
596 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 32, NO. 4, NOVEMBER 2019

Wafer Map Defect Pattern Recognition Using
Rotation-Invariant Features

Rui Wang and Nan Chen , Member, IEEE

Abstract—In semiconductor manufacturing, the patterns on
the wafer map provide important information for engineers to
identify the root causes of production problems. The detection
and recognition of wafer map patterns is thus an important issue
in semiconductor industry. Automatic techniques are required to
cut down on cost and to improve accuracy. In this study, we
propose an approach to recognize patterns in the wafer maps
which uses the extracted features based on the proposed weight
masks. The proposed masks contain three types, namely, polar
masks, line masks and arc masks. Polar masks aim to extract
features of concentric patterns, while line and arc masks are
designed to mainly deal with eccentric patterns like scratches.
These masks can be applied to extract rotation-invariant features
for the classification of the defect patterns. To demonstrate the
effectiveness of our model, we apply the method to a real-world
wafer map dataset. Comparisons with alternative methods show
superiority of our method in the task of wafer map defect pattern
recognition.

Index Terms—Semiconductor wafer map, defect recognition,
feature extraction, rotation invariance.

I. INTRODUCTION

THE SEMICONDUCTOR manufacturing process has
become more and more complex which may involve hun-

dreds of steps. Nowadays, the process is highly automatic
and precisely monitored thanks to technological developments.
However, defects are still unavoidable due to process prob-
lems or erroneous human operations. To ensure the good
performance of each die, wafer testing is performed after
each wafer fabrication stage. In this article, it is assumed that
each die is assigned a binary value based on the wafer test-
ing results, i.e., 0 for good dies and 1 for defective dies. A
wafer map is used as the graphical representation of loca-
tions of the defects on the wafer. In general, defects on wafer
maps have two categories: the first includes random defects
and the second is composed of clustered defects. Random
defects are often caused by uncertain environment fluctua-
tion and variation of the process. Clustered defects attract
more attention from engineers and researchers because they
usually provide valuable information on specific manufactur-
ing problems. Clustered defects may form different patterns,

Manuscript received July 31, 2019; revised September 16, 2019; accepted
September 23, 2019. Date of publication September 27, 2019; date of current
version October 29, 2019. (Corresponding author: Nan Chen.)

The authors are with the Department of Industrial Systems Engineering and
Management, National University of Singapore, Singapore 117576 (e-mail:
isecn@nus.edu.sg).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSM.2019.2944181

Fig. 1. Typical examples of wafer map failure patterns.

e.g., scratches, rings, repeats, etc. Fig. 1 shows several typical
examples of wafer map failure patterns. The black pixels show
locations of defective dies and the light blue pixels are normal
dies on the wafer. For example, typical patterns like scratches
are improperly made during material handling, while edge
rings are usually caused by etching problems [1]. Therefore,
if correctly recognized, the defect patterns will help identify
and eliminate the problems in manufacturing processes, which
in turn improves process yield and reduces costs.

To detect and classify wafer map defect patterns, numerous
studies have been conducted. These studies aim to develop
automatic defect detection and recognition techniques to cut
down on cost resulting from visual recognition performed
by experienced engineers. Current methods can be roughly
divided into three categories. The first category involves con-
structing statistics to monitor the defect patterns on wafer
maps. For instance, [2] used the multivariate Hotelling T2

chart based on the number of defects and clustering index.
Reference [3] proposed a step-down spatial randomness test
for detecting abnormal wafers based on spatial correlogram.
These methods can successfully separate normal and abnormal
wafer maps, but they can hardly distinguish different spatial
defect patterns.

The second category includes model-based clustering meth-
ods, which try to recognize failure patterns by assuming
shape-specific distributions for failure regions. Reference [4]

0894-6507 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5958-2234
https://orcid.org/0000-0003-2495-5234

WANG AND CHEN: WAFER MAP DEFECT PATTERN RECOGNITION USING ROTATION-INVARIANT FEATURES 597

used Gaussian EM to detect elliptic and linear patterns,
and spherical-shell algorithm to estimate ring patterns.
Reference [5] modeled global defects using non-homogeneous
Poisson process and local defects using bivariate normal
distribution and principal curve. This kind of methods is
advantageous in simultaneously identifying multiple failure
patterns in a single wafer map. However, they can be compu-
tationally intensive to estimate parameters and the recognition
is only limited to simple pre-defined shapes.

The last category is related to machine learning meth-
ods. These include both unsupervised and supervised learning
methods based on the prior knowledge of class labels. In
unsupervised learning methods, adaptive resonance theory
network (ART1) [6], self-organized map (SOM) [7] and
K-means [8], [9] have been developed to construct clus-
ters of wafer maps. These methods have the advantage that
new failure patterns can be introduced and identified. When
class labels and enough training samples are available, the
performance of supervised learning is usually superior to unsu-
pervised learning methods. Typical examples are support
vector machine (SVM) [10], K-nearest neighbors (KNN) [11],
neural networks [12], [13]. To ensure the performance of
supervised methods, large amount of high-quality data is
required.

Most of the studies mentioned above used raw wafer maps
directly as inputs for supervised defect pattern recognition, but
sometimes they are inappropriate because of unsatisfactory
performance and high computation cost. Therefore, feature
generation is usually seen as an important step to reduce com-
putation time and to improve accuracy. Features extracted from
wafer maps largely influence the performance of defect pat-
tern recognition. Effective features would definitely improve
the accuracy and computation time to a large degree. Ideally,
the defect patterns are identical with respect to orientation
so that the samples can be classified easily. It is observed
that wafers have a round shape and it is hard to define the
image orientation. Features are called rotation invariant if
their output results are not affected by the rotations of input
image. In the problem of wafer map detection and recognition,
we would like the same type of defect patterns with varia-
tions to have similar feature vectors for classification. This
means rotation invariant features are more preferred in this
context.

