangle to be drawn.
raised-a boolean value determining whether the rectangle is raised.

fill3DRect

public void fill3DRect(int x, int y, int width, int height,
boolean raised)
The fill3Drect method fills a highlighted 3D rectangle using the current color and
specified coordinates at a default viewing angle.
Parameters:
x-the x coordinate of the rectangle to be drawn.
y-the y coordinate of the rectangle to be drawn.
width-the width of the rectangle to be drawn.
height-the height of the rectangle to be drawn.
raised-a boolean value determining whether the rectangle is raised.

drawOval

public abstract void drawOval(int x, int y, int width, int
height)
The drawOval method draws the outline of an oval shape using the current color and the
specified coordinates. The oval is drawn inside the rectangle represented by the input
coordinates.
Parameters:
x-the x coordinate of the rectangle to draw the oval within.
y-the y coordinate of the rectangle to draw the oval within.
width-the width of the rectangle to draw the oval within.
height-the height of the rectangle to draw the oval within.
fillOval
public abstract void fillOval(int x, int y, int width, int
height)
The fillOval method fills an oval using the current color and the specified coordinates.
The oval is drawn inside the rectangle represented by the input coordinates.
Parameters:
x-the x coordinate of the rectangle to draw the oval within.
y-the y coordinate of the rectangle to draw the oval within.
width-the width of the rectangle to draw the oval within.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (56 of 104) [11/06/2000 7:48:22 PM]



height-the height of the rectangle to draw the oval within.

drawArc

public abstract void drawArc(int x, int y, int width, int
height, int startAngle, int arcAngle)
The drawArc method draws an arc outline using the current color and bounded by the
specified input coordinates. Note that 0 degrees represents the three o'clock position and that
positive angles are measured going counterclockwise.
Parameters:
x-the x coordinate of the rectangle to draw the arc within.
y-the y coordinate of the rectangle to draw the arc within.
width-the width of the rectangle to draw the arc within.
height-the height of the rectangle to draw the arc within.
startAngle-the starting angle of the arc to be drawn.
arcAngle-the angle of the arc relative to the start angle.

fillArc

public abstract void fillArc(int x, int y, int width, int
height, int startAngle, int arcAngle)
The fillArc method fills an arc using the current color and bounded by the specified
input coordinates. Note that 0 degrees represents the three o'clock position and that positive
angles are measured going counterclockwise.
Parameters:
x-the x coordinate of the rectangle to draw the arc within.
y-the y coordinate of the rectangle to draw the arc within.
width-the width of the rectangle to draw the arc within.
height-the height of the rectangle to draw the arc within.
startAngle-the starting angle of the arc to be drawn.
arcAngle-the angle of the arc relative to the start Angle.

drawPolygon

public abstract void drawPolygon(int xPoints[], int
yPoints[], int nPoints)
The drawPolygon method draws a polygon using the current color and the specified
coordinates.
Parameters:
xPoints-an array of integers containing the starting x coordinates for each edge of the
polygon.
yPoints-an array of integers containing the starting y coordinates for each edge of the
polygon.
nPoints-an integer value representing the number of edges of the polygon.

drawPolygon

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (57 of 104) [11/06/2000 7:48:22 PM]



public void drawPolygon(Polygon p)
This drawPolygon method draws a polygon using the specified Polygon class.
Parameters: p-a Polygon object containing the coordinates for the polygon to be drawn.

fillPolygon

public abstract void fillPolygon(int xPoints[], int
yPoints[], int nPoints)
The fillPolygon method fills a polygon using the current color and the specified
coordinates.
Parameters:
xPoints-an array of integers containing the starting x coordinates for each edge of the
polygon.
yPoints-an array of integers containing the starting y coordinates for each edge of the
polygon.
nPoints-an integer value representing the number of edges of the polygon.

fillPolygon

public void fillPolygon(Polygon p)
This fillPolygon method fills a polygon using the specified Polygon object and the
current color.
Parameters: p-a Polygon object containing the coordinates for the polygon to be drawn.

drawString

public abstract void drawString(String str, int x, int y)
The drawString method will draw a string using the current font at the specified
coordinates.
Parameters:
str-the string to be displayed.
x-the x coordinate to draw the string at.
y-the y coordinate to draw the string at.

drawChars

public void drawChars(char data[], int offset, int length,
int x, int y)
The drawChars method will draw a string using the current font at the specified
coordinates.
Parameters:
data-an array of characters.
offset-the offset within the array of characters that the displayed string will start at.
length-the number of characters to draw.
x-the x coordinate to draw the string at.
y-the y coordinate to draw the string at.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (58 of 104) [11/06/2000 7:48:22 PM]



drawBytes

public void drawBytes(byte data[], int offset, int length,
int x, int y)
The drawChars method will draw a string using the current font at the specified
coordinates.
Parameters:
data-an array of bytes.
offset-the offset within the array of bytes that the displayed string will start at.
length-the number of bytes to draw.
x-the x coordinate to draw the string at.
y-the y coordinate to draw the string at.

drawImage

public abstract boolean drawImage(Image img, int x, int y,
ImageObserver observer)
The drawImage method will draw an image at a specified location.
Parameters:
img-an Image class to be drawn using the graphics context.
x-the x coordinate to draw the image at.
y-the y coordinate to draw the image at.
observer-an ImageObserver interface that will be used to notify when the drawing is
done.
Returns: A boolean value indicating the success/failure of the draw operation.

drawImage

public abstract boolean drawImage(Image img, int x, int y, int width,
int height, ImageObserver observer)
This drawImage method will draw an image at a specified location within the specified
bounding rectangle.
Parameters:
img-an Image class to be drawn using the graphics context.
x-the x coordinate to draw the image at.
y-the y coordinate to draw the image at.
width-the width of the rectangle to draw the image within.
height-the height of the rectangle to draw the image within.
observer-an ImageObserver interface that will be used to notify when the drawing is
done.
Returns: A boolean value indicating the success/failure of the draw operation.

drawImage

public abstract boolean drawImage(Image img, int x, int y, Color bgcolor,
ImageObserver observer)

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (59 of 104) [11/06/2000 7:48:22 PM]



This drawImage method will draw an image at a specified location using the specified
background color.
Parameters:
img-an Image class to be drawn using the graphics context.
x-the x coordinate to draw the image at.
y-the y coordinate to draw the image at.
bgcolor-the background color to be used.
observer-an ImageObserver derived object that will be used to notify when the
drawing is done.
Returns: A boolean value indicating the success/failure of the draw operation.

drawImage

public abstract boolean drawImage(Image img, int x, int y, int width,
int height, Color bgcolor, ImageObserver observer)
The drawImage method will draw an image at a specified location within a specified
bounding rectangle using a specified background color.
Parameters:
img-an Image class to be drawn using the graphics context.
x-the x coordinate to draw the image at.
y-the y coordinate to draw the image at.
width-the width of the bounding rectangle.
height-the height of the bounding rectangle.
bgcolor-the background color to be used.
observer-an ImageObserver interface that will be used to notify when the drawing is
done.
Returns: A boolean value indicating the success/failure of the draw operation.

dispose

public abstract void dispose()
The dispose method disposes of the Graphics object.

finalize

public void finalize()
The finalize method disposes of the Graphics object once it is no longer referenced.

toString

public String toString()
The toString method returns a string representation of the Graphics object.
Returns: A String containing the Graphics class name, current color, and current font.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (60 of 104) [11/06/2000 7:48:22 PM]



GridBagConstraints

Extends: Object
Implements: Cloneable
A GridBagConstraints class is used in conjunction with a GridBagLayout in order
to specify the constraints of the objects being laid out.

Member Constants

public static final int RELATIVE
A public static value representing the relative constraint.

public static final int REMAINDER
A public static value representing the remainder constraint.

public static final int NONE
A public static value representing the none constraint.

public static final int BOTH
A public static value representing the both constraint.

public static final int HORIZONTAL
A public static value representing the horizontal constraint.

public static final int VERTICAL
A public static value representing the vertical constraint.

public static final int CENTER
A public static value representing the center constraint.

public static final int NORTH
A public static value representing the north constraint.

public static final int NORTHEAST
A public static value representing the northeast constraint.

public static final int EAST
A public static value representing the east constraint.

public static final int SOUTHEAST
A public static value representing the southeast constraint.

public static final int SOUTH
A public static value representing the south constraint.

public static final int SOUTHWEST
A public static value representing the southwest constraint.

public static final int WEST
A public static value representing the west constraint.

public static final int NORTHWEST
A public static value representing the northwest constraint.

Member Variables

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (61 of 104) [11/06/2000 7:48:22 PM]



public int gridx
The gridx variable is used to store the grid x coordinate.

public int gridy
The gridy variable is used to store the grid y coordinate.

public int gridwidth
The gridwidth variable is used to store the grid bounding rectangle width.

public int gridheight
The gridheight variable is used to store the grid bounding rectangle height.

public double weightx
The weightx variable is used to store the horizontal space for a component to reserve for
itself. If this is set to 0 (the default), all components within a row will be bunched together
in the center of the row.

public double weighty
The weighty variable is used to store the vertical space for a component to reserve for
itself. If this is set to 0 (the default), all components within a column will be bunched
together in the center of the column.

public int anchor
The anchor variable is used to determine how to display a component when it is smaller
than its display area. Valid values for this variable are CENTER (the default), NORTH,
NORTHEAST, EAST, SOUTHEAST, SOUTH, SOUTHWEST, WEST, and NORTHWEST.

public int fill
The fill variable is used to determine how to display a component when it is larger than
its display area. Valid values for this variable are NONE, HORIZONTAL, VERTICAL, and
BOTH.

public Insets insets
The insets variable is used to determine the space between the component and its
bounding area.

public int ipadx
The ipadx variable is used to determine the amount of padding to always add to the
component on its left and right sides.

public int ipady
The ipady variable is used to determine the amount of padding to always add to the
component on its top and bottom sides.

GridBagConstraints Constructor

public GridBagConstraints ()
The GridBagConstraints constructor creates a GridBagConstraints class
containing default values.

clone

public Object clone()

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (62 of 104) [11/06/2000 7:48:22 PM]



The clone method creates a clone of this GridBagConstraints object.
Returns: An Object object representing a clone of this GridBagConstraints object.

GridBagLayout

Extends: Object
Implements: LayoutManager
The GridBagLayout implements the LayoutManager interface. This class uses a
rectangular grid of cells to lay out components within the cells. Each component is
associated with a GridBagConstraints object that controls how the component is
actually laid out within the grid.

Member Variables

public int columnWidths[]
The columnWidths variable is an array of integers representing the widths of each column
used by GridBagLayout.

public int rowHeights[]
The rowHeights variable is an array of integers representing the heights of each column
used by GridBagLayout.

public double columnWeights[]
The columnWeights variable is an array of doubles representing the space to be distributed
for each column.

public double rowWeights[]
The rowWeights variable is an array of doubles representing the space to be distributed for
each row.

GridBagLayout Constructor

public GridBagLayout()

The GridBagLayout constructor constructs a GridBagLayout class for use in laying
out components on a form.

setConstraints

public void setConstraints(Component comp, GridBagConstraints
constraints)
The setConstraints method sets GridBagConstraints for the specified
component.
Parameters:
comp-a component to be modified within GridBagLayout.
constraints-the GridBagConstraints that will be applied to the component.

getConstraints

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (63 of 104) [11/06/2000 7:48:22 PM]



public GridBagConstraints getConstraints(Component comp)
The getConstraints method returns the constraints currently applied to the specified
component.
Parameters: comp-a component managed by GridBagLayout.
Returns: A GridBagConstraints class representing the constraints placed upon the
specified component.

getLayoutOrigin

public Point getLayoutOrigin ()
The getLayoutOrigin method returns the origin of the layout manager.
Returns: A Point class representing the origin of GridBagLayout.

getLayoutDimensions

public int [][] getLayoutDimensions ()
The getLayoutDimensions method returns an array of dimensions with an element for
each component.
Returns: An array containing layout dimensions for components managed by the
GridBagLayout.

getLayoutWeights

public double [][] getLayoutWeights()
The getLayoutWeights method returns an array of weights with an element for each
component.
Returns: An array containing layout weights for components managed by
GridBagLayout.

location

public Point location(int x, int y)
The location method returns a Point object representing the point within the layout
manager corresponding to the specified coordinates.
Parameters:
x-the x coordinate.
y-the y coordinate.
Returns: A Point object.

addLayoutComponent

public void addLayoutComponent(String name, Component comp)
The addLayoutComponent method adds a component to GridBagLayout.
Parameters:
name-the name of the component to be added.
comp-the component to be added.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (64 of 104) [11/06/2000 7:48:22 PM]



removeLayoutComponent

public void removeLayoutComponent(Component comp)
The removeLayoutComponent method removes a component from the
GridBagLayout.
Parameters: comp-the component to be removed.

preferredLayoutSize

public Dimension preferredLayoutSize(Container parent)
The preferredLayoutSize method returns the preferred size for the layout manager
given the specified container and the components within it.
Parameters: parent-a Container object containing components.
Returns: A Dimension object specifying the preferred size of the layout manager.

minimumLayoutSize

public Dimension minimumLayoutSize(Container parent)
The minimum preferredLayoutSize method returns the minimum size for the layout
manager given the specified container and the components within it.
Parameters: parent-a Container object containing components.
Returns: A Dimension object specifying the minimum size of the layout manager.

layoutContainer

public void layoutContainer(Container parent)
The layoutContainer method lays out the specified container within the layout
manager.
Parameters: parent-a Container object containing components.

toString

public String toString()
The toString method returns a string containing information about the
GridBagLayout.
Returns: A String containing the name of GridBagLayout.

GridLayout

Extends: Object
Implements: LayoutManager
The GridLayout class implements the LayoutManager interface. It is used to lay out
grid objects.

GridLayout Constructor

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (65 of 104) [11/06/2000 7:48:22 PM]



public GridLayout(int rows, int cols)
The GridLayout constructor constructs a grid layout manager using the specified number
of rows and columns.
Parameters:
rows-the number of rows to be laid out.
cols-the number of columns to be laid out.

GridLayout Constructor

public GridLayout(int rows, int cols, int hgap, int vgap)
This GridLayout constructor constructs a grid layout manager using the specified number
of rows and columns as well as the horizontal and vertical gaps to be used.
Parameters:
rows-the number of rows to be laid out.
cols-the number of columns to be laid out.
hgap-the horizontal gap value.
vgap-the vertical gap value.

addLayoutComponent

public void addLayoutComponent(String name, Component comp)
The addLayoutComponent method adds a component to GridLayout.
Parameters:
name-the name of the component to be added.
comp-the component to be added.

removeLayoutComponent

public void removeLayoutComponent(Component comp)
The removeLayoutComponent method removes a component from the
GridBagLayout.
Parameters: comp-the component to be removed.

preferredLayoutSize

public Dimension preferredLayoutSize(Container parent)
The preferredLayoutSize method returns the preferred size for the layout manager
given the specified container and the components within it.
Parameters: parent-a Container object containing components.
Returns: A Dimension object specifying the preferred size of the layout manager.

minimumLayoutSize

public Dimension minimumLayoutSize(Container parent)
The minimum preferredLayoutSize method returns the minimum size for the layout
manager given the specified container and the components within it.
Parameters: parent-a Container object containing components.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (66 of 104) [11/06/2000 7:48:22 PM]



Returns: A Dimension object specifying the minimum size of the layout manager.

layoutContainer

public void layoutContainer(Container parent)
The layoutContainer method lays out the specified container within the layout
manager.
Parameters: parent-a Container object containing components.

toString

public String toString()
The toString method returns a string containing information about the GridLayout.
Returns: A String containing the grid layout's name, hgap, vgap, rows, and cols
values.

Image

Extends: Object
An Image class is actually an abstract class. A platform-specific implementation must be
provided for it to be used.

getWidth

public abstract int getWidth(ImageObserver observer)
The getWidth method returns the width of the image. If the width of the image is not yet
known, ImageObserver will be notified at a later time and -1 will be returned.
Parameters: observer-an ImageObserver-derived object that will be notified if the
image is not yet available.
Returns: An integer value representing the width of the image, or -1 if the image is not yet
available.

getHeight

public abstract int getHeight(ImageObserver observer)
The getWidth method returns the height of the image. If the height of the image is not yet
known, ImageObserver will be notified at a later time and -1 will be returned.
Parameters: observer-an ImageObserver-derived object that will be notified if the
image is not yet available.
Returns: An integer value representing the height of the image, or -1 if the image is not yet
available.

getSource

public abstract ImageProducer getSource()
The getSource method returns the ImageProducer interface responsible for

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (67 of 104) [11/06/2000 7:48:22 PM]



producing the Image's pixels.
Returns: An ImageProducer interface used by the image-filtering classes in package
java.awt.Image.

getGraphics

public abstract Graphics getGraphics()
The getGraphics method is used to return a graphics context for drawing into. This
function is used for offscreen image operations such as double buffering of an image.
Returns: A Graphics object used for image-drawing purposes.

getProperty

public abstract Object getProperty(String name, ImageObserver
observer)
The getProperty method is used to return image property information (each image type
has its own set of properties).
Parameters:
name-the image property name to be returned.
observer-an ImageObserver-derived object that will be notified if the image is not
yet ready.
Returns: The Property object that corresponds with the property requested. If the image
is not yet available, this method returns null. If the property was undefined, an
UndefinedProperty object is returned.

flush

public abstract void flush()
The flush method flushes all image data. Calling this method returns the image to its
initial empty state; therefore, the image will need to be re-created after calling this method.

Insets

Extends: Object
Implements: Cloneable
The Insets class encapsulate the insets of a container.

Member Variables

public int top >
An integer value representing the inset from the top.

public int left
An integer value representing the inset from the left.

public int bottom
An integer value representing the inset from the bottom.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (68 of 104) [11/06/2000 7:48:22 PM]



public int right
An integer value representing the inset from the right.

Insets Constructor

public Insets(int top, int left, int bottom, int right)
This Insets constructor creates an Insets object from the specified values.
Parameters:
top-an integer value representing the inset from the top.
left-an integer value representing the inset from the left.
bottom-an integer value representing the inset from the bottom.
right-an integer value representing the inset from the right.

toString

public String toString()
The toString method provides a string representation of the Insets class.
Returns: A String value containing the Insets's name, top, left, bottom, and right
values.

clone

public Object clone()
The clone method creates and returns a clone of the Insets object.
Returns: An Object class representing a clone of the current Insets.

Label

Extends: Component
A Label is a component used to display a single line of text on the screen.

Member Constants

public static final int LEFT
A static integer value representing left alignment.

public static final int CENTER
A static integer value representing center alignment.

public static final int RIGHT
A static integer value representing right alignment.

Label Constructor

public Label()
The Label constructor constructs a label with no string.

Label Constructor

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (69 of 104) [11/06/2000 7:48:22 PM]



public Label(String label)
This Label constructor constructs a label using the specified string.
Parameters: label-a String that will be displayed as the label.

Label Constructor

public Label(String label, int alignment)
This Label constructor constructs a label using the specified string and alignment.
Parameters:
label-a String that will be displayed as the label.
alignment-an alignment value (CENTER, LEFT, or RIGHT).

addNotify

public synchronized void addNotify()
The addNotify method creates the peer interface for the label. Using a peer interface
allows the user interface of the label to be modified without changing the functionality.

getAlignment

public int getAlignment()
The getAlignment method returns the label's current alignment.
Returns: An integer value representing the label's current alignment (LEFT, RIGHT, or
CENTER).

setAlignment

public void setAlignment(int alignment)
The setAlignment method sets the label's current alignment.
Parameters: alignment-an integer value representing the label's new alignment (LEFT,
RIGHT, or CENTER).

getText

public String getText()
The getText method returns the label's current text string.
Returns: A String value representing the label's current text.

setText

public void setText(String label)
The setText method sets the label's current text string.
Parameters: label-a String value representing the label's new text.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (70 of 104) [11/06/2000 7:48:22 PM]



List

Extends: Component
A List component is a scrolling list of text items. Lists can allow multiple selection and
visible lines.

List Constructor

public List()
The List constructor creates a List object with no lines or multiple selection capability.

List Constructor

public List(int rows, boolean multipleSelections)
This List constructor constructs a List object with the specified lines and multiple
selection capability.
Parameters:
rows-the number of items in the list.
multipleSelections-a boolean value that is true if multiple selections are allowed,
false if not.

addNotify

public synchronized void addNotify()
The addNotify method creates the peer interface for the list. Using a peer interface
allows the user interface of the list to be modified without changing the functionality.

removeNotify

public synchronized void removeNotify()
The removeNotify method removes the peer for the list.

countItems

public int countItems()
The countItems method returns the number of items in the list.
Returns: An integer value representing the number of items in the list.

getItem

public String getItem(int index)
The getItem method returns the item at the specified list index.
Parameters: index-an integer value representing the index into the list's string elements.
Returns: The String value stored at the specified list index.

addItem

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (71 of 104) [11/06/2000 7:48:22 PM]



public synchronized void addItem(String item)
The addItem method adds a String item to the end of the list.
Parameters: item-a String item to be added to the end of the list.

addItem

public synchronized void addItem(String item, int index)
This addItem method adds a String item at the specified index within the list.
Parameters:
item-a String item to be added to the list.
index-an integer value representing the index within the list to add the String to (if this
value is -1 or greater than the number of items within the list, the String item will be
added to the end of the list).

replaceItem

public synchronized void replaceItem(String newValue, int
index)
The replaceItems method replaces the current item at the specified index with the new
String item.
Parameters:
newValue-a String value representing the new String to be used to modify the list.
index-an integer value representing the index within the list to be replaced with the new
string (if this value is -1 or greater than the number of items within the list, the String
item will be added to the end of the list).

clear

public synchronized void clear()
The clear method will clear the list's string of items.

delItem

public synchronized void delItem(int position)
The delItem method will delete the String item stored at the specified position within
the list.
Parameters: position-an integer value representing the position of the string to be
deleted.

delItems

public synchronized void delItems(int start, int end)
The delItems method will delete a sequence of String items stored at the specified
positions within the list.
Parameters:
start-an integer value representing the first position containing a string to be deleted.
end-an integer value representing the last position containing a string to be deleted.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (72 of 104) [11/06/2000 7:48:22 PM]



getSelectedIndex

public synchronized int getSelectedIndex()
The getSelectedIndex method returns the index of the currently selected position
within the list.
Returns: An integer value representing the currently selected position within the list.

getSelectedIndexes

public synchronized int[] getSelectedIndexes()
The getSelectedIndexes method returns an array containing all of the currently
selected positions within the list.
Returns: An array of integers containing the currently selected positions within the list.

getSelectedItem

public synchronized String getSelectedItem()
The getSelectedItem method returns the string at the currently selected position within
the list.
Returns: The String value that is at the currently selected position within the list.

getSelectedItems

public synchronized String[] getSelectedItems()
The getSelectedItems method returns an array of Strings that are at the currently
selected positions within the list.
Returns: An array of strings that are at the currently selected positions within the list.

select

public synchronized void select(int index)
The select method selects the item in the list at the specified index position.
Parameters: index-an integer value representing the position to be selected within the list.

deselect

public synchronized void deselect(int index)
The deselect method deselects the item in the list at the specified index position.
Parameters: index-an integer value representing the position to be deselected within the
list.

isSelected

public synchronized boolean isSelected(int index)
The isSelected method checks the specified index position to see wether it is currently
selected.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (73 of 104) [11/06/2000 7:48:22 PM]



Parameters: index-an integer value representing the position to be checked within the list.
Returns: A boolean value that will be true if the specified index position is slected,
false if not.

getRows

public int getRows()
The getRows method returns the number of rows within the list.
Returns: An integer value representing the number of rows currently in the list.

allowsMultipleSelections

public boolean allowsMultipleSelections()
The allowsMultipleSelections method returns the multiple selection state of the
List object.
Returns: A boolean value that will be true if multiple selections are allowed, false if
not.

setMultipleSelections

public void setMultipleSelections(boolean v)
The setMultipleSelections method sets the multiple selection state of the List
object.
Parameters: v-a boolean value that will be true if multiple selections are to be allowed,
false if not.

getVisibleIndex

public int getVisibleIndex()
The getVisibleIndex method returns the index of the item that was last made visible
by the makeVisible method.
Returns: An integer value representing the index of the item that was just made visible by
the makeVisible method.

makeVisible

public void makeVisible(int index)
The makeVisible method forces the list item at the specified index position to be visible.
Parameters: index-the index position of the item that is to be made visible.

preferredSize

public Dimension preferredSize(int rows)
The preferredSize method returns the preferred size of the List object based on the
specified number of rows.
Parameters: rows-the number of rows used to determine the list's preferred size.
Returns: A Dimension object representing the preferred size of the list.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (74 of 104) [11/06/2000 7:48:22 PM]



preferredSize

public Dimension preferredSize()
This preferredSize method returns the preferred size of the List object based on its
current number of rows.
Returns: A Dimension object representing the preferred size of the list.

minimumSize

public Dimension minimumSize(int rows)
The minimumSize method returns the minimum size of the List object based on the
specified number of rows.
Parameters: rows-the number of rows used to determine the list's minimum size.
Returns: A Dimension object representing the minimum size of the list.

minimumSize

public Dimension minimumSize()
This minimumSize method returns the minimum size of the List object based on its
current number of rows.
Returns: A Dimension object representing the minimum size of the list.

MediaTracker

Extends: Object
The MediaTracker class is provided to track the status of media objects. At the current
time, only images are supported, but this functionality could be extended to support audio
and video as well.

Member Constants

public static final int LOADING
A static integer value representing the LOADING status.

public static final int ABORTED

A static integer value representing the ABORTED status.

public static final int ERRORED
A static integer value representing the ERRORED status.

public static final int COMPLETE
A static integer value representing the COMPLETE status.

MediaTracker Constructor

public MediaTracker(Component comp)
The MediaTracker constructor creates a MediaTracker object to track images for the

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (75 of 104) [11/06/2000 7:48:22 PM]



specified component.
Parameters: comp-a component that will use a MediaTracker object to track images.

addImage

public void addImage(Image image, int id)
The addImage method will add the specified Image to the list of images being tracked by
the MediaTracker. The Image will be rendered at its default size.
Parameters:
image-the Image object to be added to the list.
id-an identification used to reference the Image object.

addImage

public synchronized void addImage(Image image, int id, int w,
int h)
This addImage method will add the specified Image to the list of images being tracked
by the MediaTracker. The image will be rendered at its specified size.
Parameters:
image-the Image object to be added to the list.
id-an ID used to reference the Image object.
w-the width the image will be rendered at.
h-the height the image will be rendered at.

checkAll

public boolean checkAll()
The checkAll method is used to check if all of the images have been loaded.
Returns: A boolean value that is true if all of the images have been loaded, false if not.

checkAll

public synchronized boolean checkAll(boolean load)
This checkAll method is used to check whether all of the images have been loaded. The
load parameter forces the MediaTracker to load any images that are not currently being
loaded.
Parameters: load-a boolean value that, if true, will force the MediaTracker to load
any images that are not currently being loaded.
Returns: A boolean value that is true if all of the images have been loaded, false if not.

isErrorAny

public synchronized boolean isErrorAny()
The isErrorAny method checks the status of all images being tracked by the
MediaTracker.
Returns: A boolean value that will be true if any image loaded had an error value, false
if not.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (76 of 104) [11/06/2000 7:48:22 PM]



getErrorsAny

public synchronized Object[] getErrorsAny()
The getErrorsAny method checks the status of all images being tracked by the
MediaTracker and returns an array of all media objects that have generated an error.
Returns: An array of media objects that have encountered an error. This array will be null if
no objects have encountered an error.

waitForAll

public void waitForAll() throws InterruptedException
The waitForAll method begins to load all Images without being interrupted. If there is
an error, the InterruptedException is thrown.
Throws: InterruptedException if another thread has interrupted this thread.

waitForAll

public synchronized boolean waitForAll(long ms) throws
InterruptedException
This waitForAll method begins to load all images without being interrupted. This
method will continue to load images until there is an error or until the specified timeout has
elapsed. If there is an error, the InterruptedException is thrown.
Parameters: ms-a long integer value representing the timeout value (in milliseconds) to wait
before halting the loading of images.
Returns: A boolean value that will return true if all of the images were successfully
loaded before timing out, false if not.
Throws: InterruptedException if another thread has interrupted this thread.

statusAll

public int statusAll(boolean load)
The statusAll method returns the boolean OR of all of the media objects being tracked.
Parameters: load-a boolean value that specifies whether to start the image loading.
Returns: The boolean OR of all of the media objects being tracked. This value can be
LOADED, ABORTED, ERRORED, or COMPLETE.

checkID

public boolean checkID(int id)
The checkID method checks to see if all images tagged with the specified ID have been
loaded.
Parameters: id-an integer tag used to identify a media object or objects.
Returns: A boolean value that is true if all objects with the specified ID have been loaded,
false if not.

checkID

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (77 of 104) [11/06/2000 7:48:23 PM]



public synchronized boolean checkID(int id, boolean load)
The checkID method checks to see whether all images tagged with the specified id have
been loaded. These images will be loaded based on the value of the load parameter.
Parameters:
id-an integer tag used to identify a media object or objects.
load-a boolean value that is true if all objects with the specified identifier are to be
loaded, false if not.
Returns: A boolean value that is true if all objects with the specified identifier have been
loaded, false if not.

isErrorID

public synchronized boolean isErrorID(int id)
The isErrorID method checks the error status of all media objects with the specified id.
Parameters: id-an integer tag used to identify a media object or objects.
Returns: A boolean value that is true if all objects were loaded without error, false if
not.

getErrorsID

public synchronized Object[] getErrorsID(int id)
The getErrorsAny method checks the status of all images being tracked by the
MediaTracker whose id match the specified id. It returns an array of all media objects
that have generated an error.
Parameters: id-an integer tag used to identify a media object or objects.
Returns: An array of media objects that have encountered an error. This array will be null if
no objects have encountered an error.

waitForID

public void waitForID(int id) throws InterruptedException
The waitForID method begins to load all images with the specified id without being
interrupted. If there is an error, the InterruptedException is thrown.
Parameters: id-an integer tag used to identify a media object or objects.
Throws: InterruptedException if another thread has interrupted this thread.

waitForID

public synchronized boolean waitForID(int id, long ms) throws
InterruptedException
This waitForID method begins to load all images with the specified ID without being
interrupted. This method will continue to load images until there is an error or until the
specified timeout has elapsed. If there is an error, the InterruptedException is
thrown.
Parameters:
id-an integer tag used to identify a media object or objects.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (78 of 104) [11/06/2000 7:48:23 PM]



ms-a long integer value representing the timeout value (in milliseconds) to wait before
halting the loading of images.
Returns: A boolean value that will return true if all of the images were successfully
loaded before timing out, false if not.
Throws: InterruptedException if another thread has interrupted this thread.

statusID

public int statusID(int id, boolean load)
The statusID method returns the boolean OR of all of the media objects being tracked
with the specified id.
Parameters:
id-an integer tag used to identify a media object or objects.
load-a boolean value that specifies whether to start the image loading.
Returns: The boolean OR of all the media objects being tracked. This value can be
LOADED, ABORTED, ERRORED, or COMPLETE.

Menu

Extends: MenuItem
Implements: MenuContainer
A Menu is a component of a menu bar.

Menu Constructor

public Menu(String label)
The Menu constructor constructs a menu using the specified label string.
Parameters: label-a String value that will be displayed as the menu's label.

Menu Constructor

public Menu(String label, boolean tearOff)
This Menu constructor constructs a menu using the specified label string and tear-off option.
Parameters:
label-a String value that will be displayed as the menu's label.
tearOff-a boolean value that is true if this menu is to be a tear-off menu, false if not.

addNotify

public synchronized void addNotify()
The addNotify method creates the peer interface for the menu. Using a peer interface
allows the user interface of the menu to be modified without changing the functionality.

removeNotify

public synchronized void removeNotify()

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (79 of 104) [11/06/2000 7:48:23 PM]



The removeNotify method removes the peer for the menu.

isTearOff

public boolean isTearOff()
The isTearOff method returns the tear-off status of the menu.
Returns: A boolean value that will be true if the menu is a tear-off menu, false if not.

countItems

public int countItems()
The countItems method returns the number of items in this menu.
Returns: An integer value representing the number of items that have been added to this
menu.

getItem

public MenuItem getItem(int index)
The getItem method returns the MenuItem object at the specified index in the menu list.
Parameters: index-an integer value representing the position of the menu item to be
returned.
Returns: A MenuItem object at the specified position.

add

public synchronized MenuItem add(MenuItem mi)
The add method adds the specified menu item to the menu's list.
Parameters: mi-the MenuItem object to be added to the list.
Returns: A MenuItem object that was added to the list.

add

public void add(String label)
This add method adds a MenuItem with the specified label to the menu.
Parameters: label-a String value representing the label to be added to the menu's list.

addSeparator

public void addSeparator()
The addSeparator method adds a separator menu item to the menu.
remove
public synchronized void remove(int index)
The remove method removes the menu item at the specified index.
Parameters: index-the position within the menu's item list to be removed from the list.

remove

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (80 of 104) [11/06/2000 7:48:23 PM]



public synchronized void remove(MenuComponent item)
This remove method removes the menu item specified in the item parameter.
Parameters: item-the MenuComponent object to be removed from the menu's item list.

MenuBar

Extends: MenuComponent
Implements: MenuContainer
A MenuBar object represents a menu bar on a frame. A MenuBar object attaches to a
Frame object using the method Frame.setMenuBar.

MenuBar Constructor

public MenuBar()
The MenuBar constructor constructs an empty MenuBar object.

addNotify

public synchronized void addNotify()
The addNotify method creates the peer interface for the menu bar. Using a peer interface
allows the user interface of the menu bar to be modified without changing the functionality.

removeNotify

public synchronized void removeNotify()
The removeNotify method removes the peer for the menu bar.

getHelpMenu

public Menu getHelpMenu()
The getHelpMenu method returns the help menu on the menu bar.
Returns: A Menu object representing the menu bar's help menu.

setHelpMenu

public synchronized void setHelpMenu(Menu m)
The setHelpMenu method sets the help menu for the menu bar.
Parameters: m-a Menu object representing the menu bar's help menu.

add

public synchronized Menu add(Menu m)
The add method adds the specified menu to the menu bar.
Parameters: m-a Menu object that is to be added to the menu bar.
Returns: The Menu object that was added to the menu bar.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (81 of 104) [11/06/2000 7:48:23 PM]



remove

public synchronized void remove(int index)
The remove method removes the menu located at the specified index on the menu bar.
Parameters: index-the position of the menu to be removed within the menu bar's list of
menus.

remove

public synchronized void remove(MenuComponent m)
This remove method removes the specified menu component from the menu bar.
Parameters: m-a MenuComponent object to be removed from the menu bar.

countMenus

public int countMenus()
The countMenus method returns the number of menus located on this menu bar.
Returns: An integer value representing the number of menus located on this menu bar.

getMenu

public Menu getMenu(int i)
The getMenu method returns the Menu object at the specified location within the menu
bar's list of menus.
Parameters: i-an integer value representing the position of the menu to be retrieved from
the menu bar's list.
Returns: A Menu object returned from the menu bar's list.

MenuComponent

Extends: Object
The MenuComponent class serves as the base class for all menu-type components such as
Menu, MenuBar, and MenuItem.

getParent

public MenuContainer getParent()
The getParent method returns the parent menu container of the menu component.
Returns: A MenuContainer object that is the parent of the menu component.

getPeer

public MenuComponentPeer getPeer()
The getPeer method returns the MenuComponentPeer interface for the
MenuComponent object. The MenuComponentPeer interface allows the user interface
of a MenuComponent to be changed without changing its functionality.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (82 of 104) [11/06/2000 7:48:23 PM]



Returns: A MenuComponentPeer interface.

getFont

public Font getFont()
The getFont method returns the current default font for the MenuComponent.
Returns: A Font object.

setFont

public void setFont(Font f)
The setFont method is used to set the display font for the MenuComponent.
Parameters: f-the Font object representing the menu component's new font.

removeNotify

public void removeNotify()
The removeNotify removes the peer for this menu component.

postEvent

public boolean postEvent(Event evt)
The postEvent method posts the specified event to the menu component.
Parameters: evt-the Event object containing the current event that applies to the menu
component.

toString

public String toString()
The toString method returns a string representation of the MenuComponent object.
Returns: A String containing the menu component's name.

MenuItem

Extends: MenuComponent
A MenuItem represents a choice in a menu.

MenuItem Constructor

public MenuItem(String label)
The MenuItem constructor constructs a menu item using the specified label string.
Parameters: label-the String that will be displayed as the menu item's label.

addNotify

public synchronized void addNotify()
The addNotify method creates the peer interface for the menu item. Using a peer

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (83 of 104) [11/06/2000 7:48:23 PM]



interface allows the user interface of the menu item to be modified without changing the
functionality.

getLabel

public String getLabel()
The getLabel method returns the label string for the menu item.
Returns: A String value representing the menu item's displayed label.

setLabel

public void setLabel(String label)
The setLabel method is used to change the string label of the menu item.
Parameters: label-a String value representing the menu item's displayed label.

isEnabled

public boolean isEnabled()
The isEnabled method can be called to determine whether the menu item is enabled.
Returns: A boolean value that will be true if the menu item is enabled, false if not.

enable

public void enable()
The enable method enables the menu item.

enable

public void enable(boolean cond)
This enable method enables the menu item based on the specified condition.
Parameters: cond-a boolean value that will conditionally enable the menu item.

disable

public void disable()
The disable method disables the menu item, making it unselectable by the user.

paramString

public String paramString()
The paramString method returns a string representation of the menu item.
Returns: A String value containing the menu item's label string.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (84 of 104) [11/06/2000 7:48:23 PM]



Panel

Extends: Container
The Panel class represents a generic container for graphical elements.

Panel Constructor

public Panel()
The Panel constructor constructs a default Panel object that will use the FlowLayout
layout manager.

addNotify

public synchronized void addNotify()
The addNotify method creates the peer interface for the panel. Using a peer interface
allows the user interface of the panel to be modified without changing the functionality.

Point

Extends: Object
A Point class encapsulates an x,y coordinate.

Member Variables

public int x
The x variable represents the x coordinate of the point.

public int y
The y variable represents the y coordinate of the point.

Point Constructor

public Point(int x, int y)
The Point constructor constructs a Point object using the specified coordinates.
Parameters:
x-the x coordinate of the point.
y-the y coordinate of the point.

move

public void move(int x, int y)
The move method moves the point to the new specified coordinates.
Parameters:
x-the new x coordinate of the point.
y-the new y coordinate of the point.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (85 of 104) [11/06/2000 7:48:23 PM]



translate

public void translate(int x, int y)
The translate method translates the point by the specified coordinates.
Parameters:
x-the x amount to transfer the point.
y-the y amount to transfer the point.

hashCode

public int hashCode()
The hashCode method returns a hash code for the point.
Returns: An integer value that represents the point's hash code.

equals

public boolean equals(Object obj)
The equals method compares the Point object to the specified object.
Parameters: obj-the object to compare the point to.
Returns: A boolean value representing the result of the comparison (true or false).

toString

public String toString()
The toString method returns a string representation of the Point object.
Returns: A String containing the point's name and x and y values.

Polygon

Extends: Object
A Polygon contains a list of x,y coordinates, unlike a Point class, which contains only
one coordinate set.

Member Variables

public int npoints
The npoint variable represents the total number of points within the Polygon.

public int xpoints[]
The xpoints variable is an integer array of all of the x coordinate points.

public int ypoints[]
The ypoints variable is an integer array of all of the y coordinate points.

Polygon Constructor

public Polygon()
The Polygon constructor constructs an empty Polygon object.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (86 of 104) [11/06/2000 7:48:23 PM]



Polygon

public Polygon(int xpoints[], int ypoints[], int npoints)
This Polygon constructor constructs a Polygon object using the specified coordinates.
Parameters:
xpoints-an array of integers representing the x coordinate points of the polygon.
ypoints-an array of integers representing the y coordinate points of the polygon.
npoints-an integer value representing the number of points in the polygon.

addPoint

public void addPoint(int x, int y)
The addPoint method adds a point to the polygon.
Parameters:
x-the x coordinate of the point to be added.
y-the y coordinate of the point to be added.

getBoundingBox

public Rectangle getBoundingBox()
The getBoundingBox returns the rectangular bounding box for the polygon.
Returns: A Rectangle object representing the bounding box for the polygon.

inside

public boolean inside(int x, int y)
The inside method determines whether the specified coordinates are inside the polygon's
bounding rectangle.
Parameters:
x-the x coordinate to check.
y-the y coordinate to check.
Returns: A boolean value that is true if the coordinates are inside the polygon's bounding
rectangle, false if not.

Rectangle

Extends: Object
A Rectangle class specifies the dimensions of a rectangle using x, y, height, and
width values.

Member Variables

public int x
The x variable stores the rectangle's x coordinate.

public int y

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (87 of 104) [11/06/2000 7:48:23 PM]



The y variable stores the rectangle's y coordinate.

public int width
The width variable stores the rectangle's width.

public int height
The height variable stores the rectangle's height.

Rectangle Constructor

public Rectangle()
The Rectangle constructor constructs a rectangle of zero size.

Rectangle Constructor

public Rectangle(int x, int y, int width, int height)
This Rectangle constructor constructs a rectangle using the specified coordinates.
Parameters:
x-the x coordinate of the rectangle.
y-the y coordinate of the rectangle.
width-the width of the rectangle.
height-the height of the rectangle.

Rectangle Constructor

public Rectangle(int width, int height)
This Rectangle constructor constructs a rectangle using the specified width and height.
Parameters:
width-the width of the rectangle.
height-the height of the rectangle.

Rectangle Constructor

public Rectangle(Point p, Dimension d)
This Rectangle constructor constructs a rectangle using the specified coordinates and
size.
Parameters:
p-a Point object containing the rectangle's x and y coordinates.
d-a Dimension object containing the rectangle's size.

Rectangle Constructor

public Rectangle(Point p)
This Rectangle constructor constructs a rectangle using the specified point.
Parameters: p-a Point object containing the rectangle's x and y coordinates.

Rectangle Constructor

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (88 of 104) [11/06/2000 7:48:23 PM]



public Rectangle(Dimension d)
This Rectangle constructor constructs a rectangle using the specified Dimension.
Parameters: d-a Dimension object containing the rectangle's size.

reshape

public void reshape(int x, int y, int width, int height)
The reshape method resizes the rectangle's coordinates and size.
Parameters:
x-the x coordinate of the rectangle.
y-the y coordinate of the rectangle.
width-the width of the rectangle.
height-the height of the rectangle.

move

public void move(int x, int y)
The move method moves the rectangle to the specified coordinates.
Parameters:
x-the x coordinate of the rectangle.
y-the y coordinate of the rectangle.

translate

public void translate(int x, int y)
The translate method translates the rectangle by the specified coordinates.
Parameters:
x-the x translation amount of the rectangle's coordinates.
y-the y translation amount of the rectangle's coordinates.

resize

public void resize(int width, int height)
The resize method changes the rectangle's size to the specified parameters.
Parameters:
width-the width of the rectangle.
height-the height of the rectangle.

inside

public boolean inside(int x, int y)
The inside method determines whether the specified coordinates are inside the rectangle's
bounding rectangle.
Parameters:
x-the x coordinate to be checked.
y-the y coordinate to be checked.
Returns: A boolean value that is true if the coordinates are within the bounding rectangle,

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (89 of 104) [11/06/2000 7:48:23 PM]



false if not.

intersects

public boolean intersects(Rectangle r)
The intersects method determines whether the specified rectangle intersects the
rectangle's bounding rectangle.
Parameters: r-a Rectangle object to be checked for intersection with the rectangle.
Returns: A boolean value that is true if the objects intersect, false if not.

intersection

public Rectangle intersection(Rectangle r)
The intersection computes the intersection rectangle (if any) of the two rectangles.
Parameters: r-a Rectangle object to be tested for intersection with the rectangle.
Returns: A Rectangle object that is the intersection of the two Rectangle objects.

union

public Rectangle union(Rectangle r)
The union method returns the union of the two rectangles.
Parameters: r-a Rectangle object that will be used to determine the union rectangle.
Returns: A Rectangle object representing the union of the two rectangles.

add

public void add(int newx, int newy)
The add method adds a new point to the rectangle using the specified coordinates. This
results in the smallest possible rectangle that contains the current rectangle and the
coordinates.
Parameters:
newx-an integer value representing the x coordinate of the point.
newy-an integer value representing the y coordinate of the point.

add

public void add(Point pt)
This add method adds a new point to the rectangle using the specified Point object. This
results in the smallest possible rectangle that contains the current rectangle and the point's
coordinates.
Parameters: pt-a Point object representing the point's coordinates.

add

public void add(Rectangle r)
This add method adds a new rectangle to the existing rectangle. This results in the union of
the two rectangles (current and new).

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (90 of 104) [11/06/2000 7:48:23 PM]



Parameters: r-a Rectangle object that will be used to perform a union with the
rectangle.

grow

public void grow(int h, int v)
The grow method grows the Rectangle object by the specified horizontal and vertical
amounts. The x and y coordinates will be shifted by the specified amounts, and the height
and width sizes will also be increased by the specified amounts.
Parameters:
h-an integer amount representing the amount to grow the rectangle by in the horizontal
direction.
v-an integer amount representing the amount to grow the rectangle by in the vertical
direction.

isEmpty

public boolean isEmpty()
The isEmpty method is used to determine whether the rectangle's width and height are
less than or equal to zero.
Returns: A boolean value that will be true if the rectangle is empty, false if not.

hashCode

public int hashCode()
The hashCode method returns the hash code for the rectangle.
Parameters: An integer value representing the rectangle's hash code.

equals

public boolean equals(Object obj)
The equals method compares the specified object with the rectangle.
Parameters: obj-an object to be compared with the rectangle.
Returns: A boolean value that is true if the two objects are equal, false if they are not.

toString

public String toString()
The toString method returns a String representation of the rectangle's contents.
Returns: A String containing the rectangle's name, x, y, height, and width values.

Scrollbar

Extends: Component
A Scrollbar component can be added to a frame or other object to provide scrolling
capabilities.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (91 of 104) [11/06/2000 7:48:23 PM]



Member Constants

public static final int HORIZONTAL
The HORIZONTAL static int value represents the horizontal scrollbar orientation variable.

public static final int VERTICAL
The VERTICAL static int value represents the vertical scrollbar orientation variable.

Scrollbar Constructor

public Scrollbar()
The Scrollbar constructor constructs a default scrollbar.

Scrollbar Constructor

public Scrollbar(int orientation)
This Scrollbar constructor constructs a scrollbar with the specified orientation.
Parameters: orientation-an integer value that can be either HORIZONTAL or
VERTICAL.

