-
Notifications
You must be signed in to change notification settings - Fork 223
/
__init__.py
263 lines (211 loc) · 7.73 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# Created by 1e0n in 2013
from __future__ import division, unicode_literals
import collections
import hashlib
import logging
import numbers
import re
import sys
from itertools import groupby
import numpy as np
try:
from collections.abc import Iterable
except ImportError:
from collections import Iterable
if sys.version_info[0] >= 3:
basestring = str
unicode = str
long = int
def int_to_bytes(n, length):
return n.to_bytes(length, 'big')
def bytes_to_int(b):
return int.from_bytes(b, 'big')
else:
range = xrange
def int_to_bytes(n, length):
return '{:0{}x}'.format(n, length * 2).decode('hex')
def bytes_to_int(b):
return int(b.encode('hex'), 16)
def _hashfunc(x):
return hashlib.md5(x).digest()
class Simhash(object):
# Constants used in calculating simhash. Larger values will use more RAM.
large_weight_cutoff = 50
batch_size = 200
def __init__(
self, value, f=64, reg=r'[\w\u4e00-\u9fcc]+', hashfunc=_hashfunc, log=None
):
"""
`f` is the dimensions of fingerprints, in bits. Must be a multiple of 8.
`reg` is meaningful only when `value` is basestring and describes
what is considered to be a letter inside parsed string. Regexp
object can also be specified (some attempt to handle any letters
is to specify reg=re.compile(r'\w', re.UNICODE))
`hashfunc` accepts a utf-8 encoded string and returns either bytes
(preferred) or an unsigned integer, in at least `f // 8` bytes.
"""
if f % 8:
raise ValueError('f must be a multiple of 8')
self.f = f
self.f_bytes = f // 8
self.reg = reg
self.value = None
self.hashfunc = hashfunc
self.hashfunc_returns_int = isinstance(hashfunc(b"test"), numbers.Integral)
if log is None:
self.log = logging.getLogger("simhash")
else:
self.log = log
if isinstance(value, Simhash):
self.value = value.value
elif isinstance(value, basestring):
self.build_by_text(unicode(value))
elif isinstance(value, Iterable):
self.build_by_features(value)
elif isinstance(value, numbers.Integral):
self.value = value
else:
raise Exception('Bad parameter with type {}'.format(type(value)))
def __eq__(self, other):
"""
Compare two simhashes by their value.
:param Simhash other: The Simhash object to compare to
"""
return self.value == other.value
def _slide(self, content, width=4):
return [content[i:i + width] for i in range(max(len(content) - width + 1, 1))]
def _tokenize(self, content):
content = content.lower()
content = ''.join(re.findall(self.reg, content))
ans = self._slide(content)
return ans
def build_by_text(self, content):
features = self._tokenize(content)
features = {k:sum(1 for _ in g) for k, g in groupby(sorted(features))}
return self.build_by_features(features)
def build_by_features(self, features):
"""
`features` might be a list of unweighted tokens (a weight of 1
will be assumed), a list of (token, weight) tuples or
a token -> weight dict.
"""
sums = []
batch = []
count = 0
w = 1
truncate_mask = 2 ** self.f - 1
if isinstance(features, dict):
features = features.items()
for f in features:
skip_batch = False
if not isinstance(f, basestring):
f, w = f
skip_batch = w > self.large_weight_cutoff or not isinstance(w, int)
count += w
if self.hashfunc_returns_int:
h = int_to_bytes(self.hashfunc(f.encode('utf-8')) & truncate_mask, self.f_bytes)
else:
h = self.hashfunc(f.encode('utf-8'))[-self.f_bytes:]
if skip_batch:
sums.append(self._bitarray_from_bytes(h) * w)
else:
batch.append(h * w)
if len(batch) >= self.batch_size:
sums.append(self._sum_hashes(batch))
batch = []
if len(sums) >= self.batch_size:
sums = [np.sum(sums, 0)]
if batch:
sums.append(self._sum_hashes(batch))
combined_sums = np.sum(sums, 0)
self.value = bytes_to_int(np.packbits(combined_sums > count / 2).tobytes())
def _sum_hashes(self, digests):
bitarray = self._bitarray_from_bytes(b''.join(digests))
rows = np.reshape(bitarray, (-1, self.f))
return np.sum(rows, 0)
@staticmethod
def _bitarray_from_bytes(b):
return np.unpackbits(np.frombuffer(b, dtype='>B'))
def distance(self, another):
assert self.f == another.f
x = (self.value ^ another.value) & ((1 << self.f) - 1)
ans = 0
while x:
ans += 1
x &= x - 1
return ans
class SimhashIndex(object):
def __init__(self, objs, f=64, k=2, log=None):
"""
`objs` is a list of (obj_id, simhash)
obj_id is a string, simhash is an instance of Simhash
`f` is the same with the one for Simhash
`k` is the tolerance
"""
self.k = k
self.f = f
count = len(objs)
if log is None:
self.log = logging.getLogger("simhash")
else:
self.log = log
self.log.info('Initializing %s data.', count)
self.bucket = collections.defaultdict(set)
for i, q in enumerate(objs):
if i % 10000 == 0 or i == count - 1:
self.log.info('%s/%s', i + 1, count)
self.add(*q)
def get_near_dups(self, simhash):
"""
`simhash` is an instance of Simhash
return a list of obj_id, which is in type of str
"""
assert simhash.f == self.f
ans = set()
for key in self.get_keys(simhash):
dups = self.bucket[key]
self.log.debug('key:%s', key)
if len(dups) > 200:
self.log.warning('Big bucket found. key:%s, len:%s', key, len(dups))
for dup in dups:
sim2, obj_id = dup.split(',', 1)
sim2 = Simhash(long(sim2, 16), self.f)
d = simhash.distance(sim2)
if d <= self.k:
ans.add(obj_id)
return list(ans)
def add(self, obj_id, simhash):
"""
`obj_id` is a string
`simhash` is an instance of Simhash
"""
assert simhash.f == self.f
for key in self.get_keys(simhash):
v = '%x,%s' % (simhash.value, obj_id)
self.bucket[key].add(v)
def delete(self, obj_id, simhash):
"""
`obj_id` is a string
`simhash` is an instance of Simhash
"""
assert simhash.f == self.f
for key in self.get_keys(simhash):
v = '%x,%s' % (simhash.value, obj_id)
if v in self.bucket[key]:
self.bucket[key].remove(v)
@property
def offsets(self):
"""
You may optimize this method according to <http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/33026.pdf>
"""
return [self.f // (self.k + 1) * i for i in range(self.k + 1)]
def get_keys(self, simhash):
for i, offset in enumerate(self.offsets):
if i == (len(self.offsets) - 1):
m = 2 ** (self.f - offset) - 1
else:
m = 2 ** (self.offsets[i + 1] - offset) - 1
c = simhash.value >> offset & m
yield '%x:%x' % (c, i)
def bucket_size(self):
return len(self.bucket)