For the extraction of features from wafer maps, one
direction involves automatic extraction of features by deep
learning approaches. For example, the variational autoen-
coder can be used to learn latent data representations of the
wafer map [14], [15]. The other direction considers specif-
ically engineered features for the classification of wafer
maps. These extracted features may consist of geomet-
ric features, texture features, transformation-based features,
etc. [1], [10], [16], [17]. Deep learning approaches are more
generalized and the effectiveness benefits from the increas-
ing amount of training data. But training requires a large
dataset and the extracted features cannot be easily explained.
When it comes to specific problems, pre-defined features could
give better results because of the use of domain knowledge
and are more interpretable for domain experts. If the features

are designed properly, the computational cost will be largely
reduced.

In the literature, various rotation-invariant feature descrip-
tors have been developed. One of the most popular method
is the scale invariant feature transform (SIFT) [18], which
has illumination, scale, rotation, and affine invariant proper-
ties. Reference [19] proposed a rotation invariant histogram
of oriented gradients (RIHOG) to overcome the sensitivity to
image rotation of the classic histogram of oriented gradients
(HOG) algorithm. Other typical examples of rotation-invariant
feature descriptors are Zernike moments [20] and speed-up
robust features (SURF) [21], etc. However, the existing meth-
ods require relatively long computation time. In addition, the
determination of the descriptor parameters (e.g., window size
and number of neighboring pixels) can be challenging, as
the influence of the change on the final performance is not
intuitive. Therefore, we aim to develop features that are inter-
pretable and require low computation cost, while preserving
the power in recognizing defect patterns.

In this study, we propose a wafer map defect recognition
method based on feature extraction by designed features. This
is accomplished by applying rotatable weight masks on the
circular area of wafer maps. For each unique mask, maximum
value of the results created by rotated version of the mask is
returned to ensure rotation invariance. The extracted features
are easily interpretable with our designed form of masks. Then
the features are sent to a feedforward neural network for the
classification of defect patterns. We also apply our method to
the real-world wafer map data. Experiment results show the
effectiveness of our proposed method.

The rest of this article is organized as follows. Section II
describes the detailed procedure of feature extraction and clas-
sification for wafer map defect pattern recognition. Section III
gives experimental results with an application in real-world
data. Section IV concludes the article and discusses directions
for future work.

II. METHODOLOGY

In this section, we elaborate the framework of how to apply
the proposed rotation invariant weight masks to detect wafer
map failure patterns. The method consists of preprocessing,
feature extraction and classification steps.

A. Preprocessing of Wafer Maps

In this context, wafer map preprocessing contains two steps:
denoising and resizing. Fig. 2(b) gives an example of real data.
Both figures show the defect pattern “Moon”. There exists
random defective points in the figure, these dots are not helpful
for defect recognition and are seen as noise in the wafer map.
Image denoising aims to remove these defects in the wafer map
and let the defect pattern stand out. The dies on the wafers
have different sizes, which is represented by the density of
points in the wafer map. In order to detect failure patterns
on wafer maps of different products, we should convert wafer
maps into the same format.

Spatial filtering is a simple and widely used method to
reduce random noise, see [1] for example. The spatial filter

598 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 32, NO. 4, NOVEMBER 2019

Fig. 2. Two examples of “moon” patterns with different die sizes.

Fig. 3. (a) A 3 × 3 spatial filter (b) One example of dies covered by the
filter at the edge.

computes a weighted sum of the binarized values of points in
the neighborhood of each point. When this weighted sum is
larger than a threshold, the die is regarded as defective after
denoising. A 3 × 3 filter is shown in Fig. 3(a). However, it
cannot be directly applied to wafer maps, as the wafer has
a circular shape. When it comes to the edge of the wafer,
the number of surrounded dies is fewer than that in the mid-
dle. Fig. 3(b) gives an example of dies masked at the edge
by the 3 × 3 filter. The dark gray box is the die at the edge
of the wafer, and light gray areas show the surrounding dies
of the chosen die on the wafer. In this case, the filter only
covers five dies centering at one edge die. Classic spatial fil-
tering uses the same weighted sum for denoisng over the wafer
map, which may remove non-random patterns near the edges.
Moreover, spatial filtering is not effective in dealing with repet-
itive or connected long and thin patterns such as “Scratch” and
“Reticle”. The patterns will be largely removed using spatial
filtering. We then make some modifications to existing spatial
filtering to overcome the effects at edge and the difficulty for
curvilinear patterns.

In a wafer map, the pattern formed by the defective dies
is important. Thus, if a die is in normal state, it stays in nor-
mal state after denoising. If a die is defective, we choose a
threshold to determine if it is an isolated defect or not. A
natural choice is the percentage of failures in the surrounding
of dies within the wafer area. We use a pair of coordinate
(i, j) to denote the location of each pixel in the wafer map,
x to denote the state of a pixel (1 for defective dies and 0
for normal dies and pixels outside the wafer area), and R to
denote the weighted ratio. Based on the above assumption,

we use N(i, j) to denote the number of neighbors of a die at
location (i, j), M to denote the set of all possible positions in
the wafer map, and 2t + 1 to denote the size of the filter. We
define the weighted ratio for the central die as follows:

R(i, j)

= 1

N(i, j)

t∑

m=−t,
m�=0

t∑

n=−t,
n �=0

x(i, j)x(i + m, j + n)I(i + m, j + n),

(1)

and

N(i, j) =
t∑

m=−t,
m�=0

t∑

n=−t,
n �=0

I(i + m, j + n) (2)

where I(i + m, j + n) is the indicator function to represent
whether the coordinate refers to a valid die on the wafer map,
and