Scrollbar Constructor

public Scrollbar(int orientation, int value, int visible, int minimum,
int maximum)
This Scrollbar constructor constructs a complete scrollbar using the specified
orientation and properties.
Parameters:
orientation-an integer value that can be either HORIZONTAL or VERTICAL.
value-an integer value representing the scrollbar's value.
visible-an integer value representing the size of the scrollbar's visible portion.
minimum-an integer value representing the scrollbar's minimum value.
maximum-an integer value representing the scrollbar's maximum value.

addNotify

public synchronized void addNotify()
The addNotify method creates the peer interface for the scrollbar. Using a peer interface
allows the user interface of the scrollbar to be modified without changing the functionality.

getOrientation

public int getOrientation()
The getOrientation method returns the orientation value of the scrollbar.
Returns: An integer value that can be either HORIZONTAL or VERTICAL.

getValue

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (92 of 104) [11/06/2000 7:48:23 PM]



public int getValue()
The getValue method returns the current value of the scrollbar.
Returns: An integer value representing the value of the scrollbar.

setValue

public void setValue(int value)
The setValue method set the value of the scrollbar to the specified value.
Parameters: value-An integer value representing the new value of the scrollbar.

getMinimum

public int getMinimum()
The getMinimum method returns the minimum value of the scrollbar.
Returns: An integer value representing the scrollbar's minimum value.

getMaximum

public int getMaximum()
The getMaximum method returns the maximum value of the scrollbar.
Returns: An integer value representing the scrollbar's maximum value.

getVisible

public int getVisible()
The getVisible portion returns the visible amount of the scrollbar.
Returns: An integer value representing the scrollbar's visible amount.

setLineIncrement

public void setLineIncrement(int l)
The setLineIncrement method sets the line increment for the scrollbar.
Parameters: l-an integer value representing the line increment for the scrollbar, which is
the amount that the scrollbar's position increases or decreases when the user clicks its up or
down widgets.

getLineIncrement

public int getLineIncrement()
The getLineIncrement method returns the line increment for the scrollbar.
Returns: An integer value representing the line increment for the scrollbar, which is the
amount that the scrollbar's position increases or decreases when the user clicks its up or
down widgets.

setPageIncrement

public void setPageIncrement(int l)

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (93 of 104) [11/06/2000 7:48:23 PM]



The setPageIncrement method sets the page increment for the scrollbar.
Parameters: l-an integer value representing the page increment for the scrollbar, which is
the amount that the scrollbar's position increases or decreases when the user clicks its page
up or page down widgets.

getPageIncrement

public int getPageIncrement()
The getPageIncrement method returns the page increment for the scrollbar.
Returns: An integer value representing the page increment for the scrollbar, which is the
amount that the scrollbar's position increases or decreases when the user clicks its page up
or page down widgets.

setValues

public void setValues(int value, int visible, int minimum,
int maximum)
The setValues method sets the scrollbar's properties based on the specified values.
Parameters:
value-an integer value representing the current value of the scrollbar.
visible-an integer value representing the visible amount of the scrollbar.
minimum-an integer value representing the scrollbar's minimum value.
maximum-an integer value representing the scrollbar's maximum value.

TextArea

Extends: TextComponent
A TextArea class represents a multiline component that can be used for text display or
editing.

TextArea Constructor

public TextArea()
The TextArea constructor constructs a TextArea object.

TextArea

public TextArea(int rows, int cols)
This TextArea constructor constructs a TextArea object using the specified row and
column values.
Parameters:
rows-an integer value specifying the number of rows to use.
cols-an integer value specifying the number of columns to use.

TextArea Constructor

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (94 of 104) [11/06/2000 7:48:23 PM]



public TextArea(String text)
This TextArea constructor constructs a TextArea object using the specified text.
Parameters: text-a String value containing the text to be displayed in the text area.

TextArea Constructor

public TextArea(String text, int rows, int cols)
This TextArea constructor constructs a TextArea object using the specified row,
column, and text values.
Parameters:
text-a String value containing the text to be displayed in the text area.
rows-an integer value specifying the number of rows to use.
cols-an integer value specifying the number of columns to use.

addNotify

public synchronized void addNotify()
The addNotify method creates the peer interface for the text area. Using a peer interface
allows the user interface of the text area to be modified without changing the functionality.

insertText

public void insertText(String str, int pos)
The insertText method inserts a text string into the text area's text at the specified
position.
Parameters:
str-a String value containing the text to be inserted in the text area.
pos-an integer value specifying the position to insert the text string into.

appendText

public void appendText(String str)
The appendText method appends a text string onto the text area's text.
Parameters: str-a String value containing the text to be appended in the text area.

replaceText

public void replaceText(String str, int start, int end)
The replaceText method replaces a section of the text area's text at the specified
positions with the specified text string.
Parameters:
str-a String value containing the text that will replace the text area's current text.
start-the starting position of the text to be replaced within the text area.
end-the ending position of the text to be replaced within the text area.

getRows

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (95 of 104) [11/06/2000 7:48:23 PM]



public int getRows()
The getRows method returns the number of rows within the text area.
Returns: An integer value representing the number of rows within the text area.

getColumns

public int getColumns()
The getColumns method returns the number of columns within the text area.
Returns: An integer value representing the number of rows within the text area.

preferredSize

public Dimension preferredSize(int rows, int cols)
The preferredSize method returns the preferred size of a text area comprising the
specified rows and columns.
Parameters:
rows-the number of rows in the text area.
cols-the number of columns in the text area.
Returns: A Dimension object representing the preferred size of the specified text area.

preferredSize

public Dimension preferredSize()
This preferredSize method returns the preferred size dimension of a TextArea
object.
Returns: A Dimension object representing the preferred size of a text area.

minimumSize

public Dimension minimumSize(int rows, int cols)
The minimumSize method returns the minimum size of a text area comprised of the
specified rows and columns.
Parameters:
rows-the number of rows in the text area.
cols-the number of columns in the text area.
Returns: A Dimension object representing the minimum size of the specified text area.

minimumSize

public Dimension minimumSize()
This minimumSize method returns the minimum size dimension of a TextArea object.
Returns: A Dimension object representing the minimum size of a text area.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (96 of 104) [11/06/2000 7:48:23 PM]



TextComponent

Extends: Component
The TextComponent class is a component that provides some text for display or editing.
It serves as the base class for the TextArea and TextField classes.

removeNotify

public synchronized void removeNotify()
The removeNotify method removes the text component's peer interface. A peer interface
can be used to modify the text component's user interface without changing its functionality.

setText

public void setText(String t)
The setText method sets the text component's displayed text to the specified String
value.
Parameters: t-a String value representing the string to be stored in the text component's
text value.

getText

public String getText()
The getText method returns the text component's text value.
Returns: A String value representing the text component's text value.

getSelectedText

public String getSelectedText()
The getSelectedText method returns the selected text contained in this text
component.
Returns: A String value representing the text component's text value.

isEditable

public boolean isEditable()
The isEditable method is used to determine whether the text component's text can be
edited.
Returns: A boolean value that is true if the text can be edited, false if not.

setEditable

public void setEditable(boolean t)
The setEditable method is used to set the text component's edit property.
Parameters: t-a boolean value that is true if the text can be edited, false if not.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (97 of 104) [11/06/2000 7:48:23 PM]



getSelectionStart

public int getSelectionStart()
The getSelectionStart method returns the starting position of the selected text in the
text component.
Returns: An integer value representing the position of the first selected character in the text
component.

getSelectionEnd

public int getSelectionEnd()
The getSelectionEnd method returns the ending position of the selected text in the text
component.
Returns: An integer value representing the position of the last selected character in the text
component.

select

public void select(int selStart, int selEnd)
The select method selects a portion of the text component's text based on the specified
position.
Parameters:
selStart-an integer value representing the position of the first character to be selected in
the text component.
selEnd-an integer value representing the position of the last character to be selected in the
text component.

selectAll

public void selectAll()
The selectAll method selects all of the text component's text.

TextField

Extends: TextComponent
The TextField class provides a single line of text for display or editing.

TextField Constructor

public TextField()
The TextField constructor constructs a text field of default size.

TextField Constructor

public TextField(int cols)
This TextField constructor constructs a text field using the specified column size.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (98 of 104) [11/06/2000 7:48:23 PM]



Parameters: cols-the number of characters that can be entered into the text field.

TextField Constructor

public TextField(String text)
This TextField constructor constructs a text field using the specified input string.
Parameters: text-the default text to be displayed within the text field.

TextField Constructor

public TextField(String text, int cols)
This TextField constructor constructs a text field using the specified input string and
column values.
Parameters:
text-the default text to be displayed within the text field.
Cols-the number of columns to display.

addNotify

public synchronized void addNotify()
The addNotify method creates the peer interface for the text field. Using a peer interface
allows the user interface of the text field to be modified without changing the functionality.

getEchoChar

public char getEchoChar()
The getEchoChar method retrieves the character that will be used for echoing.
Returns: A character value that represents the character that will be used for echoing.

echoCharIsSet

public boolean echoCharIsSet()
The echoCharIsSet method is used to determine whether the echo character has been
set.
Returns: A boolean value that is true if the echo character has been set, false if not.

getColumns

public int getColumns()
The getColumns method returns the number of columns used in the display area of this
text field.
Returns: An integer value representing the number of columns (characters) that will be
displayed by the text field.

setEchoCharacter

public void setEchoCharacter(char c)

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (99 of 104) [11/06/2000 7:48:23 PM]



The setEchoCharacter method is used to set the character that will be used for
echoing. Echoing is often used on password fields so that the actual characters entered won't
be echoed to the screen.
Parameters: c-a character value representing the character to be echoed to the screen.

preferredSize

public Dimension preferredSize(int cols)
This preferredSize method returns the preferred size dimension of a text field object.
Returns: A Dimension object representing the preferred size of a text field.

minimumSize

public Dimension minimumSize(int cols)
The minimumSize method returns the minimum size of a text field comprised of the
specified number of columns.
Parameters: cols-the number of columns in the text field.
Returns: A Dimension object representing the minimum size of the specified text field.

minimumSize

public Dimension minimumSize()
This minimumSize method returns the minimum size dimension of a TextField object.
Returns: A Dimension object representing the minimum size of a text field.

Toolkit

Extends: Object
The Toolkit class is used to bind a native toolkit to the awt classes.

getScreenSize

public abstract Dimension getScreenSize()
The getScreenSize method returns the size of the screen.
Returns: A Dimension object containing the size of the screen.

getScreenResolution

public abstract int getScreenResolution()
The getScreenResolution method returns the current screen resolution in units of
dots per inch.
Returns: An integer value representing the current screen resolution in dots per inch.

getColorModel

public abstract ColorModel getColorModel()

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (100 of 104) [11/06/2000 7:48:23 PM]



The getColorModel method returns the current color model being used.
Returns: A ColorModel object representing the current color model.

getFontList

public abstract String[] getFontList()
The getFontList method returns a list of the fonts available.
Returns: An array of strings containing the names of all fonts available to the system.

getFontMetrics

public abstract FontMetrics getFontMetrics(Font font)
The getFontMetrics method returns the font metrics for a specified font.
Parameters: A Font object.
Returns: A FontMetrics object containing information on the specified font.

sync

public abstract void sync()
The sync method syncs the graphics state. This is useful when doing animation.

getDefaultToolkit

public static synchronized Toolkit getDefaultToolkit()
The getDefaultToolkit method returns a Toolkit object that is used as the default
toolkit.
Returns: A Toolkit object representing the default system toolkit.

getImage

public abstract Image getImage(String filename)
The getImage method returns an Image object that corresponds with the specified
Image filename.
Parameters: filename-a String value containing the filename of the image to be
loaded.
Returns: An Image object.

getImage

public abstract Image getImage(URL url)
The getImage method retrieves an Image object that corresponds with the specified
URL.
Parameters: url-the uniform resource locator (URL) of the specified image object.
Returns: An Image object.

prepareImage

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (101 of 104) [11/06/2000 7:48:23 PM]



public abstract boolean prepareImage(Image image, int width,
int height,
ImageObserver observer)
The prepareImage method prepares an image for rendering on the screen based on the
specified image sizes.
Parameters:
image-an Image object.
width-an integer value representing the width of the image when displayed.
height-an integer value representing the height of the image when displayed.
observer-an ImageObserver object that will be notified when the image is prepared.
Returns: A boolean value that is true if the image was prepared successfully, false if
not.

checkImage

public abstract int checkImage(Image image, int width, int height,
ImageObserver observer)
The checkImage method checks the status of the image construction.
Parameters:
image-an Image object.
width-an integer value representing the width of the image when displayed.
height-an integer value representing the height of the image when displayed.
observer-an ImageObserver object that will be notified when the image is prepared.
Returns: An integer value representing the status of the image construction.

createImage

public abstract Image createImage(ImageProducer producer)
The createImage method creates an image using the ImageProducer interface.
Parameters: producer-an ImageProducer object that will be notified when the image
is prepared.
Returns: An Image object.

Window

Extends: Container
The Window class is defined as a top-level window with no borders and no menu bar.

Window Constructor

public Window(Frame parent)
The Window constructor constructs a window whose parent is specified by the parent
parameter. This window will be invisible after creation and will act as a modal dialog when
initially shown.
Parameters: parent-a Frame object that is the parent of this window.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (102 of 104) [11/06/2000 7:48:23 PM]



addNotify

public synchronized void addNotify()
The addNotify method creates the peer interface for the window. Using a peer interface
allows the user interface of the window to be modified without changing the functionality.

pack

public synchronized void pack()
The pack method packs the components within the window based on the components'
preferred sizes.

show

public void show()
The show method shows the window after it has been constructed. If the window is already
visible, the show method will bring the window to the front.

dispose

public synchronized void dispose()
The dispose method disposes of the window and all of its contents. This method must be
called to release the window's resources.

toFront

public void toFront()
The toFront method brings the parent frame to the front of the window.

toBack

public void toBack()
The toBack method sends the parent frame to the back of the window.

getToolkit

public Toolkit getToolkit()
The getToolkit method returns the current toolkit for the window.
Returns: A Toolkit object.

getWarningString

public final String getWarningString()
The getWarningString method returns a string that is used to warn users. This string
typically displays a security warning and is displayed in an area of the window visible to
users.
Returns: A String value containing a warning string for users to read.

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (103 of 104) [11/06/2000 7:48:23 PM]



awtException

Extends: Exception
The awtException class is used to signal that an awt exception has occurred.

awtError

Extends: Error
The awtError encapsulates an awt error.

   

appendix F -- java.awt Package Reference

file:///G|/ebooks/1575211831/ch34.htm (104 of 104) [11/06/2000 7:48:23 PM]



appendix G

java.awt.image Package Reference

CONTENTS
ImageConsumer●   

ImageObserver●   

ImageProducer●   

ColorModel●   

CropImageFilter●   

DirectColorModel●   

FilteredImageSource●   

ImageFilter●   

IndexColorModel●   

MemoryImageSource●   

PixelGrabber●   

RGBImageFilter●   

While nearly all of the java.awt package consists of graphical user interface components to be used
for screen layout, the java.awt.image package contains classes that provide functionality for various
image transformations and operations.

ImageConsumer

The ImageConsumer interface is implemented by objects interested in acquiring data provided by the
ImageProducer interface.

Member Variables

int RANDOMPIXELORDER

The pixels will be delivered in a random order.

int TOPDOWNLEFTRIGHT

appendix G -- java.awt.image Package Reference

file:///G|/ebooks/1575211831/ch35.htm (1 of 24) [11/06/2000 7:48:28 PM]



The pixels will be delivered in top-down, left-right order.

int COMPLETESCANLINES

The pixels will be delivered in complete scan lines.

int SINGLEPASS

The pixels will be delivered in a single pass.

int SINGLEFRAME

The pixels will be delivered in a single frame.

int IMAGEERROR

An error occurred during image processing.

int SINGLEFRAMEDONE

A single frame is complete, but the overall operation has not been completed.

int STATICIMAGEDONE

The image construction is complete.

int IMAGEABORTED

The image creation was aborted.

setDimensions

void setDimensions(int width, int height)
The setDimensions method is used to report the dimensions of the source image to the
image consumer.
Parameters:
width-the width of the source image.
height-the height of the source image.

setProperties

void setProperties(Hashtable props)
The setProperties method is used to report the properties of the source image to the
image consumer.
Parameters: props-a Hashtable object containing the image properties.

setColorModel

appendix G -- java.awt.image Package Reference

file:///G|/ebooks/1575211831/ch35.htm (2 of 24) [11/06/2000 7:48:28 PM]



void setColorModel(ColorModel model)
The setColorModel method is used to report the color model of the source image to the
image consumer.
Parameters: model-the color model used by the source image.

setHints

void setHints(int hintflags)
The setHints method is used to report hints to the image consumer.
Parameters: hintflags-an integer value containing hints about the manner in which the
pixels will be delivered.

setPixels

void setPixels(int x, int y, int w, int h, ColorModel model, byte pixels[],
int off, int scansize)
The setPixels method is used to deliver the pixels to the ImageConsumer. Note: Pixel (x,y)
is stored in the pixels array at index (y * scansize + x + off).
Parameters:
x-the x coordinate.
y-the y coordinate.
w-the width of the image.
h-the height of the image.
model-the color model used.
pixels-an array of bytes containing pixel information.
off-the offset value.
scansize-the scansize value.

setPixels

void setPixels(int x, int y, int w, int h, ColorModel model,
int pixels[], int off, int scansize)
The setPixels method is used to deliver the pixels to the ImageConsumer. Note: Pixel (x,y)
is stored in the pixels array at index (y * scansize + x + off).
Parameters:
x-the x coordinate.
y-the y coordinate.
w-the width of the image.
h-the height of the image.
model-the color model used.
pixels-an array of integers containing pixel information.
off-the offset value.
scansize-the scansize value.

imageComplete

appendix G -- java.awt.image Package Reference

file:///G|/ebooks/1575211831/ch35.htm (3 of 24) [11/06/2000 7:48:28 PM]



void imageComplete(int status)
The imageComplete method is called when the image producer is finished delivering an
image frame. The image consumer should remove itself from the image producer's list at
this time.

ImageObserver

The ImageObserver interface is an asynchronous update interface used to receive information on the
status of image construction.

Member Constants

public static final int WIDTH

The width of the base image is now available.

public static final int HEIGHT

The height of the base image is now available.

public static final int PROPERTIES

The properties of the base image are now available.

public static final int SOMEBITS

Some bits of the image for drawing are now available.

public static final int FRAMEBITS

Another complete frame of a multiframe image is now available.

public static final int ALLBITS

A static image that was previously drawn is now complete and can be drawn again.

public static final int ERROR

An image that was being tracked asynchronously has encountered an error.

public static final int ABORT

An image that was being tracked was aborted before production was completed.

imageUpdate

appendix G -- java.awt.image Package Reference

file:///G|/ebooks/1575211831/ch35.htm (4 of 24) [11/06/2000 7:48:28 PM]



public boolean imageUpdate(Image img, int infoflags, int x,
int y, int width, int height)
The imageUpdate method is called every time image information becomes available. The
recipients of the update messages are ImageObserver objects that have requested
information about an image using asynchronous interfaces.
Parameters:
img-the image of interest.
infoflags-status flags indicating the progress of the image process.
x-the x coordinate that applies (if necessary).
y-the y coordinate that applies (if necessary).
width-the width of the image (if necessary).
height-the height of the image (if necessary).

ImageProducer

The ImageProducer interface is implemented by objects that produce images. Each image contains
an image producer.

addConsumer

public void addConsumer(ImageConsumer ic)
The addConsumer method adds the image consumer to a list to receive image data during
reconstruction of the image.
Parameters: ic-an ImageConsumer-derived object.

isConsumer

public boolean isConsumer(ImageConsumer ic)
The isConsumer method determines whether the specified image consumer is currently
on the image producer's list of recipients.
Parameters: ic-an ImageConsumer-derived object
Returns: A boolean value that is true if the image consumer is registered, false if not.

removeConsumer

public void removeConsumer(ImageConsumer ic)
The removeConsumer method removes the specified image consumer from the internal
list.
Parameters: ic-an ImageConsumer-derived object.

startProduction

public void startProduction(ImageConsumer ic)
The startProduction method adds the specified image consumer to the list of image
data recipients and immediately begins production of the image data.
Parameters: ic-an ImageConsumer-derived object.

appendix G -- java.awt.image Package Reference

file:///G|/ebooks/1575211831/ch35.htm (5 of 24) [11/06/2000 7:48:28 PM]



requestTopDownLeftRightResend

public void requestTopDownLeftRightResend(ImageConsumer ic)
The requestTopDownLeftRightResend method is used to deliver the image data to
the specified image consumer in top-down, left-right order.
Parameters: ic-an ImageConsumer-derived object.

ColorModel

Extends: Object
The ColorModel class is an abstract class that provides functions for translating pixel
values into RGB color values.

ColorModel Constructor

public ColorModel(int bits)
The ColorModel constructor constructs a color model that describes a pixel of the
specified number of bits.
Parameters: bits-an integer value containing the number of bits that will describe a pixel
using this color model.

getRGBdefault

public static ColorModel getRGBdefault()
The getRGBdefault method returns the default color model that is used throughout all
awt image interfaces. This default color model uses a pixel format that encapsulates alpha,
red, green, and blue color values (8 bits each) using the following methodology:
0xAARRGGBB.
Returns: A ColorModel object representing the default color model for all awt image
interfaces.

getPixelSize

public int getPixelSize()
The getPixelSize method returns the size of the color model's pixel.
Returns: An integer value representing the number of bits that make up a pixel in this color
model.

getRed

public abstract int getRed(int pixel)
The getRed method returns the red component of the specified pixel.
Parameters: pixel-an integer containing the pixel representation for this color model.
Returns: An integer value representing the red component of the pixel.

appendix G -- java.awt.image Package Reference

file:///G|/ebooks/1575211831/ch35.htm (6 of 24) [11/06/2000 7:48:28 PM]



getGreen

public abstract int getGreen(int pixel)
The getGreen method returns the green component of the specified pixel.
Parameters: pixel-an integer containing the pixel representation for this color model.
Returns: An integer value representing the green component of the pixel.

getBlue

public abstract int getBlue(int pixel)
The getBlue method returns the blue component of the specified pixel.
Parameters: pixel-an integer containing the pixel representation for this color model.
Returns: An integer value representing the blue component of the pixel.

getAlpha

public abstract int getAlpha(int pixel)
The getAlpha method returns the alpha component of the specified pixel.
Parameters: pixel-an integer containing the pixel representation for this color model.
Returns: An integer value representing the alpha component of the pixel.

getRGB

public int getRGB(int pixel)
The getRGB method returns the RGB value of the pixel using the default color model.
Parameters: pixel-an integer containing the pixel representation for this color model.
Returns: An integer value representing the RGB value of the pixel using the default color
model.

finalize

public void finalize()
The finalize method is used to clean up internal data allocated by the ColorModel.

CropImageFilter

Extends: ImageFilter
The CropImageFilter class provides the capability to extract a rectangular subset of a
given image (that is, crop it). This class is used in conjunction with a
FilteredImageSource class to provide a source for the cropped image.

CropImageFilter Constructor

public CropImageFilter(int x, int y, int w, int h)
The CropImageFilter constructor constructs a CropImageFilter to crop an image
using the specified parameters.

appendix G -- java.awt.image Package Reference

file:///G|/ebooks/1575211831/ch35.htm (7 of 24) [11/06/2000 7:48:28 PM]



Parameters:
x-the x coordinate of the image to be cropped.
y-the y coordinate of the image to be cropped.
w-the width of the image to be cropped.
h-the height of the image to be cropped.

setProperties

public void setProperties(Hashtable props)
The setProperties method takes the props parameter from a source object and adds
the croprect property to it to identify the region being cropped.
Parameters: props-a Hashtable object containing properties from the source object.

setDimensions

public void setDimensions(int w, int h)
The setDimensions method overrides the source's dimensions and passes the
dimensions of the cropped region to the ImageConsumer interface.
Parameters:
w-the width value.
h-the height value.

setPixels

public void setPixels(int x, int y, int w, int h, ColorModel
model, int pixels[], int off, int scansize)
The setPixels method filters the pixels array by determining which pixels lie in the cropped
region. Those that do are passed on to the Consumer interface.
Parameters:
x-the x coordinate of the image.
y-the y coordinate of the image.
w-the width of the image.
h-the height of the image.
model-the color model to which the pixels array conforms.
pixels-an array of integers containing pixels to be examined.
off-a variable that is passed on to the image consumer class's setPixels method.
scansize-an integer value representing the scansize of the operation.

DirectColorModel

Extends: ColorModel
The DirectColorModel class specifies translations from pixel values to RGB color values for
pixels that have the colors embedded directly in the pixel bits.

DirectColorModel Constructor

appendix G -- java.awt.image Package Reference

file:///G|/ebooks/1575211831/ch35.htm (8 of 24) [11/06/2000 7:48:28 PM]



public DirectColorModel(int bits, int rmask, int gmask, int
bmask)
The DirectColorModel constructor constructs a direct color model using the specified
parameters. DirectColorModels built using this constructor have a default alphamask
value of 255.
Parameters:
bits-the number of bits used to represent a pixel.
rmask-the number of bits required to represent the red component.
gmask-the number of bits required to represent the green component.
bmask-the number of bits required to represent the blue component.

DirectColorModel Constructor

public DirectColorModel(int bits, int rmask, int gmask, int
bmask, int amask)
The DirectColorModel constructor constructs a direct color model using the specified
parameters.
Parameters:
bits-the number of bits used to represent a pixel.
rmask-the number of bits required to represent the red component.
gmask-the number of bits required to represent the green component.
bmask-the number of bits required to represent the blue component.
amask-the number of bits required to represent the alpha component.

getRedMask

final public int getRedMask()
The getRedMask method returns the current red mask value.
Returns: An integer value representing the red mask value.

getGreenMask

final public int getGreenMask()
The getGreenMask method returns the current green mask value.
Returns: An integer value representing the green mask value.

getBlueMask

final public int getBlueMask()
The getBlueMask method returns the current blue mask value.
Returns: An integer value representing the blue mask value.

getAlphaMask

final public int getAlphaMask()
The getAlphaMask method returns the current alpha mask value.
Returns: An integer value representing the alpha mask value.

appendix G -- java.awt.image Package Reference

file:///G|/ebooks/1575211831/ch35.htm (9 of 24) [11/06/2000 7:48:28 PM]



getRed

final public int getRed(int pixel)
The getRed method returns the red component for the specified pixel in the range 0-255.
Parameters: pixel-an integer value representing a pixel under the direct color model.
Returns: An integer value representing the red component of the pixel.

getGreen

final public int getGreen(int pixel)
The getGreen method returns the green component for the specified pixel in the range
0-255.
Parameters: pixel-an integer value representing a pixel under the direct color model.
Returns: An integer value representing the green component of the pixel.

getBlue

final public int getBlue(int pixel)
The getBlue method returns the blue component for the specified pixel in the range
0-255.
Parameters: pixel-an integer value representing a pixel under the direct color model.
Returns: An integer value representing the blue component of the pixel.

getAlpha

final public int getAlpha(int pixel)
The getAlpha method returns the alpha component for the specified pixel in the range
0-255.
Parameters: pixel-an integer value representing a pixel under the direct color model.
Returns: An integer value representing the alpha component of the pixel.

getRGB

final public int getRGB(int pixel)
The getRGB method returns the RGB color value for the specified pixel in the range 0-255.
Parameters: pixel-an integer value representing a pixel under the direct color model.
Returns: An integer value representing the RGB color value of the pixel using the default
RGB color model.

FilteredImageSource

Extends: Object
Implements: ImageProducer
FilteredImageSource takes as input an existing image and a filter object. It applies
the filter to the image to produce a new version of the original image. The

appendix G -- java.awt.image Package Reference

file:///G|/ebooks/1575211831/ch35.htm (10 of 24) [11/06/2000 7:48:28 PM]



FilteredImageSource class implements the ImageProducer interface.

FilteredImageSource Constructor

public FilteredImageSource(ImageProducer orig, ImageFilter
imgf)
The FilteredImageSource constructor constructs a FilteredImageSource
object that takes a producer source and an image filter to produce a filtered version of the
image.
Parameters:
orig-an ImageProducer-derived object that supplies the image source.
imgf-an ImageFilter object that filters the image to produce a new image.

addConsumer

public synchronized void addConsumer(ImageConsumer ic)
The addConsumer method adds an ImageConsumer interface to a list of consumers
interested in image data.
Parameters: ic-an ImageConsumer-derived object to be added to a list of image
consumers.

isConsumer

public synchronized boolean isConsumer(ImageConsumer ic)
The isConsumer method determines whether the specified image consumer is currently
on the list of image consumers for the image data.
Parameters: ic-an image consumer derived object to be used for the check.
Returns: A boolean value that is true if the specified image consumer is on the list,
false if not.

removeConsumer

public synchronized void removeConsumer(ImageConsumer ic)
The removeConsumer method removes the specified image consumer from the list of
image consumers.
Parameters: ic-the image consumer to be removed from the list.

startProduction

public void startProduction(ImageConsumer ic)
The startProduction method adds the specified image consumer to the list of image
consumers and immediately starts delivery of the image data to the interface.
Parameters: ic-the image consumer that will be used to produce new image data.

requestTopDownLeftRightResend

public void requestTopDownLeftRightResend(ImageConsumer ic)

appendix G -- java.awt.image Package Reference

file:///G|/ebooks/1575211831/ch35.htm (11 of 24) [11/06/2000 7:48:28 PM]



The requestTopDownLeftRightResend method is used to deliver the image data to
the specified image consumer in top-down, left-right order.
Parameters: ic-the image consumer that will be the recipient of the image data when it is
present.

ImageFilter

Extends: Object
Implements: ImageConsumer, Cloneable
The ImageFilter class acts as a base class for all image-filtering classes. It implements
the ImageConsumer and Cloneable interfaces.

getFilterInstance

public ImageFilter getFilterInstance(ImageConsumer ic)
The getFilterInstance method returns an ImageFilter object that will be used to
perform the filtering for the specified image consumer.
Parameters: ic-the image consumer that requires the image filtering.
Returns: An ImageFilter object to be used to perform the image filtering.

setDimensions

public void setDimensions(int width, int height}
The setDimensions method filters the information provided in the setDimensions
method of the ImageConsumer interface.
Parameters:
width-the filter width.
height-the filter height.

setProperties

public void setProperties(Hashtable props)
The setProperties method passes the props value along after a property is added that
identifies which filters have been applied to the image.
Parameters: props-a Hashtable object containing a set of properties.

setColorModel

public void setColorModel(ColorModel model)
The setColorModel method filters the information provided in the setColorModel
method of the ImageConsumer interface.
Parameters: model-a ColorModel object.

setHints

public void setHints(int hints)

appendix G -- java.awt.image Package Reference

file:///G|/ebooks/1575211831/ch35.htm (12 of 24) [11/06/2000 7:48:28 PM]



The setHints method filters the information provided in the setHints method of the
Image ImageConsumer interface.
Parameters: hints-an integer value containing hints.

setPixels

public void setPixels(int x, int y, int w, int h, ColorModel
model, byte pixels[], int off, int scansize)
The setPixels method filters the pixels array. The pixels that pass through the filter are
passed onto the ImageConsumer interface.
Parameters:
x-the x coordinate of the image.
y-the y coordinate of the image.
w-the width of the image.
h-the height of the image.
model-the ColorModel to which the pixels array conforms.
pixels-a byte array containing pixels to be examined.
off-a variable that is passed on to the image consumer's setPixels method.
scansize-an integer value representing the scansize of the operation.

imageComplete

public void imageComplete(int status)
The imageComplete method filters the information provided by the imageComplete
method in the ImageConsumer interface.
Parameters: status-an integer value representing the status of the filter operation

resendTopDownLeftRight

public void resendTopDownLeftRight(ImageProducer ip)
The resendTopDownLeftRight method is used to deliver the image data to the
specified image consumer in top-down, left-right order.
Parameters: ip-the image producer that is responsible for production of the image data.

clone

public Object clone()
The clone method returns a clone of the image filter.
Returns: An object that is identical to the image filter.

IndexColorModel

Extends: ColorModel
This class translates from pixel values to RGB color values for pixels that represent indexes
into a color map.

appendix G -- java.awt.image Package Reference

file:///G|/ebooks/1575211831/ch35.htm (13 of 24) [11/06/2000 7:48:28 PM]



IndexColorModel Constructor

public IndexColorModel(int bits, int size, byte r[], byte
g[], byte b[])
The IndexColorModel constructor constructs a color model from the specified
information.
Parameters:
bits-the number of bits required to represent a pixel.
size-the size of the color arrays.
r-the red color array.
g-the green color array.
b-the blue color array.

IndexColorModel Constructor

public IndexColorModel(int bits, int size, byte r[], byte
g[], byte b[],
int trans)
The IndexColorModel constructor constructs a color model from the specified
information.
Parameters:
bits-the number of bits required to represent a pixel.
size-the size of the color arrays.
r-the red color array.
g-the green color array.
b-the blue color array.
trans-an integer value representing the index that identifies the transparent pixel.

IndexColorModel Constructor

public IndexColorModel(int bits, int size, byte r[], byte
g[], byte b[],
byte a[])
The IndexColorModel constructor constructs a color model from the specified
information.
Parameters:
bits-the number of bits required to represent a pixel.
size-the size of the color arrays.
r-the red color array.
g-the green color array.
b-the blue color array.
a-the alpha color array.

IndexColorModel Constructor

public IndexColorModel(int bits, int size, byte cmap[], int

appendix G -- java.awt.image Package Reference

file:///G|/ebooks/1575211831/ch35.htm (14 of 24) [11/06/2000 7:48:28 PM]



start,
boolean hasalpha)
The IndexColorModel constructor constructs a color model from the specified
information.
Parameters:
bits-the number of bits required to represent a pixel.
size-the size of the color arrays.
cmap-a byte array representing the color map array.
start-the index representing the first color component within the color array.
hasalpha-a boolean value indicating whether alpha values are contained within the color
map.

IndexColorModel Constructor

public IndexColorModel(int bits, int size, byte cmap[], int
start,
boolean hasalpha, int trans)
The IndexColorModel constructor constructs a color model from the specified
information.
Parameters:
bits-the number of bits required to represent a pixel.
size-the size of the color arrays.
cmap-a byte array representing the color map array.
start-the index representing the first color component within the color array.
hasalpha-a boolean value indicating whether alpha values are contained within the color
map.
trans-an integer value representing the index of the transparent pixel.

getMapSize

final public int getMapSize()
The getMapSize method returns the size of the color map used by the
IndexColorModel.
Returns: An integer value representing the size of the color map used by the index color
model.

getTransparentPixel

final public int getTransparentPixel()
The getTransparentPixel method returns the index into the color map of the
transparent pixel.
Returns: An integer value representing the index into the color map of the transparent pixel.
If there is no transparent pixel, this method returns -1.

getReds

appendix G -- java.awt.image Package Reference

file:///G|/ebooks/1575211831/ch35.htm (15 of 24) [11/06/2000 7:48:28 PM]



final public void getReds(byte r[])
The getReds method fills the byte array with the red color components.
Parameters: r-a byte array that is filled by the getReds method with the red color
components.

getGreens

final public void getGreens(byte g[])
The getGreens method fills the byte array with the green color components.
Parameters: g-a byte array that is filled by the getGreens method with the green color
components.

getBlues

final public void getBlues(byte b[])
The getBlues method fills the byte array with the blue color components.
Parameters: b-a byte array that is filled by the getBlues method with the blue color
components.

getAlphas

final public void getAlphas(byte a[])
The getAlphas method fills the byte array with the alpha components.
Parameters: a-a byte array that is filled by the getAlphas method with the alpha
components.

getRed

final public int getRed(int pixel)
The getRed method returns the red color component for the specified pixel using the index
color model.
Parameters: pixel-an integer value representing a pixel.
Returns: An integer value in the range 0-255 representing the red component for the
specified pixel.

getGreen

final public int getGreen(int pixel)
The getGreen method returns the green color component for the specified pixel using the
index color model.
Parameters: pixel-an integer value representing a pixel.
Returns: An integer value in the range 0-255 representing the green component for the
specified pixel.

getBlue

final public int getBlue(int pixel)

appendix G -- java.awt.image Package Reference

file:///G|/ebooks/1575211831/ch35.htm (16 of 24) [11/06/2000 7:48:28 PM]



The getBlue method returns the blue color component for the specified pixel using the
index color model.
Parameters: pixel-an integer value representing a pixel.
Returns: An integer value in the range 0-255 representing the blue component for the
specified pixel.

getAlpha

final public int getAlpha(int pixel)
The getAlpha method returns the alpha color component for the specified pixel using the
index color model.
Parameters: pixel-an integer value representing a pixel.
Returns: An integer value in the range 0-255 representing the alpha component for the
specified pixel.

getRGB

final public int getRGB(int pixel)
The getRGB method returns the RGB color value for the specified pixel using the default
RGB color model.
Parameters: pixel-an integer value representing a pixel.
Returns: An integer value in the range 0-255 representing the RGB color value for the
specified pixel.

MemoryImageSource

Extends: Object
Implements: ImageProducer
This class uses an array to produce image pixel values.

MemoryImageSource Constructor

public MemoryImageSource(int w, int h, ColorModel cm, byte[]
pix, int off,
int scan)
The MemoryImageSource constructor uses an array of bytes to produce image data for
an
Image object.
Parameters:
w-the width of the image to be created in pixels.
h-the height of the image to be created in pixels.
cm-the color model used to translate the pixel values.
pix-a byte array containing the image data.
off-the offset into the array to begin reading.
scan-the scan value.

appendix G -- java.awt.image Package Reference

file:///G|/ebooks/1575211831/ch35.htm (17 of 24) [11/06/2000 7:48:28 PM]



MemoryImageSource Constructor

public MemoryImageSource(int w, int h, ColorModel cm, byte[] pix, int off,
int scan, Hashtable props)
The MemoryImageSource constructor uses an array of bytes to produce image data for an
Image object.
Parameters:
w-the width of the image to be created in pixels.
h-the height of the image to be created in pixels.
cm-the color model used to translate the pixel values.
pix-a byte array containing the image data.
off-the offset into the array to begin reading.
scan-the scan value.
props-a Hashtable object containing properties to be used by the image producer.

MemoryImageSource Constructor

public MemoryImageSource(int w, int h, ColorModel cm, int[]
pix, int off, int scan)
The MemoryImageSource constructor uses an array of bytes to produce image data for
an Image object.
Parameters:
w-the width of the image to be created in pixels.
h-the height of the image to be created in pixels.
cm-the color model used to translate the pixel values.
pix-an integer array containing the image data.
off-the offset into the array to begin reading.
scan-the scan value.

MemoryImageSource Constructor

public MemoryImageSource(int w, int h, ColorModel cm, int[]
pix, int off,
int scan, Hashtable props)
The MemoryImageSource constructor uses an array of bytes to produce image data for an
Image object.
Parameters:
w-the width of the image to be created in pixels.
h-the height of the image to be created in pixels.
cm-the color model used to translate the pixel values.
pix-an integer array containing the image data.
off-the offset into the array to begin reading.
scan-the scan value.
props-a Hashtable object containing properties to be used by the image producer.

MemoryImageSource Constructor

appendix G -- java.awt.image Package Reference

file:///G|/ebooks/1575211831/ch35.htm (18 of 24) [11/06/2000 7:48:28 PM]



public MemoryImageSource(int w, int h, int pix[], int off,
int scan)
The MemoryImageSource constructor uses an array of bytes to produce image data for
an Image object.
Parameters:
w-the width of the image to be created in pixels.
h-the height of the image to be created in pixels.
pix-an integer array containing the image data.
off-the offset into the array to begin reading.
scan-the scan value.

MemoryImageSource Constructor

public MemoryImageSource(int w, int h, int pix[], int off,
int scan,
Hashtable props)
The MemoryImageSource constructor uses an array of bytes to produce image data for
an Image object.
Parameters:
w-the width of the image to be created in pixels.
h-the height of the image to be created in pixels.
pix-an integer array containing the image data.
off-the offset into the array to begin reading.
scan-the scan value.
props-a Hashtable object containing properties to be used by the image producer.

addConsumer

public synchronized void addConsumer(ImageConsumer ic)
The addConsumer method adds an ImageConsumer interface to a list of image
consumers who are interested in data for the image.
Parameters: ic-an ImageConsumer-derived object.

isConsumer

public synchronized boolean isConsumer(ImageConsumer ic)
The isConsumer method determines if the specified image consumer is currently in the
list.
Parameters: ic-an ImageConsumer-derived object.
Returns: A boolean value that is true if the ImageConsumer object is already in the list,
false if not.

removeConsumer

public synchronized void removeConsumer(ImageConsumer ic)
The removeConsumer method removes the specified image consumer from the list of

appendix G -- java.awt.image Package Reference

file:///G|/ebooks/1575211831/ch35.htm (19 of 24) [11/06/2000 7:48:28 PM]



image consumers interested in receiving image data.
Parameters: ic-an ImageConsumer-derived object.

startProduction

public void startProduction(ImageConsumer ic)
The startProduction method adds the specified image consumer to a list of image
consumers interested in receiving image data. This method also immediately starts
production of image data to be sent to the ImageConsumer interfaces.
Parameters: ic-an ImageConsumer-derived object.

requestTopDownLeftRightResend

public void requestTopDownLeftRightResend(ImageConsumer ic)
The requestTopDownLeftRightResend method is used to deliver the image data to
the specified image consumer in top-down, left-right order.
Parameters: ic-an ImageConsumer-derived object.

PixelGrabber

Extends: Object
Implements: ImageConsumer
The PixelGrabber class implements the ImageConsumer interface to retrieve a
subset of pixels from an image.

PixelGrabber Constructor

public PixelGrabber(Image img, int x, int y, int w, int h,
int[] pix, int off,
int scansize)
The PixelGrabber constructor constructs a PixelGrabber object to retrieve a subset of pixels
from the image. In this case, the PixelGrabber will grab a rectangular section of pixels.
Parameters:
img-an Image object to be "grabbed."
x-the x coordinate from which to begin grabbing pixels.
y-the y coordinate from which to begin grabbing pixels.
w-the width of the PixelGrabber bounding rectangle.
h-the height of the PixelGrabber bounding rectangle.
pix-an array of integers used to store the grabbed pixels.
off-the offset into the image to begin calculations.
scan-an integer value used to represent the scansize.

PixelGrabber Constructor

public PixelGrabber(ImageProducer ip, int x, int y, int w,
int h, int[] pix,

appendix G -- java.awt.image Package Reference

file:///G|/ebooks/1575211831/ch35.htm (20 of 24) [11/06/2000 7:48:28 PM]



int off, int scansize)
The PixelGrabber constructor constructs a PixelGrabber object to retrieve a subset of pixels
from the image. In this case, the PixelGrabber will grab a rectangular section of pixels.
Parameters:
ip-an ImageProducer object to be grabbed.
x-the x coordinate from which to begin grabbing pixels.
y-the y coordinate from which to begin grabbing pixels.
w-the width of the PixelGrabber bounding rectangle.
h-the height of the PixelGrabber bounding rectangle.
pix-an array of integers used to store the grabbed pixels.
off-the offset into the image to begin calculations.
scan-an integer value used to represent the scansize.

grabPixels

public boolean grabPixels() throws InterruptedException
The grabPixels method notifies the pixel grabber to begin grabbing pixels and wait until
all of the pixels to be grabbed have been delivered.
Returns: A boolean value that is true if the operation was successful, false if not.
Throws: InterruptedException if the process was interrupted.

grabPixels

public synchronized boolean grabPixels(long ms) throws
InterruptedException
This grabPixels method notifies the pixel grabber to begin grabbing pixels at some
specified time in the future and wait until all of the pixels to be grabbed have been
delivered.
Parameters: ms-a long integer value representing the start time in milliseconds.
Returns: A boolean value that is true if the operation was successful, false if not.
Throws: InterruptedException if the process was interrupted.

status

public synchronized int status()
The status method returns a value representing the status of the grab operation.
Returns: An integer value representing the operation's status. This value will be a bitwise
OR of all relevant image observer flags.

setDimensions

public void setDimensions(int width, int height)
The setDimensions method must be implemented by this class to fulfill its interface
with the ImageConsumer interface.
Parameters: width-the width parameter.
Parameters: height-the height parameter.

appendix G -- java.awt.image Package Reference

file:///G|/ebooks/1575211831/ch35.htm (21 of 24) [11/06/2000 7:48:29 PM]



setHints

public void setHints(int hints)
The setHints method must be implemented by this class to fulfill its interface with the
ImageConsumer interface.
Parameters: hints-the hints parameter.

setProperties

public void setProperties(Hashtable props)
The setProperties method must be implemented by this class to fulfill its interface
with the ImageConsumer interface.
Parameters: props-a Hashtable object.

setColorModel

public void setColorModel(ColorModel model)
The setColorModel method must be implemented by this class to fulfill its interface
with the ImageConsumer interface.
Parameters: model-a ColorModel object.

setPixels

public void setPixels(int srcX, int srcY, int srcW, int srcH,
ColorModel model, byte pixels[], int srcOff, int srcScan)
The setPixels method must be implemented by this class to fulfill its interface with the
ImageConsumer interface.
Parameters:
srcX-an integer value representing the source x coordinate.
srcY-an integer value representing the source y coordinate.
srcW-an integer value representing the source width.
srcH-an integer value representing the source height.
model-the color model to be used.
pixels-a byte array of pixel values.
srcOff-the offset into the source array.
srcScan-the source scan value.

imageComplete

public synchronized void imageComplete(int status)
The imageComplete method must be implemented by this class to fulfill its interface
with the ImageConsumer interface.
Parameters: status-an integer value representing the status of the pixel grab operation.

appendix G -- java.awt.image Package Reference

file:///G|/ebooks/1575211831/ch35.htm (22 of 24) [11/06/2000 7:48:29 PM]



RGBImageFilter

Extends: ImageFilter
The RGBImageFilter abstract class provides the functionality to process image data within a
single method which converts pixels in the default RGB ColorModel.setColorModel

SetColorModel

public void setColorModel(ColorModel model)
The setColorModel method checks the type of the specified color model. If it is an
IndexColorModel and the protected canFilterIndexColorModel variable is
true, the color model will be set to the IndexColorModel. Otherwise, the default RGB
color model will be used for all filtering operations.
Parameters: Model-the color model to be used for filtering.

substituteColorModel

public void substituteColorModel(ColorModel oldcm, ColorModel
newcm)
The substituteColorModel method allows color models to be interchanged
on-the-fly. If the old color model is encountered during a setPixels method call, the new
color model will be used instead.
Parameters:
oldcm-the old color model to be replaced.
newcm-the new color model.

filterIndexColorModel

public IndexColorModel filterIndexColorModel(IndexColorModel
icm)
The filterIndexColorModel method runs each entry in the specified IndexColorModel
through the filterRGB method and returns a new color model.
Parameters: icm-the IndexColorModel object to be filtered.
Returns: An IndexColorModel object that has been filtered by the RGBImageFilter class.

filterRGBPixels

public void filterRGBPixels(int x, int y, int w, int h, int
pixels[], int off,
int scansize)
The filterRGBPixels method filters an array of pixels through the filterRGB
method.
Parameters:
x-the x coordinate from which to start the filtering.
y-the y coordinate from which to start the filtering.
w-the width of the image to be filtered.

appendix G -- java.awt.image Package Reference

file:///G|/ebooks/1575211831/ch35.htm (23 of 24) [11/06/2000 7:48:29 PM]



h-the height of the image to be filtered.
pixels-an array of integers representing pixel values.
off-the offset used.
scansize-the scansize used.

setPixels

public void setPixels(int x, int y, int w, int h, ColorModel
model,
int pixels[], int off, int scansize)
The setPixels method converts the pixels and color model before passing them on. If
the color model has already been converted, the pixels are passed through with the
converted color model. If not, then the pixel array is converted to the default RGB color
model using the filterRGBPixels method.
Parameters:
x-the x coordinate from which to start the filtering.
y-the y coordinate from which to start the filtering.
w-the width of the image to be filtered.
h-the height of the image to be filtered.
model-the color model with which the pixels comply.
pixels-an array of integers representing pixel values.
off-the offset used.
scansize-the scansize used.

filterRGB

public abstract int filterRGB(int x, int y, int rgb)
The filterRGB method allows subclasses to specify a method that converts an input pixel
using the default RGB color model to an output pixel.
Parameters:
x-the x coordinate of the pixel.
y-the y coordinate of the pixel.
rgb-the pixel value using the default RGB color model.
Returns: An integer value representing the filtered pixel value.