I(i, j) =
{

1, if (i, j) ∈ M,

0, if (i, j) /∈ M.
(3)

Thus, in Fig. 3(b), N(i, j) = 4. For a defective die, if one
of the surrounding dies is defective, R(i, j) = 1/4. If we use
L to denote the threshold, the state of the die after denoising
xd is:

xd(i, j) =
{

0, if R(i, j) < L,

1, if R(i, j) ≥ L,
(4)

Fig. 4 shows the comparison of denoising results by spatial
filtering (thresholding at 4/9) and our method for “Reticle”
and “Edge” patterns described in Fig. 1. The filter size 3 × 3
is used for comparison. Intuitively, we remove the “isolated”
failure points in the wafer map, then L = 1/8. The prin-
ciple of the spatial filtering is to replace the value of a
die according to the average value of defective dies in the
neighborhood. The weighted ratio is defined as R(i, j) =
1
9

∑1
m=−1

∑1
n=−1 x(i + m, j + n). Similar to (4), if R(i, j) is

greater than the threshold value, the die is marked as defective.
It can be seen that isolated defect points are mostly removed by
our method. For the pattern “Edge”, spatial filtering gives com-
parable results with our method except that our method is able
to keep more defects at the edge when the pattern curve is thin.
Our method works apparently better than spatial filtering for
the denoising of the pattern “Reticle”. Spatial filtering could
change normal dies to defective state while erasing curves
according to the neighborhood. In contrast, our method only
performs thresholding on defective dies and that guarantees
the stand out of curvilinear patterns.

To handle the difference in wafer sizes and die sizes, the
wafer map images should be normalized. In this case, image
interpolation is used to resize images. It works by using known
data to estimate values at unknown locations. The most basic
method commonly used is the nearest neighbor, a procedure
that does not introduce any artificial data into the output. To
resize an image to a predefined size, existing packages have
been well developed.

WANG AND CHEN: WAFER MAP DEFECT PATTERN RECOGNITION USING ROTATION-INVARIANT FEATURES 599

Fig. 4. Comparison of denoising results for the pattern “Reticle” and “Edge”.

B. Feature Extraction

A good group of features should be representative of the
patterns, highly interpretable, and in the context of wafer map,
rotation invariant. Features exhibiting rotation invariance is
always of interest in real applications as object rotation is
quite common in image data collection. Rotation-invariant fea-
tures remain the same for wafer maps of different orientations.
Considering the shape of wafer maps, we design a series of
rotatable weight masks which all have the same shape as the
wafer map. In this study, the proposed masks contain three
types, namely, polar masks, line masks and arc masks. Polar
masks extract features of concentric patterns, while line and
arc masks mainly deal with eccentric patterns like scratches.
The feature is calculated by summarizing the element-wise
production results of the weight mask and the wafer map.
Given a wafer map I and a weight mask M, the feature can
be obtained as:

FM(I) =
∑

(i,j)∈RI

I(i, j)M(i, j). (5)

Rotation invariance is achieved by making several rotated
copies of each master mask and only the max feature value is
retained for each master mask, see Fig. 5. This ensures that
the feature can best describe the pattern that the weight mask
defines.

1) Polar Masks: First, we consider a group of polar coor-
dinate based weight masks. This kind of masks is capable
of capturing the concentric patterns of wafer maps. A binning
method is considered to calculate the number of failures inside
a bin and the difference in failure percentage between bins.
We consider two binning types: angle binning and circle bin-
ning. Angle binning divide the angle of π into equally spaced
positions. Fig. 6(a) shows angle binning of eight regions, their
area are exactly the same. Circle binning draws concentric cir-
cles of the wafer, which separate the wafer map into annuli.
Here the radius values of the created concentric circles are
not necessarily be equipartition of the length of wafer radius.
Fig. 6(b) illustrates that the wafer is divided into three parts
by circles whose radiuses are 0.3 and 0.5 times the wafer
radius. We can define the binning using polar coordinates. We

Fig. 5. Feature extraction to achieve rotation invariance.

Fig. 6. Examples of binning: (a) angle binning (b) circle binning. The circle
shape represents a wafer map.

denote Na the sampling parameter of θ , and ρ to be parti-
tioned into Nc intervals. In this case, angle binning divides
2π into equal intervals, i.e., θ = (θ0, θ1, . . . , θNa), where
θ0 = 0, θ1 = 2π/Na, . . . , θNa−1 = 2(Na−1)π/Na, θNa = 2π .
Similarly, circle binning divides radius into intervals with
ρ = (ρ0, ρ1, . . . , ρNc), and ρ0 < ρ1 < · · · < ρNc with
ρ0 = 0, ρNc = R, R is the radius of the wafer. ρ here can
be given based on the definition of defect patterns.

Next we discuss how to determine the weights inside the
proposed mask. For each bin, we assign the same weight for
elements inside. To make it simple yet effective, we come up
with a weight assignment method based on the structure of this
mask. We choose the weights of each bin to be in the set of
{0,−1, 1}. Weight value 1 count the number of failures inside
bins, while the combination of {−1, 1} describes the difference
between different bins. The opposite weight values 1,−1 are
only allowed inside the same annulus, as it is meaningless to
compare failure numbers when the size of the bins are differ-
ent. Let wij denote weight assigned to the bin (θi−1 ≤ θ <

θi, ρj−1 ≤ ρ < ρj), i = 1, 2, . . . , Na; j = 1, 2, . . . , Nc, then the
weights (wij) forms a matrix W with size Na × Nc.

Here, we use the idea of bitwise operations to explain
how to generate weight matrix W. Our method starts from
configuration for each dimension, then conducts pairwise pro-
duction of the bits to get a 2-d weight matrix. First, we define
weight candidates for angular bins b·j. To make it easy to

600 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 32, NO. 4, NOVEMBER 2019

define the configuration method, here we only limit Na to be
Na = 2d, d ∈ N

+. The set for weights of angular bins A can
be divided into three parts.

i a1,1 = (1, . . . , 1︸ ︷︷ ︸
Na

) is the bit array (base 2) of 2Na − 1.

For i = 2, . . . , Na, i �= Na/2 + 1, a1,i = a1,1 � (i − 1).
ii a2,1 = (0, . . . , 0︸ ︷︷ ︸

Na/2

1, . . . , 1︸ ︷︷ ︸
Na/2

). For i = 2, . . . , Na/2, a2,i =

a2,1 XOR (a2,1 � (i − 1)).
iii For i = 1, 2, . . . , Na/2, each element in a3,i is given by

a3,i,∗ = 2 × a2,i,∗ − 1.
The notation “a � n” means to left-shift a by n bits. The
bitwise XOR performs the logical OR operation on each pair
of bits.

For instance, when Na = 4, in case i, (15)10 = (1111)2,
so a1,1 = (1, 1, 1, 1). a1,i is generated by left-shift a1,1
by i − 1 bits. Thus, a1,2 = a1,1 � 1 = (1, 1, 1, 0) and
a1,4 = a1,1 � 3 = (1, 0, 0, 0). a2,3 is removed in this
case because it represent the same configuration as a2,1. For
case ii, a2,1 is (0, 0, 1, 1). Based on the operation above,
a2,2 = a2,1 XOR (a2,1 � 1) = (0, 0, 1, 1) XOR (0, 1, 1, 0) =
(0, 1, 0, 1). For case iii, a3,∗ actually replaces “0” in the corre-
sponding array in A2 with “−1”, hence a3,1 = (−1,−1, 1, 1)

and a3,2 = (−1, 1,−1, 1). Thus, for Na = 4, the configuration
becomes:

A1 = {(1, 1, 1, 1), (1, 1, 1, 0), (1, 0, 0, 0)},
A2 = {(0, 0, 1, 1), (0, 1, 0, 1)},
A3 = {(−1,−1, 1, 1), (−1, 1,−1, 1)}.

A is the union of the collection {A1,A2,A3}. A1 counts the
number of pixels of consecutive bins alongside angular bins,
A2 takes care of symmetric regions about the center, while
A3 compares the difference of defect pixels between central
symmetric areas. The size of set A is |A1| + |A2| + |A3|,
which equals Na − 1 + Na/2 + Na/2 = 2Na − 1. Thus, When
Na = 4, |A| = 7.

Next, we define weight candidates for circular bins bi·. This
is done by setting some values to 1 and the rest to 0. Again we
apply the idea of bit operation. Nc here can take both even and
odd values, as symmetric property is no longer needed. For
i = 1, 2, . . . , Nc, let Ci = {ci,1, ci,2, . . . , ci,Nc+1−i} denote the
derived set from each initial array ci,1, which is the bit array
(base 2) of 2i−1. For j ≥ 2, j ≤ Nc+1−i, ci,j = ci,1 � (j−1).
For example, when Nc = 3,

C1 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)},
C2 = {(0, 1, 1), (1, 1, 0)},
C3 = {(1, 1, 1)}.

C is the union of the collection {C1, C2, . . . , CNc}. In this case,
C calculates the number of defect pixels within the annulus
determined by the combination of radiuses in ρ. The size of
set C, |C| is |C1|+|C2|+. . . , |CNc |, which equals (1+Nc)Nc/2.
Thus in the case of Nc = 3, |C| = 6.

Once we have set A and set C available, we can construct
the weight matrix of the masks by pairwise product the array
elements from A and C. Multiplication between a column vec-
tor and a row vector returns a matrix W with each element

Fig. 7. Example of a polar weight mask with Na = 4, Nc = 3.

wi,j = xiyj. Denote the set of weight matrix with P , then
P = {xTy|x ∈ A, y ∈ C}, where x and y are seen as row vec-
tors in the equation. Thus, the total number of master weight
masks for a given pair of (Na, Nc) is:

|P| = (2Na − 1)(1 + Nc)Nc/2. (6)

For the above example, the weight matrix of the master mask
based on a2,2 and c2,1 is:

aT
2,2c2,1 =

⎛

⎜⎜⎝

0
1
0
1

⎞

⎟⎟⎠(0, 1, 1) =

⎛

⎜⎜⎝

0 0 0
0 1 1
0 0 0
0 1 1

⎞

⎟⎟⎠. (7)

This weight configuration of Na = 4, Nc = 3 is illustrated in
Fig. 7. With this combination of binning methods, we define
12 bins. The value inside each bin shows the weight given
based on the matrix above. Each column in matrix repre-
sents weights of bins formed by different angles alongside
an annulus. Similarly, each row gives the weights radially in
the corresponding quarter of the circle.

2) Line Masks: The second group of features aims to rep-
resent line scratches from the wafer map. Here we use stripe
areas in the weight mask as accumulators of defect points of
linear patterns. The stripe area can be defined in the follow-
ing way. A line in x − y plane can be uniquely defined by its
distance from the origin ρ and its angle θ as

x cos θ + y sin θ = ρ, (8)

where θ is within [0, π).
Thus, each (θ, ρ) pair uniquely define a line. For the mask,

each stripe can be uniquely defined as (θ = θi, ρj−1 ≤ ρ < ρj),
see Fig. 8(a). Let the weight within each stripe be 1 and
the weight outside the stripe be 0, then each mask count
the number of defect points falling within this stripe. So
for line patterns, the feature value should be large for the
corresponding stripe which overlaps the most with the line.
Here for a given θ , ρ is partitioned into Nl intervals by
ρ0 < ρ1 < · · · < ρNl , satisfying ρ0 = 0, ρNl = R. Thus
in this case, total number of master masks for this type is Nl.