   

appendix G -- java.awt.image Package Reference

file:///G|/ebooks/1575211831/ch35.htm (24 of 24) [11/06/2000 7:48:29 PM]



appendix H

java.awt.peer Package Reference

CONTENTS
ButtonPeer●   

CanvasPeer●   

CheckboxMenuItemPeer●   

CheckboxPeer●   

ChoicePeer●   

ComponentPeer●   

ContainerPeer●   

DialogPeer●   

FileDialogPeer●   

FramePeer●   

LabelPeer●   

ListPeer●   

addItem●   

MenuBarPeer●   

MenuComponentPeer●   

MenuItemPeer●   

MenuPeer●   

PanelPeer●   

ScrollbarPeer●   

TextAreaPeer●   

TextComponentPeer●   

TextFieldPeer●   

WindowPeer●   

The java.awt.peer package is interesting because it contains no classes. Every object defined within
the java.awt.peer package is an interface. By examining the contents of the classes in the
java.awt package, you will find that all the GUI components in that package implement the interfaces

appendix H -- java.awt.peer Package Reference

file:///G|/ebooks/1575211831/ch36.htm (1 of 18) [11/06/2000 7:48:32 PM]



found in the java.awt.peer package. Nearly all the methods defined in the java.awt.peer
interfaces are friendly methods, meaning that they can only be accessed from within java.awt package
classes.

ButtonPeer

Extends: ComponentPeer
The ButtonPeer interface extends interface java.awt.peer.ComponentPeer. The
ButtonPeer interface provides the basic structure required for button component
functionality.

setLabel

void setLabel(String label)
The setLabel method should set the displayed label for the button using the specified
label string.
Parameters: label-a string that will be displayed as the button's label.

CanvasPeer

Extends: ComponentPeer
The CanvasPeer interface extends interface java.awt.peer.ComponentPeer. The
CanvasPeer interface provides the basic structure required for canvas component
functionality.

CheckboxMenuItemPeer

Extends: MenuItemPeer
The CheckboxMenuItemPeer interface extends interface
java.awt.peer.MenuItemPeer. The CheckboxMenuItemPeer interface
provides the basic structure required for check box menu item component functionality.

setState

void setState(boolean t)
The setState method sets the checked state of a check box menu item.
Parameters: t-a boolean value that will be true if the check box is to be checked, false
if not.

CheckboxPeer

Extends: ComponentPeer
The CheckboxPeer interface extends interface java.awt.peer.ComponentPeer.

appendix H -- java.awt.peer Package Reference

file:///G|/ebooks/1575211831/ch36.htm (2 of 18) [11/06/2000 7:48:32 PM]



The CheckboxPeer interface provides the basic structure required for check box
component functionality.

setState

void setState(boolean state)
The setState method sets the checked state of a check box.
Parameters: t-a boolean value that will be true if the check box is to be checked, false
if not.

setCheckboxGroup

void setCheckboxGroup(CheckboxGroup g)
The setCheckboxGroup method should set which check box group the check box
belongs to, using the specified check box group.
Parameters: g-a CheckboxGroup object that this check box will be a member of.

setLabel

void setLabel(String label)
The setLabel method should set the displayed label for the check box using the
specified label string.
Parameters: label-a String that will be displayed as the check box's label.

ChoicePeer

Extends: ComponentPeer
The ChoicePeer interface extends interface java.awt.peer.ComponentPeer. The
ChoicePeer interface provides the basic structure required for Choice component
functionality.

addItem

void addItem(String item, int index)
The addItem method adds the specified item to the choice list at the specified list index.
Parameters: item-a string value representing the item to be added to the choice list.
Parameters: index-the integer index into the choice list where the item parameter is to be
added.

select

void select(int index)
The select method selects the choice list item at the specified index.
Parameters: index-the index into the choice list to be selected.

appendix H -- java.awt.peer Package Reference

file:///G|/ebooks/1575211831/ch36.htm (3 of 18) [11/06/2000 7:48:32 PM]



ComponentPeer

The ComponentPeer interface extends class java.lang.Object. The ComponentPeer
interface provides the basic structure required for component functionality.

show

void show()
The show method should be implemented to make the Component object visible.

hide

void hide()
The hide method should hide the component so that is not visible.

enable

void enable()
The enable method should enable the component so that it can be selected by the user.

disable

void disable()
The disable method should disable the component (gray it out, and so on) so that it
cannot be selected by the user.

paint

void paint(Graphics g)
The paint method should display the component using the specified Graphics
context.
Parameters: g-a Graphics object used for drawing purposes.

repaint

void repaint(long tm, int x, int y, int width, int height)
The repaint method repaints a part of the component at some specified time in the
Qfuture.
Parameters:
tm-maximum time in milliseconds before the update.
x-the x coordinate of the component's bounding rectangle to repaint.
y-the y coordinate of the component's bounding rectangle to repaint.
width-the width of the component's bounding rectangle to repaint.
height-the height of the component's bounding rectangle to repaint.

print

appendix H -- java.awt.peer Package Reference

file:///G|/ebooks/1575211831/ch36.htm (4 of 18) [11/06/2000 7:48:32 PM]



void print(Graphics g)
The print method should print the component using the specified Graphics object.
Parameters: g-a Graphics object used for drawing purposes.

reshape

void reshape(int x, int y, int width, int height)
The reshape method reshapes the component to the specified bounding rectangle.
Parameters:
x-the x coordinate of the component's new bounding rectangle.
y-the y coordinate of the component's new bounding rectangle.
width-the width of the component's new bounding rectangle.
height-the height of the component's new bounding rectangle.

handleEvent

boolean handleEvent(Event e)
The handleEvent method should handle the specified event for the component.
Parameters: e-an Event object encapsulating some system event.

minimumSize

Dimension minimumSize()
The minimumSize method returns the minimum size allowable for the component.
Returns: A Dimension object containing the component's minimum size.

preferredSize

Dimension preferredSize()
The preferredSize method returns the preferred size allowable for the component.
Returns: A Dimension object containing the component's preferred size.

getColorModel

ColorModel getColorModel()
The getColorModel method returns the color model used for this component.
Returns: A ColorModel object that contains the component's color model information.

getToolkit

Toolkit getToolkit()
The getToolkit method returns the component's managing tool kit.
Returns: A Toolkit object.

getGraphics

Graphics getGraphics()

appendix H -- java.awt.peer Package Reference

file:///G|/ebooks/1575211831/ch36.htm (5 of 18) [11/06/2000 7:48:32 PM]



The getGraphics method returns a Graphics context for the component.
Returns: A Graphics object used for drawing purposes.

getFontMetrics

FontMetrics getFontMetrics(Font font)
The getFontMetrics method returns the font metrics information for the specified
Font.
Parameters: font-a Font object.
Returns: A FontMetrics object containing metrics information on the specified font.

dispose

void dispose()
The dispose method disposes of a component's resources and the component itself.

setForeground

void setForeground(Color c)
The setForeground method sets the foreground color for the component using the
specified color.
Parameters: c-a Color object specifying which color to use for the foreground color.

setBackground

void setBackground(Color c)
The setBackground method sets the background color for the component using the
specified color.
Parameters: c-a Color object specifying which color to use for the background color.

setFont

void setFont(Font f)
The setFont method sets the font to use for this component using the specified font.
Parameters: f-a Font object specifying which font to use for the component.

requestFocus

void requestFocus()
The requestFocus method requests the input focus for the component.

nextFocus

void nextFocus()
The nextFocus method shifts the focus to the next component on the screen.

createImage

appendix H -- java.awt.peer Package Reference

file:///G|/ebooks/1575211831/ch36.htm (6 of 18) [11/06/2000 7:48:32 PM]



Image createImage(ImageProducer producer)
The createImage method creates an Image object using the specified
ImageProducer interface.
Parameters: producer-an ImageProducer derived object used to produce an image.
Returns: An Image object.

createImage

Image createImage(int width, int height)
This createImage method creates an image for offscreen use using the specified sizes.
Parameters:
width-the width of the image to be created.
height-the height of the image to be created.
Returns: An Image object.

prepareImage

boolean prepareImage(Image img, int w, int h, ImageObserver
o)
The prepareImage method prepares the image for rendering on this component using
the specified parameters.
Parameters:
img-an Image object to be rendered.
w-the width of the rectangle to render the image in.
h-the height of the rectangle to render the image in.
o-the image observer used to monitor the image rendering.
Returns: A boolean value that is true if the image was rendered successfully, false if not.

checkImage

int checkImage(Image img, int w, int h, ImageObserver o)
The checkImage method returns the status of a scaled rendering of a specified Image.
Parameters:
img-an Image object to be rendered.
w-the width of the rectangle to render the image in.
h-the height of the rectangle to render the image in.
o-the image observer used to monitor the image rendering.
Returns: An integer value containing the boolean OR of the image observer status flags.

ContainerPeer

Extends: ComponentPeer
The ContainerPeer interface extends interface java.awt.peer.ComponentPeer.
The ContainerPeer interface provides the basic structure required for container
component functionality.

appendix H -- java.awt.peer Package Reference

file:///G|/ebooks/1575211831/ch36.htm (7 of 18) [11/06/2000 7:48:32 PM]



insets

Insets insets()
The insets method returns an Insets object representing the insets of the container.
Returns: An Insets object.

DialogPeer

Extends: WindowPeer
The DialogPeer interface extends interface java.awt.peer.WindowPeer. The
DialogPeer interface provides the basic structure required for dialog box component
functionality.

setTitle

void setTitle(String title)
The setTitle method sets the title to be displayed on the dialog's title bar.
Parameters: title-a string value that will be used as the dialog's title.

setResizable

void setResizable(boolean resizeable)
The setResizable method determines the dialog's resize state.
Parameters: resizeable-a boolean value that is true if the dialog can be resized,
false if not.

FileDialogPeer

Extends: DialogPeer
The FileDialogPeer interface extends interface java.awt.peer.DialogPeer.
The FileDialogPeer interface provides the basic structure required for file selection
dialog component func-tionality.

setFile

void setFile(String file)
The setFile method sets the filename to be displayed in the file dialog.
Parameters: file-a string value representing a filename.

setDirectory

void setDirectory(String dir)
The setDirectory method sets the directory to be selected in the file dialog.
Parameters: dir-a string value representing the directory name.

appendix H -- java.awt.peer Package Reference

file:///G|/ebooks/1575211831/ch36.htm (8 of 18) [11/06/2000 7:48:32 PM]



setFilenameFilter

void setFilenameFilter(FilenameFilter filter)
The setFilenameFilter() sets the filter to be used in the file dialog.
Parameters: filter-a FilenameFilter object used to filter filenames.

FramePeer

Extends: WindowPeer
The FramePeer interface extends interface java.awt.peer.WindowPeer. The
FramePeer interface provides the basic structure required for frame component
functionality.

setTitle

void setTitle(String title)
The setTitle method sets the title of the frame to the specified title string.
Parameters: title-a string value representing the frame's title.

setIconImage

void setIconImage(Image im)
The setIconImage method sets the image to be used when the frame is iconized.
Parameters: im-an Image object.

setMenuBar

void setMenuBar(MenuBar mb)
The setMenuBar method sets the menu bar to be used for the frame.
Parameters: mb-A MenuBar object.

setResizable

void setResizable(boolean resizeable)
The setResizable method determines the resize state of the frame.
Parameters: resizeable-a boolean value that is true if the frame can be resized,
false if not.

setCursor

void setCursor(int cursorType)
The setCursor method sets the cursor type for the frame.
Parameters: cursorType-an integer value representing the cursor type.

appendix H -- java.awt.peer Package Reference

file:///G|/ebooks/1575211831/ch36.htm (9 of 18) [11/06/2000 7:48:32 PM]



LabelPeer

Extends: ComponentPeer
The LabelPeer interface extends interface java.awt.peer.ComponentPeer. The
LabelPeer interface provides the basic structure required for label component
functionality.

setText

void setText(String label)
The setText method sets the text to be displayed on the label.
Parameters: label-a string value that is used as the label string.

setAlignment

void setAlignment(int alignment)
The setAlignment method sets the alignment type of the label.
Parameters: alignment-an integer value that determines the alignment of the label
(LEFT, RIGHT, or CENTER).

ListPeer

Extends: ComponentPeer
The ListPeer interface extends interface java.awt.peer.ComponentPeer. The
ListPeer interface provides the basic structure required for list component functionality.

getSelectedIndexes

int[] getSelectedIndexes()
The getSelectedIndexes method returns an array containing the selected indexes in
the list.
Returns: An integer array containing the indexes that are currently selected in the list.

addItem

void addItem(String item, int index)
The addItem method adds a String item at the specified index.
Parameters:
item-a string value to be added to the list.
index-an integer value representing the index into the list.

delItems

void delItems(int start, int end)
The delItems method deletes a range of values from the list using the specified range

appendix H -- java.awt.peer Package Reference

file:///G|/ebooks/1575211831/ch36.htm (10 of 18) [11/06/2000 7:48:32 PM]



values.
Parameters:
start-an integer value marking the start of the deletion range.
end-an integer value marking the end of the deletion range.

clear

void clear()
The clear method clears all elements from the list.

select

void select(int index)
This select method selects the specified index.
Parameters: index-an integer value specifying the item in the list to be selected.

deselect

void deselect(int index)
The deselect method deselects an item within the list.
Parameters: index-an integer value specifying the item in the list to be deselected.

makeVisible

void makeVisible(int index)
The makeVisible method forces the list to scroll, if necessary, so that the specified
index will be made visible to the user.
Parameters: index-an integer value representing the index to be made visible.

setMultipleSelections

void setMultipleSelections(boolean v)
The setMultipleSelections method specifies whether the list should allow
multiple selections or not.
Parameters: v-a boolean value that is true if multiple selections are to be allowed, false
if not.

preferredSize

Dimension preferredSize(int v)
The preferredSize method sets the preferred size for a list of the specified number of
items.
Parameters: v-an integer value specifying the number of items within the list.
Returns: A Dimension object containing the preferred size of the list.

minimumSize

appendix H -- java.awt.peer Package Reference

file:///G|/ebooks/1575211831/ch36.htm (11 of 18) [11/06/2000 7:48:32 PM]



Dimension minimumSize(int v)
The minimumSize method sets the minimum size for a list of the specified number of
items.
Parameters: v-an integer value specifying the number of items within the list.
Returns: A Dimension object containing the minimum size of the list.

MenuBarPeer

Extends: MenuComponentPeer
The MenuBarPeer interface extends interface
java.awt.peer.MenuComponentPeer. The MenuBarPeer interface provides the
basic structure required for menu bar component functionality.

addMenu

void addMenu(Menu m)
The addMenu method adds the specified Menu to the menu bar.
Parameters: m-the Menu object to be added to the menu bar.

delMenu

void delMenu(int index)
The delMenu method deletes the menu at the specified index from the menu bar.
Parameters: index-an integer value representing the index to be deleted from the menu
bar.

addHelpMenu

void addHelpMenu(Menu m)
The addHelpMenu adds a help menu to the menu bar.
Parameters: m-the Menu object to be added to the menu bar.

MenuComponentPeer

Extends: MenuComponentPeer
The MenuComponentPeer interface extends interface
java.awt.peer.MenuComponentPeer. The MenuComponentPeer interface
provides the basic structure required for menu component functionality.

dispose

void dispose()
The dispose method disposes of a MenuComponent's allocated resources.

appendix H -- java.awt.peer Package Reference

file:///G|/ebooks/1575211831/ch36.htm (12 of 18) [11/06/2000 7:48:32 PM]



MenuItemPeer

Extends: MenuComponentPeer
The MenuItemPeer interface extends interface
java.awt.peer.MenuComponentPeer. The MenuItemPeer interface provides the
basic structure required for menu item component functionality.

setLabel

void setLabel(String label)
The setLabel method sets the label string that will be displayed on the menu item.
Parameters: label-a string value that will be displayed as the menu item's label.

enable

void enable()
The enable method enables the menu item for user selection.

disable

void disable()
The disable method disables the menu item for user selection.

MenuPeer

Extends: MenuItemPeer
The MenuPeer interface extends interface java.awt.peer.MenuItemPeer. The
MenuPeer interface provides the basic structure required for menu component
functionality.

addSeparator

void addSeparator()
The addSeparator method adds a separator element to the menu. A separator is an
item like a line that cannot be selected by the user and that will not trigger a menu selection
event.

addItem

void addItem(MenuItem item)
The addItem method adds a menu item to the menu.
Parameters: item-a MenuItem object.

delItem

void delItem(int index)

appendix H -- java.awt.peer Package Reference

file:///G|/ebooks/1575211831/ch36.htm (13 of 18) [11/06/2000 7:48:32 PM]



The delItem method deletes the menu item at the specified index.
Parameters: index-an integer value representing the index on the menu to be deleted.

PanelPeer

Extends: ContainerPeer
The PanelPeer interface extends interface java.awt.peer.ContainerPeer. The
PanelPeer interface provides the basic structure required for panel component
functionality.

ScrollbarPeer

Extends: ComponentPeer
The ScrollbarPeer interface extends interface java.awt.peer.ComponentPeer.
The ScrollbarPeer interface provides the basic structure required for scrollbar
component functionality.

setValue

void setValue(int value)
The setValue method sets the value of the scrollbar.
Parameters: value-an integer value representing the value (position) of the scrollbar.

setValues

void setValues(int value, int visible, int minimum, int
maximum)
The setValues method sets the specified properties of the scrollbar.

Parameters:

value-the new value of the scrollbar.
visible-the number of units to be displayed by the scrollbar.
Parameters:
minimum-the minimum value of the scrollbar.
maximum-the maximum value of the scrollbar.

setLineIncrement

void setLineIncrement(int l)
The setLineIncrement method sets the increment value represented by a user
clicking on a scrollbar line up/down widget.
Parameters: l-an integer value representing the line increment value.

setPageIncrement

appendix H -- java.awt.peer Package Reference

file:///G|/ebooks/1575211831/ch36.htm (14 of 18) [11/06/2000 7:48:32 PM]



void setPageIncrement(int l)
The setPageIncrement method sets the increment value represented by a user
clicking on a scrollbar page up/down widget.
Parameters: l-an integer value representing the page increment value.

TextAreaPeer

Extends: TextComponentPeer
The TextAreaPeer interface extends interface java.awt.peer.TextAreaPeer.
The TextAreaPeer interface provides the basic structure required for text area
component functionality.

insertText

void insertText(String txt, int pos)
The insertText method inserts the specified text at the specified position within the
text area.
Parameters:
txt-a string value representing the text to be inserted.
pos-an integer value representing the position within the text area to insert the text at.

replaceText

void replaceText(String txt, int start, int end)
The replaceText method replaces text at the specified positions with the new text.
Parameters:
txt-a string value representing the text to be inserted into the text area.
start-an integer value containing the start position of the text to be replaced.
end-an integer value containing the end position of the text to be replaced.

preferredSize

Dimension preferredSize(int rows, int cols)
The preferredSize method returns the preferred size of a text area of the specified
dimensions.
Parameters:
rows-the number of rows in the text area.
cols-the number of columns in the text area.
Returns: A Dimension object containing the preferred size of the text area.

minimumSize

Dimension minimumSize(int rows, int cols)
The minimumSize method returns the minimum size of a text area of the specified
dimensions.
Parameters:

appendix H -- java.awt.peer Package Reference

file:///G|/ebooks/1575211831/ch36.htm (15 of 18) [11/06/2000 7:48:32 PM]



rows-the number of rows in the text area.
cols-the number of columns in the text area.
Returns: A Dimension object containing the minimum size of the text area.

TextComponentPeer

Extends: ComponentPeer
The TextComponentPeer interface extends interface
java.awt.peer.ComponentPeer. The TextComponentPeer interface provides
the basic structure required for text component functionality.

setEditable

void setEditable(boolean editable)
The setEditable method is used to set the text component's editable state.
Parameters: A boolean value that is true if the text can be edited, false if not.

getText

String getText()
The getText method returns the text component's displayed text.
Returns: A string value representing the text contained in the text component.

setText

void setText(String l)
The setText method sets the text to be displayed in the text component.
Parameters: l-a string value to be displayed by the text component.

getSelectionStart

int getSelectionStart()
The getSelectionStart method returns the position of the first selected character in
the text component.
Returns: An integer value specifying the position of the first selected character in the text
component.

getSelectionEnd

int getSelectionEnd()
The getSelectionEnd method returns the position of the last selected character in the
text component.
Returns: An integer value specifying the position of the last selected character in the text
component.

select

appendix H -- java.awt.peer Package Reference

file:///G|/ebooks/1575211831/ch36.htm (16 of 18) [11/06/2000 7:48:32 PM]



void select(int selStart, int selEnd)
The select method selects the specified text within the TextComponent.
Parameters:
selStart-an integer value representing the starting character to be selected.
selEnd-an integer value representing the ending character to be selected.

TextFieldPeer

Extends: TextComponentPeer
The TextFieldPeer interface extends class java.lang.Object. The
TextFieldPeer interface provides the basic structure required for text field component
functionality.

setEchoCharacter

void setEchoCharacter(char c)
The setEchoCharacter method sets the echo character to be echoed to the screen as
the user types.
Parameters: c-a character value to be displayed no matter what character the user types.

preferredSize

Dimension preferredSize(int cols)
The preferredSize method returns the preferred size of the text field based on the
specified number of characters.
Parameters: cols-an integer value containing the number of characters in the text field.
Returns: A Dimension object containing the preferred size of the text field.

minimumSize

Dimension minimumSize(int cols)
The minimumSize method returns the minimum size of the text field based on the
specified number of characters.
Parameters: cols-an integer value containing the number of characters in the text field.
Returns: A Dimension object containing the minimum size of the text field.

WindowPeer

Extends: ContainerPeer
The WindowPeer interface extends interface java.awt.peer.ContainerPeer. The
WindowPeer interface provides the basic structure required for window component
functionality.

toFront

appendix H -- java.awt.peer Package Reference

file:///G|/ebooks/1575211831/ch36.htm (17 of 18) [11/06/2000 7:48:32 PM]



void toFront()
The toFront method moves the window to the front of the display.

toBack

void toBack()
The toBack method moves the window to the back of the display.

   

appendix H -- java.awt.peer Package Reference

file:///G|/ebooks/1575211831/ch36.htm (18 of 18) [11/06/2000 7:48:32 PM]



appendix I

java.io Package Reference

CONTENTS
DataInput●   

DataOutput●   

FilenameFilter●   

BufferedInputstream●   

BufferedOutputStream●   

ByteArrayInputStream●   

ByteArrayOutputStream●   

DataInputStream●   

DataOutputStream●   

File●   

FileDescriptor●   

FileInputStream●   

FileOutputStream●   

FilterInputStream●   

FilterOutputStream●   

InputStream●   

LineNumberInputStream●   

OutputStream●   

PipedInputStream●   

PipedOutputStream●   

PrintStream●   

PushbackInputStream●   

RandomAccessFile●   

SequenceInputStream●   

StreamTokenizer●   

StringBufferInputStream●   

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (1 of 63) [11/06/2000 7:48:42 PM]



EOFException●   

FileNotFoundException●   

IOException●   

InterruptedIOException●   

UTFDataFormatException●   

The java.io package provides classes with support for reading and writing data to and from different
input and output devices, including files, strings, and other data sources. The I/O package includes
classes for inputting streams of data, outputting streams of data, working with files, and tokenizing
streams of data.

DataInput

This interface describes an input stream that can read input data in a platform-independent manner.

readBoolean

public abstract boolean readBoolean() throws IOException
This method reads a boolean value (byte) from the input stream. A value of 0 is interpreted
as false, while all other values are interpreted as true.
Returns: The boolean value read.
Throws: EOFException if the end of the stream is reached before reading the value.
Throws: IOException if an I/O error occurs.

readByte

public abstract byte readByte() throws IOException
This method reads a signed byte (8-bit) value from the input stream.
Returns: The byte value read.
Throws: EOFException if the end of the stream is reached before reading the value.
Throws: IOException if an I/O error occurs.

readChar

public abstract char readChar() throws IOException
This method reads a Unicode character (16-bit) value from the input stream.
Returns: The Unicode character value read.
Throws: EOFException if the end of the stream is reached before reading the value.
Throws: IOException if an I/O error occurs.

readDouble

public abstract double readDouble() throws IOException
This method reads a double (64-bit) value from the input stream.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (2 of 63) [11/06/2000 7:48:42 PM]



Returns: The double value read.
Throws: EOFException if the end of the stream is reached before the value is read.
Throws: IOException if an I/O error occurs.

readFloat

public abstract float readFloat() throws IOException
This method reads a float (32-bit) value from the input stream.
Returns: The float value read.
Throws: EOFException if the end of the stream is reached before reading the value.
Throws: IOException if an I/O error occurs.

readFully

public abstract void readFully(byte b[]) throws IOException
This method reads up to b.length bytes from the input stream into the byte array b,
blocking until all bytes are read.
Parameters: b-the byte array into which the data is read.
Throws: EOFException if the end of the stream is reached before the specified number
of bytes is read.
Throws: IOException if an I/O error occurs.

readFully

public abstract void readFully(byte b[], int off, int len)
throws IOException
This method reads up to len bytes from the input stream into the byte array b beginning
off bytes into the array, blocking until all bytes are read.
Parameters:
b-the byte array into which the data is read.
off-the starting offset into the array for the data to be written to.
len-the maximum number of bytes to read.
Throws: EOFException if the end of the stream is reached before the specified number
of bytes is read.
Throws: IOException if an I/O error occurs.

readInt

public abstract int readInt() throws IOException
This method reads an integer (32-bit) value from the input stream.
Returns: The integer value read.
Throws: EOFException if the end of the stream is reached before the value is read.
Throws: IOException if an I/O error occurs.

readLine

public abstract String readLine() throws IOException

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (3 of 63) [11/06/2000 7:48:42 PM]



This method reads a line of text from the input stream.
Returns: A string containing the line of text read.
Throws: EOFException if the end of the stream is reached before the line of text is read.
Throws: IOException if an I/O error occurs.

readLong

public abstract long readLong() throws IOException
This method reads a long (64-bit) value from the input stream.
Returns: The long value read.
Throws: EOFException if the end of the stream is reached before the value is read.
Throws: IOException if an I/O error occurs.

readShort

public abstract short readShort() throws IOException
This method reads a short (16-bit) value from the input stream.
Returns: The short value read.
Throws: EOFException if the end of the stream is reached before the value is read.
Throws: IOException if an I/O error occurs.

readUnsignedByte

public abstract int readUnsignedByte() throws IOException
This method reads an unsigned byte (8-bit) value from the input stream.
Returns: The unsigned byte value read.
Throws: EOFException if the end of the stream is reached before the value is read.
Throws: IOException if an I/O error occurs.

readUnsignedShort

public abstract int readUnsignedShort() throws IOException
This method reads an unsigned short (16-bit) value from the input stream.
Returns: The short value read.
Throws: EOFException if the end of the stream is reached before the value is read.
Throws: IOException if an I/O error occurs.

readUTF

public abstract String readUTF() throws IOException
This method reads a string that has been encoded using a modified UTF-8 format from the
input stream.
Returns: The string read.
Throws: EOFException if the end of the stream is reached before the string is read.
Throws: UTFDataFormatException if the bytes read do not represent a valid UTF-8
encoding of a string.
Throws: IOException if an I/O error occurs.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (4 of 63) [11/06/2000 7:48:42 PM]



skipBytes

public abstract int skipBytes(int n) throws IOException
This method skips n bytes of data in the input stream, blocking until all bytes are skipped.
Parameters: n-the number of bytes to skip.
Returns: The actual number of bytes skipped.
Throws: EOFException if the end of the stream is reached before skipping the specified
number of bytes.
Throws: IOException if an I/O error occurs.

DataOutput

This interface describes an output stream that can write output data in a platform-independent manner.

write

public abstract void write(byte b[]) throws IOException
This method writes b.length bytes to the output stream from the byte array b, blocking
until all bytes are written.
Parameters: b-the byte array from which the data is written.
Throws: IOException if an I/O error occurs.

write

public abstract void write(byte b[], int off, int len) throws
IOException
This method writes len bytes to the output stream from the byte array b beginning off
bytes into the array, blocking until all bytes are written.
Parameters:
b-the byte array from which the data is written.
off-the starting offset into the array for the data to be read from.
len-the number of bytes to write.
Throws: IOException if an I/O error occurs.

write

public abstract void write(int b) throws IOException
This method writes a byte value to the output stream, blocking until the byte is written.
Parameters: b-the byte value to be written.
Throws: IOException if an I/O error occurs.

writeBoolean

public abstract void writeBoolean(boolean v) throws
IOException

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (5 of 63) [11/06/2000 7:48:42 PM]



This method writes a boolean value to the output stream. The boolean value true is written
as the byte value 1, whereas false is written as the byte value 0.
Parameters: v-the boolean value to be written.
Throws: IOException if an I/O error occurs.

writeByte

public abstract void writeByte(int v) throws IOException
This method writes a byte (8-bit) value to the output stream.
Parameters: v-the byte value to be written.
Throws: IOException if an I/O error occurs.

writeBytes

public abstract void writeBytes(String s) throws IOException
This method writes a string to the output stream as a sequence of bytes.
Parameters: s-the string to be written as bytes.
Throws: IOException if an I/O error occurs.

writeChar

public abstract void writeChar(int v) throws IOException
This method writes a character (16-bit) value to the output stream.
Parameters: v-the character value to be written.
Throws: IOException if an I/O error occurs.

writeChars

public abstract void writeChars(String s) throws IOException
This method writes a string to the output stream as a sequence of characters.
Parameters: s-the string to be written as characters.
Throws: IOException if an I/O error occurs.

writeDouble

public abstract void writeDouble(double v) throws IOException
This method writes a double (64-bit) value to the output stream.
Parameters: v-the double value to be written.
Throws: IOException if an I/O error occurs.

writeFloat

public abstract void writeFloat(float v) throws IOException
This method writes a float (32-bit) value to the output stream.
Parameters: v-the float value to be written.
Throws: IOException if an I/O error occurs.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (6 of 63) [11/06/2000 7:48:42 PM]



writeInt

public abstract void writeInt(int v) throws IOException
This method writes an integer (32-bit) value to the output stream.
Parameters: v-the integer value to be written.
Throws: IOException if an I/O error occurs.

writeLong

public abstract void writeLong(long v) throws IOException
This method writes a long (64-bit) value to the output stream.
Parameters: v-the long value to be written.
Throws: IOException if an I/O error occurs.

writeShort

public abstract void writeShort(int v) throws IOException
This method writes a short (16-bit) value to the output stream.
Parameters: v-the short value to be written.
Throws: IOException if an I/O error occurs.

writeUTF

public abstract void writeUTF(String str) throws IOException
This method encodes a string using a modified UTF-8 format and writes it to the output
stream.
Parameters: str-the string to be written.
Throws: IOException if an I/O error occurs.

FilenameFilter

This interface describes a filename filter used to filter directory listings. Filename filters are used by the
list method defined in the File class, as well as the awt's FileDialog component.

accept

public abstract boolean accept(File dir, String name)
This method determines whether a file should be included in a directory listing.
Parameters:
dir-the directory in which the file is located.
name-the filename.
Returns: true if the file should be included in the directory list; false otherwise.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (7 of 63) [11/06/2000 7:48:42 PM]



BufferedInputstream

Extends: FilterInputStream

This class implements a buffered input stream, which allows you to read data from a stream without
causing a call to the underlying system for each byte read. This is accomplished by reading blocks of
data into a buffer, where the data is readily accessible, independent of the underlying stream. Subsequent
reads are much faster since they read from the buffer rather than the underlying input stream.

Member Variables

protected byte buf[]

This is the buffer where data is stored.

protected int count

This is the number of bytes of data currently in the buffer.

protected int marklimit

This is the maximum number of bytes that can be read before the marked position (markpos) is
invalidated.

protected int markpos

This is the position in the buffer of the current mark, which provides a means to return to a particular
location in the buffer via the mark and reset methods. The mark position is set to -1 if there is no
current mark.

protected int pos

This is the current read position in the buffer.

BufferedInputStream Constructor

public BufferedInputStream(InputStream in)
This constructor creates a new buffered input stream with a default buffer size of 512 bytes
to read data from the in input stream.
Parameters: in-the input stream to read data from.

BufferedInputStream Constructor

public BufferedInputStream(InputStream in, int size)
This constructor creates a new buffered input stream with a buffer size of size bytes to
read data from the in input stream.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (8 of 63) [11/06/2000 7:48:42 PM]



Parameters: in-the input stream to read data from.
Parameters: size-the buffer size.

availableBufferedInputStream

public int available() throws IOException
This method determines the number of bytes that can be read from the input stream without
blocking. This value is calculated by adding the number of free bytes in the buffer and the
number of bytes available in the input stream.
Returns: The number of available bytes.
Throws: IOException if an I/O error occurs.

markBufferedInputStream

public void mark(int readlimit)
This method marks the current read position in the input stream. The reset method can be
used to reset the read position to this mark; subsequent reads will read data beginning at the
mark position. The mark position is invalidated after readlimit bytes have been read.
Parameters: readlimit-the maximum number of bytes that can be read before the mark
position becomes invalid.

markSupportedBufferedInputStream

public boolean markSupported()
This method determines if the input stream supports the mark and reset methods.
Returns: true if the mark and reset methods are supported; false otherwise.

readBufferedInputStream

public int read() throws IOException
This method reads a byte value from the buffered input stream, blocking until the byte is
read.
Returns: An integer representing the byte value read, or -1 if the end of the stream is
reached.
Throws: IOException if an I/O error occurs.

readBufferedInputStream

public int read(byte b[], int off, int len) throws
IOException
This method reads up to len bytes from the buffered input stream into the byte array b
beginning off bytes into the array, blocking until all bytes are read.
Parameters:
b-the byte array into which the data is read.
off-the starting offset into the array for the data to be written to.
len-the maximum number of bytes to read.
Returns: The actual number of bytes read, or -1 if the end of the stream is reached.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (9 of 63) [11/06/2000 7:48:43 PM]



Throws: IOException if an I/O error occurs.

resetBufferedInputStream

public void reset() throws IOException
This method resets the read position in the input stream to the current mark position, as set
by the mark method.
Throws: IOException if the stream has not been marked or if the mark is invalid.

skipBufferedInputStream

public long skip(long n) throws IOException
This method skips n bytes of data in the input stream.
Parameters: n-the number of bytes to skip.
Returns: The actual number of bytes skipped.
Throws: IOException if an I/O error occurs.

BufferedOutputStream

Extends: FilterOutputStream

This class implements a buffered output stream, which allows you to write data to a stream without
causing a call to the underlying system for each byte written. This is accomplished by writing blocks of
data into a buffer rather than directly to the underlying output stream. The buffer is then written to the
underlying output stream when the buffer fills up or is flushed, or the stream is closed.

Member Variables

protected byte buf[]

This is the buffer where data is stored.

protected int count

This is the number of bytes of data currently in the buffer.

BufferedOutputStream Constructor

public BufferedOutputStream(OutputStream out)
This constructor creates a new buffered output stream with a default buffer size of 512 bytes
to write data to the out output stream.
Parameters: out-the output stream to write data to.

BufferedOutputStream Constructor

public BufferedOutputStream(OutputStream out, int size)

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (10 of 63) [11/06/2000 7:48:43 PM]



This constructor creates a new buffered output stream with a buffer size of size bytes to
write data to the out output stream.
Parameters:
out-the output stream to write data to.
size-the buffer size.

flushBufferedOutputStream

public void flush() throws IOException
This method flushes the output stream, resulting in any buffered data being written to the
underlying output stream.
Throws: IOException if an I/O error occurs.

writeBufferedOutputStream

public void write(byte b[], int off, int len) throws
IOException
This method writes len bytes to the buffered output stream from the byte array b beginning
off bytes into the array.
Parameters:
b-the byte array from which the data is written.
off-the starting offset into the array for the data to be read from.
len-the number of bytes to write.
Throws: IOException if an I/O error occurs.

writeBufferedOutputStream

public void write(int b) throws IOException
This method writes a byte value to the buffered output stream.
Parameters: b-the byte value to be written.
Throws: IOException if an I/O error occurs.

ByteArrayInputStream

Extends: InputStream
This class implements an input stream whose data is read from an array of bytes.

Member Variables

protected byte buf[]

This is the buffer where data is stored.

protected int count

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (11 of 63) [11/06/2000 7:48:43 PM]



This is the number of bytes of data currently in the buffer.

protected int pos

This is the current read position in the buffer.

ByteArrayInputStream Constructor

public ByteArrayInputStream(byte b[])
This constructor creates a new input stream from the byte array b. Note that the byte array is
not copied to create the stream.
Parameters: b-the byte array from which the data is read.

ByteArrayInputStream Constructor

public ByteArrayInputStream(byte b[], int off, int len)
This constructor creates a new input stream of size len from the byte array b beginning
off bytes into the array. Note that the byte array is not copied to create the stream.
Parameters:
b-the byte array from which the data is read.
off-the starting offset into the array for the data to be read from.
len-the maximum number of bytes to read.

availableByteArrayInputStream

public int available()
This method determines the number of bytes that can be read from the input stream.
Returns: The number of available bytes.

readByteArrayInputStream

public int read()
This method reads a byte value from the input stream.
Returns: An integer representing the byte value read, or -1 if the end of the stream is
reached.

readByteArrayInputStream

public int read(byte b[], int off, int len)
This method reads up to len bytes from the input stream into the byte array b beginning
off bytes into the array.
Parameters:
b-the byte array into which the data is read.
off-the starting offset into the array for the data to be written to.
len-the maximum number of bytes to read.
Returns: The actual number of bytes read, or -1 if the end of the stream is reached.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (12 of 63) [11/06/2000 7:48:43 PM]



resetByteArrayInputStream

public void reset()
This method resets the read position to the beginning of the input stream.

skipByteArrayInputStream

public long skip(long n)
This method skips n bytes of data in the input stream.
Parameters: n-the number of bytes to skip.
Returns: The actual number of bytes skipped.

ByteArrayOutputStream

Extends: OutputStream

This class implements an output stream whose data is written to an array of bytes. The byte array
automatically grows as data is written to it.

Member Variables

protected byte buf[]

This is the buffer where data is stored.

protected int count

This is the number of bytes of data currently in the buffer.

ByteArrayOutputStream Constructor

public ByteArrayOutputStream()
This constructor creates a new output stream with a default buffer size of 32 bytes. The size
of the buffer automatically grows as data is written to it.

ByteArrayOutputStream Constructor

public ByteArrayOutputStream(int size)
This constructor creates a new output stream with an initial size of size bytes. The size of
the buffer automatically grows as data is written to it.
Parameters: size-the initial size of the buffer.

resetByteArrayOutputStream

public void reset()
This method resets the contents of the underlying byte array by setting the count member

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (13 of 63) [11/06/2000 7:48:43 PM]



variable to zero, resulting in the accumulated data being discarded.

sizeByteArrayOutputStream

public int size()
This method returns the current size of the buffer, which is stored in the count member
variable.
Returns: The current size of the buffer.

toByteArrayByteArrayOutputStream

public byte[] toByteArray()
This method creates a new byte array containing the data currently stored in the underlying
byte array associated with the output stream.
Returns: A byte array containing the current data stored in the output stream.

toStringByteArrayOutputStream

public String toString()
This method creates a new string containing the data currently stored in the underlying byte
array associated with the output stream.
Returns: A string containing the current data stored in the output stream.

toStringByteArrayOutputStream

public String toString(int hibyte)
This method creates a new string containing the data currently stored in the underlying byte
array associated with the output stream, with the top 8 bits of each string character set to
hibyte.
Parameters: hibyte-the high byte value for each character.
Returns: A string containing the current data stored in the output stream, with the high byte
of each character set to hibyte.

writeByteArrayOutputStream

public void write(byte b[], int off, int len)
This method writes len bytes to the output stream from the byte array b beginning off
bytes into the array.
Parameters:
b-the byte array from which the data is written.
off-the starting offset into the array for the data to be read from.
len-the number of bytes to write.

writeByteArrayOutputStream

public void write(int b)
This method writes a byte value to the output stream.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (14 of 63) [11/06/2000 7:48:43 PM]



Parameters: b-the byte value to be written.

writeToByteArrayOutputStream

public void writeTo(OutputStream out) throws IOException
This method writes the contents of the underlying byte array to another output stream.
Parameters: out-the output stream to write to.
Throws: IOException if an I/O error occurs.

DataInputStream

Extends: FilterInputStream
Implements: DataInput
This class implements an input stream that can read Java primitive data types in a
platform-independent manner.

DataInputStream Constructor

public DataInputStream(InputStream in)
This method creates a new data input stream to read data from the in input stream.
Parameters: in-the input stream to read data from.

read

public final int read(byte b[]) throws IOException
This method reads up to b.length bytes from the data input stream into the byte array b,
blocking until all bytes are read.
Parameters: b-the byte array into which the data is read.
Returns: The actual number of bytes read, or -1 if the end of the stream is reached.
Throws: IOException if an I/O error occurs.

read

public final int read(byte b[], int off, int len) throws
IOException
This method reads up to len bytes from the data input stream into the byte array b
beginning off bytes into the array, blocking until all bytes are read.
Parameters:
b-the byte array into which the data is read.
off-the starting offset into the array for the data to be written to.
len-the maximum number of bytes to read.
Returns: The actual number of bytes read, or -1 if the end of the stream is reached.
Throws: IOException if an I/O error occurs.

readBoolean

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (15 of 63) [11/06/2000 7:48:43 PM]



public final boolean readBoolean() throws IOException
This method reads a boolean value (byte) from the data input stream, blocking until the byte
is read. A value of 0 is interpreted as false, and all other values are interpreted as true.
Returns: The boolean value read.
Throws: EOFException if the end of the stream is reached before reading the value.
Throws: IOException if an I/O error occurs.

readByte

public final byte readByte() throws IOException
This method reads a signed byte (8-bit) value from the data input stream, blocking until the
byte is read.
Returns: The byte value read.
Throws: EOFException if the end of the stream is reached before reading the value.
Throws: IOException if an I/O error occurs.

readChar

public final char readChar() throws IOException
This method reads a character (16-bit) value from the data input stream, blocking until both
bytes are read.
Returns: The character value read.
Throws: EOFException if the end of the stream is reached before reading the value.
Throws: IOException if an I/O error occurs.

readDouble

public final double readDouble() throws IOException
This method reads a double (64-bit) value from the data input stream, blocking until all
eight bytes are read.
Returns: The double value read.
Throws: EOFException if the end of the stream is reached before reading the value.
Throws: IOException if an I/O error occurs.

readFloat

public final float readFloat() throws IOException
This method reads a float (32-bit) value from the data input stream, blocking until all four
bytes are read.
Returns: The float value read.
Throws: EOFException if the end of the stream is reached before reading the value.
Throws: IOException if an I/O error occurs.

readFully

public final void readFully(byte b[]) throws IOException
This method reads up to b.length bytes from the data input stream into the byte array b,

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (16 of 63) [11/06/2000 7:48:43 PM]



blocking until all bytes are read.
Parameters: b-the byte array into which the data is read.
Throws: EOFException if the end of the stream is reached before reading the specified
number of bytes.
Throws: IOException if an I/O error occurs.

readFully

public final void readFully(byte b[], int off, int len)
throws IOException
This method reads up to len bytes from the data input stream into the byte array b
beginning off bytes into the array, blocking until all bytes are read.
Parameters:
b-the byte array into which the data is read.
off-the starting offset into the array for the data to be written to.
len-the maximum number of bytes to read.
Throws: EOFException if the end of the stream is reached before reading the specified
number of bytes.
Throws: IOException if an I/O error occurs.

readInt

public final int readInt() throws IOException
This method reads an integer (32-bit) value from the data input stream, blocking until all
four bytes are read.
Returns: The integer value read.
Throws: EOFException if the end of the stream is reached before reading the value.
Throws: IOException if an I/O error occurs.

readLine

public final String readLine() throws IOException
This method reads a line of text from the data input stream, blocking until either a newline
character ('\n') or a carriage return character ('\r') is read.
Returns: A string containing the line of text read.
Throws: EOFException if the end of the stream is reached before reading the line of text.
Throws: IOException if an I/O error occurs.

readLong

public final long readLong() throws IOException
This method reads a long (64-bit) value from the data input stream, blocking until all eight
bytes are read.
Returns: The long value read.
Throws: EOFException if the end of the stream is reached before reading the value.
Throws: IOException if an I/O error occurs.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (17 of 63) [11/06/2000 7:48:43 PM]



readShort

public final short readShort() throws IOException
This method reads a signed short (16-bit) value from the data input stream, blocking until
both bytes are read.
Returns: The short value read.
Throws: EOFException if the end of the stream is reached before reading the value.
Throws: IOException if an I/O error occurs.

readUnsignedByte

public final int readUnsignedByte() throws IOException
This method reads an unsigned byte (8-bit) value from the data input stream, blocking until
the byte is read.
Returns: The unsigned byte value read.
Throws: EOFException if the end of the stream is reached before reading the value.
Throws: IOException if an I/O error occurs.

readUnsignedShort

public final int readUnsignedShort() throws IOException
This method reads an unsigned short (16-bit) value from the data input stream, blocking
until both bytes are read.
Returns: The unsigned short value read.
Throws: EOFException if the end of the stream is reached before reading the value.
Throws: IOException if an I/O error occurs.

readUTF

public final String readUTF() throws IOException
This method reads a string that has been encoded using a modified UTF-8 format from the
data input stream, blocking until all bytes are read.
Returns: The string read.
Throws: EOFException if the end of the stream is reached before reading the string.
Throws: UTFDataFormatException if the bytes read do not represent a valid UTF-8
encoding of a string.
Throws: IOException if an I/O error occurs.

readUTF

public final static String readUTF(DataInput in) throws
IOException
This method reads a string from the in data input stream that has been encoded using a
modified UTF-8 format, blocking until all bytes are read.
Parameters: in-the data input stream to read the string from.
Returns: The string read.
Throws: EOFException if the end of the stream is reached before reading the string.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (18 of 63) [11/06/2000 7:48:43 PM]



Throws: UTFDataFormatException if the bytes read do not represent a valid UTF-8
encoding of a string.
Throws: IOException if an I/O error occurs.

skipBytes

public final int skipBytes(int n) throws IOException
This method skips n bytes of data in the data input stream, blocking until all bytes are
skipped.
Parameters: n-the number of bytes to skip.
Returns: The actual number of bytes skipped.
Throws: EOFException if the end of the stream is reached before skipping the specified
number of bytes.
Throws: IOException if an I/O error occurs.

DataOutputStream

Extends: FilterOutputStream
Implements: DataOutput
This class implements an output stream that can write Java primitive data types in a
platform-independent manner.

Member Variables

protected int written
This is the number of bytes written to the output stream thus far.

DataOutputStream Constructor

public DataOutputStream(OutputStream out)
This method creates a new data output stream to write data to the out output stream.
Parameters: out-the output stream to write data to.

flush

public void flush() throws IOException
This method flushes the data output stream, resulting in any buffered data being written to
the underlying output stream.
Throws: IOException if an I/O error occurs.

size

public final int size()
This method returns the number of bytes written to the data output stream thus far, which is
stored in the written member variable.
Returns: The number of bytes written to the data output stream thus far.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (19 of 63) [11/06/2000 7:48:43 PM]



write

public void write(byte b[], int off, int len) throws
IOException
This method writes len bytes to the data output stream from the byte array b beginning
off bytes into the array.
Parameters:
b-the byte array from which the data is written.
off-the starting offset into the array for the data to be read from.
len-the number of bytes to write.
Throws: IOException if an I/O error occurs.

write

public void write(int b) throws IOException
This method writes a byte value to the data output stream.
Parameters:
b-the byte value to be written.
IOException if an I/O error occurs.

writeBoolean

public final void writeBoolean(boolean v) throws IOException
This method writes a boolean value to the data output stream. The boolean value true is
written as the byte value 1, where false is written as the byte value 0.
Parameters: v-the boolean value to be written.
Throws: IOException if an I/O error occurs.

writeByte

public final void writeByte(int v) throws IOException
This method writes a byte (8-bit) value to the data output stream.
Parameters: v-the byte value to be written.
Throws: IOException if an I/O error occurs.

writeBytes

public final void writeBytes(String s) throws IOException
This method writes a string to the data output stream as a sequence of bytes.
Parameters: s-the string to be written as bytes.
Throws: IOException if an I/O error occurs.

writeChar

public final void writeChar(int v) throws IOException
This method writes a character (16-bit) value to the data output stream.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (20 of 63) [11/06/2000 7:48:43 PM]



Parameters: v-the character value to be written.
Throws: IOException if an I/O error occurs.

writeChars

public final void writeChars(String s) throws IOException
This method writes a string to the data output stream as a sequence of characters.
Parameters: s-the string to be written as characters.
Throws: IOException if an I/O error occurs.

writeDouble

public final void writeDouble(double v) throws IOException
This method writes a double (64-bit) value to the data output stream.
Parameters: v-the double value to be written.
Throws: IOException if an I/O error occurs.

writeFloat

public final void writeFloat(float v) throws IOException
This method writes a float (32-bit) value to the data output stream.
Parameters: v-the float value to be written.
Throws: IOException if an I/O error occurs.

writeInt

public final void writeInt(int v) throws IOException
This method writes an integer (32-bit) value to the data output stream.
Parameters: v-the integer value to be written.
Throws: IOException if an I/O error occurs.

writeLong

public final void writeLong(long v) throws IOException
This method writes a long (64-bit) value to the data output stream.
Parameters: v-the long value to be written.
Throws: IOException if an I/O error occurs.

writeShort

public final void writeShort(int v) throws IOException
This method writes a short (16-bit) value to the data output stream.
Parameters: v-the short value to be written.
Throws: IOException if an I/O error occurs.

writeUTF

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (21 of 63) [11/06/2000 7:48:43 PM]



public final void writeUTF(String str) throws IOException
This method encodes a string using a modified UTF-8 format and writes it to the data output
stream.
Parameters: str-the string to be written.
Throws: IOException if an I/O error occurs.

File

Extends: Object
This class implements a filename in a platform-independent manner. The File class
provides the functionality necessary to work with filenames and directories without having
to deal with the complexities associated with filenames on a particular platform.

Member Variables

public final static String pathSeparator

This is the platform-specific path separator string.

public final static char pathSeparatorChar

This is the platform-specific path separator character, which separates filenames in a path list.

public final static String separator

This is the platform-specific file separator string.

public final static char separatorChar

This is the platform-specific file separator character, which separates the file and directory components
in a filename.

File Constructor

public File(File dir, String name)
This constructor creates a filename of an underlying file based on the specified directory and
filename. If no directory is specified in the dir argument, the constructor assumes the file
is in the current directory.
Parameters:
dir-the directory where the file is located.
name-the filename.

File Constructor

public File(String path)

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (22 of 63) [11/06/2000 7:48:43 PM]



This constructor creates a filename of an underlying file based on the specified file path.
Parameters: path-the file path.
Throws: NullPointerException if the file path is null.

File Constructor

public File(String path, String name)
This constructor creates a filename of an underlying file based on the specified path and
filename.
Parameters: path-the path where the file is located.
Parameters: name-the filename.

canRead

public boolean canRead()
This method determines if the underlying file can be read from. In other words, if the file is
readable canRead determines if the file exists.
Returns: true if the file can be read from; false otherwise.
Throws: SecurityException if the application doesn't have read access to the file.

canWrite

public boolean canWrite()
This method determines if the underlying file can be written to. In other words, if the file is
writable canWrite determines if the file exists.
Returns: true if the file can be written to; false otherwise.
Throws: SecurityException if the application doesn't have write access to the file.

delete

public boolean delete()
This method deletes the underlying file.
Returns: true if the file is deleted; false otherwise.
Throws: SecurityException if the application doesn't have access to delete the file.

equals

public boolean equals(Object obj)
This method compares the pathname of the obj File object to the pathname of the
underlying file.
Parameters: obj-the object to compare with.
Returns: true if the pathnames are equal; false otherwise.

exists

public boolean exists()
This method determines if the underlying file exists by opening it for reading and then

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (23 of 63) [11/06/2000 7:48:43 PM]



clos-ing it.
Returns: true if the file exists; false otherwise.
Throws: SecurityException if the application doesn't have read access to the file.

getAbsolutePath

public String getAbsolutePath()
This method determines the platform-specific absolute pathname of the underlying file.
Returns: The absolute pathname of the file.

getName

public String getName()
This method determines the filename of the underlying file, which doesn't include any path
information.
Returns: The filename of the file.

getParent

public String getParent()
This method determines the parent directory of the underlying file, which is the immediate
directory where the file is located.
Returns: The parent directory of the file, or null if the file is located in the root directory.

getPath

public String getPath()
This method determines the pathname of the underlying file.
Returns: The pathname of the file.

hashCode

public int hashCode()
This method calculates a hash code for the underlying file.
Returns: A hash code for the file.

isAbsolute

public boolean isAbsolute()
This method determines if this object represents an absolute pathname for the underlying
file. Note that absolute pathnames are platform specific.
Returns: true if the pathname for the file is absolute; false otherwise.

isDirectory

public boolean isDirectory()
This method determines if the underlying file is actually a directory.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (24 of 63) [11/06/2000 7:48:43 PM]



Returns: true if the file is actually a directory; false otherwise.
Throws: SecurityException if the application doesn't have read access to the file.

isFile

public boolean isFile()
This method determines if the underlying file is a normal file; i.e. not a directory.
Returns: true if the file is a normal file; false otherwise.
Throws: SecurityException if the application doesn't have read access to the file.

lastModified

public long lastModified()
This method determines the last modification time of the underlying file. Note that this time
is system-specific and is not absolute; in other words, only use the time to compare against
other times retrieved using this method.
Returns: The last modification time of the file, or 0 if the file doesn't exist.
Throws: SecurityException if the application doesn't have read access to the file.

length

public long length()
This method determines the length in bytes of the underlying file.
Returns: The length of the file in bytes.
Throws: SecurityException if the application doesn't have read access to the file.

list

public String[] list()
This method builds a list of the filenames located in the directory represented by this object.
Note that the underlying file must actually be a directory for this method to work.
Returns: An array containing the filenames located in the directory.
Throws: SecurityException if the application doesn't have read access to the file.

list

public String[] list(FilenameFilter filter)
This method builds a list of the filenames located in the directory represented by this object
using the specified filename filter. Note that the underlying file must actually be a directory
for this method to work.
Parameters: filter-the filename filter used to select the filenames.
Returns: An array containing the filtered filenames located in the directory.
Throws: SecurityException if the application doesn't have read access to the file.

mkdir

public boolean mkdir()

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (25 of 63) [11/06/2000 7:48:43 PM]



This method creates a directory based on the pathname specified by this object.
Returns: true if the directory is created; false otherwise.
Throws: SecurityException if the application doesn't have write access to the file.

mkdirs

public boolean mkdirs()
This method creates a directory based on the pathname specified by this object, including all
necessary parent directories.
Returns: true if the directory (or directories) is created; false otherwise.
Throws: SecurityException if the application doesn't have write access to the file.

renameTo

public boolean renameTo(File dest)
This method renames the underlying file to the filename specified by the dest file object.
Parameters: dest-the new filename.
Returns: true if the file is renamed; false otherwise.
Throws: SecurityException if the application doesn't have write access to both the
underlying file and the file represented by the dest file object.

toString

public String toString()
This method determines a string representation of the pathname for the underlying file.
Returns: A string representing the pathname of the file.

FileDescriptor

Extends: Object
This class implements a handle to a platform-specific file or socket structure.
FileDescriptor objects are primarily used internally by the Java system and are never
created by an application directly.

Member Variables

public final static FileDescriptor err

This is a handle to the standard error stream.

public final static FileDescriptor in

This is a handle to the standard input stream.

public final static FileDescriptor out

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (26 of 63) [11/06/2000 7:48:43 PM]



This is a handle to the standard output stream.

FileDescriptor Constructor

public FileDescriptor()
This constructor creates a default FileDescriptor object.

valid

public boolean valid()
This method determines whether this object represents a valid open file or socket.
Returns: true if the underlying file or socket is valid; false otherwise.

FileInputStream

Extends: InputStream
This class implements an input stream for reading data from a file or file descriptor.

FileInputStream Constructor

public FileInputStream(File file) throws
FileNotFoundException
This constructor creates a file input stream to read data from the specified file.
Parameters: file-the file to be opened for reading.
Throws: FileNotFoundException if the file is not found.
Throws: SecurityException if the application doesn't have read access to the file.

FileInputStream Constructor

public FileInputStream(FileDescriptor fdObj)
This constructor creates a file input stream to read data from the file represented by the
specified file descriptor.
Parameters: fdObj-the file descriptor representing the file to be opened for reading.
Throws: SecurityException if the application doesn't have read access to the file.

FileInputStream Constructor

public FileInputStream(String name) throws
FileNotFoundException
This constructor creates a file input stream to read data from the file with the specified
filename.
Parameters: name-the filename of the file to be opened for reading.
Throws: FileNotFoundException if the file is not found.
Throws: SecurityException if the application doesn't have read access to the file.

available

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (27 of 63) [11/06/2000 7:48:43 PM]



public int available() throws IOException
This method determines the number of bytes that can be read from the file input stream
without blocking.
Returns: The number of available bytes.
Throws: IOException if an I/O error occurs.

close

public void close() throws IOException
This method closes the file input stream, releasing any resources associated with the stream.
Throws: IOException if an I/O error occurs.

finalize

protected void finalize() throws IOException
This method makes sure the close method is called when the file input stream is cleaned
up by the Java garbage collector.
Throws: IOException if an I/O error occurs.

getFD

public final FileDescriptor getFD() throws IOException
This method determines the file descriptor associated with the file input stream.
Returns: The file descriptor associated with the stream.
Throws: IOException if an I/O error occurs.

read

public int read() throws IOException
This method reads a byte value from the file input stream, blocking until the byte is read.
Returns: An integer representing the byte value read, or -1 if the end of the stream is
reached.
Throws: IOException if an I/O error occurs.

read

public int read(byte b[]) throws IOException
This method reads up to b.length bytes from the file input stream into the byte array b,
blocking until all bytes are read.
Parameters: b-the byte array into which the data is read.
Returns: The actual number of bytes read, or -1 if the end of the stream is reached.
Throws: IOException if an I/O error occurs.

read

public int read(byte b[], int off, int len) throws

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (28 of 63) [11/06/2000 7:48:43 PM]



IOException
This method reads up to len bytes from the file input stream into the byte array b
beginning off bytes into the array, blocking until all bytes are read.
Parameters:
b-the byte array into which the data is read.
off-the starting offset into the array for the data to be written to.
len-the maximum number of bytes to read.
Returns: The actual number of bytes read, or -1 if the end of the stream is reached.
Throws: IOException if an I/O error occurs.

skip

public long skip(long n) throws IOException
This method skips n bytes of data in the file input stream.
Parameters: n-the number of bytes to skip.
Returns: The actual number of bytes skipped.
Throws: IOException if an I/O error occurs.

FileOutputStream

Extends: OutputStream
This class implements an output stream for writing data to a file or file descriptor.

FileOutputStream

public FileOutputStream(File file) throws IOException
This constructor creates a file output stream to write data to the specified file.
Parameters: file-the file to be opened for writing.
Throws: FileNotFoundException if the file could not be opened for writing.
Throws: SecurityException if the application doesn't have write access to the file.

FileOutputStream Constructor

public FileOutputStream(FileDescriptor fdObj)
This constructor creates a file output stream to write data to the file represented by the
specified file descriptor.
Parameters: fdObj-the file descriptor representing the file to be opened for writing.
Throws: SecurityException if the application doesn't have write access to the file.

FileOutputStream Constructor

public FileOutputStream(String name) throws IOException
This constructor creates a file output stream to write data to the file with the specified
filename.
Parameters: name-the filename of the file to be opened for writing.
Throws: FileNotFoundException if the file is not found.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (29 of 63) [11/06/2000 7:48:43 PM]



Throws: SecurityException if the application doesn't have read access to the file.

close

public void close() throws IOException
This method closes the file output stream, releasing any resources associated with the
stream.
Throws: IOException if an I/O error occurs.

finalize

protected void finalize() throws IOException
This method makes sure the close method is called when the file output stream is cleaned
up by the Java garbage collector.
Throws: IOException if an I/O error occurs.

getFD

public final FileDescriptor getFD() throws IOException
This method determines the file descriptor associated with the file output stream.
Returns: The file descriptor associated with the stream.
Throws: IOException if an I/O error occurs.

write

public void write(byte b[]) throws IOException
This method writes b.length bytes to the file output stream from the byte array b.
Parameters: b-the byte array from which the data is written.
Throws: IOException if an I/O error occurs.
write
public void write(byte b[], int off, int len) throws
IOException
This method writes len bytes to the file output stream from the byte array b beginning off
bytes into the array.
Parameters:
b-the byte array from which the data is written.
off-the starting offset into the array for the data to be read from.
len-the number of bytes to write.
Throws: IOException if an I/O error occurs.

write

public void write(int b) throws IOException
This method writes a byte value to the file output stream.
Parameters: b-the byte value to be written.
Throws: IOException if an I/O error occurs.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (30 of 63) [11/06/2000 7:48:43 PM]



FilterInputStream

Extends: InputStream
This class defines an input stream filter that can be used to filter data on an underlying input
stream. Most of the methods defined in FilterInputStream simply call corresponding
methods in the underlying input stream. You simply override appropriate methods to
provide the filtering functionality. FilterInputStream serves as the basis for all other
input stream filter implementations. Derived filtered input streams can be chained together
to provide complex filtering operations.

Member Variables

protected InputStream in
This is the underlying input stream that is being filtered.

FilterInputStream Constructor

protected FilterInputStream(InputStream in)
This constructor creates a filtered input stream based on the specified underlying input
stream.
Parameters: in-the input stream to be filtered.

available

public int available() throws IOException
This method determines the number of bytes that can be read from the filtered input stream
without blocking.
Returns: The number of available bytes.
Throws: IOException if an I/O error occurs.

close

public void close() throws IOException
This method closes the filtered input stream, releasing any resources associated with the
stream.
Throws: IOException if an I/O error occurs.

mark

public void mark(int readlimit)
This method marks the current read position in the filtered input stream. The reset method
can be used to reset the read position to this mark; subsequent reads will read data beginning
at the mark position. The mark position is invalidated after readlimit bytes have been
read.
Parameters: readlimit-the maximum number of bytes that can be read before the mark
position becomes invalid.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (31 of 63) [11/06/2000 7:48:43 PM]



markSupported

public boolean markSupported()
This method determines if the filtered input stream supports the mark and reset methods.
Returns: true if the mark and reset methods are supported; false otherwise.

read

public int read() throws IOException
This method reads a byte value from the filtered input stream, blocking until the byte is
read.
Returns: An integer representing the byte value read, or -1 if the end of the stream is
reached.
Throws: IOException if an I/O error occurs.

read

public int read(byte b[]) throws IOException
This method reads up to b.length bytes from the filtered input stream into the byte array
b, blocking until all bytes are read.
Parameters: b-the byte array into which the data is read.
Returns: The actual number of bytes read, or -1 if the end of the stream is reached.
Throws: IOException if an I/O error occurs.

read

public int read(byte b[], int off, int len) throws
IOException
This method reads up to len bytes from the filtered input stream into the byte array b
beginning off bytes into the array, blocking until all bytes are read.
Parameters:
b-the byte array into which the data is read.
off-the starting offset into the array for the data to be written to.
len-the maximum number of bytes to read.
Returns: The actual number of bytes read, or -1 if the end of the stream is reached.
Throws: IOException if an I/O error occurs.

reset

public void reset() throws IOException
This method resets the read position in the input stream to the current mark position, as set
by the mark method.
Throws: IOException if the stream has not been marked or if the mark is invalid.

skip

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (32 of 63) [11/06/2000 7:48:43 PM]



public long skip(long n) throws IOException
This method skips n bytes of data in the input stream.
Parameters: n-the number of bytes to skip.
Returns: The actual number of bytes skipped.
Throws: IOException if an I/O error occurs.

FilterOutputStream

Extends: OutputStream
This class defines an output stream filter that can be used to filter data on an underlying
output stream. Most of the methods defined in FilterOutputStream simply call
corresponding methods in the underlying output stream. You simply override appropriate
methods to provide the filtering functionality. FilterOutputStream serves as the basis
for all other output stream filter implementations. Derived filtered output streams can be
chained together to provide complex filtering operations.

Member Variables

protected OutputStream out
This is the underlying output stream that is being filtered.

FilterOutputStream

public FilterOutputStream(OutputStream out)
This constructor creates a filtered output stream based on the specified underlying output
stream.
Parameters: out-the output stream to be filtered.

close

public void close() throws IOException
This method closes the filtered output stream, releasing any resources associated with the
stream.
Throws: IOException if an I/O error occurs.

flush

public void flush() throws IOException
This method flushes the filtered output stream, resulting in any buffered data being written
to the underlying output stream.
Throws: IOException if an I/O error occurs.

write

public void write(byte b[]) throws IOException
This method writes b.length bytes to the filtered output stream from the byte array b.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (33 of 63) [11/06/2000 7:48:43 PM]



Parameters: b-the byte array from which the data is written.
Throws: IOException if an I/O error occurs.

write

public void write(byte b[], int off, int len) throws
IOException
This method writes len bytes to the filtered output stream from the byte array b beginning
off bytes into the array, blocking until all bytes are written.
Parameters:
b-the byte array from which the data is written.
off-the starting offset into the array for the data to be read from.
len-the number of bytes to write.
Throws: IOException if an I/O error occurs.

write

public void write(int b) throws IOException
This method writes a byte value to the buffered output stream.
Parameters: b-the byte value to be written.
Throws: IOException if an I/O error occurs.

InputStream

Extends: Object
This class is an abstract class representing an input stream of bytes. All input streams are
based on InputStream.

InputStream Constructor

public InputStream()
This constructor creates a default input stream.

available

public int available() throws IOException
This method determines the number of bytes that can be read from the input stream without
blocking. This method should be overridden in all subclasses, as it returns 0 in
InputStream.
Returns: The number of available bytes.
Throws: IOException if an I/O error occurs.

close

public void close() throws IOException
This method closes the input stream, releasing any resources associated with the stream.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (34 of 63) [11/06/2000 7:48:43 PM]



This method should usually be overridden in subclasses, as it does nothing in
InputStream.
Throws: IOException if an I/O error occurs.

mark

public void mark(int readlimit)
This method marks the current read position in the input stream. The reset method can be
used to reset the read position to this mark; subsequent reads will read data beginning at the
mark position. The mark position is invalidated after readlimit bytes have been read.
This method should usually be overridden in subclasses, as it does nothing in
InputStream.
Parameters: readlimit-the maximum number of bytes that can be read before the mark
position becomes invalid.

markSupported

public boolean markSupported()
This method determines if the input stream supports the mark and reset methods. This
method should usually be overridden in subclasses, as it always returns false in
InputStream.
Returns: true if the mark and reset methods are supported; false otherwise.

read

public abstract int read() throws IOException
This method reads a byte value from the input stream, blocking until the byte is read. This
method must be overridden in all subclasses, as it is defined as abstract in InputStream.
Returns: An integer representing the byte value read, or -1 if the end of the stream is
reached.
Throws: IOException if an I/O error occurs.

read

public int read(byte b[]) throws IOException
This method reads up to b.length bytes from the input stream into the byte array b,
blocking until all bytes are read. This method actually calls the three-parameter version of
read passing b, 0, and b.length as the parameters.
Parameters: b-the byte array into which the data is read.
Returns: The actual number of bytes read, or -1 if the end of the stream is reached.
Throws: IOException if an I/O error occurs.

read

public int read(byte b[], int off, int len) throws
IOException
This method reads up to len bytes from the input stream into the byte array b beginning

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (35 of 63) [11/06/2000 7:48:43 PM]



off bytes into the array, blocking until all bytes are read. This method actually reads each
byte by calling the read method that takes no parameters. Subclasses should provide a
more efficient implementation of this method that isn't reliant on the other read method if
possible.
Parameters:
b-the byte array into which the data is read.
off-the starting offset into the array for the data to be written to.
len-the maximum number of bytes to read.
Returns: The actual number of bytes read, or -1 if the end of the stream is reached.
Throws: IOException if an I/O error occurs.

reset

public void reset() throws IOException
This method resets the read position in the input stream to the current mark position, as set
by the mark method. This method should be overridden in subclasses requiring mark/reset
functionality, as it always throws an IOException in InputStream; this is a result of
the fact that input streams don't support mark/reset functionality by default.
Throws: IOException if the stream has not been marked or if the mark is invalid.

skip

public long skip(long n) throws IOException
This method skips n bytes of data in the input stream. This method should usually be
overridden with a more efficient version in subclasses, as it reads skipped data into a
temporary byte array in InputStream.
Parameters: n-the number of bytes to skip.
Returns: The actual number of bytes skipped.
Throws: IOException if an I/O error occurs.

LineNumberInputStream

Extends: FilterInputStream
This class implements an input stream that keeps track of how many lines have passed
through the stream. A line is defined as a sequence of bytes followed by either a carriage
return character ('\r'), a newline character ('\n'), or a carriage return character
immediately followed by a newline character. In all three cases, the new line is interpreted
as a single character.

LineNumberInputStream Constructor

public LineNumberInputStream(InputStream in)
This constructor creates a line number input stream that counts lines based on the specified
input stream.
Parameters: in-the input stream to count lines from.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (36 of 63) [11/06/2000 7:48:44 PM]



available

public int available() throws IOException
This method determines the number of bytes that can be read from the input stream without
blocking. Note that this number could be as little as half as large as that of the underlying
stream, since LineNumberInputStream combines carriage return/newline character
pairs into a single new line byte.
Returns: The number of available bytes.

getLineNumber

public int getLineNumber()
This method determines the current line number for the input stream, which is the count of
how many lines the stream has processed.
Returns: The current line number.

mark

public void mark(int readlimit)
This method marks the current read position in the input stream. The reset method can be
used to reset the read position to this mark; subsequent reads will read data beginning at the
mark position. The mark position is invalidated after readlimit bytes have been read.
mark makes sure to store away the current line number so it isn't invalidated by a
subsequent call to reset.
Parameters: readlimit-the maximum number of bytes that can be read before the mark
position becomes invalid.

read

public int read() throws IOException
This method reads a byte value from the input stream, blocking until the byte is read.
Returns: An integer representing the byte value read, or -1 if the end of the stream is
reached.
Throws: IOException if an I/O error occurs.

read

public int read(byte b[], int off, int len) throws
IOException
This method reads up to len bytes from the input stream into the byte array b beginning
off bytes into the array, blocking until all bytes are read.
Parameters:
b-the byte array into which the data is read.
off-the starting offset into the array for the data to be written to.
len-the maximum number of bytes to read.
Returns: The actual number of bytes read, or -1 if the end of the stream is reached.
Throws: IOException if an I/O error occurs.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (37 of 63) [11/06/2000 7:48:44 PM]



reset

public void reset() throws IOException
This method resets the read position in the input stream to the current mark position, as set
by the mark method. The current line number is reset to the value it held when the mark
method was called.

setLineNumber

public void setLineNumber(int lineNumber)
This method sets the current line number to the specified line number.
Parameters: lineNumber-the new line number to be set.

skip

public long skip(long n) throws IOException
This method skips n bytes of data in the input stream.
Parameters: n-the number of bytes to skip.
Returns: The actual number of bytes skipped.
Throws: IOException if an I/O error occurs.

OutputStream

Extends: Object
This class is an abstract class representing an output stream of bytes. All output streams are
based on OutputStream.

OutputStream Constructor

public OutputStream()
This constructor creates a default output stream.

close

public void close() throws IOException
This method closes the output stream, releasing any resources associated with the stream.
This method should usually be overridden in subclasses, as it does nothing in
OutputStream.
Throws: IOException if an I/O error occurs.

flush

public void flush() throws IOException
This method flushes the output stream, resulting in any buffered data being written to the
underlying output stream. This method should usually be overridden in subclasses, as it does

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (38 of 63) [11/06/2000 7:48:44 PM]



nothing in OutputStream.
Throws: IOException if an I/O error occurs.

write

public void write(byte b[]) throws IOException
This method writes b.length bytes to the output stream from the byte array b. This
method actually calls the three-parameter version of write passing b, 0, and b.length
as the parameters.
Parameters: b-the byte array from which the data is written.
Throws: IOException if an I/O error occurs.

write

public void write(byte b[], int off, int len) throws
IOException
This method writes len bytes to the output stream from the byte array b beginning off
bytes into the array. This method actually writes each byte by calling the write method
that takes one parameter. Subclasses should provide a more efficient implementation of this
method that isn't reliant on the other write method if possible.
Parameters:
b-the byte array from which the data is written.
off-the starting offset into the array for the data to be read from.
len-the number of bytes to write.
Throws: IOException if an I/O error occurs.

write

public abstract void write(int b) throws IOException
This method writes a byte value to the output stream. This method must be overridden in all
subclasses, as it is defined as abstract in OutputStream.
Parameters: b-the byte value to be written.
Throws: IOException if an I/O error occurs.

PipedInputStream

Extends: InputStream
This class implements a piped input stream, which acts as the receiving end of a
communications pipe. Piped input streams must be connected to a piped output stream to
receive data. In other words, a piped output stream must be used to send the data received by
a piped input stream.

PipedInputStream Constructor

public PipedInputStream()
This constructor creates a piped input stream that isn't connected to anything. The stream

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (39 of 63) [11/06/2000 7:48:44 PM]



must be connected to a piped output stream via the connect method before it can be used.

PipedInputStream Constructor

public PipedInputStream(PipedOutputStream src) throws
IOException
This constructor creates a piped input stream that is connected to the specified piped output
stream.
Parameters: src-the piped output stream to connect to.
Throws: IOException if an I/O error occurs.

close

public void close() throws IOException
This method closes the piped input stream, releasing any resources associated with the
stream.
Throws: IOException if an I/O error occurs.

connect

public void connect(PipedOutputStream src) throws IOException
This method connects the input stream to the specified piped output stream.
Parameters: src-the piped output stream to connect to.
Throws: IOException if an I/O error occurs.

read

public int read() throws IOException
This method reads a byte value from the piped input stream, blocking until the byte is read.
Returns: An integer representing the byte value read, or -1 if the end of the stream is
reached.
Throws: IOException if an I/O error occurs.

read

public int read(byte b[], int off, int len) throws
IOException
This method reads up to len bytes from the piped input stream into the byte array b
beginning off bytes into the array, blocking until all bytes are read.
Parameters:
b-the byte array into which the data is read.
off-the starting offset into the array for the data to be written to.
len-the maximum number of bytes to read.
Returns: The actual number of bytes read, or -1 if the end of the stream is reached.
Throws: IOException if an I/O error occurs.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (40 of 63) [11/06/2000 7:48:44 PM]



PipedOutputStream

Extends: OutputStream
This class implements a piped output stream, which acts as the sending end of a
communications pipe. Piped output streams must be connected to a piped input stream to
send data. In other words, a piped input stream must be used to receive the data sent by a
piped output stream.

PipedOutputStream Constructor

public PipedOutputStream()
This constructor creates a piped output stream that isn't connected to anything. The stream
must be connected to a piped input stream via the connect method before it can be used.

PipedOutputStream Constructor

public PipedOutputStream(PipedInputStream snk) throws
IOException
This constructor creates a piped output stream that is connected to the specified piped input
stream.
Parameters: snk-the piped input stream to connect to.
Throws: IOException if an I/O error occurs.

close

public void close() throws IOException
This method closes the piped output stream, releasing any resources associated with the
stream.
Throws: IOException if an I/O error occurs.

connect

public void connect(PipedInputStream snk) throws IOException
This method connects the output stream to the specified piped input stream.
Parameters: snk-the piped input stream to connect to.
Throws: IOException if an I/O error occurs.

write

public void write(byte b[], int off, int len) throws
IOException
This method writes len bytes to the piped output stream from the byte array b beginning
off bytes into the array.
Parameters:
b-the byte array from which the data is written.
off-the starting offset into the array for the data to be read from.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (41 of 63) [11/06/2000 7:48:44 PM]



len-the number of bytes to write.
Throws: IOException if an I/O error occurs.

write

public void write(int b) throws IOException
This method writes a byte value to the piped output stream.
Parameters: b-the byte value to be written.
Throws: IOException if an I/O error occurs.

PrintStream

Extends: FilterOutputStream
This class implements an output stream that has additional methods for printing basic types
of data. You can set up the stream so that it is flushed every time a newline character
('\n') is written. Note that only the lower 8 bits of any 16-bit value are printed to the
stream.

PrintStream Constructor

public PrintStream(OutputStream out)
This constructor creates a print stream that writes data to the specified underlying output
stream.
Parameters: out-the output stream to be written to.

PrintStream Constructor

public PrintStream(OutputStream out, boolean autoflush)
This constructor creates a print stream that writes data to the specified underlying output
stream, with an option of flushing its output each time a newline character ('\n') is
encountered.
Parameters:
out-the output stream to be written to.
autoflush-a boolean value specifying whether the stream is flushed when a newline
character is encountered.

checkError

public boolean checkError()
This method flushes the underlying output stream and determines whether an error has
occurred on the stream. Note that errors are cumulative, meaning that once an error is
encountered, checkError will continue to return true on all successive calls.
Returns: true if the print stream has ever encountered an error on the underlying output
stream; false otherwise.
public void close()
This method closes the print stream, releasing any resources associated with the underlying

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (42 of 63) [11/06/2000 7:48:44 PM]



output stream.

flush

public void flush()
This method flushes the print stream, resulting in any buffered data being written to the
underlying output stream.

print

public void print(boolean b)
This method prints the string representation of a boolean value to the underlying output
stream. If the boolean value is true, the string "true" is printed; otherwise, the string
"false" is printed.
Parameters: b-the boolean value to be printed.

print

public void print(char c)
This method prints the lower 8 bits of a character value to the underlying output stream.
Parameters: c-the character value to be printed.

print

public void print(char s[])
This method prints the lower 8 bits of each character value in an array of characters to the
underlying output stream.
Parameters: s-the array of characters to be printed.

print

public void print(double d)
This method prints the string representation of a double value to the underlying output
stream. Note that the string representation is the same as that returned by the toString
method of the Double class.
Parameters: d-the double value to be printed.

print

public void print(float f)
This method prints the string representation of a float value to the underlying output stream.
Note that the string representation is the same as that returned by the toString method of
the Float class.
Parameters: f-the float value to be printed.

print

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (43 of 63) [11/06/2000 7:48:44 PM]



public void print(int i)
This method prints the string representation of an integer value to the underlying output
stream. Note that the string representation is the same as that returned by the toString
method of the Integer class.
Parameters: i-the integer value to be printed.

print

public void print(long l)
This method prints the string representation of a long value to the underlying output stream.
Note that the string representation is the same as that returned by the toString method of
the Long class.
Parameters: l-the long value to be printed.

print

public void print(Object obj)
This method prints the string representation of an object to the underlying output stream.
Note that the string representation is the same as that returned by the toString method of
the object.
Parameters: obj-the object to be printed.

print

public void print(String s)
This method prints the lower 8 bits of each character in a string to the underlying output
stream. If the string is null, the string "null" is printed.
Parameters: s-the string to be printed.

println

public void println()
This method prints the newline character ('\n') to the underlying output stream.

println

public void println(boolean b)
This method prints the string representation of a boolean value to the underlying output
stream, followed by a newline character ('\n'). If the boolean value is true, the string
"true" is printed; otherwise, the string "false" is printed.
Parameters: b-the boolean value to be printed.

println

public void println(char c)
This method prints the lower 8 bits of a character value to the underlying output stream,
followed by a newline character.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (44 of 63) [11/06/2000 7:48:44 PM]



Parameters: c-the character value to be printed

println

public void println(char s[])
This method prints the lower 8 bits of each character value in an array of characters to the
underlying output stream, followed by a newline character.
Parameters: s-the array of characters to be printed.

println

public void println(double d)
This method prints the string representation of a double value to the underlying output
stream, followed by a newline character. Note that the string representation is the same as
that returned by the toString method of the Double class.
Parameters: d-the double value to be printed.

println

public void println(float f)
This method prints the string representation of a float value to the underlying output stream,
followed by a newline character. Note that the string representation is the same as that
returned by the toString method of the Float class.
Parameters: f-the float value to be printed.

println

public void println(int i)
This method prints the string representation of an integer value to the underlying output
stream, followed by a newline character. Note that the string representation is the same as
that returned by the toString method of the Integer class.
Parameters: i-the integer value to be printed.

println

public void println(long l)
This method prints the string representation of a long value to the underlying output stream,
followed by a newline character. Note that the string representation is the same as that
returned by the toString method of the Long class.
Parameters: l-the long value to be printed.

println

public void println(Object obj)
This method prints the string representation of an object to the underlying output stream,
followed by a newline character. Note that the string representation is the same as that
returned by the toString method of the object.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (45 of 63) [11/06/2000 7:48:44 PM]



Parameters: obj-the object to be printed.

println

public void println(String s)
This method prints the lower 8 bits of each character in a string to the underlying output
stream, followed by a newline character. If the string is null, the string "null" is printed.
Parameters: s-the string to be printed.

write

public void write(byte b[], int off, int len)
This method writes len bytes to the underlying output stream from the byte array b
beginning off bytes into the array.
Parameters:
b-the byte array from which the data is written.
off-the starting offset into the array for the data to be read from.
len-the number of bytes to write.

write

public void write(int b)
This method writes a byte value to the underlying output stream. The write method of the
underlying output stream is actually called to write the byte value. Additionally, if the byte
represents the newline character ('\n') and autoflush is turned on, the flush method is
called.
If an IOException is thrown while writing the byte, the exception is caught and an
internal error flag is set; this flag can be checked by calling the checkError method. This
technique is used to alleviate having to use a try-catch clause every time you want to
print something.
Parameters: b-the byte value to be written.
Throws: IOException if an I/O error occurs.

PushbackInputStream

Extends: FilterInputStream
This class implements a input stream filter that provides a one byte push back buffer. Using
the PushbackInputStream class, an application can push the last byte read back into
the stream so it will be re-read the next time the read method is called. This functionality is
sometimes useful in situations where byte-delimited data is being read; the delimited bytes
can be pushed back into the stream so the next read operation will read them.

Member Variables

protected int pushBack
This is the push back buffer containing the character that was pushed back. A value of -1

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (46 of 63) [11/06/2000 7:48:44 PM]



indicates that the push back buffer is empty.

PushbackInputStream Constructor

public PushbackInputStream(InputStream in)
This constructor creates a push back input stream using the specified underlying input
stream.
Parameters: in-the input stream to use the push back filter on.

available

public int available() throws IOException
This method determines the number of bytes that can be read from the push back input
stream without blocking.
Returns: The number of available bytes.
Throws: IOException if an I/O error occurs.

markSupported

public boolean markSupported()
This method determines if the push back input stream supports the mark and reset
methods.
Returns: true if the mark and reset methods are supported; false otherwise.

read

public int read() throws IOException
This method reads a byte value from the push back input stream, blocking until the byte is
read. The read method actually returns the push back character if there is one, and calls the
underlying input stream's read method if not.
Returns: An integer representing the byte value read, or -1 if the end of the stream is
reached.
Throws: IOException if an I/O error occurs.

read

public int read(byte bytes[], int off, int len) throws
IOException
This method reads up to len bytes from the buffered input stream into the byte array
bytes beginning off bytes into the array, blocking until all bytes are read.
Parameters:
bytes-the byte array into which the data is read.
off-the starting offset into the array for the data to be written to.
len-the maximum number of bytes to read.
Returns: The actual number of bytes read, or -1 if the end of the stream is reached.
Throws: IOException if an I/O error occurs.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (47 of 63) [11/06/2000 7:48:44 PM]



unread

public void unread(int ch) throws IOException
This method pushes a character back into the stream so that it is read the next time the read
method is called. Note that there can only be one push back character, meaning that multiple
calls to unread without matching calls to read will result in an IOException being
thrown.
Parameters: ch-the character to push back into the stream.
Throws: IOException if an attempt is made to push back more than one character.

RandomAccessFile

Extends: Object
Implements: DataOutput, DataInput
This class implements a random access file stream, providing functionality for both reading
from and writing to random access files.

RandomAccessFile Constructor

public RandomAccessFile(String name, String mode) throws
IOException
This constructor creates a random access file stream based on the file with the specified
filename and access mode. There are two supported access modes: Mode "r" is for
read-only files and mode "rw" is for read/write files.
Parameters:
name-the filename of the file to access.
mode-the access mode.
Throws: IOException if an I/O error occurs.
Throws: IllegalArgumentException if the access mode is not equal to "r" or
"rw".
Throws: SecurityException if the access mode is "r" and the application doesn't
have read access to the file, or if the access mode is "rw" and the application doesn't have
both read and write access to the file.

RandomAccessFile Constructor

public RandomAccessFile(File file, String mode) throws
IOException
This constructor creates a random access file stream based on the specified file and access
mode. There are two supported access modes: mode "r" is for read-only files and mode
"rw" is for read/write files.
Parameters:
file-the file to access.
mode-the access mode.
Throws: IOException if an I/O error occurs.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (48 of 63) [11/06/2000 7:48:44 PM]



Throws: IllegalArgumentException if the access mode is not equal to "r" or
"rw".
Throws: SecurityException if the access mode is "r" and the application doesn't
have read access to the file, or if the access mode is "rw" and the application doesn't have
both read and write access to the file.

close

public void close() throws IOException
This method closes the random access file stream, releasing any resources associated with
the stream.
Throws: IOException if an I/O error occurs.

getFD

public final FileDescriptor getFD() throws IOException
This method determines the file descriptor associated with the random access file stream.
Returns: The file descriptor associated with the stream.
Throws: IOException if an I/O error occurs.

getFilePointer

public long getFilePointer() throws IOException
This method determines the current read/write position in bytes of the random access file
stream, which is the offset of the read/write position from the beginning of the stream.
Returns: The current read/write position of the stream.
Throws: IOException if an I/O error occurs.

length

public long length() throws IOException
This method determines the length in bytes of the underlying file.
Returns: The length of the underlying file.
Throws: IOException if an I/O error occurs.

read

public int read() throws IOException
This method reads a byte value from the random access file stream, blocking until the byte
is read.
Returns: An integer representing the byte value read, or -1 if the end of the stream is
reached.
Throws: IOException if an I/O error occurs.

read

public int read(byte b[]) throws IOException

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (49 of 63) [11/06/2000 7:48:44 PM]



This method reads up to b.length bytes from the random access file stream into the byte
array b, blocking until at least one byte is available.
Parameters: b-the byte array into which the data is read.
Returns: The total number of bytes read, or -1 if the end of the stream is reached.
Throws: IOException if an I/O error occurs.

read

public int read(byte b[], int off, int len) throws
IOException
This method reads up to len bytes from the random access file stream into the byte array b
beginning off bytes into the array, blocking until at least one byte is available.
Parameters:
b-the byte array into which the data is read.
off-the starting offset into the array for the data to be written to.
len-the maximum number of bytes to read.
Returns: The total number of bytes read, or -1 if the end of the stream is reached.
Throws: IOException if an I/O error occurs.

readBoolean

public final boolean readBoolean() throws IOException
This method reads a boolean value (byte) from the random access file stream. A value of 0
is interpreted as false, while all other values are interpreted as true.
Returns: The boolean value read.
Throws: EOFException if the end of the stream is reached before reading the value.
Throws: IOException if an I/O error occurs.

readByte

public final byte readByte() throws IOException
This method reads a signed byte (8-bit) value from the random access file stream, blocking
until the byte is read.
Returns: The byte value read.
Throws: EOFException if the end of the stream is reached before reading the value.
Throws: IOException if an I/O error occurs.

readChar

public final char readChar() throws IOException
This method reads a character (16-bit) value from the random access file stream, blocking
until both bytes are read.
Returns: The character value read.
Throws: EOFException if the end of the stream is reached before reading the value.
Throws: IOException if an I/O error occurs.

readDouble

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (50 of 63) [11/06/2000 7:48:44 PM]



public final double readDouble() throws IOException

This method reads a double (64-bit) value from the random access file stream, blocking until
all eight bytes are read.
Returns: The double value read.
Throws: EOFException if the end of the stream is reached before reading the value.
Throws: IOException if an I/O error occurs.

readFloat

public final float readFloat() throws IOException
This method reads a float (32-bit) value from the random access file stream, blocking until
all four bytes are read.
Returns: The float value read.
Throws: EOFException if the end of the stream is reached before reading the value.
Throws: IOException if an I/O error occurs.

readFully

public final void readFully(byte b[]) throws IOException
This method reads up to b.length bytes from the random access file stream into the byte
array b, blocking until all bytes are read.
Parameters: b-the byte array into which the data is read.
Throws: EOFException if the end of the stream is reached before reading the value.
Throws: IOException if an I/O error occurs.

readFully

public final void readFully(byte b[], int off, int len)
throws IOException
This method reads up to len bytes from the random access file stream into the byte array b
beginning off bytes into the array, blocking until all bytes are read.
Parameters:
b-the byte array into which the data is read.
off-the starting offset into the array for the data to be written to.
len-the maximum number of bytes to read.
Throws: EOFException if the end of the stream is reached before reading the value.
Throws: IOException if an I/O error occurs.

readInt

public final int readInt() throws IOException
This method reads an integer (32-bit) value from the random access file stream, blocking
until all four bytes are read.
Returns: The integer value read.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (51 of 63) [11/06/2000 7:48:44 PM]



Throws: EOFException if the end of the stream is reached before reading the value.
Throws: IOException if an I/O error occurs.

readLine

public final String readLine() throws IOException
This method reads a line of text from the random access file stream, blocking until either a
newline character ('\n') or a carriage return character ('\r') is read.
Returns: A string containing the line of text read.
Throws: IOException if an I/O error occurs.

readLong

public final long readLong() throws IOException
This method reads a long (64-bit) value from the random access file stream, blocking until
all eight bytes are read.
Returns: The long value read.
Throws: EOFException if the end of the stream is reached before reading the value.
Throws: IOException if an I/O error occurs.

readShort

public final short readShort() throws IOException
This method reads a short (16-bit) value from the random access file stream, blocking until
both bytes are read.
Returns: The short value read.
Throws: EOFException if the end of the stream is reached before reading the value.
Throws: IOException if an I/O error occurs.

readUnsignedByte

public final int readUnsignedByte() throws IOException
This method reads an unsigned byte (8-bit) value from the random access file stream,
blocking until the byte is read.
Returns: The unsigned byte value read.
Throws: EOFException if the end of the stream is reached before reading the value.
Throws: IOException if an I/O error occurs.

readUnsignedShort

public final int readUnsignedShort() throws IOException
This method reads an unsigned short (16-bit) value from the random access file stream,
blocking until both bytes are read.
Returns: The unsigned short value read.
Throws: EOFException if the end of the stream is reached before reading the value.
Throws: IOException if an I/O error occurs.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (52 of 63) [11/06/2000 7:48:44 PM]



readUTF

public final String readUTF() throws IOException
This method reads a string that has been encoded using a modified UTF-8 format from the
random access file stream, blocking until all bytes are read.
Returns: The string read.
Throws: EOFException if the end of the stream is reached before reading the string.
Throws: UTFDataFormatException if the bytes read do not represent a valid UTF-8
encoding of a string.
Throws: IOException if an I/O error occurs.

seek

public void seek(long pos) throws IOException
This method sets the current stream position to the specified absolute position. The position
is absolute because it is always relative to the beginning of the stream.
Parameters: pos-the absolute position to seek to.
Throws: IOException if an I/O error occurs.

skipBytes

public int skipBytes(int n) throws IOException
This method skips n bytes of data in the random access file stream, blocking until all bytes
are skipped.
Parameters: n-the number of bytes to skip.
Returns: The actual number of bytes skipped.
Throws: EOFException if the end of the stream is reached before skipping the specified
number of bytes.
Throws: IOException if an I/O error occurs.

write

public void write(byte b[]) throws IOException
This method writes b.length bytes to the random access file stream from the byte array
b.
Parameters: b-the byte array from which the data is written.
Throws: IOException if an I/O error occurs.

write

public void write(byte b[], int off, int len) throws
IOException
This method writes len bytes to the random access file stream from the byte array b
beginning off bytes into the array.
Parameters:
b-the byte array from which the data is written.
off-the starting offset into the array for the data to be read from.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (53 of 63) [11/06/2000 7:48:44 PM]



len-the number of bytes to write.
Throws: IOException if an I/O error occurs.

write

public void write(int b) throws IOException
This method writes a byte value to the random access file stream.
Parameters: b-the byte value to be written.
Throws: IOException if an I/O error occurs.

writeBoolean

public final void writeBoolean(boolean v) throws IOException
This method writes a boolean value to the random access file stream. The boolean value
true is written as the byte value 1, where false is written as the byte value 0.
Parameters: v-the boolean value to be written.
Throws: IOException if an I/O error occurs.

writeByte

public final void writeByte(int v) throws IOException
This method writes a byte (8-bit) value to the random access file stream.
Parameters: v-the byte value to be written.
Throws: IOException if an I/O error occurs.

writeBytes

public final void writeBytes(String s) throws IOException
This method writes a string to the random access file stream as a sequence of bytes.
Parameters: s-the string to be written as bytes.
Throws: IOException if an I/O error occurs.

writeChar

public final void writeChar(int v) throws IOException
This method writes a character (16-bit) value to the random access file stream.
Parameters: v-the character value to be written.
Throws: IOException if an I/O error occurs.

writeChars

public final void writeChars(String s) throws IOException
This method writes a string to the random access file stream as a sequence of characters.
Parameters: s-the string to be written as characters.
Throws: IOException if an I/O error occurs.

writeDouble

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (54 of 63) [11/06/2000 7:48:44 PM]



public final void writeDouble(double v) throws IOException
This method writes a double (64-bit) value to the random access file stream.
Parameters: v-the double value to be written.
Throws: IOException if an I/O error occurs.

writeFloat

public final void writeFloat(float v) throws IOException
This method writes a float (32-bit) value to the random access file stream.
Parameters: v-the float value to be written.
Throws: IOException if an I/O error occurs.

writeInt

public final void writeInt(int v) throws IOException
This method writes an integer (32-bit) value to the random access file stream.
Parameters: v-the integer value to be written.
Throws: IOException if an I/O error occurs.

writeLong

public final void writeLong(long v) throws IOException
This method writes a long (64-bit) value to the random access file stream.
Parameters: v-the long value to be written.
Throws: IOException if an I/O error occurs.

writeShort

public final void writeShort(int v) throws IOException
This method writes a short (16-bit) value to the random access file stream.
Parameters: v-the short value to be written.
Throws: IOException if an I/O error occurs.

writeUTF

public final void writeUTF(String str) throws IOException
This method encodes a string using a modified UTF-8 format and writes it to the random
access file stream.
Parameters: str-the string to be written.
Throws: IOException if an I/O error occurs.