3) Arc Masks: Previouly mentioned two categories of
masks help detect concentric circular patterns and linear pat-
terns, however, circular scratches are frequently seen which
are usually eccentric with the wafer map. To improve recog-
nition accuracy of this kind of pattern, we design arc masks to

WANG AND CHEN: WAFER MAP DEFECT PATTERN RECOGNITION USING ROTATION-INVARIANT FEATURES 601

Fig. 8. (a) Line mask (b) Arc mask.

extract features representative of circular scratches. Basically,
a circle can be parameterized as

(x − a)2 + (y − b)2 = r2, (9)

with its center O(a, b) and radius r. Each pair of (O, r) defines
an unique circle. Here we define rings on masks to accumulate
the defect points inside, which can be written as (Oi, rj−1 <

r ≤ rj). Fig. 8(b) is an example of such mask. The annulus is
determined by its center Oi ,its inner radius rj−1 and its outer
radius rj. We can then assign weights for the masks, 1 for the
area within this annulus, 0 for the area outside this annulus. So
the proposed arc mask calculates the number of defects within
each annulus. Larger value is returned for annulus which has
more overlapped area with the defect patterns.

As rotated copies are made later to guarantee rotation invari-
ance, a simple way to choose the center of annulus is to put
it on the x-axis, where O(c, 0), c ≥ 0. Here the center of the
annulus O is not necessarily within the area of wafer, because
it is possible that only part of the annulus is within the wafer,
see Fig. 9. Without loss of generality, we limit the annulus
radius r to be r0 < r1 < · · · < rNr , r0 = Rl, rNr = Rh,
where Rl and Rh respectively denote the lower and upper
limit of the radius. r here can be equally spaced between
[Rl, Rh]. For the location of center, c is chosen between (0, Rc],
with a total number of choices No. The resulting centers are
O1(c1, 0), O2(c2, 0), . . . , ONo(cNo , 0), with c1 < c2 < · · · <

cNo . Similarly, we can simply divide (0, Rc) into No equidis-
tant intervals. Thus, considering the combination of center and
radius groups, NrNo master masks are created in this category.
To this end, we have defined three types of masks. The total
number of masks is

n = (2Na − 1)(1 + Nc)Nc/2 + Nl + NrNo. (10)

To ensure rotation invariance for these proposed round
weight masks, for each of the master weight mask, we create
several rotated versions of it, see Fig. 5. The rotation angle α is
sampled at equal distance intervals from 0 to 2π . If we denote
the number of total masks after rotation of one master mask to
be Nt, then the set of rotation angles is α = {α1, α2, . . . , αNt },
where α1 = 0, α2 = 2π/Nt, . . . , αNt = 2(Nt − 1)π/Nt. Only
the max value of features generated from each rotated group
of the master mask is returned. This step ensures invariance to
rotations and eliminates to influence of orientations of input

Fig. 9. An example of annulus center outside the wafer.

images. The extracted features are then sent to feedforward
neural network for classification.

C. Classification

Wafer map defect pattern recognition problem is a mul-
ticlass classification problem in this case. As for multiclass
problems, things become more complicated. There exists three
categories of methods to solve supervised multiclass classifica-
tion problems [22]. The first category simply extend the binary
classification algorithms to the multiclass case. This kind
of algorithms is naturally extendable, e.g., neural networks,
decision trees and k-nearest neighbors. The second category
solves the multiclass classification problem by decomposing
the problem into a set of binary classification, which can then
be efficiently solved using binary classifiers. This involves
combining some of the classes together and comparing the
newly built classes in each group of two. One of the widely
used methods in this category is the support vector machine.
The last category uses a hierarchical classification idea that
arrange the classes into a tree, then the process continues at
each node that the classifier differentiates between the child
class clusters. New patterns are added following a path from
the root node to the upper-level leaves.

In our study, neural network is worth consideration for the
recognition of defect patterns. Feedforword neural network
has successfully been applied in pattern recognition and
image processing. This class of networks consists of multiple
layers of units that are interconnected in a feed-forward
way. The number of hidden units and layers is typically
defined subjectively based on the complexity of the problem.
Optimal weights minimizing the loss function are acquired by
applying supervised learning rules. Here, we choose classic
multilayer perceptron as the classification model. The input
of this network is the features extracted from previous steps.
Dropout [23] can be used to prevent overfitting. In this study,
we use neural network as classifier to do defect pattern recog-
nition. It should be noted that other techniques may also be
applicable.

III. EXPERIMENTS AND RESULTS

In this section, we apply the proposed method to a real-
world wafer map dataset, and present the performance analysis
compared with baseline methods.

602 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 32, NO. 4, NOVEMBER 2019

Fig. 10. Histogram of the number of dies for the wafer maps.

TABLE I
NUMBER OF INSTANCES IN EACH CLASS

A. Data Description

The wafer map dataset comprises 904 wafer maps col-
lected from real semiconductor manufacturing. It includes
218 normal wafer samples and 686 defective wafer samples.
Information like die position, wafer radius and wafer func-
tionality is included in the dataset. The faulty wafer has six
patterns, i.e., “Donut”, “Moon”, “Reticle”, “Edge”, “Scratch’,
“Center”, see Fig. 1. The histogram of the number of dies in
each wafer in Fig. 10 shows that the number of dies (points)
in the wafer maps varies a lot. This dataset is a mixture of
wafer maps of different products. The number of samples for
each class are shown in Table I. It is illustrated that the num-
ber of samples for each defect type in this dataset is unevenly
distributed.