SequenceInputStream

Extends: InputStream
This class implements an input stream that can combine several input streams in a serial
manner so that they function together like a single input stream. Each input stream

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (55 of 63) [11/06/2000 7:48:44 PM]



comprising the sequence is read from in turn; the sequence input stream handles closing
streams as they finish and switching to the next one.

SequenceInputStream Constructor

public SequenceInputStream(Enumeration e)
This constructor creates a sequence input stream containing the specified enumerated list of
input streams.
Parameters: e-the list of input streams for the sequence.

SequenceInputStream Constructor

public SequenceInputStream(InputStream s1, InputStream s2)
This constructor creates a sequence input stream containing the two specified input streams.
Parameters:
s1-the first input stream in the sequence.
s2-the second input stream in the sequence.

close

public void close() throws IOException
This method closes the sequence input stream, releasing any resources associated with the
stream. Additionally, this close method calls the close method for the substream
currently being read from as well as the substreams that have yet to be read from.
Throws: IOException if an I/O error occurs.

read

public int read() throws IOException
This method reads a byte value from the currently active substream in the sequence input
stream, blocking until the byte is read. If the end of the substream is reached, the close
method is called on the substream and read begins reading from the next substream.
Returns: An integer representing the byte value read, or -1 if the end of the stream is
reached.

read

public int read(byte b[], int pos, int len) throws
IOException
This method reads up to len bytes from the currently active substream in the sequence
input stream into the byte array b beginning off bytes into the array, blocking until all
bytes are read. If the end of the substream is reached, the close method is called on the
substream and read begins reading from the next substream.
Parameters:
b-the byte array into which the data is read.
off-the starting offset into the array for the data to be written to.
len-the maximum number of bytes to read.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (56 of 63) [11/06/2000 7:48:44 PM]



Returns: The actual number of bytes read, or -1 if the end of the stream is reached.
Throws: IOException if an I/O error occurs.

StreamTokenizer

Extends: Object
This class implements a string tokenizer stream, which parses an input stream into a stream
of tokens. The StreamTokenizer class provides a variety of methods for establishing
how the tokens are parsed. Each character read from the stream is evaluated as having zero
or more of the following attributes: whitespace, alphabetic, numeric, string quote, or
comment.

Member Variables

public double nval

This member variable holds a numeric token value whenever the ttype member variable is set to
TT_NUMBER.

public String sval

This member variable holds a string representation of a word token whenever the ttype member variable
is set to TT_WORD, or it holds the body of a quoted string token when ttype is set to a quote character.

public int ttype

This is the type of the current token, which can be one of the following:

Integer representation of a character for single character tokens.●   

Quote character for quoted string tokens.●   

TT_WORD for word tokens.●   

TT_NUMERIC for numeric tokens.●   

TT_EOL if the end of a line has been reached on the input stream.●   

TT_EOF if the end of the stream has been reached.●   

public final static int TT_EOF

This is a constant token type representing the end-of-file token.

public final static int TT_EOL

This is a constant token type representing the end-of-line token.

public final static int TT_NUMBER

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (57 of 63) [11/06/2000 7:48:44 PM]



This is a constant token type identifying a numeric token; the actual numeric value is stored in nval.

public final static int TT_WORD

This is a constant token type identifying a word token; the actual word value is stored in sval.

StreamTokenizer Constructor

public StreamTokenizer(InputStream I)
This constructor creates a string tokenizer stream that parses the specified input stream. By
default, the string tokenizer stream recognizes numbers, strings quoted with single and
double quotes, all alphabetic characters, and comments preceded by a '/' character.
Parameters: I-the input stream to be parsed.

commentChar

public void commentChar(int ch)
This method establishes the specified character as starting single line comments.
Parameters: ch-the new single line comment character.

eolIsSignificant

public void eolIsSignificant(boolean flag)
This method establishes whether end-of-line characters are recognized as tokens.
Parameters: flag-a boolean value specifying whether end-of-line characters are treated as
tokens; a value of true means end-of-line characters are treated as tokens, whereas a value
of false means they are treated as whitespace.

lineno

public int lineno()
This method determines the current line number of the string tokenizer stream.
Returns: The current line number of the stream.

lowerCaseMode

public void lowerCaseMode(boolean flag)
This method establishes whether word tokens (TT_WORD) are forced to lowercase when
they are parsed.
Parameters: flag-a boolean value specifying whether word tokens are forced to
lowercase; a value of true means word tokens are forced to lowercase, whereas a value of
false means they are left unmodified.

nextToken

public int nextToken() throws IOException
This method parses the next token from the underlying input stream. After the token is

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (58 of 63) [11/06/2000 7:48:44 PM]



parsed, the ttype member variable is set to the type of the token, while the value of some
tokens is contained in either the nval or sval member variables, depending on the token
type.
Returns: The type of the token.
Throws: IOException if an I/O error occurs.

ordinaryChar

public void ordinaryChar(int ch)
This method establishes that the specified character is handled as an ordinary character by
the tokenizer, meaning that the character is not interpreted as a comment character, word
component, string delimiter, whitespace, or numeric character. Ordinary characters are
parsed as single character tokens.
Parameters: ch-the character to be set as ordinary.

ordinaryChars

public void ordinaryChars(int low, int hi)
This method establishes that the characters in the specified range are handled as ordinary
characters by the tokenizer, meaning that the characters are not interpreted as com-
ment characters, word components, string delimiters, whitespace, or numeric characters.
Ordinary characters are parsed as single character tokens.
Parameters:
low-the low end of the ordinary character range.
hi-the high end of the ordinary character range.

parseNumbers

public void parseNumbers()
This method establishes that numbers should be parsed. When a number is parsed, the
ttype member variable is set to TT_NUMBER, with the corresponding numeric value
stored in nval.

pushBack

public void pushBack()
This method pushes the current token back into the string tokenizer stream, meaning that the
next call to nextToken will result in this token being handled.

quoteChar

public void quoteChar(int ch)
This method establishes that matching pairs of the specified character be used to delimit
string constants. When a string constant is parsed, the ttype member variable is set to the
delimiting character, with the corresponding string body stored in sval.
Parameters: ch-the new string delimiter character.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (59 of 63) [11/06/2000 7:48:44 PM]



resetSyntax

public void resetSyntax()
This method resets the syntax table so that all characters are considered ordinary. An
ordinary character is a character that isn't interpreted as a comment character, word
component, string delimiter, whitespace, or numeric character. Ordinary characters are
parsed as single character tokens.

slashSlashComments

public void slashSlashComments(boolean flag)
This method establishes whether C++ style comments (//) are recognized by the parser. A
C++ style comment is defined by two consecutive forward slash characters, which starts a
comment that extends to the end of the line.
Parameters: flag-a boolean value specifying whether C++ style comments are recognized;
a value of true means C++ style comments are recognized, whereas a value of false
means they are not treated specially.

slashStarComments

public void slashStarComments(boolean flag)
This method establishes whether C style comments (/*...*/) are recognized by the
parser. A C style comment is defined by a forward slash character followed by an asterisk,
which starts a comment. The comment continues until a corresponding asterisk followed by
a forward slash character is reached.
Parameters: flag-a boolean value specifying whether C style comments are recognized; a
value of true means C style comments are recognized, whereas a value of false means
they are not treated specially.

toString

public String toString()
This method determines the string representation of the current token in the string tokenizer
stream.
Returns: The string representation of the current token.

whitespaceChars

public void whitespaceChars(int low, int hi)
This method establishes that the characters in the specified range are handled as whitespace
by the tokenizer, meaning that the characters serve only to separate tokens.
Parameters:
low-the low end of the whitespace character range.
hi-the high end of the whitespace character range.

wordChars

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (60 of 63) [11/06/2000 7:48:44 PM]



public void wordChars(int low, int hi)
This method establishes that the characters in the specified range are handled as words by
the tokenizer.
Parameters: low-the low end of the word character range.
Parameters: hi-the high end of the word character range.

StringBufferInputStream

Extends: InputStream
This class implements an input stream whose data is fed by a string. Note that only the
lower 8 bits of each character in the string are used by this class.

Member Variables

protected String buffer

This is the string buffer from which the data is read.

protected int count

This is the number of characters currently in the buffer.

protected int pos

This is the current read position in the buffer.

StringBufferInputStream Constructor

public StringBufferInputStream(String s)
This constructor creates a string buffer input stream based on the specified string. Note that
the string buffer is not copied to create the input stream.
Parameters: s-the input string buffer.

available

public int available()
This method determines the number of bytes that can be read from the string buffer input
stream without blocking.
Returns: The number of available bytes.

read

public int read()
This method reads a byte value from the string buffer input stream, which is the lower 8 bits
of the next character in the underlying string buffer.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (61 of 63) [11/06/2000 7:48:44 PM]



Returns: An integer representing the byte value read, or -1 if the end of the stream is
reached.

read

public int read(byte b[], int off, int len)
This method reads up to len bytes from the string buffer input stream into the byte array b
beginning off bytes into the array. Note that each byte is actually the lower 8 bits of the
corresponding character in the underlying string buffer.
Parameters:
b-the byte array into which the data is read.
off-the starting offset into the array for the data to be written to.
len-the maximum number of bytes to read.
Returns: The actual number of bytes read, or -1 if the end of the stream is reached.

reset

public void reset()
This method resets the read position to the beginning of the string buffer input stream.

skip

public long skip(long n)
This method skips n bytes of data in the string buffer input stream.
Parameters: n-the number of bytes to skip.
Returns: The actual number of bytes skipped.

EOFException

Extends: IOException
This exception class signals that an end-of-file (EOF) has been reached unexpectedly during
an input operation. This exception is primarily used by data input streams, which typically
expect a binary file in a specific format, in which case an end-of-file is an unusual condition.

FileNotFoundException

Extends: IOException
This exception class signals that a file could not be found.

IOException

Extends: Exception
This exception class signals that some kind of input/output (I/O) exception has occurred.

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (62 of 63) [11/06/2000 7:48:44 PM]



InterruptedIOException

Extends: IOException
This exception class signals that an input/output (I/O) operation has been interrupted.

UTFDataFormatException

Extends: IOException
This exception class signals that a malformed UTF-8 string has been read in a data input
stream.

   

appendix I -- java.io Package Reference

file:///G|/ebooks/1575211831/ch37.htm (63 of 63) [11/06/2000 7:48:44 PM]



appendix J

java.lang Package Reference

CONTENTS
Cloneable●   

Runnable●   

Boolean●   

Character●   

Class●   

ClassLoader●   

Compiler●   

Double●   

Float●   

Integer●   

Long●   

Math●   

Number●   

Object●   

Process●   

Runtime●   

SecurityManager●   

String●   

StringBuffer●   

System●   

Thread●   

ThreadGroup●   

Throwable●   

RuntimeException●   

ClassNotFoundException●   

CloneNotSupportedException●   

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (1 of 83) [11/06/2000 7:49:01 PM]



Exception●   

IllegalAccessException●   

IllegalArgumentException●   

IllegalMonitorStateException●   

IllegalThreadStateException●   

IndexOutOfBoundsException●   

InstantiationException●   

InterruptedException●   

NegativeArraySizeException●   

NullPointerException●   

NumberFormatException●   

RuntimeException●   

SecurityException●   

StringIndexOutOfBoundsException●   

AbstractMethodError●   

ClassFormatError●   

Error●   

IllegalAccessError●   

IncompatibleClassChangeError●   

InstantiationError●   

InternalError●   

LinkageError●   

NoClassDefFoundError●   

NoSuchFieldError●   

NoSuchMethodError●   

OutOfMemoryError●   

StackOverflowError●   

ThreadDeath●   

UnknownError●   

UnsatisfiedLinkError●   

VerifyError●   

VirtualMachineError●   

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (2 of 83) [11/06/2000 7:49:01 PM]



The java.lang package provides the core classes that make up the Java programming environment.
The language package includes classes representing numbers, strings, and objects, as well as classes for
handling compilation, the runtime environment, security, and threaded programming. The java.lang
package is automatically imported into every Java program.

Cloneable

This interface indicates that an object may be cloned using the clone method defined in Object. The
clone method clones an object by copying each of its member variables. Attempts to clone an object
that doesn't implement the Cloneable interface result in a CloneNotSupportedException
being thrown.

Runnable

This interface provides a means for an object to be executed within a thread without having to be derived
from the Thread class. Classes implementing the Runnable interface supply a run method that
defines the threaded execution for the class.

run

public abstract void run()
This method is executed when a thread associated with an object implementing the
Runnable interface is started. All of the threaded execution for the object takes place in
the run method, which means you should place all threaded code in this method.

Boolean

Extends: Object
This class implements an object type wrapper for boolean values. Object type wrappers are
useful because many Java classes operate on objects rather than primitive data types.

Member Constants

public final static Boolean FALSE

This is a constant Boolean object representing the primitive boolean value false.

public final static Boolean TRUE

This is a constant Boolean object representing the primitive boolean value true.

Boolean Constructor

public Boolean(boolean value)

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (3 of 83) [11/06/2000 7:49:01 PM]



This constructor creates a boolean wrapper object representing the specified primitive
boolean value.
Parameters: value-the boolean value to be wrapped.

Boolean Constructor

public Boolean(String s)
This constructor creates a boolean wrapper object representing the specified string. If the
string is set to "true", the wrapper represents the primitive boolean value true;
otherwise, the wrapper represents false.
Parameters: s-the string representation of a boolean value to be wrapped.

booleanValue

public boolean booleanValue()
This method determines the primitive boolean value represented by this object.
Returns: The boolean value represented.

equals

public boolean equals(Object obj)
This method compares the boolean value of the specified object to the boolean value of this
object. The equals method returns true only if the specified object is a Boolean object
representing the same primitive boolean value as this object.
Parameters: obj-the object to compare.
Returns: true if the specified object is a Boolean object representing the same primitive
boolean value as this object; false otherwise.

getBoolean

public static boolean getBoolean(String name)
This method determines the boolean value of the system property with the specified name.
Parameters: name-the system property name to check the boolean value of.
Returns: The boolean value of the specified system property.

hashCode

public int hashCode()
This method calculates a hash code for this object.
Returns: A hash code for this object.

toString

public String toString()
This method determines a string representation of the primitive boolean value for this
object. If the boolean value is true, the string "true" is returned; otherwise, the string
"false" is returned.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (4 of 83) [11/06/2000 7:49:01 PM]



Returns: A string representing the boolean value of this object.

valueOf

public static Boolean valueOf(String s)
This method creates a new boolean wrapper object based on the boolean value represented
by the specified string. If the string is set to "true", the wrapper represents the primitive
boolean value true; otherwise, the wrapper represents false.
Parameters: s-the string representation of a boolean value to be wrapped.
Returns: A boolean wrapper object representing the specified string.

Character

Extends: Object
This class implements an object type wrapper for character values. Object type wrappers are
useful because many Java classes operate on objects rather than primitive data types.

Member Constants

public final static int MAX_RADIX

This is a constant representing the maximum radix value allowed for conversion between numbers and
strings. This constant is set to 36.

public final static int MAX_VALUE

This is a constant representing the largest character value supported. This constant is set to '\uffff'.

public final static int MIN_RADIX

This is a constant representing the minimum radix value allowed for conversion between numbers and
strings. This constant is set to 2.

public final static int MIN_VALUE

This is a constant representing the smallest character value supported. This constant is set to '\u0000'.

Character Constructor

public Character(char value)
This constructor creates a character wrapper object representing the specified primitive
character value.
Parameters: value-the character value to be wrapped.

charValue

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (5 of 83) [11/06/2000 7:49:01 PM]



public char charValue()
This method determines the primitive character value represented by this object.
Returns: The character value represented.

digit

public static int digit(char ch, int radix)
This method determines the numeric value of the specified character digit using the
specified radix.
Parameters:
ch-the character to be converted to a number.
radix-the radix to use in the conversion.
Returns: The numeric value of the specified character digit using the specified radix, or -1
if the character isn't a valid numeric digit.

equals

public boolean equals(Object obj)
This method compares the character value of the specified object to the character value of
this object. The equals method returns true only if the specified object is a
Character object representing the same primitive character value as this object.
Parameters: obj-the object to compare.
Returns: true if the specified object is a Character object representing the same
primitive character value as this object; false otherwise.

forDigit

public static char forDigit(int digit, int radix)
This method determines the character value of the specified numeric digit using the
specified radix.
Parameters:
digit-the numeric digit to be converted to a character.
radix-the radix to use in the conversion.
Returns: The character value of the specified numeric digit using the specified radix, or 0 if
the number isn't a valid character.

hashCode

public int hashCode()
This method calculates a hash code for this object.
Returns: A hash code for this object.

isDefined

public static boolean isDefined(char ch)
This method determines if the specified character has a defined Unicode meaning. A
character is defined if it has an entry in the Unicode attribute table.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (6 of 83) [11/06/2000 7:49:01 PM]



Parameters: ch-the character to be checked.
Returns: true if the character has a defined Unicode meaning; false otherwise.

isDigit

public static boolean isDigit(char ch)
This method determines if the specified character is a numeric digit. A character is a
numeric digit if its Unicode name contains the word DIGIT.
Parameters: ch-the character to be checked.
Returns: true if the character is a numeric digit; false otherwise.

isJavaLetter

public static boolean isJavaLetter(char ch)
This method determines if the specified character is permissible as the leading character in a
Java identifier. A character is considered a Java letter if it is a letter, the ASCII dollar sign
character ($), or the underscore character (_).
Parameters: ch-the character to be checked.
Returns: true if the character is a Java letter; false otherwise.

isJavaLetterOrDigit

public static boolean isJavaLetterOrDigit(char ch)
This method determines if the specified character is permissible as a non-leading character
in a Java identifier. A character is considered a Java letter or digit if it is a letter, a digit, the
ASCII dollar sign character ($), or the underscore character (_).
Parameters: ch-the character to be checked.
Returns: true if the character is a Java letter or digit; false otherwise.

isLetter

public static boolean isLetter(char ch)
This method determines if the specified character is a letter.
Parameters: ch-the character to be checked.
Returns: true if the character is a letter; false otherwise.

isLetterOrDigit

public static boolean isLetterOrDigit(char ch)
This method determines if the specified character is a letter or digit.
Parameters: ch-the character to be checked.
Returns: true if the character is a letter or digit; false otherwise.

isLowerCase

public static boolean isLowerCase(char ch)
This method determines if the specified character is a lowercase character.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (7 of 83) [11/06/2000 7:49:01 PM]



Parameters: ch-the character to be checked.
Returns: true if the character is a lowercase character; false otherwise.

isSpace

public static boolean isSpace(char ch)
This method determines if the specified character is a whitespace character.
Parameters: ch-the character to be checked.
Returns: true if the character is a whitespace character; false otherwise.

isTitleCase

public static boolean isTitleCase(char ch)
This method determines if the specified character is a titlecase character. Titlecase
characters are those whose printed representations look like pairs of Latin letters.
Parameters: ch-the character to be checked.
Returns: true if the character is a titlecase character; false otherwise.

isUpperCase

public static boolean isUpperCase(char ch)
This method determines if the specified character is an uppercase character.
Parameters: ch-the character to be checked.
Returns: true if the character is an uppercase character; false otherwise.

toLowerCase

public static char toLowerCase(char ch)
This method converts the specified character to a lowercase character, if the character isn't
already lowercase and a lowercase equivalent exists.
Parameters: ch-the character to be converted.
Returns: The lowercase equivalent of the specified character, if one exists; otherwise, the
original character.

toString

public String toString()
This method determines a string representation of the primitive character value for this
object; the resulting string is one character in length.
Returns: A string representing the character value of this object.

toTitleCase

public static char toTitleCase(char ch)
This method converts the specified character to a titlecase character, if the character isn't
already titlecase and a titlecase equivalent exists. Titlecase characters are those whose
printed representations look like pairs of Latin letters.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (8 of 83) [11/06/2000 7:49:01 PM]



Parameters: ch-the character to be converted.
Returns: The titlecase equivalent of the specified character, if one exists; otherwise, the
original character.

toUpperCase

public static char toUpperCase(char ch)
This method converts the specified character to an uppercase character, if the character isn't
already uppercase and an uppercase equivalent exists.
Parameters: ch-the character to be converted.
Returns: The uppercase equivalent of the specified character, if one exists; otherwise, the
original character.

Class

Extends: Object
This class implements a runtime descriptor for classes and interfaces in a running Java
program. Instances of Class are automatically constructed by the Java virtual machine
when classes are loaded, which explains why there are no public constructors for the class.

forName

public static Class forName(String className) throws
ClassNotFoundException
This method determines the runtime class descriptor for the class with the specified name.
Parameters: className-the fully qualified name of the desired class.
Returns: The runtime class descriptor for the class with the specified name.
Throws: ClassNotFoundException if the class could not be found.

getClassLoader

public ClassLoader getClassLoader()
This method determines the class loader for this object.
Returns: The class loader for this object, or null if the class wasn't created by a class loader.

getInterfaces

public Class[] getInterfaces()
This method determines the interfaces implemented by the class or interface represented by
this object.
Returns: An array of interfaces implemented by the class or interface represented by this
object, or an array of length 0 if no interfaces are implemented.

getName

public String getName()

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (9 of 83) [11/06/2000 7:49:01 PM]



This method determines the fully qualified name of the class or interface represented by this
object.
Returns: The fully qualified name of the class or interface represented by this object.

getSuperclass

public Class getSuperclass()
This method determines the superclass of the class represented by this object.
Returns: The superclass of the class represented by this object, or null if this object
represents the Object class.

isInterface

public boolean isInterface()
This method determines if the class represented by this object is actually an interface.
Returns: true if the class is an interface; false otherwise.

newInstance

public Object newInstance() throws InstantiationException,
IllegalAccessException
This method creates a new default instance of the class represented by this object.
Returns: A new default instance of the class represented by this object.
Throws: InstantiationException if you try to instantiate an abstract class or an
interface, or if the instantiation fails for some other reason.
Throws: IllegalAccessException if the class is not accessible.

toString

public String toString()
This method determines the name of the class or interface represented by this object, with
the string "class" or the string "interface" prepended appropriately.
Returns: The name of the class or interface represented by this object, with a descriptive
string prepended indicating whether the object represents a class or interface.

ClassLoader

Extends: Object
This class is an abstract class that defines a mechanism for dynamically loading classes into
the Java runtime system.

ClassLoader Constructor

protected ClassLoader()
This constructor creates a default class loader. If a security manager is present, it is checked
to see if the current thread has permission to create the class loader. If not, a

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (10 of 83) [11/06/2000 7:49:01 PM]



SecurityException is thrown.
Throws: SecurityException if the current thread doesn't have permission to create the
class loader.

defineClass

protected final Class defineClass(byte b[], int off, int len)
This method converts an array of bytes into an instance of class Class by reading len
bytes from the array b beginning off bytes into the array.
Parameters:
b-the byte array containing the class data.
off-the starting offset into the array for the data.
len-the length in bytes of the class data.
Returns: A Class object created from the class data.
Throws: ClassFormatError if the class data does not define a valid class.

findSystemClass

protected final Class findSystemClass(String name) throws
ClassNotFoundException
This method finds the system class with the specified name, loading it if necessary. A
system class is a class loaded from the local file system with no class loader in a
platform-specific manner.
Parameters: name-the name of the system class to find.
Returns: A Class object representing the system class.
Throws: ClassNotFoundException if the class is not found.
Throws: NoClassDefFoundError if a definition for the class is not found.

loadClass

protected abstract Class loadClass(String name, boolean
resolve)
throws ClassNotFoundException
This method loads the class with the specified name, resolving it if the resolve parameter
is set to true. This method must be implemented in all derived class loaders, because it is
defined as abstract.
Parameters:
name-the name of the desired class.
resolve-a boolean value specifying whether the class is to be resolved; a value of true
means the class is resolved, whereas a value of false means the class isn't resolved.
Returns: The loaded Class object, or null if the class isn't found.
Throws: ClassNotFoundException if the class is not found.

resolveClass

protected final void resolveClass(Class c)

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (11 of 83) [11/06/2000 7:49:01 PM]



This method resolves the specified class so that instances of it can be created or so that its
methods can be called.
Parameters: c-the class to be resolved.

Compiler

Extends: Object
This class provides the framework for native Java code compilers and related services. The
Java runtime system looks for a native code compiler on startup, in which case the compiler
is called to compile Java bytecode classes into native code.

command

public static Object command(Object any)
This method performs some compiler-specific operation based on the type of specified
object and its related state.
Parameters: any-the object to perform an operation based on.
Returns: A compiler-specific value, or null if no compiler is available.

compileClass

public static boolean compileClass(Class clazz)
This method compiles the specified class.
Parameters: clazz-the class to compile.
Returns: true if the compilation was successful, false if the compilation failed or if no
compiler is available.

compileClasses

public static boolean compileClasses(String string)
This method compiles all classes whose names match the specified string name.
Parameters: string-a string containing the name of the classes to compile.
Returns: true if the compilation was successful, false if the compilation failed or if no
compiler is available.

disable

public static void disable()
This method disables the compiler.

enable

public static void enable()
This method enables the compiler.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (12 of 83) [11/06/2000 7:49:01 PM]



Double

Extends: Number
This class implements an object type wrapper for double values. Object type wrappers are
useful because many Java classes operate on objects rather than primitive data types.

Member Constants

public final static double MAX_VALUE

This is a constant representing the maximum value allowed for a double. This constant is set to
1.79769313486231570e+308d.

public final static double MIN_VALUE

This is a constant representing the minimum value allowed for a double. This constant is set to
4.94065645841246544e-324d.

public final static double NaN

This is a constant representing the not-a-number value for double types, which is not equal to anything,
including itself.

public final static double NEGATIVE_INFINITY

This is a constant representing negative infinity for double types.

public final static double POSITIVE_INFINITY

This is a constant representing positive infinity for double types.

Double Constructor

public Double(double value)
This constructor creates a double wrapper object representing the specified primitive double
value.
Parameters: value-the double value to be wrapped.

Double Constructor

public Double(String s) throws NumberFormatException
This constructor creates a double wrapper object representing the specified string. The string
is converted to a double using a similar technique as the valueOf method.
Parameters: s-the string representation of a double value to be wrapped.
Throws: NumberFormatException if the string does not contain a parsable double.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (13 of 83) [11/06/2000 7:49:01 PM]



doubleToLongBits

public static long doubleToLongBits(double value)
This method determines the IEEE 754 floating-point double precision representation of the
specified double value. The IEEE 754 floating-point double precision format specifies the
following bit layout:

63 represents the sign of the number.●   

62-52 represent the exponent of the number.●   

51-0 represent the mantissa of the number.●   

Parameters: value-the double value to convert to the IEEE 754 format.
Returns: The IEEE 754 floating-point representation of the specified double value.

doubleValue

public double doubleValue()
This method determines the primitive double value represented by this object.
Returns: The double value represented.

equals

public boolean equals(Object obj)
This method compares the double value of the specified object to the double value of this
object. The equals method only returns true if the specified object is a Double object
representing the same primitive double value as this object. Note that to be useful in hash
tables, this method considers two NaN double values to be equal, even though NaN
technically is not equal to itself.
Parameters: obj-the object to compare.
Returns: true if the specified object is a Double object representing the same primitive
double value as this object; false otherwise.

floatValue

public float floatValue()
This method converts the primitive double value represented by this object to a float.
Returns: A float conversion of the double value represented.

hashCode

public int hashCode()
This method calculates a hash code for this object.
Returns: A hash code for this object.

intValue

public int intValue()
This method converts the primitive double value represented by this object to an integer.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (14 of 83) [11/06/2000 7:49:01 PM]



Returns: An integer conversion of the double value represented.

isInfinite

public boolean isInfinite()
This method determines if the primitive double value represented by this object is positive
or negative infinity.
Returns: true if the double value is positive or negative infinity; false otherwise.

isInfinite

public static boolean isInfinite(double v)
This method determines if the specified double value is positive or negative infinity.
Parameters: v-the double value to be checked.
Returns: true if the double value is positive or negative infinity; false otherwise.

isNaN

public boolean isNaN()
This method determines if the primitive double value represented by this object is not a
number (NaN).
Returns: true if the double value is not a number; false otherwise.

isNaN

public static boolean isNaN(double v)
This method determines if the specified double value is not a number (NaN).
Parameters: v-the double value to be checked.
Returns: true if the double value is not a number; false otherwise.

longBitsToDouble

public static double longBitsToDouble(long bits)
This method determines the double representation of the specified IEEE 754 floating-point
double precision value. The IEEE 754 floating-point double precision format specifies the
following bit layout:

63 represents the sign of the number.●   

62-52 represent the exponent of the number.●   

51-0 represent the mantissa of the number.●   

Parameters: bits-the IEEE 754 floating-point value to convert to a double.
Returns: The double representation of the specified IEEE 754 floating-point value.

longValue

public long longValue()
This method converts the primitive double value represented by this object to a long.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (15 of 83) [11/06/2000 7:49:01 PM]



Returns: A long conversion of the double value represented.

toString

public String toString()
This method determines a string representation of the primitive double value for this object.
Returns: A string representing the double value of this object.

toString

public static String toString(double d)
This method determines a string representation of the specified double value.
Parameters: d-the double value to be converted.
Returns: A string representing the specified double value.

valueOf

public static Double valueOf(String s) throws
NumberFormatException
This method creates a new double wrapper object based on the double value represented by
the specified string.
Parameters: s-the string representation of a double value to be wrapped.
Returns: A double wrapper object representing the specified string.
Throws: NumberFormatException if the string does not contain a parsable double.

Float

Extends: Number
This class implements an object type wrapper for float values. Object type wrappers are
useful because many Java classes operate on objects rather than primitive data types.

Member Constants

public final static float MAX_VALUE

This is a constant representing the maximum value allowed for a float. This constant is set to
3.40282346638528860e+38.

public final static float MIN_VALUE

This is a constant representing the minimum value allowed for a float. This constant is set to
1.40129846432481707e-45.

public final static float NaN

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (16 of 83) [11/06/2000 7:49:01 PM]



This is a constant representing the not-a-number value for float types, which is not equal to anything,
including itself.

public final static float NEGATIVE_INFINITY

This is a constant representing negative infinity for float types.

public final static float POSITIVE_INFINITY

This is a constant representing positive infinity for float types.

Float Constructor

public Float(double value)
This constructor creates a float wrapper object representing the specified primitive double
value.
Parameters: value-the double value to be wrapped.

Float Constructor

public Float(float value)
This constructor creates a float wrapper object representing the specified primitive float
value.
Parameters: value-the float value to be wrapped.

Float Constructor

public Float(String s) throws NumberFormatException
This constructor creates a float wrapper object representing the specified string. The string is
converted to a float using a similar technique as the valueOf method.
Parameters: s-the string representation of a float value to be wrapped.
Throws: NumberFormatException if the string does not contain a parsable float.

doubleValue

public double doubleValue()
This method converts the primitive float value represented by this object to a double.
Returns: A double conversion of the float value represented.

equals

public boolean equals(Object obj)
This method compares the float value of the specified object to the float value of this object.
The equals method only returns true if the specified object is a Float object
representing the same primitive float value as this object. Note that to be useful in hash
tables, this method considers two NaN float values to be equal, even though NaN technically
is not equal to itself.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (17 of 83) [11/06/2000 7:49:01 PM]



Parameters: obj-the object to compare.
Returns: true if the specified object is a Float object representing the same primitive
float value as this object; false otherwise.

floatToIntBits

public static int floatToIntBits(float value)
This method determines the IEEE 754 floating-point single precision representation of the
specified float value. The IEEE 754 floating-point single precision format specifies the
following bit layout:

31 represents the sign of the number.●   

30-23 represent the exponent of the number.●   

22-0 represent the mantissa of the number.●   

Parameters: value-the float value to convert to the IEEE 754 format.
Returns: The IEEE 754 floating-point representation of the specified float value.

floatValue

public float floatValue()
This method determines the primitive float value represented by this object.
Returns: The float value represented.

hashCode

public int hashCode()
This method calculates a hash code for this object.
Returns: A hash code for this object.

intBitsToFloat

public static float intBitsToFloat(int bits)
This method determines the float representation of the specified IEEE 754 floating-point
single precision value. The IEEE 754 floating-point single precision format specifies the
following bit layout:

31 represents the sign of the number.●   

30-23 represent the exponent of the number.●   

22-0 represent the mantissa of the number.●   

Parameters: bits-the IEEE 754 floating-point value to convert to a float.
Returns: The float representation of the specified IEEE 754 floating-point value.

intValue

public int intValue()
This method converts the primitive float value represented by this object to an integer.
Returns: An integer conversion of the float value represented.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (18 of 83) [11/06/2000 7:49:01 PM]



isInfinite

public boolean isInfinite()
This method determines if the primitive float value represented by this object is positive or
negative infinity.
Returns: true if the float value is positive or negative infinity; false otherwise.

isInfinite

public static boolean isInfinite(float v)
This method determines if the specified float value is positive or negative infinity.
Parameters: v-the float value to be checked.
Returns: true if the float value is positive or negative infinity; false otherwise.

isNaN

public boolean isNaN()
This method determines if the primitive float value represented by this object is not a
number (NaN).
Returns: true if the float value is not a number; false otherwise.

isNaN

public static boolean isNaN(float v)
This method determines if the specified float value is not a number (NaN).
Parameters: v-the float value to be checked.
Returns: true if the float value is not a number; false otherwise.

longValue

public long longValue()
This method converts the primitive float value represented by this object to a long.
Returns: A long conversion of the float value represented.

toString

public String toString()
This method determines a string representation of the primitive float value for this object.
Returns: A string representing the float value of this object.

toString

public static String toString(float f)
This method determines a string representation of the specified float value.
Parameters: f-the float value to be converted.
Returns: A string representing the specified float value.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (19 of 83) [11/06/2000 7:49:01 PM]



valueOf

public static Float valueOf(String s) throws
NumberFormatException
This method creates a new float wrapper object based on the float value represented by the
specified string.
Parameters: s-the string representation of a float value to be wrapped.
Returns: A float wrapper object representing the specified string.
Throws: NumberFormatException if the string does not contain a parsable float.

Integer

Extends: Number
This class implements an object type wrapper for integer values. Object type wrappers are
useful because many Java classes operate on objects rather than primitive data types.

Member Constants

public final static int MAX_VALUE
This is a constant representing the maximum value allowed for an integer. This constant is
set to 0x7fffffff.
public final static int MIN_VALUE
This is a constant representing the minimum value allowed for an integer. This constant is
set to 0x80000000.

Integer Constructor

public Integer(int value)
This constructor creates an integer wrapper object representing the specified primitive
integer value.
Parameters: value-the integer value to be wrapped.

Integer Constructor

public Integer(String s) throws NumberFormatException
This constructor creates an integer wrapper object representing the specified string. The
string is converted to an integer using a similar technique as the valueOf method.
Parameters: s-the string representation of an integer value to be wrapped.
Throws: NumberFormatException if the string does not contain a parsable integer.

doubleValue

public double doubleValue()
This method converts the primitive integer value represented by this object to a double.
Returns: A double conversion of the integer value represented.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (20 of 83) [11/06/2000 7:49:01 PM]



equals

public boolean equals(Object obj)
This method compares the integer value of the specified object to the integer value of this
object. The equals method returns true only if the specified object is an Integer
object representing the same primitive integer value as this object.
Parameters: obj-the object to compare.
Returns: true if the specified object is an Integer object representing the same
primitive integer value as this object; false otherwise.

floatValue

public float floatValue()
This method converts the primitive integer value represented by this object to a float.
Returns: A float conversion of the integer value represented.

getInteger

public static Integer getInteger(String name)
This method determines an Integer object representing the value of the system property
with the specified name. If the system property doesn't exist, null is returned.
Parameters: name-the system property name to check the integer value of.
Returns: An Integer object representing the value of the specified system property, or
null if the property doesn't exist.

getInteger

public static Integer getInteger(String name, int val)
This method determines an Integer object representing the value of the system property
with the specified name. If the system property doesn't exist, an Integer object
representing the specified default property value is returned.
Parameters: name-the system property name to check the integer value of.
Parameters: val-the default integer property value.
Returns: An Integer object representing the value of the specified system property, or an
Integer object representing val if the property doesn't exist.

getInteger

public static Integer getInteger(String name, Integer val)
This method determines an Integer object representing the value of the system property
with the specified name. In addition, this version of getInteger includes support for
reading hexadecimal and octal property values. If the system property doesn't exist, the
specified default property value is returned.
Parameters:
name-the system property name to check the integer value of.
val-the default integer property value object.
Returns: An Integer object representing the value of the specified system property, or

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (21 of 83) [11/06/2000 7:49:01 PM]



val if the property doesn't exist.

hashCode

public int hashCode()
This method calculates a hash code for this object.
Returns: A hash code for this object.

intValue

public int intValue()
This method determines the primitive integer value represented by this object.
Returns: The integer value represented.

longValue

public long longValue()
This method converts the primitive integer value represented by this object to a long.
Returns: A long conversion of the integer value represented.

parseInt

public static int parseInt(String s) throws
NumberFormatException
This method parses a signed decimal integer value from the specified string. Note that all
the characters in the string must be decimal digits, with the exception that the first character
can be a minus character (-) to denote a negative number.
Parameters: s-the string representation of an integer value.
Returns: The integer value represented by the specified string.
Throws: NumberFormatException if the string does not contain a parsable integer.

parseInt

public static int parseInt(String s, int radix) throws
NumberFormatException
This method parses a signed integer value in the specified radix from the specified string.
Note that all the characters in the string must be digits in the specified radix, with the
exception that the first character can be a minus character (-) to denote a negative number.
Parameters:
s-the string representation of an integer value.
radix-the radix to use for the integer.
Returns: The integer value represented by the specified string.
Throws: NumberFormatException if the string does not contain a parsable integer.

toBinaryString

public static String toBinaryString(int i)

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (22 of 83) [11/06/2000 7:49:02 PM]



This method determines a string representation of the specified unsigned base 2 integer
value.
Parameters: i-the unsigned base 2 integer value to be converted.
Returns: A string representing the specified unsigned base 2 integer value.

toHexString

public static String toHexString(int i)
This method determines a string representation of the specified unsigned base 16 integer
value.
Parameters: i-the unsigned base 16 integer value to be converted.
Returns: A string representing the specified unsigned base 16 integer value.

toOctalString

public static String toOctalString(int i)
This method determines a string representation of the specified unsigned base 8 integer
value.
Parameters: i-the unsigned base 8 integer value to be converted.
Returns: A string representing the specified unsigned base 8 integer value.

toString

public String toString()
This method determines a string representation of the primitive decimal integer value for
this object.
Returns: A string representing the decimal integer value of this object.

toString

public static String toString(int i)
This method determines a string representation of the specified decimal integer value.
Parameters: i-the decimal integer value to be converted.
Returns: A string representing the specified decimal integer value.

toString

public static String toString(int i, int radix)
This method determines a string representation of the specified integer value in the specified
radix.
Parameters:
i-the integer value to be converted.
radix-the radix to use for the conversion.
Returns: A string representing the specified integer value in the specified radix.

valueOf

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (23 of 83) [11/06/2000 7:49:02 PM]



public static Integer valueOf(String s) throws
NumberFormatException
This method creates a new integer wrapper object based on the decimal integer value
represented by the specified string.
Parameters: s-the string representation of a decimal integer value to be wrapped.
Returns: An integer wrapper object representing the specified string.
Throws: NumberFormatException if the string does not contain a parsable integer.

valueOf

public static Integer valueOf(String s, int radix) throws
NumberFormatException
This method creates a new integer wrapper object based on the integer value in the specified
radix represented by the specified string.
Parameters:
s-the string representation of an integer value to be wrapped.
radix-the radix to use for the integer.
Returns: An integer wrapper object in the specified radix representing the specified string.
Throws: NumberFormatException if the string does not contain a parsable integer.

Long

Extends: Number
This class implements an object type wrapper for long values. Object type wrappers are
useful because many Java classes operate on objects rather than primitive data types.

Member Constants

public final static int MAX_VALUE

This is a constant representing the maximum value allowed for a long. This constant is set to
0x7fffffffffffffff.

public final static int MIN_VALUE

This is a constant representing the minimum value allowed for a long. This constant is set to
0x8000000000000000.

Long Constructor

public Long(long value)
This constructor creates a long wrapper object representing the specified primitive long
value.
Parameters: value-the long value to be wrapped.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (24 of 83) [11/06/2000 7:49:02 PM]



Long Constructor

public Long(String s) throws NumberFormatException
This constructor creates a long wrapper object representing the specified string. The string is
converted to a long using a similar technique as the valueOf method.
Parameters: s-the string representation of a long value to be wrapped.
Throws: NumberFormatException if the string does not contain a parsable long.

doubleValue

public double doubleValue()
This method converts the primitive long value represented by this object to a double.
Returns: A double conversion of the long value represented.

equals

public boolean equals(Object obj)
This method compares the long value of the specified object to the long value of this object.
The equals method returns true only if the specified object is a Long object
representing the same primitive long value as this object.
Parameters: obj-the object to compare.
Returns: true if the specified object is a Long object representing the same primitive long
value as this object; false otherwise.

floatValue

public float floatValue()
This method converts the primitive long value represented by this object to a float.
Returns: A float conversion of the long value represented.

getLong

public static Long getLong(String name)
This method determines a Long object representing the value of the system property with
the specified name. If the system property doesn't exist, null is returned.
Parameters: name-the system property name to check the long value of.
Returns: A Long object representing the value of the specified system property, or null if
the property doesn't exist.

getLong

public static Long getLong(String name, long val)
This method determines a Long object representing the value of the system property with
the specified name. If the system property doesn't exist, a Long object representing the
specified default property value is returned.
Parameters: name-the system property name to check the long value of.
Parameters: val-the default long property value.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (25 of 83) [11/06/2000 7:49:02 PM]



Returns: A Long object representing the value of the specified system property, or a long
object representing val if the property doesn't exist.

getLong

public static Long getLong(String name, Long val)
This method determines a Long object representing the value of the system property with
the specified name. In addition, this version of getLong includes support for reading
hexadecimal and octal property values. If the system property doesn't exist, the specified
default property value is returned.
Parameters:
name-the system property name to check the long value of.
val-the default long property value object.
Returns: A Long object representing the value of the specified system property, or val if
the property doesn't exist.

hashCode

public int hashCode()
This method calculates a hash code for this object.
Returns: A hash code for this object.

intValue

public int intValue()
This method converts the primitive long value represented by this object to an integer.
Returns: An integer conversion of the long value represented.

longValue

public long longValue()
This method determines the primitive long value represented by this object.
Returns: The long value represented.

parseLong

public static long parseLong(String s) throws
NumberFormatException
This method parses a signed decimal long value from the specified string. Note that all the
characters in the string must be decimal digits, with the exception that the first character can
be a minus character (-) to denote a negative number.
Parameters: s-the string representation of a long value.
Returns: The long value represented by the specified string.
Throws: NumberFormatException if the string does not contain a parsable long.

parseLong

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (26 of 83) [11/06/2000 7:49:02 PM]



public static long parseLong(String s, int radix) throws
NumberFormatException
This method parses a signed long value in the specified radix from the specified string. Note
that all the characters in the string must be digits in the specified radix, with the exception
that the first character can be a minus character (-) to denote a negative number.
Parameters:
s-the string representation of a long value.
radix-the radix to use for the long.
Returns: The long value represented by the specified string.
Throws: NumberFormatException if the string does not contain a parsable long.

toBinaryString

public static String toBinaryString(long l)
This method determines a string representation of the specified unsigned base 2 long value.
Parameters: l-the unsigned base 2 long value to be converted.
Returns: A string representing the specified unsigned base 2 long value.

toHexString

public static String toHexString(long l)
This method determines a string representation of the specified unsigned base 16 long value.
Parameters: l-the unsigned base 16 long value to be converted.
Returns: A string representing the specified unsigned base 16 long value.

toOctalString

public static String toOctalString(long l)
This method determines a string representation of the specified unsigned base 8 long value.
Parameters: l-the unsigned base 8 long value to be converted.
Returns: A string representing the specified unsigned base 8 long value.

toString

public String toString()
This method determines a string representation of the primitive decimal long value for this
object.
Returns: A string representing the decimal long value of this object.

toString

public static String toString(long l)
This method determines a string representation of the specified decimal long value.
Parameters: l-the decimal long value to be converted.
Returns: A string representing the specified decimal long value.

toString

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (27 of 83) [11/06/2000 7:49:02 PM]



public static String toString(long l, int radix)
This method determines a string representation of the specified long value in the specified
radix.
Parameters:
i-the long value to be converted.
radix-the radix to use for the conversion.
Returns: A string representing the specified long value in the specified radix.

valueOf

public static Long valueOf(String s) throws
NumberFormatException
This method creates a new long wrapper object based on the decimal long value represented
by the specified string.
Parameters: s-the string representation of a decimal long value to be wrapped.
Returns: A long wrapper object representing the specified string.
Throws: NumberFormatException if the string does not contain a parsable long.

valueOf

public static Long valueOf(String s, int radix) throws
NumberFormatException
This method creates a new long wrapper object based on the long value in the specified
radix represented by the specified string.
Parameters:
s-the string representation of a long value to be wrapped.
radix-the radix to use for the long.
Returns: A long wrapper object in the specified radix representing the specified string.
Throws: NumberFormatException if the string does not contain a parsable long.

Math

Extends: Object
This class implements a library of common math functions, including methods for
performing basic numerical operations such as elementary exponential, logarithm, square
root, and trigonometric functions.

Member Constants

public final static double E

This is a constant representing the double value of E, which is the base of the natural logarithms. This
constant is set to 2.7182818284590452354.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (28 of 83) [11/06/2000 7:49:02 PM]



public final static double PI

This is a constant representing the double value of PI, which is the ratio of the circumference of a circle
to its diameter. This constant is set to 3.14159265358979323846.

abs

public static double abs(double a)
This method calculates the absolute value of the specified double value.
Parameters: a-the double value to calculate the absolute value of.
Returns: The absolute value of the double value.

abs

public static float abs(float a)
This method calculates the absolute value of the specified float value.
Parameters: a-the float value to calculate the absolute value of.
Returns: The absolute value of the float value.

abs

public static int abs(int a)
This method calculates the absolute value of the specified integer value.
Parameters: a-the integer value to calculate the absolute value of.
Returns: The absolute value of the integer value.

abs

public static long abs(long a)
This method calculates the absolute value of the specified long value.
Parameters: a-the long value to calculate the absolute value of.
Returns: The absolute value of the long value.

acos

public static double acos(double a)
This method calculates the arc cosine of the specified double value.
Parameters: a-the double value to calculate the arc cosine of.
Returns: The arc cosine of the double value.

asin

public static double asin(double a)
This method calculates the arc sine of the specified double value.
Parameters: a-the double value to calculate the arc sine of.
Returns: The arc sine of the double value.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (29 of 83) [11/06/2000 7:49:02 PM]



atan

public static double atan(double a)
This method calculates the arc tangent of the specified double value.
Parameters: a-the double value to calculate the arc tangent of.
Returns: The arc tangent of the double value.

atan2

public static double atan2(double x, double y)
This method calculates the theta component of the polar coordinate (r,theta) corresponding
to the rectangular coordinate (x y) specified by the double values.
Parameters:
x-the x component value of the rectangular coordinate.
y-the y component value of the rectangular coordinate.
Returns: The theta component of the polar coordinate corresponding to the rectangular
coordinate specified by the double values.

ceil

public static double ceil(double a)
This method determines the smallest double whole number that is greater than or equal to
the specified double value.
Parameters: a-the double value to calculate the ceiling of.
Returns: The smallest double whole number that is greater than or equal to the specified
double value.

cos

public static double cos(double a)
This method calculates the cosine of the specified double value, which is specified in
radians.
Parameters: a-the double value to calculate the cosine of, in radians.
Returns: The cosine of the double value.

exp

public static double exp(double a)
This method calculates the exponential value of the specified double value, which is E
raised to the power of a.
Parameters: a-the double value to calculate the exponential value of.
Returns: The exponential value of the specified double value.

floor

public static double floor(double a)
This method determines the largest double whole number that is less than or equal to the

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (30 of 83) [11/06/2000 7:49:02 PM]



specified double value.
Parameters: a-the double value to calculate the floor of.
Returns: The largest double whole number that is less than or equal to the specified double
value.

IEEEremainder

public static double IEEEremainder(double f1, double f2)
This method calculates the remainder of f1 divided by f2 as defined by the IEEE 754
standard.
Parameters:
f1-the dividend for the division operation.
f2-the divisor for the division operation.
Returns: The remainder of f1 divided by f2 as defined by the IEEE 754 standard.

log

public static double log(double a) throws ArithmeticException
This method calculates the natural logarithm (base E) of the specified double value.
Parameters: a-the double value, which is greater than 0.0, to calculate the natural logarithm
of.
Returns: The natural logarithm of the specified double value.
Throws: ArithmeticException if the specified double value is less than 0.0.

max

public static double max(double a, double b)
This method determines the larger of the two specified double values.
Parameters:
a-the first double value to be compared.
b-the second double value to be compared.
Returns: The larger of the two specified double values.

max

public static float max(float a, float b)
This method determines the larger of the two specified float values.
Parameters:
a-the first float value to be compared.
b-the second float value to be compared.
Returns: The larger of the two specified float values.

max

public static int max(int a, int b)
This method determines the larger of the two specified integer values.
Parameters:

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (31 of 83) [11/06/2000 7:49:02 PM]



a-the first integer value to be compared.
b-the second integer value to be compared.
Returns: The larger of the two specified integer values.

max

public static long max(long a, long b)
This method determines the larger of the two specified long values.
Parameters:
a-the first long value to be compared.
b-the second long value to be compared.
Returns: The larger of the two specified long values.

min

public static double min(double a, double b)
This method determines the smaller of the two specified double values.
Parameters:
a-the first double value to be compared.
b-the second double value to be compared.
Returns: The smaller of the two specified double values.

min

public static float min(float a, float b)
This method determines the smaller of the two specified float values.
Parameters:
a-the first float value to be compared.
b-the second float value to be compared.
Returns: The smaller of the two specified float values.

min

public static int min(int a, int b)
This method determines the smaller of the two specified integer values.
Parameters:
a-the first integer value to be compared.
b-the second integer value to be compared.
Returns: The smaller of the two specified integer values.

min

public static long min(long a, long b)
This method determines the smaller of the two specified long values.
Parameters:
a-the first long value to be compared.
b-the second long value to be compared.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (32 of 83) [11/06/2000 7:49:02 PM]



Returns: The smaller of the two specified long values.

pow

public static double pow(double a, double b) throws
ArithmeticException
This method calculates the double value a raised to the power of b.
Parameters:
a-a double value to be raised to a power specified by b.
b-the power to raise a to.
Returns: The double value a raised to the power of b.
Throws: ArithmeticException if a equals 0.0 and b is less than or equal to 0.0, or if
a is less than or equal to 0.0 and b is not a whole number.

random

public static double random()
This method generates a pseudo-random double between 0.0 and 1.0.
Returns: A pseudo-random double between 0.0 and 1.0.

rint

public static double rint(double a)
This method determines the closest whole number to the specified double value. If the
double value is equally spaced between two whole numbers, rint will return the even
number.
Parameters: a-the double value to determine the closest whole number.
Returns: The closest whole number to the specified double value.

round

public static long round(double a)
This method rounds off the specified double value by determining the closest long value.
Parameters: a-the double value to round off.
Returns: The closest long value to the specified double value.

round

public static int round(float a)
This method rounds off the specified float value by determining the closest integer value.
Parameters: a-the float value to round off.
Returns: The closest integer value to the specified float value.

sin

public static double sin(double a)
This method calculates the sine of the specified double value, which is specified in radians.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (33 of 83) [11/06/2000 7:49:02 PM]



Parameters: a-the double value to calculate the sine of, in radians.
Returns: The sine of the double value.

sqrt

public static double sqrt(double a) throws
ArithmeticException
This method calculates the square root of the specified double value.
Parameters: a-the double value, which is greater than 0.0, to calculate the square root for.
Returns: The square root of the double value.
Throws: ArithmeticException if the specified double value is less than 0.0.

tan

public static double tan(double a)
This method calculates the tangent of the specified double value, which is specified in
radians.
Parameters: a-the double value to calculate the tangent of, in radians.
Returns: The tangent of the double value.

Number

Extends: Object
This class is an abstract class that provides the basic functionality required of a numeric
object. All specific numeric objects are derived from Number.

doubleValue

public abstract double doubleValue()
This method determines the primitive double value represented by this object. Note that this
may involve rounding if the number is not already a double.
Returns: The double value represented.

floatValue

public abstract float floatValue()
This method determines the primitive float value represented by this object. Note that this
may involve rounding if the number is not already a float.
Returns: The float value represented.

intValue

public abstract int intValue()
This method determines the primitive integer value represented by this object.
Returns: The integer value represented.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (34 of 83) [11/06/2000 7:49:02 PM]



longValue

public abstract long longValue()
This method determines the primitive long value represented by this object.
Returns: The long value represented.

Object

This class is the root of the Java class hierarchy, providing the core functionality required of
all objects. All classes have Object as a superclass, and all classes implement the methods
defined in Object.

Object Constructor

public Object()
This constructor creates a default object.

clone

protected Object clone() throws CloneNotSupportedException
This method creates a clone of this object by creating a new instance of the class and
copying each of the member variables of this object to the new object. To be cloneable,
derived classes must implement the Cloneable interface.
Returns: A clone of this object.
Throws: OutOfMemoryError if there is not enough memory.
Throws: CloneNotSupportedException if the object doesn't support the
Cloneable interface or if it explicitly doesn't want to be cloned.

equals

public boolean equals(Object obj)
This method compares this object with the specified object for equality. The equals
method is used by the Hashtable class to compare objects stored in the hash table.
Parameters: obj-the object to compare.
Returns: true if this object is equivalent to the specified object; false otherwise.

finalize

protected void finalize() throws Throwable
This method is called by the Java garbage collector when an object is being destroyed. The
default behavior of finalize is to do nothing. Derived classes can override finalize
to include cleanup code that is to be executed when the object is destroyed.

getClass

public final Class getClass()

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (35 of 83) [11/06/2000 7:49:02 PM]



This method determines the runtime class descriptor for this object.
Returns: The runtime class descriptor for this object.

hashCode

public int hashCode()
This method calculates a hash code for this object, which is a unique integer identifying the
object. Hash codes are used by the Hashtable class.
Returns: A hash code for this object.

notify

public final void notify()
This method wakes up a single thread that is waiting on this object's monitor. A thread is set
to wait on an object's monitor when the wait method is called. The notify method
should only be called by a thread that is the owner of this object's monitor. Note that the
notify method can only be called from within a synchronized method.
Throws: IllegalMonitorStateException if the current thread is not the owner of
this object's monitor.

notifyAll

public final void notifyAll()
This method wakes up all threads that are waiting on this object's monitor. A thread is set to
wait on an object's monitor when the wait method is called. The notifyAll method
should only be called by a thread that is the owner of this object's monitor. Note that the
notifyAll method can only be called from within a synchronized method.
Throws: IllegalMonitorStateException if the current thread is not the owner of
this object's monitor.

toString

public String toString()
This method determines a string representation of this object. It is recommended that all
derived classes override toString.
Returns: A string representing this object.

wait

public final void wait() throws InterruptedException
This method causes the current thread to wait forever until it is notified via a call to the
notify or notifyAll methods. The wait method should only be called by a thread
that is the owner of this object's monitor. Note that the wait method can only be called
from within a synchronized method.
Throws: IllegalMonitorStateException if the current thread is not the owner of
this object's monitor.
Throws: InterruptedException if another thread has interrupted this thread.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (36 of 83) [11/06/2000 7:49:02 PM]



wait

public final void wait(long timeout) throws
InterruptedException
This method causes the current thread to wait until it is notified via a call to the notify or
notifyAll method, or until the specified timeout period has elapsed. The wait method
should only be called by a thread that is the owner of this object's monitor. Note that the
wait method can only be called from within a synchronized method.
Parameters: timeout-the maximum timeout period to wait, in milliseconds.
Throws: IllegalMonitorStateException if the current thread is not the owner of
this object's monitor.
Throws: InterruptedException if another thread has interrupted this thread.

wait

public final void wait(long timeout, int nanos) throws
InterruptedException
This method causes the current thread to wait until it is notified via a call to the notify or
notifyAll method, or until the specified timeout period has elapsed. The timeout period
in this case is the addition of the timeout and nanos parameters, which provide finer
control over the timeout period. The wait method should only be called by a thread that is
the owner of this object's monitor. Note that the wait method can only be called from
within a synchronized method.
Parameters:
timeout-the maximum timeout period to wait, in milliseconds.
nanos-the additional time for the timeout period, in nanoseconds.
Throws: IllegalMonitorStateException if the current thread is not the owner of
this object's monitor.
Throws: InterruptedException if another thread has interrupted this thread.

Process

Extends: Object
This class is an abstract class that provides the basic functionality required of a system
process. Derived Process objects (subprocesses) are returned from the exec methods
defined in the Runtime class.

Process Constructor

public Process()
This constructor creates a default process.

destroy

public abstract void destroy()

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (37 of 83) [11/06/2000 7:49:02 PM]



This method kills the subprocess.

exitValue

public abstract int exitValue()
This method determines the exit value of the subprocess.
Returns: The integer exit value for the subprocess.
Throws: IllegalThreadStateException if the subprocess has not yet terminated.

getErrorStream

public abstract InputStream getErrorStream()
This method determines the error stream associated with the subprocess.
Returns: The error stream associated with the subprocess.

getInputStream

public abstract InputStream getInputStream()
This method determines the input stream associated with the subprocess.
Returns: The input stream associated with the subprocess.

getOutputStream

public abstract OutputStream getOutputStream()
This method determines the output stream associated with the subprocess.
Returns: The output stream associated with the subprocess.

waitFor

public abstract int waitFor() throws InterruptedException
This method waits for the subprocess to finish executing. When the subprocess finishes
executing, the integer exit value is returned.
Returns: The integer exit value for the subprocess.
Throws: InterruptedException if another thread has interrupted this thread.

Runtime

Extends: Object
This class provides a mechanism for interacting with the Java runtime environment. Each
running Java application has access to a single instance of the Runtime class, which it can
use to query and modify the runtime environment.

exec

public Process exec(String command) throws IOException
This method executes the system command represented by the specified string in a separate

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (38 of 83) [11/06/2000 7:49:02 PM]



subprocess.
Parameters: command-a string representing the system command to execute.
Returns: The subprocess that is executing the system command.
Throws: SecurityException if the current thread cannot create the subprocess.

exec

public Process exec(String command, String envp[]) throws
IOException
This method executes the system command represented by the specified string in a separate
subprocess with the specified environment.
Parameters:
command-a string representing the system command to execute.
envp-an array of strings representing the environment.
Returns: The subprocess that is executing the system command.
Throws: SecurityException if the current thread cannot create the subprocess.

exec

public Process exec(String cmdarray[]) throws IOException
This method executes the system command with arguments represented by the specified
string array in a separate subprocess.
Parameters: cmdarray-an array of strings representing the system command to execute
along with its arguments.
Returns: The subprocess that is executing the system command.
Throws: SecurityException if the current thread cannot create the subprocess.

exec

public Process exec(String cmdarray[], String envp[]) throws
IOException
This method executes the system command with arguments represented by the specified
string array in a separate subprocess with the specified environment.
Parameters:
cmdarray-an array of strings representing the system command to execute along with its
arguments.
envp-an array of strings representing the environment.
Returns: The subprocess that is executing the system command.
Throws: SecurityException if the current thread cannot create the subprocess.

exit

public void exit(int status)
This method exits the Java runtime system (virtual machine) with the specified integer exit
status. Note that since exit kills the runtime system, it never returns.
Parameters: status-the integer exit status; this should be set to nonzero if this is an

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (39 of 83) [11/06/2000 7:49:02 PM]



abnormal exit.
Throws: SecurityException if the current thread cannot exit with the specified exit
status.

freeMemory

public long freeMemory()
This method determines the approximate amount of free memory available in the runtime
system, in bytes.
Returns: Approximate amount of free memory available, in bytes.

gc

public void gc()
This method invokes the Java garbage collector to clean up any objects that are no longer
needed, usually resulting in more free memory.

getLocalizedInputStream

public InputStream getLocalizedInputStream(InputStream in)
This method creates a localized input stream based on the specified input stream. A
localized input stream is a stream whose local characters are mapped to Unicode characters
as they are read.
Parameters: in-the input stream to localize.
Returns: A localized input stream based on the specified input stream.

getLocalizedOutputStream

public OutputStream getLocalizedOutputStream(OutputStream
out)
This method creates a localized output stream based on the specified output stream. A
localized output stream is a stream whose Unicode characters are mapped to local characters
as they are written.
Parameters: out-the output stream to localize.
Returns: A localized output stream based on the specified output stream.

getRuntime

public static Runtime getRuntime()
This method gets the runtime environment object associated with the current Java program.
Returns: The runtime environment object associated with the current Java program.

load

public void load(String pathname)
This method loads the dynamic library with the specified complete pathname.
Parameters: pathname-the path name of the library to load.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (40 of 83) [11/06/2000 7:49:02 PM]



Throws: UnsatisfiedLinkError if the library doesn't exist.
Throws: SecurityException if the current thread can't load the library.

loadLibrary

public void loadLibrary(String libname)
This method loads the dynamic library with the specified library name. Note that the
mapping from library name to a specific filename is performed in a platform-specific
manner.
Parameters: libname-the name of the library to load.
Throws: UnsatisfiedLinkError if the library doesn't exist.
Throws: SecurityException if the current thread can't load the library.

runFinalization

public void runFinalization()
This method explicitly causes the finalize methods of any discarded objects to be called.

totalMemory

public long totalMemory()
This method determines the total amount of memory in the runtime system, in bytes.
Returns: The total amount of memory, in bytes.

traceInstructions

public void traceInstructions(boolean on)
This method is used to determine whether the Java virtual machine prints out a detailed trace
of each instruction executed.
Parameters: on-a boolean value specifying whether the Java virtual machine prints out a
detailed trace of each instruction executed; a value of true means the instruction trace is
printed, whereas a value of false means the instruction trace isn't printed.

traceMethodCalls

public void traceMethodCalls(boolean on)
This method is used to determine whether the Java virtual machine prints out a detailed trace
of each method that is called.
Parameters: on-a boolean value specifying whether the Java virtual machine prints out a
detailed trace of each method that is called; a value of true means the method call trace is
printed, whereas a value of false means the method call trace isn't printed.

SecurityManager

Extends: Object
This class is an abstract class that defines a security policy that can be used by Java

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (41 of 83) [11/06/2000 7:49:02 PM]



programs to check for potentially unsafe operations.

Member Variables

protected boolean inCheck
This member variable specifies whether a security check is in progress. A value of true
indicates that a security check is in progress, where a value of false means no check is
taking place.

SecurityManager Constructor

protected SecurityManager()
This constructor creates a default security manager. Note that only one security manager is
allowed for each Java program.
Throws: SecurityException if the security manager cannot be created.

checkAccept

public void checkAccept(String host, int port)
This method checks to see if the calling thread is allowed to establish a socket connection to
the specified port on the specified host.
Parameters:
host-the host name to connect the socket to.
port-the number of the port to connect the socket to.
Throws: SecurityException if the calling thread doesn't have permission to establish
the socket connection.

checkAccess

public void checkAccess(Thread g)
This method checks to see if the calling thread is allowed access to the specified thread.
Parameters: g-the thread to check for access.
Throws: SecurityException if the calling thread doesn't have access to the specified
thread.

checkAccess

public void checkAccess(ThreadGroup g)
This method checks to see if the calling thread is allowed access to the specified thread
group.
Parameters: g-the thread group to check for access.
Throws: SecurityException if the calling thread doesn't have access to the specified
thread group.

checkConnect

public void checkConnect(String host, int port)

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (42 of 83) [11/06/2000 7:49:02 PM]



This method checks to see if the calling thread has established a socket connection to the
specified port on the specified host.
Parameters:
host-the host name to check the connection for.
port-the number of the port to check the connection for.
Throws: SecurityException if the calling thread doesn't have permission to establish
the socket connection.

checkConnect

public void checkConnect(String host, int port, Object
context)
This method checks to see if the specified security context has established a socket
connection to the specified port on the specified host.
Parameters:
host-the host name to check the connection for.
port-the number of the port to check the connection for.
context-the security context for the check.
Throws: SecurityException if the specified security context doesn't have permission
to establish the socket connection.

checkCreateClassLoader

public void checkCreateClassLoader()
This method checks to see if the calling thread is allowed access to create a new class
loader.
Throws: SecurityException if the calling thread doesn't have permission to create a
new class loader.

checkDelete

public void checkDelete(String file)
This method checks to see if the calling thread is allowed access to delete the file with the
specified platform-specific filename.
Parameters: file-the platform-specific filename for the file to be checked.
Throws: SecurityException if the calling thread doesn't have permission to delete the
file.

checkExec

public void checkExec(String cmd)
This method checks to see if the calling thread is allowed access to create a subprocess to
execute the specified system command.
Parameters: cmd-a string representing the system command to be checked.
Throws: SecurityException if the calling thread doesn't have permission to create a
subprocess to execute the system command.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (43 of 83) [11/06/2000 7:49:02 PM]



checkExit

public void checkExit(int status)
This method checks to see if the calling thread is allowed access to exit the Java runtime
system with the specified exit status.
Parameters: status-the integer exit status to be checked.
Throws: SecurityException if the calling thread doesn't have permission to exit with
the specified exit status.

checkLink

public void checkLink(String libname)
This method checks to see if the calling thread is allowed access to dynamically link the
library with the specified name.
Parameters: libname-the name of the library to be checked.
Throws: SecurityException if the calling thread doesn't have permission to
dynamically link the library.

checkListen

public void checkListen(int port)
This method checks to see if the calling thread is allowed to wait for a connection request on
the specified port.
Parameters: port-the number of the port to check the connection for.
Throws: SecurityException if the calling thread doesn't have permission to wait for a
connection request on the specified port.

checkPackageAccess

public void checkPackageAccess(String pkg)
This method checks to see if the calling thread is allowed access to the package with the
specified name.
Parameters: pkg-the name of the package to be checked.
Throws: SecurityException if the calling thread doesn't have permission to access the
package.

checkPackageDefinition

public void checkPackageDefinition(String pkg)
This method checks to see if the calling thread is allowed to define classes in the package
with the specified name.
Parameters: pkg-the name of the package to be checked.
Throws: SecurityException if the calling thread doesn't have permission to define
classes in the package.

checkPropertiesAccess

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (44 of 83) [11/06/2000 7:49:02 PM]



public void checkPropertiesAccess()
This method checks to see if the calling thread is allowed access to the system properties.
Throws: SecurityException if the calling thread doesn't have permission to access the
system properties.

checkPropertyAccess

public void checkPropertyAccess(String key)
This method checks to see if the calling thread is allowed access to the system property with
the specified key name.
Parameters: key-the key name for the system property to check.
Throws: SecurityException if the calling thread doesn't have permission to access the
system property with the specified key name.

checkRead

public void checkRead(FileDescriptor fd)
This method checks to see if the calling thread is allowed access to read from the file with
the specified file descriptor.
Parameters: fd-the file descriptor for the file to be checked.
Throws: SecurityException if the calling thread doesn't have permission to read from
the file.

checkRead

public void checkRead(String filename)
This method checks to see if the calling thread is allowed access to read from the file with
the specified platform-specific filename.
Parameters: file-the platform-specific filename for the file to be checked.
Throws: SecurityException if the calling thread doesn't have permission to read from
the file.

checkRead

public void checkRead(String file, Object context)
This method checks to see if the specified security context is allowed access to read from
the file with the specified platform-specific filename.
Parameters:
file-the platform-specific filename for the file to be checked.
context-the security context for the check.
Throws: SecurityException if the specified security context doesn't have permission
to read from the file.

checkSetFactory

public void checkSetFactory()
This method checks to see if the calling thread is allowed access to set the socket or stream

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (45 of 83) [11/06/2000 7:49:02 PM]



handler factory used by the URL class.
Throws: SecurityException if the calling thread doesn't have permission to set the
socket or stream handler factory.

checkTopLevelWindow

public boolean checkTopLevelWindow(Object window)
This method checks to see if the calling thread is trusted to show the specified top-level
window.
Parameters: window-the top-level window to be checked.
Returns: true if the calling thread is trusted to show the top-level window; false
otherwise.

checkWrite

public void checkWrite(FileDescriptor fd)
This method checks to see if the calling thread is allowed access to write to the file with the
specified file descriptor.
Parameters: fd-the file descriptor for the file to be checked.
Throws: SecurityException if the calling thread doesn't have permission to write to
the file.

checkWrite

public void checkWrite(String file)
This method checks to see if the calling thread is allowed access to write to the file with the
specified platform-specific filename.
Parameters: file-the platform-specific filename for the file to be checked.
Throws: SecurityException if the calling thread doesn't have permission to write to
the file.

classDepth

protected int classDepth(String name)
This method determines the stack depth of the class with the specified name.
Parameters: name-the fully qualified name of the class to determine the stack depth of.
Returns: The stack depth of the class, or -1 if the class can't be found in any stack frame.

classLoaderDepth

protected int classLoaderDepth()
This method determines the stack depth of the most recently executing method of a class
defined using a class loader.
Returns: The stack depth of the most recently executing method of a class defined using a
class loader, or -1 if no method is executing within a class defined by a class loader.

currentClassLoader

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (46 of 83) [11/06/2000 7:49:02 PM]



protected ClassLoader currentClassLoader()
This method determines the current class loader on the stack.
Returns: The current class loader on the stack, or null if no class loader exists on the stack.

getClassContext

protected Class[] getClassContext()
This method determines the current execution stack, which is an array of classes
corresponding to each method call on the stack.
Returns: An array of classes corresponding to each method call on the stack.

getInCheck

public boolean getInCheck()
This method determines whether there is a security check in progress.
Returns: true if a security check is in progress; false otherwise.

getSecurityContext

public Object getSecurityContext()
This method creates a platform-specific security context based on the current runtime
environment.
Returns: A platform-specific security context based on the current runtime environment.

inClass

protected boolean inClass(String name)
This method determines if a method in the class with the specified name is on the execution
stack.
Parameters: name-the name of the class to check.
Returns: true if a method in the class is on the execution stack; false otherwise.

inClassLoader

protected boolean inClassLoader()
This method determines if a method in a class defined using a class loader is on the
execution stack.
Returns: true if a method in a class defined using a class loader is on the execution stack;
false otherwise.

String

Extends: Object
This class implements a constant string of characters. The String class provides a wide
range of support for working with strings of characters. Note that literal string constants are

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (47 of 83) [11/06/2000 7:49:02 PM]



automatically converted to String objects by the Java compiler.

String Constructor

public String()
This constructor creates a default string containing no characters.

String Constructor

public String(byte ascii[], int hibyte)
This constructor creates a string from the specified array of bytes, with the top 8 bits of each
string character set to hibyte.
Parameters:
ascii-the byte array that is to be converted to string characters.
hibyte-the high byte value for each character.

String Constructor

public String(byte ascii[], int hibyte, int off, int count)
This constructor creates a string of length count from the specified array of bytes
beginning off bytes into the array, with the top 8 bits of each string character set to
hibyte.
Parameters:
ascii-the byte array that is to be converted to string characters.
hibyte-the high byte value for each character.
off-the starting offset into the array of bytes.
count-the number of bytes from the array to convert.
Throws: StringIndexOutOfBoundsException if the offset or count for the byte
array is invalid.

String Constructor

public String(char value[])
This constructor creates a string from the specified array of characters.
Parameters: value-the character array to initialize the string with.

String Constructor

public String(char value[], int off, int count)
This constructor creates a string of length count from the specified array of characters
beginning off bytes into the array.
Parameters:
value-the character array to initialize the string with.
off-the starting offset into the array of characters.
count-the number of characters from the array to use in initializing the string.
Throws: StringIndexOutOfBoundsException if the offset or count for the
character array is invalid.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (48 of 83) [11/06/2000 7:49:02 PM]



String Constructor

public String(String value)
This method creates a new string that is a copy of the specified string.
Parameters: value-the string to initialize this string with.

String Constructor

public String(StringBuffer buffer)
This method creates a new string that is a copy of the contents of the specified string buffer.
Parameters: buffer-the string buffer to initialize this string with.

charAt

public char charAt(int index)
This method determines the character at the specified index. Note that string indexes are
zero based, meaning that the first character is located at index 0.
Parameters: index-the index of the desired character.
Returns: The character at the specified index.
Throws: StringIndexOutOfBoundsException if the index is out of range.

compareTo

public int compareTo(String anotherString)
This method compares this string with the specified string lexicographically.
Parameters: anotherString-the string to be compared with.
Returns: If this string is equal to the specified string, a value less than 0 if this string is
lexicographically less than the specified string, or a value greater than 0 if this string is
lexicographically greater than the specified string.

concat

public String concat(String str)
This method concatenates the specified string onto the end of this string.
Parameters: str-the string to concatenate.
Returns: This string, with the specified string concatenated onto the end.

copyValueOf

public static String copyValueOf(char data[])
This method converts a character array to an equivalent string by creating a new string and
copying the characters into it.
Parameters: data-the character array to convert to a string.
Returns: A string representation of the specified character array.

copyValueOf

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (49 of 83) [11/06/2000 7:49:02 PM]



public static String copyValueOf(char data[], int off, int
count)
This method converts a character array to an equivalent string by creating a new string and
copying count characters into it beginning at off.
Parameters:
data-the character array to convert to a string.
off-the starting offset into the character array.
count-the number of characters from the array to use in initializing the string.
Returns: A string representation of the specified character array beginning at off and of
length count.

endsWith

public boolean endsWith(String suffix)
This method determines whether this string ends with the specified suffix.
Parameters: suffix-the suffix to check.
Returns: true if this string ends with the specified suffix; false otherwise.

equals

public boolean equals(Object obj)
This method compares the specified object to this string. The equals method returns
true only if the specified object is a String object of the same length and contains the
same characters as this string.
Parameters: obj-the object to compare.
Returns: true if the specified object is a String object of the same length and contains
the same characters as this string; false otherwise.

equalsIgnoreCase

public boolean equalsIgnoreCase(String anotherString)
This method compares the specified string to this string, ignoring case.
Parameters: anotherString-the string to compare.
Returns: true if the specified string is of the same length and contains the same characters
as this string, ignoring case; false otherwise.

getBytes

public void getBytes(int srcBegin, int srcEnd, byte dst[],
int dstBegin)
This method copies the lower 8 bits of each character in this string beginning at srcBegin
and ending at srcEnd into the byte array dst beginning at dstBegin.
Parameters:
srcBegin-index of the first character in the string to copy.
srcEnd-index of the last character in the string to copy.
dst-the destination byte array.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (50 of 83) [11/06/2000 7:49:02 PM]



dstBegin-the starting offset into the byte array.

getChars

public void getChars(int srcBegin, int srcEnd, char
dst[], int dstBegin)
This method copies each character in this string beginning at srcBegin and ending at
srcEnd into the character array dst beginning at dstBegin.
Parameters:
srcBegin-index of the first character in the string to copy.
srcEnd-index of the last character in the string to copy.
dst-the destination character array.
dstBegin-the starting offset into the character array.
Throws: StringIndexOutOfBoundsException if there is an invalid index into the
buffer.

hashCode

public int hashCode()
This method calculates a hash code for this object.
Returns: A hash code for this object.

indexOf

public int indexOf(int ch)
This method determines the index of the first occurrence of the specified character in this
string.
Parameters: ch-the character to search for.
Returns: The index of the first occurrence of the specified character, or -1 if the character
doesn't occur.

indexOf

public int indexOf(int ch, int fromIndex)
This method determines the index of the first occurrence of the specified character in this
string beginning at fromIndex.
Parameters:
ch-the character to search for.
fromIndex-the index to start the search from.
Returns: The index of the first occurrence of the specified character beginning at
fromIndex, or -1 if the character doesn't occur.

indexOf

public int indexOf(String str)
This method determines the index of the first occurrence of the specified substring in this
string.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (51 of 83) [11/06/2000 7:49:02 PM]



Parameters: str-the substring to search for.
Returns: The index of the first occurrence of the specified substring, or -1 if the substring
doesn't occur.

indexOf

public int indexOf(String str, int fromIndex)
This method determines the index of the first occurrence of the specified substring in this
string, beginning at fromIndex.
Parameters:
str-the substring to search for.
fromIndex-the index to start the search from.
Returns: The index of the first occurrence of the specified substring beginning at
fromIndex, or -1 if the substring doesn't occur.

intern

public String intern()
This method determines a string that is equal to this string, but is guaranteed to be from a
pool of unique strings.
Returns: A string that is equal to this string, but is guaranteed to be from a pool of unique
strings.

lastIndexOf

public int lastIndexOf(int ch)
This method determines the index of the last occurrence of the specified character in this
string.
Parameters: ch-the character to search for.
Returns: The index of the last occurrence of the specified character, or -1 if the character
doesn't occur.

lastIndexOf

public int lastIndexOf(int ch, int fromIndex)
This method determines the index of the last occurrence of the specified character in this
string, beginning at fromIndex.
Parameters:
ch-the character to search for.
fromIndex-the index to start the search from.
Returns: The index of the last occurrence of the specified character beginning at
fromIndex, or -1 if the character doesn't occur.

lastIndexOf

public int lastIndexOf(String str)
This method determines the index of the last occurrence of the specified substring in this

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (52 of 83) [11/06/2000 7:49:02 PM]



string.
Parameters: str-the substring to search for.
Returns: The index of the last occurrence of the specified substring, or -1 if the substring
doesn't occur.

lastIndexOf

public int lastIndexOf(String str, int fromIndex)
This method determines the index of the last occurrence of the specified substring in this
string beginning at fromIndex.
Parameters:
str-the substring to search for.
fromIndex-the index to start the search from.
Returns: The index of the last occurrence of the specified substring beginning at
fromIndex, or -1 if the substring doesn't occur.

length

public int length()
This method determines the length of this string, which is the number of Unicode characters
in the string.
Returns: The length of this string.

regionMatches

public boolean regionMatches(boolean ignoreCase, int toffset,
String other,int ooffset, int len)
This method determines whether a substring of this string matches a substring of the
specified string, with an option for ignoring case.
Parameters:
ignoreCase-a boolean value specifying whether case is ignored; a value of true means
case is ignored, where a value of false means case isn't ignored.
toffset-the index to start the substring for this string.
other-the other string to compare.
ooffset-the index to start the substring for the string to compare.
len-the number of characters to compare.
Returns: true if the substring of this string matches the substring of the specified string;
false otherwise.

regionMatches

public boolean regionMatches(int toffset, String other, int
ooffset, int len)
This method determines whether a substring of this string matches a substring of the
specified string.
Parameters:

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (53 of 83) [11/06/2000 7:49:02 PM]



toffset-the index to start the substring for this string.
other-the other string to compare.
ooffset-the index to start the substring for the string to compare.
len-the number of characters to compare.
Returns: true if the substring of this string matches the substring of the specified string;
false otherwise.

replace

public String replace(char oldChar, char newChar)
This method replaces all occurrences of oldChar in this string with newChar.
Parameters:
oldChar-the old character to replace.
newChar-the new character to take its place.
Returns: This string, with all occurrences of oldChar replaced with newChar.

startsWith

public boolean startsWith(String prefix)
This method determines whether this string starts with the specified prefix.
Parameters: prefix-the prefix to check.
Returns: true if this string starts with the specified prefix; false otherwise.

startsWith

public boolean startsWith(String prefix, int fromIndex)
This method determines whether this string starts with the specified prefix beginning at
fromIndex.
Parameters:
prefix-the prefix to check.
fromIndex-the index to start the search from.
Returns: true if this string starts with the specified prefix beginning at fromIndex;
false otherwise.

substring

public String substring(int beginIndex)
This method determines the substring of this string beginning at beginIndex.
Parameters: beginIndex-the beginning index of the substring, inclusive.
Returns: The substring of this string beginning at beginIndex.
Throws: StringIndexOutOfBoundsException if beginIndex is out of range.

substring

public String substring(int beginIndex, int endIndex)
This method determines the substring of this string beginning at beginIndex and ending
at endIndex.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (54 of 83) [11/06/2000 7:49:02 PM]



Parameters:
beginIndex-the beginning index of the substring, inclusive.
endIndex-the end index of the substring, exclusive.
Returns: The substring of this string beginning at beginIndex and ending at endIndex.
Throws: StringIndexOutOfBoundsException if beginIndex or endIndex is
out of range.

toCharArray

public char[] toCharArray()
This method converts this string to a character array by creating a new array and copying
each character of the string to it.
Returns: A character array representing this string.

toLowerCase

public String toLowerCase()
This method converts all the characters in this string to lowercase.
Returns: This string, with all the characters converted to lowercase.

toString

public String toString()
This method returns this string.
Returns: This string itself.

toUpperCase

public String toUpperCase()
This method converts all the characters in this string to uppercase.
Returns: This string, with all the characters converted to uppercase.

trim

public String trim()
This method trims leading and trailing whitespace from this string.
Returns: This string, with leading and trailing whitespace removed.

valueOf

public static String valueOf(boolean b)
This method creates a string representation of the specified boolean value. If the boolean
value is true, the string "true" is returned; otherwise, the string "false" is returned.
Parameters: b-the boolean value to get the string representation of.
Returns: A string representation of the specified boolean value.

valueOf

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (55 of 83) [11/06/2000 7:49:02 PM]



public static String valueOf(char c)
This method creates a string representation of the specified character value.
Parameters: c-the character value to get the string representation of.
Returns: A string representation of the specified character value.

valueOf

public static String valueOf(char data[])
This method creates a string representation of the specified character array.
Parameters: data-the character array to get the string representation of.
Returns: A string representation of the specified character array.

valueOf

public static String valueOf(char data[], int off, int count)
This constructor creates a string representation of length count from the specified array of
characters beginning off bytes into the array.
Parameters:
data-the character array to get the string representation of.
off-the starting offset into the array of characters.
count-the number of characters from the array to use in initializing the string.
Returns: A string representation of the specified character array.

valueOf

public static String valueOf(double d)
This method creates a string representation of the specified double value.
Parameters: d-the double value to get the string representation of.
Returns: A string representation of the specified double value.

valueOf

public static String valueOf(float f)
This method creates a string representation of the specified float value.
Parameters: f-the float value to get the string representation of.
Returns: A string representation of the specified float value.

valueOf

public static String valueOf(int i)
This method creates a string representation of the specified integer value.
Parameters: i-the integer value to get the string representation of.
Returns: A string representation of the specified integer value.

valueOf

public static String valueOf(long l)

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (56 of 83) [11/06/2000 7:49:02 PM]



This method creates a string representation of the specified long value.
Parameters: l-the long value to get the string representation of.
Returns: A string representation of the specified long value.

valueOf

public static String valueOf(Object obj)
This method creates a string representation of the specified object. Note that the string
representation is the same as that returned by the toString method of the object.
Parameters: obj-the object to get the string representation of.
Returns: A string representation of the specified object value, or the string "null" if the
object is null.

StringBuffer

Extends: Object
This class implements a variable string of characters. The StringBuffer class provides a
wide range of append and insert methods, along with some other support methods for
getting information about the string buffer.

StringBuffer Constructor

public StringBuffer()
This constructor creates a default string buffer with no characters.

StringBuffer Constructor

public StringBuffer(int length)
This constructor creates a string buffer with the specified length.
Parameters: length-the initial length of the string buffer.

StringBuffer Constructor

public StringBuffer(String str)
This constructor creates a string buffer with the specified initial string value.
Parameters: str-the initial string value of the string buffer.

append

public StringBuffer append(boolean b)
This method appends the string representation of the specified boolean value to the end of
this string buffer.
Parameters: b-the boolean value to be appended.
Returns: This string buffer, with the boolean appended.

append

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (57 of 83) [11/06/2000 7:49:02 PM]



public StringBuffer append(char c)
This method appends the string representation of the specified character value to the end of
this string buffer.
Parameters: c-the character value to be appended.
Returns: This string buffer, with the character appended.

append

public StringBuffer append(char str[])
This method appends the string representation of the specified character array to the end of
this string buffer.
Parameters: str-the character array to be appended.
Returns: This string buffer, with the character array appended.

append

public StringBuffer append(char str[], int off, int len)
This method appends the string representation of the specified character subarray to the end
of this string buffer.
Parameters:
str-the character array to be appended.
off-the starting offset into the character array to append.
len-the number of characters to append.
Returns: This string buffer, with the character subarray appended.

append

public StringBuffer append(double d)
This method appends the string representation of the specified double value to the end of
this string buffer.
Parameters: d-the double value to be appended.
Returns: This string buffer, with the double appended.

append

public StringBuffer append(float f)
This method appends the string representation of the specified float value to the end of this
string buffer.
Parameters: f-the float value to be appended.
Returns: This string buffer, with the float appended.

append

public StringBuffer append(int i)
This method appends the string representation of the specified integer value to the end of
this string buffer.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (58 of 83) [11/06/2000 7:49:02 PM]



Parameters: i-the integer value to be appended.
Returns: This string buffer, with the integer appended.

append

public StringBuffer append(long l)
This method appends the string representation of the specified long value to the end of this
string buffer.
Parameters: l-the long value to be appended.
Returns: This string buffer, with the long appended.

append

public StringBuffer append(Object obj)
This method appends the string representation of the specified object to the end of this string
buffer.
Parameters: obj-the object to be appended.
Returns: This string buffer, with the object appended.

append

public StringBuffer append(String str)
This method appends the specified string to the end of this string buffer.
Parameters: str-the string to be appended.
Returns: This string buffer, with the string appended.

capacity

public int capacity()
This method determines the capacity of this string buffer, which is the amount of character
storage currently allocated in the string buffer.
Returns: The capacity of this string buffer.

charAt

public char charAt(int index)
This method determines the character at the specified index. Note that string buffer indexes
are zero based, meaning that the first character is located at index 0.
Parameters: index-the index of the desired character.
Returns: The character at the specified index.
Throws: StringIndexOutOfBoundsException if the index is out of range.

ensureCapacity

public void ensureCapacity(int minimumCapacity)
This method ensures that the capacity of this string buffer is at least equal to the specified
minimum.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (59 of 83) [11/06/2000 7:49:02 PM]



Parameters: minimumCapacity-the minimum desired capacity.

getChars

public void getChars(int srcBegin, int srcEnd, char dst[],
int dstBegin)
This method copies each character in this string buffer beginning at srcBegin and ending
at srcEnd into the character array dst beginning at dstBegin.
Parameters:
srcBegin-index of the first character in the string buffer to copy.
srcEnd-index of the last character in the string buffer to copy.
dst-the destination character array.
dstBegin-the starting offset into the character array.
Throws: StringIndexOutOfBoundsException if there is an invalid index into the
buffer.

insert

public StringBuffer insert(int off, boolean b)
This method inserts the string representation of the specified boolean value at the specified
offset of this string buffer.
Parameters:
off-the offset at which to insert the boolean.
b-the boolean value to be inserted.
Returns: This string buffer, with the boolean inserted.
Throws: StringIndexOutOfBoundsException if the offset is invalid.

insert

public StringBuffer insert(int off, char c)
This method inserts the string representation of the specified character value at the specified
offset of this string buffer.
Parameters:
off-the offset at which to insert the character.
c-the character value to be inserted.
Returns: This string buffer, with the character inserted.
Throws: StringIndexOutOfBoundsException if the offset is invalid.

insert

public StringBuffer insert(int off, char str[])
This method inserts the string representation of the specified character array at the specified
offset of this string buffer.
Parameters:
off-the offset at which to insert the character array.
str-the character array to be inserted.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (60 of 83) [11/06/2000 7:49:02 PM]



Returns: This string buffer, with the character array inserted.
Throws: StringIndexOutOfBoundsException if the offset is invalid.

insert

public StringBuffer insert(int off, double d)
This method inserts the string representation of the specified double value at the specified
offset of this string buffer.
Parameters:
off-the offset at which to insert the double.
d-the double value to be inserted.
Returns: This string buffer, with the double inserted.
Throws: StringIndexOutOfBoundsException if the offset is invalid.

insert

public StringBuffer insert(int off, float f)
This method inserts the string representation of the specified float value at the specified
offset of this string buffer.
Parameters:
off-the offset at which to insert the float.
f-the float value to be inserted.
Returns: This string buffer, with the float inserted.
Throws: StringIndexOutOfBoundsException if the offset is invalid.

insert

public StringBuffer insert(int off, int i)
This method inserts the string representation of the specified integer value at the specified
offset of this string buffer.
Parameters:
off-the offset at which to insert the integer.
i-the integer value to be inserted.
Returns: This string buffer, with the integer inserted.
Throws: StringIndexOutOfBoundsException if the offset is invalid.

insert

public StringBuffer insert(int off, long l)
This method inserts the string representation of the specified long value at the specified
offset of this string buffer.
Parameters:
off-the offset at which to insert the long.
l-the long value to be inserted.
Returns: This string buffer, with the long inserted.
Throws: StringIndexOutOfBoundsException if the offset is invalid.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (61 of 83) [11/06/2000 7:49:03 PM]



insert

public StringBuffer insert(int off, Object obj)
This method inserts the string representation of the specified object at the specified offset of
this string buffer.
Parameters:
off-the offset at which to insert the object.
obj-the object to be inserted.
Returns: This string buffer, with the object inserted.
Throws: StringIndexOutOfBoundsException if the offset is invalid.

insert

public StringBuffer insert(int off, String str)
This method inserts the specified string at the specified offset of this string buffer.
Parameters:
off-the offset at which to insert the string.
str-the string to be inserted.
Returns: This string buffer, with the string inserted.
Throws: StringIndexOutOfBoundsException if the offset is invalid.

length

public int length()
This method determines the length of this string buffer, which is the actual number of
characters stored in the buffer.
Returns: The length of this string buffer.

reverse

public StringBuffer reverse()
This method reverses the character sequence in this string buffer.
Returns: This string buffer, with the characters reversed.

setCharAt

public void setCharAt(int index, char ch)
This method changes the character at the specified index in this string to the specified
character.
Parameters:
index-the index of the character to change.
ch-the new character.
Throws: StringIndexOutOfBoundsException if the index is invalid.

setLength

public void setLength(int newLength)

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (62 of 83) [11/06/2000 7:49:03 PM]



This method explicitly sets the length of this string buffer. If the length is reduced,
characters are lost; if the length is increased, new characters are set to 0 (null).
Parameters: newLength-the new length of the string buffer.
Throws: StringIndexOutOfBoundsException if the length is invalid.

toString

public String toString()
This method determines a constant string representation of this string buffer.
Returns: The constant string representation of this string buffer.

System

Extends: Object
This class provides a platform-independent means of interacting with the Java runtime
system. The System class provides support for standard input, standard output, and
standard error streams, along with providing access to system properties, among other
things.

Member Variables

public static PrintStream err

This is the standard error stream, which is used for printing error information. Typically this stream
corresponds to display output since it is important that the user see the error information.

public static InputStream in

This is the standard input stream, which is used for reading character data. Typically this stream
corresponds to keyboard input or another input source specified by the host environment or user.

public static PrintStream out

This is the standard output stream, which is used for printing character data. Typically this stream
corresponds to display output or another output destination specified by the host environment or user.

arraycopy

public static void arraycopy(Object src, int src_position,
Object dst,
int dst_position, int len)
This method copies len array elements from the src array beginning at src_position
to the dst array beginning at dst_position. Both src and dst must be array objects.
Note that arraycopy does not allocate memory for the destination array; the memory
must already be allocated.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (63 of 83) [11/06/2000 7:49:03 PM]



Parameters:
src-the source array to copy data from.
src_position-the start position in the source array.
dst-the destination array to copy data to.
dst_position-the start position in the destination array.
len-the number of array elements to be copied.
Throws: ArrayIndexOutOfBoundsException if the copy would cause data to be
accessed outside of array bounds.
Throws: ArrayStoreException if an element in the source array could not be stored
in the destination array due to a type mismatch.

currentTimeMillis

public static long currentTimeMillis()
This method determines the current UTC time relative to midnight, January 1, 1970 UTC, in
milliseconds.
Returns: The current UTC time relative to midnight, January 1, 1970 UTC, in milliseconds.

exit

public static void exit(int status)
This method exits the Java runtime system (virtual machine) with the specified integer exit
status. Note that since exit kills the runtime system, it never returns.
Parameters: status-the integer exit status; this should be set to nonzero if this is an
abnormal exit.
Throws: SecurityException if the current thread cannot exit with the specified exit
status.

gc

public static void gc()
This method invokes the Java garbage collector to clean up any objects that are no longer
needed, usually resulting in more free memory.

getProperties

public static Properties getProperties()
This method determines the current system properties. Following is a list of all the system
properties guaranteed to be supported:

java.version-the Java version number.●   

java.vendor-the Java vendor-specific string.●   

java.vendor.url-the Java vendor URL.●   

java.home-the Java installation directory.●   

java.class.version-the Java class format version number.●   

java.class.path-the Java CLASSPATH environment variable.●   

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (64 of 83) [11/06/2000 7:49:03 PM]



os.name-the operating system name.●   

os.arch-the operating system architecture.●   

os.version-the operating system version.●   

file.separator-the file separator.●   

path.separator-the path separator.●   

line.separator-the line separator.●   

user.name-the user's account name.●   

user.home-the user's home directory.●   

user.dir-the user's current working directory.●   

Returns: The current system properties.
Throws: SecurityException if the current thread cannot access the system
properties.

getProperty

public static String getProperty(String key)
This method determines the system property with the specified key name.
Parameters: key-the key name of the system property.
Returns: The system property with the specified key name.
Throws: SecurityException if the current thread cannot access the system property.

getProperty

public static String getProperty(String key, String def)
This method determines the system property with the specified key name; it returns the
specified default property value if the key isn't found.
Parameters:
key-the key name of the system property.
def-the default property value to use if the key isn't found.
Returns: The system property with the specified key name, or the specified default property
value if the key isn't found.
Throws: SecurityException if the current thread cannot access the system property.

getSecurityManager

public static SecurityManager getSecurityManager()
This method gets the security manager for the Java program, or null if none exists.
Returns: The security manager for the Java program, or null if none exists.

load

public static void load(String pathname)
This method loads the dynamic library with the specified complete path name. This method
simply calls the load method in the Runtime class.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (65 of 83) [11/06/2000 7:49:03 PM]



Parameters: pathname-the path name of the library to load.
Throws: UnsatisfiedLinkError if the library doesn't exist.
Throws: SecurityException if the current thread can't load the library.

loadLibrary

public static void loadLibrary(String libname)
This method loads the dynamic library with the specified library name. Note that the
mapping from library name to a specific filename is performed in a platform-specific
manner.
Parameters: libname-the name of the library to load.
Throws: UnsatisfiedLinkError if the library doesn't exist.
Throws: SecurityException if the current thread can't load the library.

runFinalization

public static void runFinalization()
This method explicitly causes the finalize methods of any discarded objects to be called.
Typically, the finalize methods of discarded objects are automatically called
asynchronously when the garbage collector cleans up the objects. You can use
runFinalization to have the finalize methods called synchronously.

setProperties

public static void setProperties(Properties props)
This method sets the system properties to the specified properties.
Parameters: props-the new properties to be set.

setSecurityManager

public static void setSecurityManager(SecurityManager s)
This method sets the security manager to the specified security manager. Note that the
security manager can be set only once for a Java program.
Parameters: s-the new security manager to be set.
Throws: SecurityException if the security manager has already been set.