B. Performance Analysis

To test the performance of proposed method, we follow
the proposed framework. We first denoise the wafer map by
k = 3 and L = 1/8. In this study, L = 1/8 ensures the
removal of isolated defects. Then we resize the image matrix
to 32 × 32 guarantee the same format of input data. The
choice of the mask parameters is dependent on the location
and shape of the defect patterns. For polar masks, we choose
Nc = 5, Na = 4. Angle binning here divides 2π into equal
intervals with angles θ = (0, π/2, π, 3π/2, 2π). We define the
circle binning parameter ρ = (0, 0.2R, . . . , 0.8R, R), where R
is the radius value of the wafer map in the input matrix. The
choice of binning intervals agrees with the location of circular
patterns. For example, “Edge” defect pattern appears mostly at
radius interval [0.8R, R], so circle binning at ρ = 0.8R could
help detect “Edge” pattern. For line masks, R is divided into
7 intervals Nl = 7, and ρ = (0, 0.3R, 0.4R, . . . , 0.8R, R), with
the length of step larger for center and edge. Further, the upper
limit for annulus center Rc = 1.2R and the range of annulus
radius Rl = 0.5R, Rh = R for arc masks, Nr = 6, No = 12 with
step 0.1R. This binning method is consistent with the locations

TABLE II
PARAMETERS FOR PREPROCESSING AND FEATURE EXTRACTION

TABLE III
COMBINED CONFUSION MATRIX FOR RECOGNITION RATE (%)

FOR THE SEVEN DEFECT PATTERNS

and areas of curvilinear patterns. The step 0.1R is determined
by the width of curvilinear patterns. It guarantees that only
one curve occurs in one strip, while the detected curve can
be largely matched within the masked area. The number of
rotated versions Nt = 16 (the mask is rotated every π/8 rad).
The total number of master masks is 184 from (10), and the
overall feature dimension equals 184 after selecting the best
result for each group of rotated masks. We summarize all the
parameters in Table II.

We choose to use two hidden layers (both with 400 hidden
units) for the structure of multilayer perceptron in our exper-
iment. The rectified linear units (ReLU) activation function,
proving to be free from the problem of gradient divergence,
is investigated instead of sigmoid active function for clas-
sification using multilayer perceptron model. To relieve the
problem of overfitting, dropout is used (p is set 0.5) based on
experiments in the multilayer perceptron model.

We use stratified K-fold cross validation to evaluate the
performance of the proposed method. It first splits the dataset
into K folds, and then averages the error rates created by K
experiments that use K − 1 folds for training and the left fold
for validation. The folds are made in a way that the percent-
age of samples for each class is preserved. This ensures that
folds are similar to each other. The next problem is how to
determine the number of folds. Large number of folds lowers
error rates, but meanwhile increases the variance and compu-
tation time. Lower K is usually cheaper but more biased. In
this study, we empirically choose K = 5 based on our dataset.

Table III shows the combined confusion matrix for the
proposed method on the test set with overall accuracy 92.3%.
In the table, the annotations in the first row represent predicted
patterns, and the first column shows true patterns. The values
in the diagonal locations represent the average recognition rate
of each defect type from cross validation.

From this table, the overall performance of the proposed
method is quite good. This result also shows that this method

WANG AND CHEN: WAFER MAP DEFECT PATTERN RECOGNITION USING ROTATION-INVARIANT FEATURES 603

Fig. 11. Examples of wrongly detected Reticle patterns: (a) Scratch (b) Edge.

can effectively differentiate between defect patterns and the
normal pattern on a small dataset. Obviously, the most classifi-
cation errors are from misidentifying “Reticle” as other defect
patterns. This may be partially due to the small sample size
of “Reticle” defects. Also, some of the patterns may be easily
confused with others in real applications, see Fig. 11. Although
the model misclassifies the patterns, it is still forgivable. This
indicates that the performance is acceptable for users, as the
boundaries between these patterns is not so clear.

C. Comparisons

To further investigate the performance of our method, we
also test the dataset with other methods. We compare the
proposed method with other classification methods together
with other rotation-invariant features. The average of accu-
racy is calculated based on a five-fold cross validation for
the evaluation of each of the method. Table IV summarizes
the comparison results, and the values in parentheses are the
standard errors.

First, we validate the effectiveness of each group of masks.
The proposed three group of masks deals with different kinds
of patterns, at the same time they help identify patterns jointly
by providing more information on the shapes. Intuitively,
polar masks work better at large and concentric patterns like
“Center” and “Donut”, while line and arc masks are more
proficient at detailed and eccentric patterns like “Scratch”.
Therefore, here we use polar masks alone and a combination
of line and arc masks to train the model respectively. To make
it simple to represent, we use the initial of each kind of masks
to stand for the features we use to train the model. We use
NN to be short for feedforward neural network. For example,
P-NN means to use only features extracted by polar masks to
train the multilayer perceptron model. In addition, to test the
effectiveness of feedforward neural network, we simply use the
extracted features to train a boosting model, which is a classic
method for classification. This method is called PLA-Boosting
in this article. We also use random forest (RF), k-nearest neigh-
bors algorithm (KNN) and support vector machine (SVM) to
perform defect pattern classification, which is short for PLA-
RF, PLA-KNN and PLA-SVM for comparison respectively.
The algorithms are applied using Python scikit-learn pack-
age. The parameters of Boosting, KNN and SVM are setup as
follows: For boosting, LogitBoost is applied with 200 esti-
mators and the learning rate is set to 0.1. The number of
estimators is also set to 200 for random forest. The number

TABLE IV
ACCURACY COMPARISON FOR DIFFERENT METHODS

TABLE V
COMPARISON OF RECOGNITION RATE (%) FOR THE SEVEN PATTERNS

of neighbors to use for KNN is 10. For the SVM, we use the
radial basis function kernel (γ =0.3) with C-Support Vector
Classification algorithm (C=2.0). The left side of Table IV
shows the comparison between the accuracy of the proposed
method (PLA-NN) and other methods using different group
of masks and other classifiers. For different mask groups,
the same NN model is applied to avoid any uncertainties. It
can be shown that using NN, to combine three category of
masks (184) is better than use only polar masks (105) and a
combination of line and arc masks (79). Moreover, line-arc
masks perform slightly better than polar masks. With all the
three proposed masks, NN performs the best for accuracy. NN
also reaches comparable results with SVM for error, which
outperforms all the other methods. Table V further compares
the recognition rate for each pattern. It is generally consis-
tent with our intuition. For NN model, P-NN performs better
for “Center”, “Dount” patterns comparied with LA-NN, while
LA-NN is better at the recognition of “Moon”, “Reticle” and
“Scratch”. For each of the patterns, PLA-NN mostly performs
better than using just one or two groups of masks. Using
all PLA masks, Boosting and SVM give good recognition
results for “Edge” and “Normal” patterns, but they perform
quite worse at “Moon” and “Reticle” compared with PLA-
NN. Therefore, we choose to use all three proposed masks
accompanied with feedforward neural network for this study.

We then compare our methods with existing feature extrac-
tion methods in the literature. We consider existing solutions
to wafer map defect pattern classification including rotation
moments invariants and geometrical features (RMI-G) [16],
Radon-based and geometry-based features (R-G) [10], geo-
metrical, gray, textual and projection features (G-G-T-P) [1],
and variational autoencoder (VAE) [15]. We also use other
popular rotation-invariant features, i.e., scale invariant feature
transform (SIFT) [18] and Zernike moments (ZM) [20] for
the recognition of defect patterns. Boosting is applied for the
classification task, due to its stable performance and less num-
ber of tunning parameters. Convolutional neural networks with

604 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 32, NO. 4, NOVEMBER 2019

data augmentation (A-CNN) [13] is also applied to encode
rotation invariance for the comparisons. The dataset is aug-
mented with rotation every 30◦. The right side of Table IV
shows the performance of these existing features. The results
indicate that the proposed method is superior to all the oth-
ers. Results using the proposed features together with other
classification methods shows that the proposed features is at
least as good as existing features in the literature. It should be
noted that our method can be seen as a CNN-based method
with large self-defined filters in the convolutional layers. The
training of conventional CNN is done by random assignment
of initial filters and the weights in the filters are iteratively
updated through backpropagation. But training requires a large
dataset and the extracted features may not be optimal. When
it comes to specific problems, pre-defined filters could give
better results because of the use of domain knowledge. The
superiority of our method can be explained by the proper
design of the filters. Our method not only considers the special
characteristics of wafer map, but also take the advantage of
neural network. The extracted features are easily interpretable
and understandable. In addition, it is quite effective even on a
small dataset. We can see that without the application of neural
network, the features could still have the potential in detect-
ing wafer map defect patterns. This indicates that the features
extracted from the proposed masks are also of importance in
real applications and needs further studies.

IV. CONCLUSION

In this article, we propose a novel method for wafer map
failure pattern detection based on feature extraction using
feedforward neural network. Rotation-invariant features are
extracted using proposed weight masks for classification. The
proposed masks that are of the same shape with the wafer
map could capture the characteristics of defect patterns. The
experimental results show that the proposed method is appli-
cable for real applications. The features developed from the
masks are also meaningful for the description of wafer map
defect patterns, as they are interpretable by intuition. For fur-
ther studies, error analysis would help identify optimal group
of filters for wafer map failure pattern detection problem. In
addition, many other problems can be possibly solved based on
the proposed masks. One direct application is to solve object
detection problem in the architecture of CNN. For example,
small size masks can be applied as filters in the convolu-
tional layers to look into more detailed features, and to solve
the problem of complex object recognition problems in other
fields.

REFERENCES

[1] J. Yu and X. Lu, “Wafer map defect detection and recognition
using joint local and nonlocal linear discriminant analysis,” IEEE
Trans. Semicond. Manuf., vol. 29, no. 1, pp. 33–43, Feb. 2016.
doi: 10.1109/TSM.2015.2497264.

[2] L.-I. Tong, C.-H. Wang, and C.-L. Huang, “Monitoring defects
in IC fabrication using a hotelling T2 control chart,” IEEE
Trans. Semicond. Manuf., vol. 18, no. 1, pp. 140–147, Feb. 2005.
doi: 10.1109/TSM.2004.836659.

[3] B. Kim, Y.-S. Jeong, S. H. Tong, I.-K. Chang, and M.-K. Jeong, “Step-
down spatial randomness test for detecting abnormalities in DRAM
wafers with multiple spatial maps,” IEEE Trans. Semicond. Manuf.,
vol. 29, no. 1, pp. 57–65, Feb. 2016. doi: 10.1109/TSM.2015.2486383.

[4] C.-H. Wang, W. Kuo, and H. Bensmail, “Detection and classification of
defect patterns on semiconductor wafers,” IIE Trans., vol. 38, no. 12,
pp. 1059–1068, 2006. doi: 10.1080/07408170600733236.

[5] J. Y. Hwang and W. Kuo, “Model-based clustering for integrated circuit
yield enhancement,” Eur. J. Oper. Res., vol. 178, no. 1, pp. 143–153,
2007. doi: 10.1016/j.ejor.2005.11.032.

[6] C.-F. Chien, S.-C. Hsu, and Y.-J. Chen, “A system for online detection
and classification of wafer bin map defect patterns for manufacturing
intelligence,” Int. J. Prod. Res., vol. 51, no. 8, pp. 2324–2338, 2013.
doi: 10.1080/00207543.2012.737943.

[7] J. H. Lee, S. J. Yu, and S. C. Park, “Design of intelligent data sampling
methodology based on data mining,” IEEE Trans. Robot. Autom., vol. 17,
no. 5, pp. 637–649, Oct. 2001. doi: 10.1109/70.964664.