Thread

Extends: Object
Implements: Runnable
This class provides the overhead necessary to manage a single thread of execution within a
process. The Thread class is the basis for multithreaded programming in Java.

Member Constants

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (66 of 83) [11/06/2000 7:49:03 PM]



public final static int MAX_PRIORITY

This is a constant representing the maximum priority a thread can have, which is set to 10.

public final static int MIN_PRIORITY

This is a constant representing the minimum priority a thread can have, which is set to 1.

public final static int NORM_PRIORITY

This is a constant representing the normal (default) priority for a thread, which is set to 5.

Thread Constructor

public Thread()
This constructor creates a default thread. Note that threads created with this constructor
must have overridden their run method to actually do anything.

Thread Constructor

public Thread(Runnable target)
This constructor creates a thread that uses the run method of the specified runnable.
Parameters: target-the object whose run method is used by the thread.

Thread Constructor

public Thread(ThreadGroup group, Runnable target)
This constructor creates a thread belonging to the specified thread group that uses the run
method of the specified runnable.
Parameters:
group-the thread group the thread is to be a member of.
target-the object whose run method is used by the thread.

Thread Constructor

public Thread(String name)
This constructor creates a thread with the specified name.
Parameters: name-the name of the new thread.

Thread Constructor

public Thread(ThreadGroup group, String name)
This constructor creates a thread belonging to the specified thread group with the specified
name.
Parameters:
group-the thread group the thread is to be a member of.
name-the name of the new thread.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (67 of 83) [11/06/2000 7:49:03 PM]



Thread Constructor

public Thread(Runnable target, String name)
This constructor creates a thread with the specified name that uses the run method of the
specified runnable.
Parameters:
target-the object whose run method is used by the thread.
name-the name of the new thread.

Thread Constructor

public Thread(ThreadGroup group, Runnable target, String
name)
This constructor creates a thread belonging to the specified thread group with the specified
name that uses the run method of the specified runnable.
Parameters:
group-the thread group the thread is to be a member of.
target-the object whose run method is used by the thread.
name-the name of the new thread.

activeCount

public static int activeCount()
This method determines the number of active threads in this thread's thread group.
Returns: The number of active threads in this thread's thread group.

checkAccess

public void checkAccess()
This method checks to see if the currently running thread is allowed access to this thread.
Throws: SecurityException if the calling thread doesn't have access to this thread.

countStackFrames

public int countStackFrames()
This method determines the number of stack frames in this thread. Note that the thread must
be suspended to use this method.
Returns: The number of stack frames in this thread.
Throws: IllegalThreadStateException if the thread is not suspended.

currentThread

public static Thread currentThread()
This method determines the currently running thread.
Returns: The currently running thread.

destroy

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (68 of 83) [11/06/2000 7:49:03 PM]



public void destroy()
This method destroys this thread without performing any cleanup, meaning that any
monitors locked by the thread remain locked. Note that this method should only be used as a
last resort for destroying a thread.

dumpStack

public static void dumpStack()
This method prints a stack trace for this thread. Note that this method is useful only for
debugging.

enumerate

public static int enumerate(Thread list[])
This method fills the specified array with references to every active thread in this thread's
thread group.
Parameters: list-an array to hold the enumerated threads.
Returns: The number of threads added to the array.

getName

public final String getName()
This method determines the name of this thread.
Returns: The name of this thread.

getPriority

public final int getPriority()
This method determines the priority of this thread.
Returns: The priority of this thread.

getThreadGroup

public final ThreadGroup getThreadGroup()
This method determines the thread group for this thread.
Returns: The thread group for this thread.

interrupt

public void interrupt()
This method interrupts this thread.

interrupted

public static boolean interrupted()
This method determines if this thread has been interrupted.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (69 of 83) [11/06/2000 7:49:03 PM]



Returns: true if the thread has been interrupted; false otherwise.

isAlive

public final boolean isAlive()
This method determines if this thread is active. An active thread is a thread that has been
started and has not yet stopped.
Returns: true if the thread is active; false otherwise.

isDaemon

public final boolean isDaemon()
This method determines if this thread is a daemon thread. A daemon thread is a background
thread that is owned by the runtime system rather than a specific process.
Returns: true if the thread is a daemon thread; false otherwise.

isInterrupted

public boolean isInterrupted()
This method determines if this thread has been interrupted.
Returns: true if the thread has been interrupted; false otherwise.

join

public final void join() throws InterruptedException
This method causes the current thread to wait indefinitely until it dies.
Throws: InterruptedException if another thread has interrupted this thread.

join

public final void join(long timeout) throws
InterruptedException
This method causes the current thread to wait until it dies, or until the specified timeout
period has elapsed.
Parameters: timeout-the maximum timeout period to wait, in milliseconds.
Throws: InterruptedException if another thread has interrupted this thread.

join

public final void join(long timeout, int nanos) throws
InterruptedException
This method causes the current thread to wait until it dies, or until the specified timeout
period has elapsed. The timeout period in this case is the addition of the timeout and
nanos parameters, which provide finer control over the timeout period.
Parameters:
timeout-the maximum timeout period to wait, in milliseconds.
nanos-the additional time for the timeout period, in nanoseconds.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (70 of 83) [11/06/2000 7:49:03 PM]



Throws: InterruptedException if another thread has interrupted this thread.

resume

public final void resume()
This method resumes this thread's execution if it has been suspended.
Throws: SecurityException if the current thread doesn't have access to this thread.

run

public void run()
This method is the body of the thread, which performs the actual work of the thread. The
run method is called when the thread is started. The run method is either overridden in a
derived Thread class or implemented in a class implementing the Runnable interface.

setDaemon

public final void setDaemon(boolean daemon)
This method sets this thread as either a daemon thread or a user thread based on the
specified boolean value. Note that the thread must be inactive to use this method.
Parameters: daemon-a boolean value that determines whether the thread is a daemon
thread.
Throws: IllegalThreadStateException if the thread is active.

setName

public final void setName(String name)
This method sets the name of this thread.
Parameters: name-the new name of the thread.
Throws: SecurityException if the current thread doesn't have access to this thread.

setPriority

public final void setPriority(int newPriority)
This method sets the priority of this thread.
Parameters: newPriority-the new priority of the thread.
Throws: IllegalArgumentException if the priority is not within the range
MIN_PRIORITY to MAX_PRIORITY.
Throws: SecurityException if the current thread doesn't have access to this thread.

sleep

public static void sleep(long millis) throws
InterruptedException
This method causes the current thread to sleep for the specified length of time, in
milliseconds.
Parameters: millis-the length of time to sleep, in milliseconds.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (71 of 83) [11/06/2000 7:49:03 PM]



Throws: InterruptedException if another thread has interrupted this thread.

sleep

public static void sleep(long millis, int nanos) throws
InterruptedException
This method causes the current thread to sleep for the specified length of time. The length of
time in this case is the addition of the millis and nanos parameters, which provide finer
control over the sleep time.
Parameters:
millis-the length of time to sleep, in milliseconds.
nanos-the additional time for the sleep time, in nanoseconds.
Throws: InterruptedException if another thread has interrupted this thread.

start

public void start()
This method starts this thread, causing the run method to be executed.
Throws: IllegalThreadStateException if the thread was already running.

stop

public final void stop()
This method abnormally stops this thread, causing it to throw a ThreadDeath object. You
can catch the ThreadDeath object to perform cleanup, but there is rarely a need to do so.
Throws: SecurityException if the current thread doesn't have access to this thread.

stop

public final synchronized void stop(Throwable o)
This method abnormally stops this thread, causing it to throw the specified object. Note that
this version of stop should be used only in very rare situations.
Parameters: o-the object to be thrown.
Throws: SecurityException if the current thread doesn't have access to this thread.

suspend

public final void suspend()
This method suspends the execution of this thread.
Throws: SecurityException if the current thread doesn't have access to this thread.

toString

public String toString()
This method determines a string representation of this thread, which includes the thread's
name, priority, and thread group.
Returns: A string representation of this thread.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (72 of 83) [11/06/2000 7:49:03 PM]



yield

public static void yield()
This method causes the currently executing thread to yield so that other threads can execute.

ThreadGroup

Extends: Object
This class implements a thread group, which is a set of threads that can be manipulated as
one. Thread groups can also contain other thread groups, resulting in a thread hierarchy.

ThreadGroup Constructor

public ThreadGroup(String name)
This constructor creates a thread group with the specified name. The newly created thread
group belongs to the thread group of the current thread.
Parameters: name-the name of the new thread group.

ThreadGroup Constructor

public ThreadGroup(ThreadGroup parent, String name)
This constructor creates a thread group with the specified name and belonging to the
specified parent thread group.
Parameters:
parent-the parent thread group.
name-the name of the new thread group.
Throws: NullPointerException if the specified thread group is null.
Throws: SecurityException if the current thread cannot create a thread in the
specified thread group.

activeCount

public int activeCount()
This method determines the number of active threads in this thread group or in any other
thread group that has this thread group as an ancestor.
Returns: The number of active threads in this thread group or in any other thread group that
has this thread group as an ancestor.

activeGroupCount

public int activeGroupCount()
This method determines the number of active thread groups that have this thread group as an
ancestor.
Returns: The number of active thread groups that have this thread group as an ancestor.

checkAccess

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (73 of 83) [11/06/2000 7:49:03 PM]



public final void checkAccess()
This method checks to see if the currently running thread is allowed access to this thread
group.
Throws: SecurityException if the calling thread doesn't have access to this thread
group.

destroy

public final void destroy()
This method destroys this thread group and all of its subgroups.
Throws: IllegalThreadStateException if the thread group is not empty or if it
was already destroyed.
Throws: SecurityException if the calling thread doesn't have access to this thread
group.

enumerate

public int enumerate(Thread list[])
This method fills the specified array with references to every active thread in this thread
group.
Parameters: list-an array to hold the enumerated threads.
Returns: The number of threads added to the array.

enumerate

public int enumerate(Thread list[], boolean recurse)
This method fills the specified array with references to every active thread in this thread
group. If the recurse parameter is set to true, all the active threads belonging to
subgroups of this thread are also added to the array.
Parameters:
list-an array to hold the enumerated threads.
recurse-a boolean value specifying whether to recursively enumerate active threads in
subgroups.
Returns: The number of threads added to the array.

enumerate

public int enumerate(ThreadGroup list[])
This method fills the specified array with references to every active subgroup in this thread
group.
Parameters: list-an array to hold the enumerated thread groups.
Returns: The number of thread groups added to the array.

enumerate

public int enumerate(ThreadGroup list[], boolean recurse)

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (74 of 83) [11/06/2000 7:49:03 PM]



This method fills the specified array with references to every active subgroup in this thread
group. If the recurse parameter is set to true, all the active thread groups belonging to
subgroups of this thread are also added to the array.
Parameters:
list-an array to hold the enumerated thread groups.
recurse-a boolean value specifying whether to recursively enumerate active thread
groups in subgroups.
Returns: The number of thread groups added to the array.

getMaxPriority

public final int getMaxPriority()
This method determines the maximum priority of this thread group. Note that threads in this
thread group cannot have a higher priority than the maximum priority.
Returns: The maximum priority of this thread group.

getName

public final String getName()
This method determines the name of this thread group.
Returns: The name of this thread group.

getParent

public final ThreadGroup getParent()
This method determines the parent of this thread group.
Returns: The parent of this thread group.

isDaemon

public final boolean isDaemon()
This method determines if this thread group is a daemon thread group. A daemon thread
group is automatically destroyed when all its threads finish executing.
Returns: true if the thread group is a daemon thread group; false otherwise.

list

public void list()
This method prints information about this thread group to standard output, including the
active threads in the group. Note that this method is useful only for debugging.

parentOf

public final boolean parentOf(ThreadGroup g)
This method checks to see if this thread group is a parent or ancestor of the specified thread
group.
Parameters: g-the thread group to be checked.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (75 of 83) [11/06/2000 7:49:03 PM]



Returns: true if this thread group is the parent or ancestor of the specified thread group;
false otherwise.

resume

public final void resume()
This method resumes execution of all the threads in this thread group that have been
suspended.
Throws: SecurityException if the current thread doesn't have access to this thread
group or any of its threads.

setDaemon

public final void setDaemon(boolean daemon)
This method sets this thread group as either a daemon thread group or a user thread group
based on the specified boolean value. A daemon thread group is automatically destroyed
when all its threads finish executing.
Parameters: daemon-a boolean value that determines whether the thread group is a
daemon thread group.
Throws: SecurityException if the current thread doesn't have access to this thread
group.

setMaxPriority

public final void setMaxPriority(int pri)
This method sets the maximum priority of this thread group.
Parameters: pri-the new maximum priority of the thread group.
Throws: SecurityException if the current thread doesn't have access to this thread
group.

stop

public final synchronized void stop()
This method stops all the threads in this thread group and in all of its subgroups.
Throws: SecurityException if the current thread doesn't have access to this thread
group, any of its threads, or threads in subgroups.

suspend

public final synchronized void suspend()
This method suspends all the threads in this thread group and in all of its subgroups.
Throws: SecurityException if the current thread doesn't have access to this thread
group, any of its threads, or threads in subgroups.

toString

public String toString()

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (76 of 83) [11/06/2000 7:49:03 PM]



This method determines a string representation of this thread group.
Returns: A string representation of this thread group.

uncaughtException

public void uncaughtException(Thread t, Throwable e)
This method is called when a thread in this thread group exits because of an uncaught
exception. You can override this method to provide specific handling of uncaught
exceptions.
Parameters:
t-the thread that is exiting.
e-the uncaught exception.

Throwable

Extends: Object
This class provides the core functionality for signaling when exceptional conditions occur.
All errors and exceptions in the Java system are derived from Throwable. The
Throwable class contains a snapshot of the execution stack for helping to track down why
exceptional conditions occur.

Throwable Constructor

public Throwable()
This constructor creates a default throwable with no detail message; the stack trace is
automatically filled in.

Throwable Constructor

public constructorhrowable constructor ( constructortring
constructormessage)
This constructor creates a throwable with the specified detail message; the stack trace is
automatically filled in.
Parameters: message-the detail message.

fillInStackTrace

public Throwable fillInStackTrace()
This method fills in the execution stack trace. Note that this method is only useful when
rethrowing this throwable.
Returns: This throwable.

getMessage

public String getMessage()
This method determines the detail message of this throwable.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (77 of 83) [11/06/2000 7:49:03 PM]



Returns: The detail message of this throwable.

printStackTrace

public void printStackTrace()
This method prints this throwable and its stack trace to the standard error stream.

printStackTrace

public void printStackTrace(PrintStream s)
This method prints this throwable and its stack trace to the specified print stream.
Parameters: s-the print stream to print the stack to.

toString

public String toString()
This method determines a string representation of this throwable.
Returns: A string representation of this throwable.

RuntimeException

This exception class signals that an invalid cast has occurred.

ClassNotFoundException

Extends: Exception
This exception class signals that a class could not be found.

CloneNotSupportedException

Extends: Exception
This exception class signals that an attempt has been made to clone an object that doesn't
support the Cloneable interface.

Exception

Extends: Throwable
This throwable class indicates exceptional conditions that a Java program might want to
know about.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (78 of 83) [11/06/2000 7:49:03 PM]



IllegalAccessException

Extends: Exception
This exception class signals that the current thread doesn't have access to a class.

IllegalArgumentException

Extends: RuntimeException
This exception class signals that a method has been passed an illegal argument.

IllegalMonitorStateException

Extends: RuntimeException
This exception class signals that a thread has attempted to access an object's monitor without
owning the monitor.

IllegalThreadStateException

Extends: IllegalArgumentException
This exception class signals that a thread is not in the proper state for the requested
operation.

IndexOutOfBoundsException

Extends: RuntimeException
This exception class signals that an index of some sort is out of bounds.

InstantiationException

Extends: Exception
This exception class signals that an attempt has been made to instantiate an abstract class or
an interface.

InterruptedException

Extends: Exception
This exception class signals that a thread has been interrupted that is already waiting or
sleeping.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (79 of 83) [11/06/2000 7:49:03 PM]



NegativeArraySizeException

Extends: RuntimeException
This exception class signals that an attempt has been made to create an array with a negative
size.

NullPointerException

Extends: RuntimeException
This exception class signals an attempt to access a null pointer as an object.

NumberFormatException

Extends: IllegalArgumentException
This exception class signals an attempt to convert a string to an invalid number format.

RuntimeException

Extends: Exception
This exception class signals an exceptional condition that can reasonably occur in the Java
runtime system.

SecurityException

Extends: RuntimeException
This exception class signals that a security violation has occurred.

StringIndexOutOfBoundsException

Extends: IndexOutOfBoundsException
This exception class signals that an invalid string index has been used.

AbstractMethodError

Extends: IncompatibleClassChangeError
This error class signals an attempt to call an abstract method.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (80 of 83) [11/06/2000 7:49:03 PM]



ClassFormatError

Extends: LinkageError
This error class signals an attempt to read a file in an invalid format.

Error

Extends: Throwable
This throwable class indicates a serious problem beyond the scope of what a Java program
can fix.

IllegalAccessError

Extends: IncompatibleClassChangeError
This error class signals an attempt to access a member variable or call a method without
proper access.

IncompatibleClassChangeError

Extends: LinkageError
This error class signals that an incompatible change has been made to some class definition.

InstantiationError

Extends: IncompatibleClassChangeError
This error class signals an attempt to instantiate an abstract class or an interface.

InternalError

Extends: VirtualMachineError
This error class signals that some unexpected internal error has occurred.

LinkageError

Extends: Error
This error class signals that a class has some dependency on another class, but that the latter
class has incompatibly changed after the compilation of the former class.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (81 of 83) [11/06/2000 7:49:03 PM]



NoClassDefFoundError

Extends: LinkageError
This error class signals that a class definition could not be found.

NoSuchFieldError

Extends: IncompatibleClassChangeError
This error class signals an attempt to access a member variable that doesn't exist.

NoSuchMethodError

Extends: IncompatibleClassChangeError
This error class signals an attempt to call a method that doesn't exist.

OutOfMemoryError

Extends: VirtualMachineError
This error class signals that the Java runtime system is out of memory.

StackOverflowError

Extends: VirtualMachineError
This error class signals that a stack overflow has occurred.

ThreadDeath

Extends: Error
This error class signals that a thread is being abnormally stopped via the stop method.

UnknownError

Extends: VirtualMachineError
This error class signals that an unknown but serious error has occurred.

UnsatisfiedLinkError

Extends: LinkageError
This error class signals that a native implementation of a method declared as native cannot
be found.

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (82 of 83) [11/06/2000 7:49:03 PM]



VerifyError

Extends: LinkageError
This error class signals that a class has failed the runtime verification test.

VirtualMachineError

Extends: Error
This error class signals that the Java virtual machine is broken or has run out of resources
necessary for it to continue operating.

   

appendix J -- java.lang Package Reference

file:///G|/ebooks/1575211831/ch38.htm (83 of 83) [11/06/2000 7:49:03 PM]



appendix K

java.net Package Reference

CONTENTS
ContentHandlerFactory●   

SocketImplFactory●   

URLStreamHandlerFactory●   

ContentHandler●   

DatagramPacket●   

DatagramSocket●   

InetAddress●   

ServerSocket●   

Socket●   

SocketImpl●   

URL●   

URLConnection●   

URLEncoder●   

MalformedURLException●   

ProtocolException●   

SocketException●   

UnknownHostException●   

UnknownServiceException●   

The java.net package contains classes and interfaces used for networking. This includes classes to
create and manipulate sockets, data packets, and URLs.

ContentHandlerFactory

This interface signals when an unknown service exception has occurred.

createContentHandler

appendix K -- java.net Package Reference

file:///G|/ebooks/1575211831/ch39.htm (1 of 21) [11/06/2000 7:49:10 PM]



public abstract ContentHandler createContentHandler(String
mimetype)
The createContentHandler method creates a new content handler to read the content
from a URLStreamHandler using the specified MIME type.
Parameters: mimetype-a String object containing the MIME type of the content.
Returns: A ContentHandler object that will read data from a URL connection and
construct an object.

SocketImplFactory

This interface is used by the socket class to specify socket implementations.

createSocketImpl

SocketImpl createSocketImpl()
The createSocketImple method creates a SocketImpl instance that is an
implementation of a socket.
Returns: A SocketImpl object that provides a socket implementation.

URLStreamHandlerFactory

This interface is used by the URL class to create stream handlers for various stream types.

createURLStreamHandler

URLStreamHandler createURLStreamHandler(String protocol)
The createURLStreamHandler method creates a URLStreamHandler instance for
use by the URL class based on the specified protocol.
Parameters: protocol-a String object that specifies the protocol to be used by the
URLStreamHandler class.
Returns: A URLStreamHandler object that is created with the protocol specified in the
input parameter.

ContentHandler

Extends: Object
The ContentHandler class is used as a base class for classes that will handle specific
MIME content types.

getContent

abstract public Object getContent(URLConnection urlc)
The getContent method accepts a URLConnection argument positioned at the
beginning of an input stream and constructs an object from the input stream.

appendix K -- java.net Package Reference

file:///G|/ebooks/1575211831/ch39.htm (2 of 21) [11/06/2000 7:49:10 PM]



Parameters: urlc-a URLConnection object representing the input stream to be read in
by the content handler.
Returns: An object that was constructed from the specified URL connection.
Throws: IOException if the input stream could not be read.

DatagramPacket

Extends: Object
The DatagramPacket class is used to store packet data such as data, length, Internet
address, and port.

DatagramPacket Constructor

public DatagramPacket(byte ibuf[], int ilength)
This DatagramPacket constructor constructs a DatagramPacket object to be used for
receiving datagrams.
Parameters:
ibuf-an array of bytes that will be used to store the datagram packet.
ilength-an integer value specifying the size of the datagram packet.

DatagramPacket Constructor

public DatagramPacket(byte ibuf[], int ilength, InetAddress
iaddr, int iport)
This DatagramPacket constructor constructs a DatagramPacket object to be sent.
Parameters:
ibuf-an array of bytes that will be used to store the datagram packet.
ilength-an integer value specifying the size of the datagram packet.
iaddr-the destination IP address.
iport-the destination port.

getAddress

public InetAddress getAddress()
The getAddress method returns the IP address value of the DatagramPacket.
Returns: An InetAddress object containing the IP address of the datagram packet.

getPort

public int getPort()
The getPort method returns the port value of the DatagramPacket.
Returns: An integer value containing the port address of the datagram packet.

getData

public byte[] getData()

appendix K -- java.net Package Reference

file:///G|/ebooks/1575211831/ch39.htm (3 of 21) [11/06/2000 7:49:10 PM]



The getData method returns the array of datagram packet values.
Returns: An array of bytes containing the contents of the datagram packet.

getLength

public int getLength()
The getLength method returns the length of the datagram packet.
Returns: An integer value containing the length of the datagram packet.

DatagramSocket

Extends: Object
The DatagramSocket class is used to designate a dedicated socket for implementing
unreliable datagrams.

DatagramSocket Constructor

public DatagramSocket() throws SocketException
The DatagramSocket constructor is used to implement an unreliable Datagram
connection.
Throws: SocketException if the socket could not be created.

DatagramSocket Constructor

public DatagramSocket(int port) throws SocketException
This DatagramSocket constructor implements an unreliable datagram connection using
the specified port value.
Parameters: port-an integer value specifying the port to be used for the socket.
Throws: SocketException if the socket could not be created.

send

public void send(DatagramPacket p) throws IOException
The send method sends a datagram packet to the destination address specified in the
datagram packet's address value.
Parameters: p-a DatagramPacket object containing data to be sent through the socket.
Throws: IOException if an I/O exception has occurred.

receive

public synchronized void receive(DatagramPacket p) throws
IOException
The receive method receives a datagram packet. This method will block until the
datagram packet has been received.
Parameters: p-the datagram packet to be received.
Throws: IOException if an I/O exception has occurred.

appendix K -- java.net Package Reference

file:///G|/ebooks/1575211831/ch39.htm (4 of 21) [11/06/2000 7:49:10 PM]



getLocalPort

public int getLocalPort()
The getLocalPort method returns the port on the local machine that this socket is bound
to.
Returns: An integer value containing the port value that this socket is bound to.

close

public synchronized void close()
The close method closes the datagram socket.

InetAddress

Extends: Object
The InetAddress class is used to represent Internet addresses.

getHostName

public String getHostName()
The getHostName method returns the name of the host for this InetAddress. If the
host is null, the returned string will contain any of the local machine's available network
addresses.
Returns: A String object containing the name of the host for this InetAddress.

getAddress

public byte[] getAddress()
The getAddress method returns an array of bytes containing the raw IP address in
network byte order.
Returns: A byte array containing the raw IP address of this InetAddress in network byte
order.

getHostAddress

public String getHostAddress()
The getHostAddress method returns the IP address string %d.%d.%d.%d.
Returns: A String value containing the raw IP address using the standard IP address
format.

hashCode

public int hashCode()
The hashCode method returns a hash code for this InetAddress.
Returns: An integer value representing this InetAddress's hash code.

appendix K -- java.net Package Reference

file:///G|/ebooks/1575211831/ch39.htm (5 of 21) [11/06/2000 7:49:10 PM]



equals

public boolean equals(Object obj)
The equals method is used to compare this InetAddress object to the specified object.
Parameters: obj-the object to be compared with the address.
Returns: A boolean value that will be true if the objects are equal; false if not.

toString

public String toString()
The toString method is used to return a string representation of the InetAddress.
Returns: A String value containing information about the InetAddress.

getByName

public static synchronized InetAddress getByName(String host)
throws UnknownHostException
The getByName method returns an InetAddress object based on the specified
hostname.
Parameters: host-a string object specifying the name of the host.
Returns: An InetAddress object containing the Internet address information for the
specified host.
Throws: UnknownHostException if the specified host is invalid or unknown.

getAllByName

public static synchronized InetAddress getAllByName(String
host)[]
throws UnknownHostException
The getAllByName method returns an array of InetAddress objects representing all
of the addresses for the specified host.
Parameters: host-a String object specifying the name of the host.
Returns: An array of all corresponding InetAddresses for the specified host.
Throws: UnknownHostException if the specified host is invalid or unknown.

getLocalHost

public static InetAddress getLocalHost() throws
UnknownHostException
The getLocalHost() returns an InetAddress object representing the address of the
local host.
Returns: An InetAddress object containing the Internet address information for the
local host.

appendix K -- java.net Package Reference

file:///G|/ebooks/1575211831/ch39.htm (6 of 21) [11/06/2000 7:49:10 PM]



ServerSocket

Extends: Object
The ServerSocket class is used to encapsulate a server socket.

ServerSocket Constructor

public ServerSocket(int port) throws IOException
The ServerSocket constructor creates a server socket on the specified port.
Parameters: port-an integer value specifying the port to create the socket on.
Throws: IOException if an I/O exception has occurred.

ServerSocket Constructor

public ServerSocket(int port, int backlog) throws IOException
This ServerSocket constructor creates a server socket on the specified port and listens
to it for a specified time.
Parameters: port-an integer value specifying the port to create the socket on.
Throws: IOException if an I/O exception has occurred.

getInetAddress

public InetAddress getInetAddress()
The getInetAddress method returns an InetAddress object specifying the address
to which this socket is connected.
Returns: An InetAddress object containing the address information to which the socket
is connected.

getLocalPort

public int getLocalPort()
The getLocalPort method returns the local port on which the socket is currently
listening.
Returns: An integer value representing the port on the local machine which the server
socket is listening to.

accept

public Socket accept() throws IOException
The accept method is used to accept a connection. This method will block all others until
a connection is made.
Returns: A Socket object after the connection has been accepted.
Throws: IOException if an I/O error occurred when waiting for the connection.

close

appendix K -- java.net Package Reference

file:///G|/ebooks/1575211831/ch39.htm (7 of 21) [11/06/2000 7:49:10 PM]



public void close() throws IOException
The close method closes the socket's connection.
Throws: IOException if an I/O error occurred while closing the server socket.

toString

public String toString()
The toString method returns a string representation of the ServerSocket.
Returns: A String object containing the implementation address and implementation port
of the server socket.

setSocketFactory

public static synchronized void
setSocketFactory(SocketImplFactory fac)
throws IOException, SocketException
The setSocketFactory method sets the server SocketImplFactory for use by this
ServerSocket. This factory can only be set once.
Parameters: fac-a SocketImplFactory derived object to be used by this server
socket.
Throws: IOException if there was an I/O error when setting the
SocketImplFactory.
A SocketException if the SocketImplFactory has already been set.

Socket

Extends: Object
The Socket class is used to implement socket functionality. The
setSocketImplFactory method is used to change the socket's implementation based
on specific firewalls.

Socket Constructor

public Socket(String host, int port) throws
UnknownHostException,
IOException
This Socket constructor creates a stream socket to the specified port on the specified host.
Parameters:
host-a String object containing the hostname to create the socket on.
port-an integer value representing the port to create the socket on.
Throws: UnknownHostException if the hostname is unrecognized or invalid.
An IOException if an I/O error occurred while creating the socket.

Socket Constructor

public Socket(String host, int port, boolean stream) throws

appendix K -- java.net Package Reference

file:///G|/ebooks/1575211831/ch39.htm (8 of 21) [11/06/2000 7:49:10 PM]



IOException
This Socket constructor creates a stream socket to the specified port on the specified host.
The boolean stream value can be used to specify a stream socket or a datagram socket.
Parameters:
host-a String object containing the hostname to create the socket on.
port-an integer value representing the port to create the socket on.
stream-a boolean value that is true if a stream socket is to be created; false if a
datagram socket is to be created.
Throws: IOException if an I/O error occurred while creating the socket.

Socket Constructor

public Socket(InetAddress address, int port) throws
IOException
This Socket constructor creates a stream socket to the specified port at the specified
InetAddress.
Parameters:
address-an InetAddress object specifying the address to create the socket at.
port-an integer value representing the port to create the socket on.
Throws: IOException if an I/O error occurred while creating the socket.

Socket Constructor

public Socket(InetAddress address, int port, boolean stream)
throws IOException
This Socket constructor creates a stream socket to the specified port at the specified
address. The boolean stream value can be used to specify a stream socket or a datagram
socket.
Parameters:
address-an InetAddress object specifying the address to create the socket at.
port-an integer value representing the port to create the socket on.
stream-a boolean value that is true if a stream socket is to be created; false if a
datagram socket is to be created.
Throws: IOException if an I/O error occurred while creating the socket.

getInetAddress

public InetAddress getInetAddress()
The getInetAddress method is used to return the address to which the socket is
connected.
Returns: An InetAddress object containing information about the address to which the
socket is connected.

getPort

public int getPort()

appendix K -- java.net Package Reference

file:///G|/ebooks/1575211831/ch39.htm (9 of 21) [11/06/2000 7:49:10 PM]



The getPort method returns the remote port to which the socket is connected.
Returns: An integer value representing the remote port number that the socket is con-
nected to.

getLocalPort

public int getLocalPort()
The getLocalPort method returns the local port to which the socket is connected.
Returns: An integer value representing the local port number that the socket is connected to.

getInputStream

public InputStream getInputStream() throws IOException
The getInputStream method returns an input stream for this socket.
Returns: An InputStream object to be used as the socket's input stream.
Throws: IOException if an I/O error occurred while retrieving the input stream.

getOutputStream

public OutputStream getOutputStream() throws IOException
The getOutputStream method returns an output stream for this socket.
Returns: An OutputStream object to be used as the socket's output stream.
Throws: IOException if an I/O error occurred while retrieving the output stream.

close

public synchronized void close() throws IOException
The close method closes the socket's connection.
Throws: IOException if an I/O error occurred while closing the socket.

toString

public String toString()
The toString method returns a string representation of the socket.
Returns: A String object containing the socket information.

setSocketImplFactory

public static synchronized void
setSocketImplFactory(SocketImplFactory fac)
throws IOException
The setSocketImplFactory method sets the SocketImplFactory interface for
this socket. The factory can only be specified once.
Parameters: fac-a SocketImplFactory derived object to be used by this socket.
Throws: IOException if an I/O error occurred while setting the
SocketImplFactory.

appendix K -- java.net Package Reference

file:///G|/ebooks/1575211831/ch39.htm (10 of 21) [11/06/2000 7:49:10 PM]



SocketImpl

Extends: Object
The SocketImpl class is an abstract base class provided as a template for socket
implementations.

toString

public String toString()
The toString method returns a string representation of the SocketImpl class.
Returns: A String object containing the port and address of this socket.

URL

Extends: Object
The URL class is used to represent a uniform resource locator. URL is a reference to an
object on the Web such as an FTP site, an e-mail address, or an HTML page on a Web
server.

URL Constructor

public URL(String protocol, String host, int port, String
file) throws
MalformedURLException
This URL constructor creates a URL using the specified protocol, host, port, and host
filename.
Parameters:
protocol-a String object specifying the protocol to be used.
host-a String object specifying the hostname.
port-an integer value specifying the port.
file-a String object specifying the file name on the host.
Throws: MalformedURLException if the protocol was unknown or invalid.

URL Constructor

public URL(String protocol, String host, String file) throws
MalformedURLException
This URL constructor creates a URL using the specified protocol, host, and host file name.
The port number will be the default port used for the specified protocol.
Parameters:
protocol-a String object specifying the protocol to be used.
host-a String object specifying the hostname.
file-a String object specifying the file name on the host.
Throws: MalformedURLException if the protocol was unknown or invalid.

appendix K -- java.net Package Reference

file:///G|/ebooks/1575211831/ch39.htm (11 of 21) [11/06/2000 7:49:10 PM]



URL Constructor

public URL(String spec) throws MalformedURLException
This URL constructor creates a URL using the specified unparsed URL.
Parameters: spec-a String object containing an unparsed URL string.
Throws: MalformedURLException if the specified unparsed URL was invalid.

URL Constructor

public URL(URL context, String spec) throws
MalformedURLException
This URL constructor creates a URL using the specified context and unparsed URL. If the
unparsed URL is an absolute URL it is used as is, otherwise it is used in combination with
the specified context.
Parameters:
context-a URL object specifying the context to be used in combination with the unparsed
URL string.
spec-a String object containing an unparsed URL string.
Throws: MalformedURLException if the specified unparsed URL was invalid.

getPort

public int getPort()
The getPort method returns the port number for this URL.
Returns: An integer value representing the port number for this URL, which is -1 if the
port has not been set.

getProtocol

public String getProtocol()
The getProtocol method returns a string representing the protocol used by this URL.
Returns: A String object containing the protocol name.

getHost

public String getHost()
The getHost method returns a string containing the hostname.
Returns: A String object containing the hostname.

getFile

public String getFile()
The getFile method returns a string containing the host filename.
Returns: A String object containing the name of the file on the host.

getRef

appendix K -- java.net Package Reference

file:///G|/ebooks/1575211831/ch39.htm (12 of 21) [11/06/2000 7:49:10 PM]



public String getRef()
The getRef method returns the ref (if any) that was specified in the unparsed string used
to create this URL.
Returns: A String object containing the URL's ref.

equals

public boolean equals(Object obj)
The equals method can be used to compare this URL to another object.
Parameters: obj-an object that will be compared with this URL.
Returns: A boolean value that will be true if the objects are equal, false if not.

hashCode

public int hashCode()
The hashCode method will return a hash code value for the URL.
Returns: An integer value representing the hash code value of this URL.

sameFile

public boolean sameFile(URL other)
The sameFile method can be used to determine if the specified file is the same file used
to create this URL.
Parameters: other-a URL object specifying the location of another file.
Returns: A boolean value that will be true if the files are equal; false if not.

toString

public String toString()
The toString method returns a string representation of the URL.
Returns: A String object containing a textual representation of the URL including the
protocol, host, port, and filename.

toExternalForm

public String toExternalForm()
The toExternalForm method is used to reverse the parsing of the URL.
Returns: A String object containing the textual representation of the fully qualified URL.

openConnection

public URLConnection openConnection() throws
java.io.IOException
The openConnection method will open a URLConnection to the object specified by
the URL.
Returns: A URLConnection object that represents a connection to the URL.
Throws: IOException if an I/O error occurred while creating the URL connection.

appendix K -- java.net Package Reference

file:///G|/ebooks/1575211831/ch39.htm (13 of 21) [11/06/2000 7:49:10 PM]



openStream

public final InputStream openStream() throws
java.io.IOException
The openStream method opens an InputStream.
Returns: An InputStream representing an input stream for the URL.
Throws: IOException if an I/O error occurred while creating the input stream.

getContent

public final Object getContent() throws java.io.IOException
The getContent method retrieves the contents from the opened connection.
Returns: An object representing the contents that are retrieved from the connection.
Throws: IOException if an I/O error occurred while retrieving the content.

setURLStreamHandlerFactory

public static synchronized void setURLStreamHandlerFactory(
URLStreamHandlerFactory fac)
The setURLStreamHandlerFactory method sets the
URLStreamHandlerFactory interface for this URL. The factory can only be specified
once.
Parameters: fac-a URLStreamHandlerFactory interface to be used by this URL.
Throws: Error if this factory has already been specified.

URLConnection

Extends: Object
The URLConnection class is an abstract base class used to represent a URL connection.
It must be subclassed in order to provide true functionality.

connect

abstract public void connect() throws IOException
The connect method is used to connect the URLConnection after it has been created.
Operations that depend on being connected will call this method to automatically connect.
Throws: IOException if an I/O error occurred while the connection was attempted.

getURL

public URL getURL()
The getURL method returns the URL for this URL connection.
Returns: A URL object.

getContentLength

appendix K -- java.net Package Reference

file:///G|/ebooks/1575211831/ch39.htm (14 of 21) [11/06/2000 7:49:10 PM]



public int getContentLength()
The getContentLength method returns the length of the content.
Returns: An integer value containing the length of the content, which is -1 if the length is
not known.

getContentType

public String getContentType()
The getContentType method returns the type of the content.
Returns: A String object containing the type of the content, which is null if the type is
not known.

getContentEncoding

public String getContentEncoding()
The getContentEncoding method returns the encoding of the content.
Returns: A String object containing the encoding of the content, which is null if the
encoding is not known.

getExpiration

public long getExpiration()
The getExpiration method will return the expiration of the object.
Returns: A long value containing the expiration of the object. This value will be 0 if the
expiration is not known.

getDate

public long getDate()
The getDate method will return the date of the object.
Returns: A long value containing the date of the object. This value will be 0 if the date is
not known.

getLastModified

public long getLastModified()
The getLastModified() will return the last modified date of the object.
Returns: A long value containing the last modified date of the object. This value will be 0 if
the last modified date is not known.

getHeaderField

public String getHeaderField(String name)
The getHeaderField method returns the contents of the header field based on the
specified field name.
Parameters: name-a String object specifying the name of the header field to be returned.
Returns: A String object containing the contents of the specified header field. This value

appendix K -- java.net Package Reference

file:///G|/ebooks/1575211831/ch39.htm (15 of 21) [11/06/2000 7:49:10 PM]



will be null if the contents are not known.

getHeaderFieldInt

public int getHeaderFieldInt(String name, int Default)
The getHeaderFieldInt method returns the pre-parsed contents of the specified header
field.
Parameters:
name-a String object specifying the name of the header field to be returned.
Default-an integer value containing the value to be returned if the field is missing.
Returns: An integer value containing the preparsed header field value.

getHeaderFieldDate

public long getHeaderFieldDate(String name, long Default)
The getHeaderFieldDate method returns the contents of the specified header field
parsed as a date.
Parameters:
name-a String object specifying the name of the header field to be returned.
Default-an integer value containing the value to be returned if the field is missing.
Returns: A long value containing the header field value parsed as a date.

getHeaderFieldKey

public String getHeaderFieldKey(int n)
The getHeaderFieldKey method returns the key for the specified header field.
Parameters: n-the position of the header field to be returned.
Returns: A String object containing the key for the specified header field. This value will
be null if there are fewer than n header fields.

getHeaderField

public String getHeaderField(int n)
The getHeaderField method returns the specified header field value.
Parameters: n-the position of the header field to be returned.
Returns: A String object containing the contents of the specified header field. This value
will be null if there are fewer than n header fields.

getContent

public Object getContent() throws IOException
The getContent method returns the object referred to by this URLConnection.
Returns: An Object object that was referred to by this URL.
Throws: IOException if an I/O error occurred while retrieving the content.

getInputStream

appendix K -- java.net Package Reference

file:///G|/ebooks/1575211831/ch39.htm (16 of 21) [11/06/2000 7:49:10 PM]



public InputStream getInputStream() throws IOException
The getInputStream method returns an InputStream object to be used as an input
stream to read from the object.
Returns: An InputStream object to be used to read from the object.
Throws: IOException if an I/O error occurred while creating the input stream.

getOutputStream

public OutputStream getOutputStream() throws IOException
The getOutputStream method returns an OutputStream object to be used as an
output stream to write to the object.
Returns: An OutputStream object to be used to write to the object.
Throws: IOException if an I/O error occurred while creating the output stream.

toString

public String toString()
The toString method returns a string representation of the URLConnection.
Returns: A String object containing a textual representation of the URLConnection
object.

setDoInput

public void setDoInput(boolean doinput)
The setDoInput method sets the functionality of the URL connection. If the parameter is
true, the URL connection will be used for input. If it is false, it will be used for output.
Parameters: doinput-a boolean value that will be true if the URL connection is to be
used for input; false if for output.

setDoOutput

public void setDoOutput(boolean dooutput)
The setDoOutput method sets the functionality of the URL connection. If the parameter
is true, the URL connection will be used for output. If it is false, it will be used for
input.
Parameters: dooutput-a boolean value that will be true if the URL connection is to be
used for output; false if for input.

getDoOutput

public boolean getDoOutput()
The getDoOutput method returns the input/output functionality of the
URLConnection.
Returns: A boolean value that will be true if the URL connection is used for output;
false if it is used for input.

setAllowUserInteraction

appendix K -- java.net Package Reference

file:///G|/ebooks/1575211831/ch39.htm (17 of 21) [11/06/2000 7:49:10 PM]



public void setAllowUserInteraction(boolean
allowuserinteraction)
The setAllowUserInteraction method allows the protocol to interact with the user.
Parameters: allowuserinteraction-a boolean value that should be true if user
interaction is allowed; false if not.

getAllowUserInteraction

public boolean getAllowUserInteraction()
The getAllowUserInteraction method can be called to determine if user interaction
is allowed.
Returns: A boolean value that will be true if user interaction is allowed; false if not.

setDefaultAllowUserInteraction

public static void setDefaultAllowUserInteraction( boolean
defaultallowuserinteraction)
The setDefaultAllowUserInteraction method allows the default user interaction
value to be set for all URL connections because it is a static method.
Parameters: defaultallowuserinteraction-a boolean value that should be true
if user interaction is allowed; false if not.

getDefaultAllowUserInteraction

public static boolean getDefaultAllowUserInteraction()
The getDefaultAllowUserInteraction static method returns the default user
interaction value.
Returns: A boolean value that will be true if user interaction is allowed; false if not.

setUseCaches

public void setUseCaches(boolean usecaches)
The setUseCaches method is used to control the use of caching by the protocol. Some
protocols allow files to be cached.
Parameters: usecaches-a boolean value that will be true if caching is to be used by the
protocol; false if not.

getUseCaches

public boolean getUseCaches()
The getUseCaches method can be called to determine if caching is to be used by the
protocol.
Returns: A boolean value that will be true if caching is to be used by the protocol; false
if not.

setIfModifiedSince

appendix K -- java.net Package Reference

file:///G|/ebooks/1575211831/ch39.htm (18 of 21) [11/06/2000 7:49:10 PM]



public void setIfModifiedSince(long ifmodifiedsince)
The setIfModifiedSince method is provided to set the internal ifmodifiedsince
variable of the URLConnection class. Because some protocols allow caching of files, if
the file to be retrieved is newer than ifmodifiedsince, it will need to retrieved from
the URL (rather than the cache).
Parameters: ifmodifiedsince-a long value used to represent the
ifmodifiedsince date.

getIfModifiedSince

public long getIfModifiedSince()
The getIfModifiedSince method returns the internal ifmodifiedsince date
value. See the setIfModifiedSince method documentation.
Returns: A long value representing the ifmodifiedsince date value.

getDefaultUseCaches

public boolean getDefaultUseCaches()
The getDefaultUseCaches method can be called to determine if caches are used by
default.
Returns: A boolean value that will be true if caches are used by default; false if not.

setDefaultUseCaches

public void setDefaultUseCaches(boolean defaultusecaches)
The setDefaultUseCaches method can be used to force all URLConnections to use
caching by default because it is a static value.
Parameters: defaultusecaches-a boolean value that should be true if caches are to
be used by default; false if not.

setRequestProperty

public void setRequestProperty(String key, String value)
The setRequestProperty method is used to set URLConnection properties.
Parameters:
key-a String object containing the key by which the property is known.
value-a String object containing the property value.

getRequestProperty

public String getRequestProperty(String key)
The getRequestProperty method returns the value for the specified property key.
Parameters: key-a String object containing the key by which the property is known.
Returns: A String object containing the specified property's value.

setDefaultRequestProperty

appendix K -- java.net Package Reference

file:///G|/ebooks/1575211831/ch39.htm (19 of 21) [11/06/2000 7:49:10 PM]



public static void setDefaultRequestProperty(String key,
String value)
The setDefaultRequestProperty method sets the default value of a specified
property. All current and future URL connections will be initialized with these properties.
Parameters:
key-a String object containing the key by which the property is known.
value-a String object containing the specified property's value.

getDefaultRequestProperty

public static String getDefaultRequestProperty(String key)
The getDefaultRequestProperty method gets the default value of a specified
property.
Parameters: key-a String object containing the key by which the property is known.
Returns: A String object containing the specified property's value.

setContentHandlerFactory

public static synchronized void setContentHandlerFactory(
ContentHandlerFactory fac)
The setContentHandlerFactory method is used to set the
ContentHandlerFactory interface for this URL connection. The factory can only be
set once.
Parameters: fac-a ContentHandlerFactory-derived object.
Throws: Error if the ContentHandlerFactory has already been defined.