[8] C.-H. Wang, S.-J. Wang, and W.-D. Lee, “Automatic identifi-
cation of spatial defect patterns for semiconductor manufactur-
ing,” Int. J. Prod. Res., vol. 44, no. 23, pp. 5169–5185, 2006.
doi: 10.1080/02772240600610822.

[9] C.-F. Chien, W.-C. Wang, and J.-C. Cheng, “Data mining for
yield enhancement in semiconductor manufacturing and an empiri-
cal study,” Expert Syst. Appl., vol. 33, no. 1, pp. 192–198, 2007.
doi: 10.1016/j.eswa.2006.04.014.

[10] M.-J. Wu, J.-S. R. Jang, and J.-L. Chen, “Wafer map failure pat-
tern recognition and similarity ranking for large-scale data sets,”
IEEE Trans. Semicond. Manuf., vol. 28, no. 1, pp. 1–12, Feb. 2015.
doi: 10.1109/TSM.2014.2364237.

[11] B. Kim, Y.-S. Jeong, S. H. Tong, I.-K. Chang, and M.-K. Jeongyoung,
“A regularized singular value decomposition-based approach for fail-
ure pattern classification on fail bit map in a DRAM wafer,” IEEE
Trans. Semicond. Manuf., vol. 28, no. 1, pp. 41–49, Feb. 2015.
doi: 10.1109/TSM.2014.2388192.

[12] F. Adly, P. D. Yoo, S. Muhaidat, Y. Al-Hammadi, U. Lee, and
M. Ismail, “Randomized general regression network for identifi-
cation of defect patterns in semiconductor wafer maps,” IEEE
Trans. Semicond. Manuf., vol. 28, no. 2, pp. 145–152, May 2015.
doi: 10.1109/TSM.2015.2405252.

[13] K. Kyeong and H. Kim, “Classification of mixed-type defect pat-
terns in wafer bin maps using convolutional neural networks,” IEEE
Trans. Semicond. Manuf., vol. 31, no. 3, pp. 395–402, Aug. 2018.
doi: 10.1109/TSM.2018.2841416.

[14] T. T. dos Santos and R. Kern, “Understanding wafer patterns in semi-
conductor production with variational auto-encoders,” in Proc. 26th Eur.
Symp. Artif. Neural Netw. Comput. Intell. Mach. Learn. (ESANN), 2018.
[Online]. Available: https://www.elen.ucl.ac.be/Proceedings/esann/esann
pdf/es2018-41.pdf

[15] P. Tulala, H. Mahyar, E. K. Ghalebi, and R. Grosu, “Unsupervised
wafermap patterns clustering via variational autoencoders,” in Proc.
IEEE Int. Joint Conf. Neural Netw. (IJCNN), 2018, pp. 1–8.
doi: 10.1109/IJCNN.2018.8489422.

[16] M. P.-L. Ooi, H. K. Sok, Y. C. Kuang, S. Demidenko, and C. Chan,
“Defect cluster recognition system for fabricated semiconductor wafers,”
Eng. Appl. Artif. Intell., vol. 26, no. 3, pp. 1029–1043, 2013.
doi: 10.1016/j.engappai.2012.03.016.

[17] M. Piao, C. H. Jin, J. Y. Lee, and J.-Y. Byun, “Decision tree
ensemble-based wafer map failure pattern recognition based on radon
transform-based features,” IEEE Trans. Semicond. Manuf., vol. 31, no. 2,
pp. 250–257, May 2018. doi: 10.1109/TSM.2018.2806931.

[18] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.
doi: 10.1023/B:VISI.0000029664.99615.94.

[19] M.-K. Cheon, W.-J. Lee, C.-H. Hyun, and M. Park, “Rotation invariant
histogram of oriented gradients,” Int. J. Fuzzy Logic Intell. Syst., vol. 11,
no. 4, pp. 293–298, 2011. doi: 10.5391/IJFIS.2011.11.4.293.

[20] A. Khotanzad and Y. H. Hong, “Invariant image recognition by Zernike
moments,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 5,
pp. 489–497, May 1990. doi: 10.1109/34.55109.

[21] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (SURF),” Comput. Vis. Image Understanding, vol. 110, no. 3,
pp. 346–359, 2008. doi: 10.1016/j.cviu.2007.09.014.

[22] M. Aly, “Survey on multiclass classification methods,” Neural
Netw, vol. 19, pp. 1–9, Nov. 2005. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.423.5993

[23] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014. [Online]. Available: http://jmlr.org/papers/v15/srivastava14a.html

http://dx.doi.org/10.1109/TSM.2015.2497264
http://dx.doi.org/10.1109/TSM.2004.836659
http://dx.doi.org/10.1109/TSM.2015.2486383
http://dx.doi.org/10.1080/07408170600733236
http://dx.doi.org/10.1016/j.ejor.2005.11.032
http://dx.doi.org/10.1080/00207543.2012.737943
http://dx.doi.org/10.1109/70.964664
http://dx.doi.org/10.1080/02772240600610822
http://dx.doi.org/10.1016/j.eswa.2006.04.014
http://dx.doi.org/10.1109/TSM.2014.2364237
http://dx.doi.org/10.1109/TSM.2014.2388192
http://dx.doi.org/10.1109/TSM.2015.2405252
http://dx.doi.org/10.1109/TSM.2018.2841416
http://dx.doi.org/10.1109/IJCNN.2018.8489422
http://dx.doi.org/10.1016/j.engappai.2012.03.016
http://dx.doi.org/10.1109/TSM.2018.2806931
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.5391/IJFIS.2011.11.4.293
http://dx.doi.org/10.1109/34.55109
http://dx.doi.org/10.1016/j.cviu.2007.09.014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