URLEncoder

Extends: Object
The URLEncoder class is used to encode text into x-www-form-urlencoded format.

encode

public static String encode(String s)
The encode method is used to translate a string into x-www-form-urlencoded
format.
Parameters: s-a String object to be translated.
Returns: A String object in x-www-form-urlencoded format.

MalformedURLException

Extends: IOException
The MalformedURLException class is used to signal a malformed URL.

appendix K -- java.net Package Reference

file:///G|/ebooks/1575211831/ch39.htm (20 of 21) [11/06/2000 7:49:10 PM]



ProtocolException

Extends: IOException
This exception signals when a connect receives an EPROTO message. This exception is used
by the Socket class.

SocketException

Extends: IOException
This exception signals when an error has occurred while trying to use a socket. This
exception is used by the Socket class.

UnknownHostException

Extends: IOException
This exception signals that the host address specified by the client cannot be resolved.

UnknownServiceException

Extends: IOException
This exception signals when an unknown service exception has occurred.

   

appendix K -- java.net Package Reference

file:///G|/ebooks/1575211831/ch39.htm (21 of 21) [11/06/2000 7:49:10 PM]



appendix L

java.util Package Reference

CONTENTS
Enumeration●   

Observer●   

BitSet●   

Date●   

Dictionary●   

Hashtable●   

Observable●   

Properties●   

Random●   

Stack●   

StringTokenizer●   

Vector●   

EmptyStackException●   

NoSuchElementException●   

The java.util package contains a variety of classes representing data structures and other
miscellaneous features such as support for date and time.

Enumeration

The Enumeration interface defines methods that can be used to iterate through a set of objects.

hasMoreElements

public abstract boolean hasMoreElements()
Can be used to determine if the enumeration has more elements.
Returns: true if there are more elements, false if not.

nextElement

appendix L -- java.util Package Reference

file:///G|/ebooks/1575211831/ch40.htm (1 of 26) [11/06/2000 7:49:15 PM]



public abstract Object nextElement()
This method returns the next element in the enumeration. Calling it repeatedly will move
through the enumeration.
Returns: The next element in the enumeration.
Throws: NoSuchElementException if there are no more elements in the enumeration.

Observer

The Observer interface defines an update method that is invoked by an Observable object
whenever the Observable object has changed and wants to notify its observers.

update

public abstract void update(Observable o, Object arg)
This method is called whenever an Observable instance that is being observed invokes
either of its notifyObservers methods.
Parameters:
o-the Observable object that is generating this message.
arg-any additional information passed by the Observable object's
notifyObservers method.

BitSet

Extends: Object
Implements: Cloneable
This class represents a dynamically sized set of bits. Two constructors are provided, one that
creates an empty set of unspecified size and one that creates a set of a specified size. The set
method can be used to set an individual bit, or clear can be used to clear an individual bit.

BitSet Constructor

public BitSet()
This constructor creates an empty bit set.

BitSet Constructor

public BitSet(int nbits)
This constructor creates an empty bit set with the specified number of bits.
Parameters: nbits-the number of bits in the set.

and

public void and(BitSet set)
This method logically ANDs the bit set with another bit set.
Parameters: set-the bit set to AND with the current set.

appendix L -- java.util Package Reference

file:///G|/ebooks/1575211831/ch40.htm (2 of 26) [11/06/2000 7:49:15 PM]



clear

public void clear(int bit)
Clears the specified bit.
Parameters: bit-the bit to clear.

clone

public Object clone()
This method overrides the clone method in Object. It can be used to clone the bit set.

equals

public boolean equals(Object obj)
This method can be used to compare the contents of two bit sets. If the same bits are set in
the two bit sets, they are considered equal.
Parameters: obj-the bit set to compare against.
Returns: true if the set bits are the same, false otherwise.

get

public boolean get(int bit)
Gets the value of a specified bit in the set.
Parameters: bit-the bit to get.
Returns: true if the bit is set; false if it is clear.

hashCode

public int hashCode()
This method overrides the hashCode method in Object and can be used to get a hash
code for the instance.
Returns: A hash code for the instance.

or

public void or(BitSet set)
This method logically ORs the bit set with another.
Parameters: set-the bit set to OR with the current set.

set

public void set(int bit)
Sets the specified bit.
Parameters: bit-the bit to set.

size

appendix L -- java.util Package Reference

file:///G|/ebooks/1575211831/ch40.htm (3 of 26) [11/06/2000 7:49:15 PM]



public int size()
This method returns the amount of space, in bits, used to store the set. Space for a bit set is
allocated in 64-bit increments.
Returns: The amount of space, in bits, used to store the bit set.

toString

public String toString()
This method formats the bit set as a string. The string will consist of an opening curly brace,
comma-separated values representing each set bit, and a closing curly brace.
Returns: A string representing the bits in the bit set that are set.

xor

public void xor(BitSet set)
This method logically XORs the bit set with another bit set.
Parameters: set-the bit set to XOR with the current set.

Date

Extends: Object
The Date class stores a representation of a date and time and provides methods for
manipulating the date and time components. Constructors are provided that will create a
new Date instance based on the current date and time, the UNIX-standard milliseconds since
midnight on January 1, 1970, a string, or from integers representing the year, month, day,
hours, minutes, and seconds.

Date Constructor

public Date()
This method creates a new Date object using today's date.

Date Constructor

public Date(long date)
This method creates a date from a long that represents the number of milliseconds since
January 1, 1970.
Parameters: date-the number of milliseconds since January 1, 1970.

Date Constructor

public Date(int year, int month, int date)
This method creates a new Date object that corresponds to the year, month, and day passed
to it. The first month of the year is month zero. The day of the month is normalized so that
impossible dates become real dates.
Parameters:

appendix L -- java.util Package Reference

file:///G|/ebooks/1575211831/ch40.htm (4 of 26) [11/06/2000 7:49:15 PM]



year-the number of years since 1900.
month-the zero-based month, from 0 to 11.
date-the day of the month.

Date Constructor

public Date(int year, int month, int date, int hrs, int min)
This method creates a new Date object that corresponds to the year, month, day, hours, and
minutes passed to it. As with the prior constructor, the day of the month is normalized so
that impossible dates become real dates.
Parameters:
year-the number of years since 1900.
month-the zero-based month, from 0 to 11.
date-the day of the month.
hrs-the zero-based number of hours (0-23).
min-the zero-based number of minutes (0-59).

Date Constructor

public Date(int year, int month, int date, int hrs, int min,
int sec)
This method creates a new Date object that corresponds to the year, month, day, hour,
minute, and seconds passed to it. As with the other constructors, the day of the month is
normalized so that impossible dates become real dates.
Parameters:
year-the number of years since 1900.
month-the zero-based month, from 0 to 11.
date-the day of the month.
hrs-the zero-based number of hours (0-23).
min-the zero-based number of minutes (0-59).
sec-the zero-based number of seconds (0-59).

Date Constructor

public Date(String s)
This method creates a new date based on the date string passed to it.
Parameters: s-a time string in the format passed to java.util.Date.Parse, as
described later in this appendix.

UTC

public static long UTC(int year, int month, int date, int
hrs, int min, int sec)
This method calculates the time in UTC (Coordinated Universal Time) format based on the
specified parameters. Parameters are expected to be given in UTC values, not the time in the
local time zone.

appendix L -- java.util Package Reference

file:///G|/ebooks/1575211831/ch40.htm (5 of 26) [11/06/2000 7:49:15 PM]



Parameters:
year-the number of years since 1900.
month-the zero-based month, from 0 to 11.
date-the day of the month.
hrs-the zero-based number of hours (0-23).
min-the zero-based number of minutes (0-59).
sec-the zero-based number of seconds (0-59).
Returns: A UTC time value.

parse

public static long parse(String s)
This method calculates the time in UTC format based on the string passed to it.
Parameters: s-a formatted time string such as Mon, 8 Apr 1996 21:32:PM PST.
Returns: A UTC time value.

after

public boolean after(Date when)
Determines whether the Date occurs after the specified date.
Parameters: when-the date to compare against.
Returns: true if the object's date occurs after the specified date; false otherwise.

before

public boolean before(Date when)
This method determines whether the Date occurs before the specified date.
Parameters: when-the date to compare against.
Returns: true if the object's date occurs before the specified date; false otherwise.

equals

public boolean equals(Object obj)
This method determines whether two Date objects are the same by comparing the dates
represented by each object.
Parameters: obj-the object to compare against.
Returns: true if the dates are the same; false otherwise.

getDate

public int getDate()
This method returns the day (or date) portion of a Date object.
Returns: The day of the month, from 1 to 31.

getDay

public int getDay()

appendix L -- java.util Package Reference

file:///G|/ebooks/1575211831/ch40.htm (6 of 26) [11/06/2000 7:49:15 PM]



This method returns the day of the week. Sunday is assigned a value of 0.
Returns: The day of the week from 0 (Sunday) to 6 (Saturday).

getHours

public int getHours()
This method returns the hour.
Returns: The hour from 0 to 23.

getMinutes

public int getMinutes()
This method returns the minutes.
Returns: The minutes from 0 to 59.

getMonth

public int getMonth()
This method returns the month.
Returns: The month from 0 (January) to 11 (December).

getSeconds

public int getSeconds()
This method returns the seconds.
Returns: The seconds from 0 to 59.

getTime

public long getTime()
This method returns the number of milliseconds since midnight on January 1, 1970.
Returns: The time expressed in elapsed milliseconds.

getTimezoneOffset

public int get`TimezoneOffset()
This method returns the offset in minutes of the current time zone from the UTC.
Returns: The number of minutes difference between the time zone of the object and UTC.

getYear

public int getYear()
This method returns the year after 1900.
Returns: The year after 1900.

hashCode

public int hashCode()

appendix L -- java.util Package Reference

file:///G|/ebooks/1575211831/ch40.htm (7 of 26) [11/06/2000 7:49:15 PM]



This method overrides the hashCode method in Object and can be used to get a hash
code for the instance.
Returns: A hash code for the instance.

setDate

public void setDate(int date)
This method sets the day of the month portion of a Date object.
Parameters: date-the day value.

setHours

public void setHours(int hours)
This method sets the hours portion of a Date object.
Parameters: hours-the hour from 0 (midnight) to 23.

setMinutes

public void setMinutes(int minutes)
This method sets the minutes portion of a Date object.
Parameters: minutes-the minutes from 0 to 59.

setMonth

public void setMonth(int month)
This method sets the month portion of a Date object.
Parameters: month-the zero-based month from 0 (January) to 11 (December).

setSeconds

public void setSeconds(int seconds)
This method sets the seconds portion of a Date object.
Parameters: seconds-the seconds from 0 to 59.

setTime

public void setTime(long time)
This method sets the time to the time represented by the number of milliseconds in the
time parameter. It is frequently used in conjunction with the getTime method that returns
a number of milliseconds.
Parameters: time-the new time in milliseconds since January 1, 1970.

setYear

public void setYear(int year)
This method sets the year portion of a Date instance.
Parameters: year-the year after 1900 (for 1996, use 96).

appendix L -- java.util Package Reference

file:///G|/ebooks/1575211831/ch40.htm (8 of 26) [11/06/2000 7:49:15 PM]



toGMTString

public String toGMTString()
This method creates a string that contains the date and time formatted according to GMT
(Greenwich Mean Time) conventions.
Returns: A string representing the date in GMT format, such as 14 Nov 1995
08:00:00 GMT.

toLocaleString

public String toLocaleString()
This method creates a string that contains the date and time in the format of the current
locale.
Returns: A string representing the date as formatted for the locale of the instance, such as
11/14/95 00:00:00.

toString

public String toString()
This method creates a string that contains the day of the week, the date, and the time.
Returns: A string representing the day of the week, date and time of the instance, such as
Tue Nov 14 00:00:00 1995.

Dictionary

Extends: Object
The Dictionary class is an abstract class. Each element in a Dictionary consists of a key and
value. Elements are added to a Dictionary using put and are retrieved using get. Elements
may be deleted with remove. The methods elements and keys each return an enumeration of
the values and keys, respectively, stored in the Dictionary.

Dictionary Constructor

public Dictionary()
This is a default constructor that will create an empty dictionary.

elements

public abstract Enumeration elements()
This abstract method returns an enumeration of all elements in a dictionary.
Returns: An enumeration of each of the elements in the dictionary. The methods of
Enumeration can be used to iterate through the elements.

get

public abstract Object get(Object key)

appendix L -- java.util Package Reference

file:///G|/ebooks/1575211831/ch40.htm (9 of 26) [11/06/2000 7:49:15 PM]



This abstract method retrieves an object from a dictionary based on its key.
Parameters: key-the key of the object to be retrieved.
Returns: The value associated with the key, if found; null if not.

isEmpty

public abstract boolean isEmpty()
This abstract method can be used to determine if the dictionary is empty.
Returns: true if the dictionary is empty; false if not.

keys

public abstract Enumeration keys()
This abstract method returns an enumeration of all keys in a dictionary.
Returns: An enumeration of each of the keys in the dictionary. The methods of
Enumeration can be used to iterate through the keys.

put

public abstract Object put(Object key, Object value)
This abstract method inserts a new element into the dictionary. To retrieve an element, use
the get method.
Parameters:
key-the key to be added.
value-the value associated with the key.
Returns: If the key was already in the dictionary, the old value associated with it is returned.
If not, null is returned.
Throws: NullPointerException if the value is null.

remove

public abstract Object remove(Object key)
This abstract method removes an object from a dictionary.
Parameters: key-the key of the element to be removed.
Returns: If the key is found, the value associated with it is returned; if not, null is returned.

size

public abstract int size()
This abstract method returns the number of elements in the dictionary.
Returns: The number of items stored in the dictionary.

Hashtable

Extends: Dictionary
The Hashtable class is used for mapping keys to values. Each element in a hash table

appendix L -- java.util Package Reference

file:///G|/ebooks/1575211831/ch40.htm (10 of 26) [11/06/2000 7:49:15 PM]



consists of a key and a value. Elements are added to a hash table using the put method and
are retrieved using get. Elements may be deleted from a hash table with remove. A hash
table will expand in size as elements are added to it. When creating a new hash table, you
can specify an initial capacity and a load factor. The hash table will increase in size
whenever adding a new element would move the hash table past its threshold. A hash table's
threshold is its capacity multiplied by its load factor. For example, a hash table with a
capacity of 100 and a load factor of 0.75 would have a threshold of 75 items.

Hashtable Constructor

public Hashtable(int initialCapacity, float loadFactor)
This constructor creates a new instance of a hash table with the specified initial capacity and
load factor. Although an initial capacity is specified, the hash table will grow as needed
when new items are added. The initial capacity specifies how many elements could be
stored in the hash table if the load factor is 1.0. The load factor is a number between 0.0 and
1.0 and specifies the percentage of the hash table that must be full before the size is
automatically increased.
Parameters:
initialCapacity-the initial capacity of the hash table.
loadFactor-a value between 0.0 and 1.0 that specifies the percent of available hash slots
that can be filled before the table is automatically rehashed into a large hash table.

Hashtable Constructor

public Hashtable(int initialCapacity)
This constructor creates a new hash table with the specified initial capacity and a default
load factor of 0.75.
Parameters: initialCapacity-the initial capacity of the hash table.

Hashtable Constructor

public Hashtable()
This constructor creates a new hash table using default values for the initial capacity and the
load factor. A default of 101 is used for the initial capacity, and 0.75 is used for the load
factor.

clear

public synchronized void clear()
This method will remove all elements from a hash table.

clone

public synchronized Object clone()
This method clones the hash table into a new hash table. The keys and values themselves are
not cloned.
Returns: A cloned hash table.

appendix L -- java.util Package Reference

file:///G|/ebooks/1575211831/ch40.htm (11 of 26) [11/06/2000 7:49:15 PM]



contains

public synchronized boolean contains(Object value)
This method searches the hash table to determine if a specific value is stored.
Parameters: value-the value to search for.
Returns: true if the value is found; false if not.
Throws: NullPointerException if the value is null.

containsKey

public synchronized boolean containsKey(Object key)
This method searches the hash table to determine if a specific key occurs.
Parameters: key-the key to search for.
Returns: true if the key is found; false if not.

elements

public synchronized Enumeration elements()
This method returns an enumeration of all of the element values in the instance.
Returns: An enumeration of each of the keys in the hash table. The methods of
Enumeration can be used to iterate through the keys.

get

public synchronized Object get(Object key)
This method retrieves the object associated with the specified key.
Parameters: key-the key of the object to be retrieved.
Returns: The value associated with the key, if found; null if not.

isEmpty

public boolean isEmpty()
This method can be used to determine if the hash table is empty.
Returns: true if the hash table is empty; false if not.

keys

public synchronized Enumeration keys()
This method returns an enumeration of all the keys in the instance.
Returns: An enumeration of each of the keys in the hash table. The methods of
Enumeration can be used to iterate through the keys.

put

public synchronized Object put(Object key, Object value)
This method inserts a new element into the hash table. To retrieve an element, use the get

appendix L -- java.util Package Reference

file:///G|/ebooks/1575211831/ch40.htm (12 of 26) [11/06/2000 7:49:15 PM]



method.
Parameters:
key-the key to be added.
value-the value associated with the key.
Returns: If the key was already in the hash table, the old value associated with it is returned.
If not, null is returned.
Throws: NullPointerException if the value is null.

rehash

protected void rehash()
This method rehashes the hash table into a larger hash table. It is not normally necessary to
call this method directly because it is invoked automatically based on the capacity and load
factor of the hash table.

remove

public synchronized Object remove(Object key)
This method removes an object from a hash table.
Parameters: key-the key of the element to be removed.
Returns: If the key is found, the value associated with it is returned; if not, null is returned.

size

public int size()
This method returns the number of elements in the hash table.
Returns: The number of items stored in the hash table.

toString

public synchronized String toString()
This method overrides the toString method in Object and formats the contents of the
hash table as a string.
Returns: A string representation of the hash table.

Observable

Extends: Object
An Observable class is a class that can be watched or monitored by another class that
implements the Observer interface. Associated with an Observable instance is a list of
observers. Whenever the Observable instance changes it can notify each of its observers. By
using Observable and Observer classes you can achieve a better partitioning of your code by
decreasing the reliance of one class on another.

Observable Constructor

appendix L -- java.util Package Reference

file:///G|/ebooks/1575211831/ch40.htm (13 of 26) [11/06/2000 7:49:15 PM]



public Observable()
This is an empty, default constructor.

addObserver

public synchronized void addObserver(Observer o)
This method will add an observer to the list of objects that are observing this instance. The
observer must implement the Observer interface.
Parameters: o-the observer to add.

clearChanged

protected synchronized void clearChanged()
This method clears the internal flag that indicates an Observable instance has changed.

countObservers

public synchronized int countObservers()
This method counts the numbers of observers who are observing the instance.
Returns: The number of observers for the instance.

deleteObserver

public synchronized void deleteObserver(Observer o)
This method will delete an observer from the list of observers that are monitoring an
Observable object. The observer must have been previously added with
addObserver.
Parameters: o-the observer to delete.

deleteObservers

public synchronized void deleteObservers()
This method will delete all observers of the Observable instance.

hasChanged

public synchronized boolean hasChanged()
This method can be used to query if an Observable has changed.
Returns: true if an observable change has occurred; false otherwise.

notifyObservers

public void notifyObservers()
This method will notify all observers that a change has occurred in the Observable
object. This will result in a call to the update method in each observer.

notifyObservers

appendix L -- java.util Package Reference

file:///G|/ebooks/1575211831/ch40.htm (14 of 26) [11/06/2000 7:49:15 PM]



public synchronized void notifyObservers(Object arg)
This method will notify all observers that a change has occurred in the Observable
object. This will result in a call to the update method in each observer to which arg will
be passed.
Parameters: arg-any object that can be used to convey information to the observers.

setChanged

protected synchronized void setChanged()
This method sets an internal flag to indicate that an observable change has occurred within
the instance.

Properties

Extends: Hashtable
The Properties class can be used to store keys and associated values. Through its save and
load methods, Properties can be written to disk. This makes this class an excellent
mechanism for storing configuration information between runs of a program.

Member Variables

protected Properties defaults
This member stores the default property values.

Properties Constructor

public Properties()
This constructor is used to create an empty, new instance of Properties.

Properties Constructor

public Properties(Properties defaults)
This constructor will create a new instance of Properties and will establish a set of
default properties.

getProperty

public String getProperty(String key)
This method is used to retrieve a property based on its key. If no matching key is found, the
defaults are searched. If no match is found there either, null is returned.
Parameters: key-the key of the property to retrieve.
Returns: The property associated with the key or null if there is no matching key.

getProperty

public String getProperty(String key, String defaultValue)

appendix L -- java.util Package Reference

file:///G|/ebooks/1575211831/ch40.htm (15 of 26) [11/06/2000 7:49:15 PM]



This method is used to retrieve a property based on its key. If no match is found,
defaultValue is returned.
Parameters:
key-the key of the property to retrieve.
defaultValue-the value to use if no matching key is found.
Returns: The property associated with the key or the defaultValue if there is no
matching key.

list

public void list(PrintStream out)
This method will list all of the properties to the specified PrintStream. It is useful
mainly while debugging.
Parameters: out-the PrintStream where the properties are to be printed.

load

public synchronized void load(InputStream in) throws
IOException
This method reads a set of properties from the specified InputStream. Used in
conjunction with the save method, Properties can be written to disk at the end of a
program run and then reloaded at the start of the next run.
Parameters: in-the input stream from which the properties are to be read.
Throws: IOException if the specified file is not found or cannot be read.

propertyNames

public Enumeration propertyNames()
This method returns an enumeration of all of the property names in the instance.
Returns: An enumeration of each of the property names. The methods of Enumeration
can be used to iterate through the property names.

save

public synchronized void save(OutputStream out, String
header)
This method saves the properties to an output stream. Since FileOutputStream is a
subclass of OutputStream, this method can be used to write to a file.
Parameters:
out-the output stream to which the properties are to be written.
header-a header that will be sent to the output stream before the properties.

appendix L -- java.util Package Reference

file:///G|/ebooks/1575211831/ch40.htm (16 of 26) [11/06/2000 7:49:15 PM]



Random

Extends: Object
The Random class represents a pseudo-random number generator. Two constructors are
provided, one taking a seed value as a parameter and the other taking no parameters and
using the current time as a seed.

random Constructor

public random()
This constructor creates a new random number generator that is seeded based on the current
time.

random Constructor

public random(long seed)
This constructor creates a new random number generator based on the specified seed value.
A program can reset the seed of an already created instance by using the setSeed method.
Parameters: seed-the seed value.

nextDouble

public double nextDouble()
This method retrieves the next number from the random number generator. The number will
be a pseudo-random, uniformly distributed double between 0.0D and 1.0D.
Returns: A randomly distributed double between 0.0D and 1.0D.

nextFloat

public float nextFloat()
This method retrieves the next number from the random number generator. The number will
be a pseudo-random, uniformly distributed float between 0.0F and 1.0F.
Returns: A randomly distributed float between 0.0F and 1.0F.

nextGaussian

public synchronized double nextGaussian()
This method retrieves the next value from the pseudo-random number generator. The value
will be returned as a Gaussian-distributed double that has a mean of 0 and a standard
deviation of 1.
Returns: A Gaussian-distributed double.

nextInt

public int nextInt()
This method retrieves the next number from the random number generator. The number will

appendix L -- java.util Package Reference

file:///G|/ebooks/1575211831/ch40.htm (17 of 26) [11/06/2000 7:49:15 PM]



be a pseudo-random int with a value that is uniformly distributed among all possible int
values.
Returns: A randomly distributed int.

nextLong

public long nextLong()
This method retrieves the next number from the random number generator. The number will
be a pseudo-random long with a value that is uniformly distributed among all possible
long values.
Returns: A randomly distributed long.

setSeed

public synchronized void setSeed(long seed)
This method sets a seed value for the pseudo-random number generator. The seed value is
used to determine the values that are generated. By setting a specific seed value, the random
number generator can be coerced into generating a specific sequence of values.
Parameters: seed-the seed value.

Stack

Extends: Vector
The Stack class implements a simple last-in-first-out stack. An item is stored on a stack by
"pushing" it onto the stack. An item may subsequently be "popped" off the stack and used.
The item popped off a stack will always be the most recently pushed item.

Stack Constructor

public Stack()
This is the default constructor.

empty

public boolean empty()
This method can be used to determine if the stack contains items.
Returns: true if the stack is empty; false otherwise.

peek

public Object peek()
This method can be used to peek at the top item on the stack. It is similar to pop but does
not remove the item from the stack.
Returns: The item at the top of the stack.
Throws: EmptyStackException if the stack is empty.

appendix L -- java.util Package Reference

file:///G|/ebooks/1575211831/ch40.htm (18 of 26) [11/06/2000 7:49:15 PM]



pop

public Object pop()
This method retrieves the last item added to the stack. To examine, but not remove, the top
item in the stack use the peek method.
Returns: The item at the top of the stack.
Throws: EmptyStackException if the stack is empty.

push

public Object push(Object item)
This method adds a new item to the stack.
Parameters: item-the item to push onto the stack.
Returns: The item that was pushed onto the stack.

search

public int search(Object o)
This method examines the stack to see if the specified object is in the stack.
Parameters: o-the object to search for.
Returns: The distance from the top of the stack, or -1 if the item is not in the stack.

StringTokenizer

Extends: Object
Implements: Enumeration
A StringTokenizer can be used to parse a string into its constituent tokens. For example,
each word in a sentence could be considered a token. However, the StringTokenizer class
goes beyond the parsing of sentences. You can create a fully customized tokenizer by
specifying the set of token delimiters when the string tokenizer is created.

StringTokenizer Constructor

public StringTokenizer(String str, String delim, boolean
returnTokens)
This constructor creates a new instance based on the string to be tokenized, the set of
delimiters, and a flag indicating if delimiters should be returned as tokens.
Parameters:
str-the string to be tokenized.
delim-a string containing the delimiters to use when tokenizing the string.
returnTokens-true if the string tokenizer should return delimiters as tokens; false if
not.

StringTokenizer Constructor

public StringTokenizer(String str, String delim)

appendix L -- java.util Package Reference

file:///G|/ebooks/1575211831/ch40.htm (19 of 26) [11/06/2000 7:49:15 PM]



This constructor creates a new instance based on the string to be tokenized and a set of
delimiters.
Parameters:
str-the string to be tokenized.
delim-a string containing the delimiters to use when tokenizing the string.

StringTokenizer Constructor

public StringTokenizer(String str)
This constructor creates a new instance based on the string to be tokenized and the default
set of delimiters. The default delimiters are the space, tab, newline, and carriage-return
characters.

countTokens

public int countTokens()
This method returns the number of remaining tokens.
Returns: The quantity of tokens remaining in the string being tokenized.

hasMoreElements

public boolean hasMoreElements()
This method can be used to determine if the string tokenizer contains more elements
(tokens). This method is identical to hasMoreTokens and is a member of
StringTokenizer because StringTokenizer implements the Enumeration
interface.
Returns: true if there are more elements; false otherwise.

hasMoreTokens

public boolean hasMoreTokens()
This method can be used to determine if the string tokenizer contains more tokens. It is
identical to hasMoreElements.
Returns: true if there are more tokens; false otherwise.

nextElement

public Object nextElement()
This method overrides nextElement in the Enumeration interface and exists because
StringTokenizer implements that interface. It is identical to nextToken and returns
the next token in the enumeration.
Returns: The next token in the enumeration.
Throws: NoSuchElementException if there are no more elements.

nextToken

public String nextToken()

appendix L -- java.util Package Reference

file:///G|/ebooks/1575211831/ch40.htm (20 of 26) [11/06/2000 7:49:15 PM]



This method returns the next token in the string that is being tokenized. It is typically used
inside a loop that processes each token.
Returns: The next token in the string being tokenized.
Throws: NoSuchElementException if there are no more tokens.

nextToken

public String nextToken(String delim)
This method changes the set of delimiter characters and then returns the next token. The
new delimiter set will remain in effect after this method completes.
Parameters: delim-a string containing the new set of delimiters.
Returns: The next token in the string being tokenized.
Throws: NoSuchElementException if there are no more tokens.

Vector

Extends: Object
Implements: Cloneable
A vector is analogous to a linked list in other languages or class libraries. A vector stores
items of type Object so it can be used to store instances of any Java class. A single vector
may store different elements that are instances of different classes.

Vector Constructor

public Vector(int initialCapacity, int capacityIncrement)
This constructor will create a new instance of a vector with space for initialCapacity
elements initially. Memory for additional elements will be allocated in blocks that will each
hold capacityIncrement elements.
Parameters:
initialCapacity-the number of elements to allocate space for when the object is
created.
capacityIncrement-the number of additional elements to allocate space for whenever
additional space is needed.

Vector Constructor

public Vector(int initialCapacity)
This constructor will create a new instance of a vector with space for initialCapacity
elements initially. Whenever a new element is added that would have exceeded this
capacity, the size of the vector is doubled.
Parameters: initialCapacity-the number of elements to allocate space for when the
object is created.

Vector Constructor

public constructorVector()

appendix L -- java.util Package Reference

file:///G|/ebooks/1575211831/ch40.htm (21 of 26) [11/06/2000 7:49:15 PM]



This constructor will create a new instance of a vector. Initially, the vector will have room
for storing 10 elements, but this will increase automatically to accommodate new elements.
Whenever a new element is added that would have exceeded this capacity, the size of the
vector is doubled.

Member Variables

protected int capacityIncrement
This member stores the amount by which the vector will be incremented each time it needs
to grow. If capacityIncrement is 0, the buffer does not grow by a fixed amount but
instead doubles whenever it needs to grow.
protected int elementCount
This member stores the number of elements in the vector.
protected Object elementData[]
This member is the array where the Vector elements are stored.

addElement

public final synchronized void addElement(Object obj)
This method is used to insert new elements into the vector; a vector can store objects of
different types.
Parameters: obj-the object to add to the vector.

capacity

public final int capacity()
This method returns the number of elements that will fit in the vector before more space is
allocated.
Returns: The number of elements that will fit in the currently allocated portion of the
vector.

clone

public synchronized Object clone()
This method overrides clone in Object and will clone the vector. Only the vector itself
is cloned; the elements of the vector are not cloned.
Returns: A cloned copy of the vector.

contains

public final boolean contains(Object elem)
This method determines if an object is stored in a vector.
Returns: true if the object is stored in the vector; false otherwise.

copyInto

public final synchronized void copyInto(Object anArray[])

appendix L -- java.util Package Reference

file:///G|/ebooks/1575211831/ch40.htm (22 of 26) [11/06/2000 7:49:15 PM]



This method copies the elements of the vector into an array.
Parameters: anArray-the array into which the vector elements will be copied.

elementAt

public final synchronized Object elementAt(int index)
This method retrieves the element located at the specified index within the vector.
Parameters: index-the zero-based index number of the element to retrieve.
Returns: The element at the specified zero-based index.
Throws: ArrayIndexOutOfBoundsException if an invalid index is specified.

elements

public final synchronized Enumeration elements()
This method returns an Enumeration of the elements in the vector, making it easy to
iterate through the elements.
Returns: An Enumeration consisting of all the elements in the vector.

ensureCapacity

public final synchronized void ensureCapacity(int
minCapacity)
This method ensures that the vector has at least the specified minimum capacity. If the
current capacity of the vector is less than minCapacity, the size of the vector is increased
to hold at least minCapacity.
Parameters: minCapacity-the minimum capacity of the vector.

firstElement

public final synchronized Object firstElement()
This method retrieves the first element in the vector. If the vector is empty, an exception is
thrown. It performs the same function as elementAt(0).
Returns: The element at the specified zero-based index.
Throws: NoSuchElementException if the vector is empty.

indexOf

public final int indexOf(Object elem)
This method searches the vector and returns the zero-based index number of the first
matching object.
Parameters: elem-the element to find the index of.
Returns: The element number of the first element that matches elem, or -1 if no match is
found.

indexOf

public final synchronized int indexOf(Object elem, int index)

appendix L -- java.util Package Reference

file:///G|/ebooks/1575211831/ch40.htm (23 of 26) [11/06/2000 7:49:15 PM]



This method finds the first element in the vector that matches elem starting at the element
given by index. It is very useful for traversing a vector searching for all elements matching
a specific object.
Parameters:
elem-the element to find the index of.
index-the index number at which to start the search.
Returns: The element number of the first element that matches elem, or -1 if no match is
found.

insertElementAt

public final synchronized void insertElementAt(Object obj,
int index)
This method, like addElement, is used to add a new element to a vector. However, this
method can be used to specify where in the vector the new element should be added. All
Vector elements with index numbers greater than or equal to index are moved to make
room for the new element.
Parameters:
obj-the object to add to the vector.
index-the zero-based index at which the object is to be inserted.
Throws: ArrayIndexOutOfBoundsException if the specified index is invalid.

isEmpty

public final boolean isEmpty()
This method is used to determine if the vector contains any elements.
Returns: true if the vector has no elements; false otherwise.

lastElement

public final synchronized Object lastElement()
This method retrieves the last element in the vector. If the vector is empty an exception is
thrown.
Returns: The element at the specified zero-based index.
Throws: NoSuchElementException if the vector is empty.

lastIndexOf

public final int lastIndexOf(Object elem)
This method searches the vector and returns the zero-based index number of the last
matching object.
Parameters: elem-the element to find the index of.
Returns: The element number of the last element that matches elem, or -1 if no match is
found.

lastIndexOf

appendix L -- java.util Package Reference

file:///G|/ebooks/1575211831/ch40.htm (24 of 26) [11/06/2000 7:49:15 PM]



public final synchronized int lastIndexOf(Object elem, int
index)
This method finds the last element in the vector that matches elem starting at the element
given by index. It is very useful for traversing a vector backward searching for all
elements matching a specific object.
Parameters:
elem-the element to find the last index of.
index-the index number at which to start the search.
Returns: The element number of the last element that matches elem, or -1 if no match is
found.

removeAllElements

public final synchronized void removeAllElements()
This method can be used to remove all elements from the vector.

removeElement

public final synchronized boolean removeElement(Object obj)
This method can be used to remove a specific element from the vector. Only the first
element that matches obj is removed.
Parameters: obj-the object to remove.
Returns: true if the element was found and deleted; false otherwise.

removeElementAt

public final synchronized void removeElementAt(int index)
This method removes the element at the specified zero-based index.
Parameters: index-the index number of the element to remove from the vector.
Throws: ArrayIndexOutOfBoundsException if the specified index is invalid.

setElementAt

public final synchronized void setElementAt(Object obj, int
index)
This method replaces an element in the vector with another element.
Parameters:
obj-the object to be placed in the vector.
index-the index number of the element to be replaced.
Throws: ArrayIndexOutOfBoundsException if the specified index is invalid.

setSize

public final synchronized void setSize(int newSize)
This method sets the size of the vector. If the specified size makes the vector too small to
hold its current elements, elements from the end of the vector are removed. If the new size is
larger than the current size, empty elements are added at the end of the vector.

appendix L -- java.util Package Reference

file:///G|/ebooks/1575211831/ch40.htm (25 of 26) [11/06/2000 7:49:15 PM]



Parameters: newSize-the desired size of the vector.

size

public final int size()
The method returns the number of elements currently in the vector.
Returns: The number of elements in the vector.

toString

public final synchronized String toString()
This method overrides the toString method in Object and formats the contents of the
vector as a string.
Returns: A string representation of the vector.

trimToSize

public final synchronized void trimToSize()
This method will remove any excess capacity from the vector by resizing it to hold only the
quantity of elements it currently holds. If new items are added, the size of the vector will be
increased.

EmptyStackException

Extends: RuntimeException
This exception signals when the stack is empty.

NoSuchElementException

Extends: RuntimeException
This exception signals when an enumeration is empty.

  

appendix L -- java.util Package Reference

file:///G|/ebooks/1575211831/ch40.htm (26 of 26) [11/06/2000 7:49:15 PM]



file:///G|/ebooks/1575211831/f1-4.gif

file:///G|/ebooks/1575211831/f1-4.gif [11/06/2000 7:49:22 PM]



file:///G|/ebooks/1575211831/f1-5.gif

file:///G|/ebooks/1575211831/f1-5.gif [11/06/2000 7:49:23 PM]



file:///G|/ebooks/1575211831/f1-6.gif

file:///G|/ebooks/1575211831/f1-6.gif [11/06/2000 7:49:23 PM]



file:///G|/ebooks/1575211831/f1-7.gif

file:///G|/ebooks/1575211831/f1-7.gif [11/06/2000 7:49:23 PM]



file:///G|/ebooks/1575211831/f1-8.gif

file:///G|/ebooks/1575211831/f1-8.gif [11/06/2000 7:49:24 PM]


	Local Disk
	CONTENTS
	Day 1 -- An Introduction to Java Programming
	file:///G|/ebooks/1575211831/f1-1.gif
	file:///G|/ebooks/1575211831/f1-2.gif
	file:///G|/ebooks/1575211831/f1-3.gif
	Day 20 -- Using Native Methods and Libraries
	Day 22 -- Java Programming Tools
	file:///G|/ebooks/1575211831/f22-1.gif
	file:///G|/ebooks/1575211831/f22-2.gif
	file:///G|/ebooks/1575211831/f22-3.gif
	file:///G|/ebooks/1575211831/f22-4.gif
	file:///G|/ebooks/1575211831/f22-5.gif
	file:///G|/ebooks/1575211831/f22-6.gif
	file:///G|/ebooks/1575211831/f22-7.gif
	file:///G|/ebooks/1575211831/f22-8.gif
	file:///G|/ebooks/1575211831/f22-9.gif
	file:///G|/ebooks/1575211831/f22-10.gif
	file:///G|/ebooks/1575211831/f22-11.gif
	file:///G|/ebooks/1575211831/f22-12.gif
	file:///G|/ebooks/1575211831/f22-13.gif
	Day 21 -- Under the Hood
	Day 27 -- The Standard Extension APIs
	Day 26 -- Client/Server Networking in Java
	file:///G|/ebooks/1575211831/f26-1.gif
	file:///G|/ebooks/1575211831/f26-2.gif
	file:///G|/ebooks/1575211831/f26-3.gif
	file:///G|/ebooks/1575211831/f26-4.gif
	Day 25 -- Fun with Image Filters
	file:///G|/ebooks/1575211831/f25-1.gif
	Day 9 -- Graphics, Fonts, and Color
	file:///G|/ebooks/1575211831/f9-1.gif
	file:///G|/ebooks/1575211831/f9-2.gif
	file:///G|/ebooks/1575211831/f9-3.gif
	file:///G|/ebooks/1575211831/f9-4.gif
	file:///G|/ebooks/1575211831/f9-5.gif
	file:///G|/ebooks/1575211831/f9-6.gif
	file:///G|/ebooks/1575211831/f9-7.gif
	file:///G|/ebooks/1575211831/f9-8.gif
	file:///G|/ebooks/1575211831/f9-9.gif
	file:///G|/ebooks/1575211831/f9-10.gif
	file:///G|/ebooks/1575211831/f9-11.gif
	file:///G|/ebooks/1575211831/f9-12.gif
	file:///G|/ebooks/1575211831/f9-13.gif
	file:///G|/ebooks/1575211831/f9-14.gif
	file:///G|/ebooks/1575211831/f9-15.gif
	file:///G|/ebooks/1575211831/f9-16.gif
	file:///G|/ebooks/1575211831/f9-17.gif
	file:///G|/ebooks/1575211831/f9-18.gif
	file:///G|/ebooks/1575211831/f9-19.gif
	file:///G|/ebooks/1575211831/f9-20.gif
	file:///G|/ebooks/1575211831/f9-21.gif
	file:///G|/ebooks/1575211831/f9-22.gif
	Day 8 -- Java Applet Basics
	Day 14 -- Windows, Networking, and Other Tidbits
	file:///G|/ebooks/1575211831/f14-1.gif
	file:///G|/ebooks/1575211831/f14-2.gif
	file:///G|/ebooks/1575211831/f14-3.gif
	file:///G|/ebooks/1575211831/f14-4.gif
	file:///G|/ebooks/1575211831/f14-5.gif
	file:///G|/ebooks/1575211831/f14-6.gif
	Day 19 -- Streams and I/O
	Day 17 -- Exceptions
	file:///G|/ebooks/1575211831/f17-1.gif
	Day 10 -- Simple Animation and Threads
	Day 18 -- Multithreading
	Day 16 -- Packages and Interfaces
	Day 13 -- Creating User Interfaces with the awt
	file:///G|/ebooks/1575211831/f13-1.gif
	file:///G|/ebooks/1575211831/f13-2.gif
	file:///G|/ebooks/1575211831/f13-3.gif
	file:///G|/ebooks/1575211831/f13-4.gif
	file:///G|/ebooks/1575211831/f13-5.gif
	file:///G|/ebooks/1575211831/f13-6.gif
	file:///G|/ebooks/1575211831/f13-7.gif
	file:///G|/ebooks/1575211831/f13-8.gif
	file:///G|/ebooks/1575211831/f13-9.gif
	file:///G|/ebooks/1575211831/f13-10.gif
	file:///G|/ebooks/1575211831/f13-11.gif
	file:///G|/ebooks/1575211831/f13-12.gif
	file:///G|/ebooks/1575211831/f13-13.gif
	file:///G|/ebooks/1575211831/f13-14.gif
	file:///G|/ebooks/1575211831/f13-15.gif
	file:///G|/ebooks/1575211831/f13-16.gif
	file:///G|/ebooks/1575211831/f13-17.gif
	file:///G|/ebooks/1575211831/f13-18.gif
	file:///G|/ebooks/1575211831/f13-19.gif
	file:///G|/ebooks/1575211831/f13-20.gif
	file:///G|/ebooks/1575211831/f13-21.gif
	file:///G|/ebooks/1575211831/f13-22.gif
	file:///G|/ebooks/1575211831/f13-23.gif
	file:///G|/ebooks/1575211831/f13-24.gif
	file:///G|/ebooks/1575211831/f13-25.gif
	Day 11 -- More Animation, Images, and Sound
	file:///G|/ebooks/1575211831/f11-1.gif
	file:///G|/ebooks/1575211831/f11-2.gif
	file:///G|/ebooks/1575211831/f11-3.gif
	file:///G|/ebooks/1575211831/f11-4.gif
	Day 24 -- Advanced Animation and Media
	file:///G|/ebooks/1575211831/f24-1.gif
	file:///G|/ebooks/1575211831/f24-2.gif
	file:///G|/ebooks/1575211831/f24-3.gif
	file:///G|/ebooks/1575211831/f24-4.gif
	file:///G|/ebooks/1575211831/f24-5.gif
	Day 23 -- Working with Data Structures in Java
	file:///G|/ebooks/1575211831/f23-1.gif
	file:///G|/ebooks/1575211831/f23-2.gif
	file:///G|/ebooks/1575211831/f23-3.gif
	file:///G|/ebooks/1575211831/f23-4.gif
	file:///G|/ebooks/1575211831/f23-5.gif
	Day 12 -- Managing Simple Events and Interactivity 
	file:///G|/ebooks/1575211831/f12-1.gif
	file:///G|/ebooks/1575211831/f12-2.gif
	file:///G|/ebooks/1575211831/f12-3.gif
	file:///G|/ebooks/1575211831/f13-26.gif
	file:///G|/ebooks/1575211831/f13-27.gif
	Day 15 -- Modifiers, Access Control, and Class Design 
	Day 2-- Object-Oriented Programming and Java
	file:///G|/ebooks/1575211831/f2-1.gif
	Day 6 --Creating Classes and Applications in Java 
	Day 3 -- Java Basics
	Day 5 -- Arrays, Conditionals, and Loops
	Day 4 -- Working with Objects
	Day 7 -- More About Methods
	file:///G|/ebooks/1575211831/f4-1.gif
	file:///G|/ebooks/1575211831/f6-1.gif
	file:///G|/ebooks/1575211831/f2-2.gif
	file:///G|/ebooks/1575211831/f2-3.gif
	file:///G|/ebooks/1575211831/f2-4.gif
	file:///G|/ebooks/1575211831/f2-5.gif
	file:///G|/ebooks/1575211831/f2-6.gif
	file:///G|/ebooks/1575211831/f2-7.gif
	file:///G|/ebooks/1575211831/f16-1.gif
	file:///G|/ebooks/1575211831/f10-1.gif
	file:///G|/ebooks/1575211831/f10-2.gif
	file:///G|/ebooks/1575211831/f10-3.gif
	file:///G|/ebooks/1575211831/f14-7.gif
	file:///G|/ebooks/1575211831/f8-1.gif
	file:///G|/ebooks/1575211831/f8-2.gif
	file:///G|/ebooks/1575211831/f8-3.gif
	file:///G|/ebooks/1575211831/f8-4.gif
	file:///G|/ebooks/1575211831/f8-5.gif
	file:///G|/ebooks/1575211831/f8-6.gif
	file:///G|/ebooks/1575211831/f8-7.gif
	file:///G|/ebooks/1575211831/f25-2.gif
	file:///G|/ebooks/1575211831/f25-3.gif
	file:///G|/ebooks/1575211831/f25-4.gif
	file:///G|/ebooks/1575211831/f25-5.gif
	file:///G|/ebooks/1575211831/f25-6.gif
	Day 28 -- Emerging Technologies
	appendix A -- Language Summary
	appendix B -- Class Hierarchy Diagrams
	file:///G|/ebooks/1575211831/fb-1.gif
	file:///G|/ebooks/1575211831/fb-2.gif
	file:///G|/ebooks/1575211831/fb-3.gif
	file:///G|/ebooks/1575211831/fb-4.gif
	file:///G|/ebooks/1575211831/fb-5.gif
	file:///G|/ebooks/1575211831/fb-6.gif
	file:///G|/ebooks/1575211831/fb-7.gif
	file:///G|/ebooks/1575211831/fb-8.gif
	file:///G|/ebooks/1575211831/fb-9.gif
	file:///G|/ebooks/1575211831/fb-10.gif
	file:///G|/ebooks/1575211831/fb-11.gif
	file:///G|/ebooks/1575211831/fb-12.gif
	appendix C -- The Java Class Library
	appendix D -- Bytecodes Reference
	appendix E -- java.applet Package Reference
	appendix F -- java.awt Package Reference
	appendix G -- java.awt.image Package Reference
	appendix H -- java.awt.peer Package Reference
	appendix I -- java.io Package Reference
	appendix J -- java.lang Package Reference
	appendix K -- java.net Package Reference
	appendix L -- java.util Package Reference
	file:///G|/ebooks/1575211831/f1-4.gif
	file:///G|/ebooks/1575211831/f1-5.gif
	file:///G|/ebooks/1575211831/f1-6.gif
	file:///G|/ebooks/1575211831/f1-7.gif
	file:///G|/ebooks/1575211831/f1-8.gif


