Skip to content
Go to file

Latest commit


Git stats


Failed to load latest commit information.
Latest commit message
Commit time

KripoDB KNIME nodes

KRIPO stands for Key Representation of Interaction in POckets.

KNIME nodes for KripoDB (

Build Status Build status Quality Gate Status Coverage DOI




Steps to get KripoDB nodes inside KNIME:

  1. Goto Help > Install new software ... menu
  2. Press add button
  3. Fill text fields with
  4. Select --all sites-- in work with pulldown
  5. Open KNIME 3D-e-Chem Contributions folder
  6. Select KripoDB
  7. Install software & restart


See a minimal example workflow at examples/ The workflow can be run by importing it into KNIME as an archive.

Other workflows using the KripoDB nodes can be found at


Development requirements:

Steps to get development environment setup based on

  1. Install Java 8
  2. Install Eclipse for RCP and RAP developers
  3. Configure Java 8 inside Eclipse Window > Preferences > Java > Installed JREs
  4. Import this repo as an Existing Maven project
  5. Activate target platform by going to Window > Preferences > Plug-in Development > Target Platform and check the KNIME Analytics Platform (4.0) - nl.esciencecenter.e3dchem.kripodb.targetplatform/ target definition.
  6. A KNIME Analytics Platform instance can be started by right clicking on the targetplatform/KNIME\ Analytics\ Platform.launch file and selecting Run As → KNIME Analytics Platform. The KNIME instance will contain the target platform together with all extensions defined in the workspace.

During import the Tycho Eclipse providers must be installed.


mvn package

Jar has been made in plugin/target directory. An Eclipse update site will be made in p2/target/repository repository.


mvn verify

Tests in tests module will have been run with results in test/target/surefire-reports directory. There are unit tests and workflow tests both are executed in the KNIME eclipse application. See for more information about workflow tests.

Create web service client

The web service client is generated using Swagger Code Generator and stored inside plugin/src/java/nl/esciencecenter/e3dchem/kripodb/ws/client/ directory.

  1. Start KripoDB webservice
kripodb serve data/similarities.frozen.h5 data/fragments.sqlite data/pharmacophores.h5
  1. Download swagger code generator
  1. Generate a client for KripoDB web service
java -jar swagger-codegen-cli-2.2.3.jar generate \
--input-spec http://localhost:8084/kripo/swagger.json \
--output client \
--lang java \
--config swagger-codegen.config.json
  1. Compile client
cd client
mvn package
  1. Populate plugin with client source code and dependencies
mkdir ../plugin/lib
cp target/lib/gson-* target/lib/logging-interceptor-* target/lib/ok* target/lib/swagger-annotations-* ../plugin/lib/
rm -r ../plugin/src/java/nl/esciencecenter/e3dchem/kripodb/ws/client
cp -r src/main/java/nl/esciencecenter/e3dchem/kripodb/ws/client ../plugin/src/java/nl/esciencecenter/e3dchem/kripodb/ws/
  1. Update plugin/META-INF/MANIFEST.MF, plugin/ files to reflect contents of lib/

New release

  1. Update versions in pom files with mvn org.eclipse.tycho:tycho-versions-plugin:set-version -DnewVersion=<version>-SNAPSHOT command.
  2. Commit and push changes
  3. Create package with mvn package, will create update site in p2/target/repository
  4. Test node by installing it from local update site
  5. Append new release to 3D-e-Chem update site
  6. Make clone of repo
  7. Append release to 3D-e-Chem update site with mvn install<3D-e-Chem repo/updates>
  8. Commit and push changes in this repo and repo
  9. Create a Github release
  10. Update Zenodo entry
  11. Correct authors
  12. To Related/alternate identifiers section add as is cited by this upload entry.
  13. Make nodes available to 3D-e-Chem KNIME feature by following steps at
  14. Update CITIATION.cff with new DOI

Create stub recordings for integration tests

The test workflow are tested against a mocked web server and not the actual site. The mock server is called WireMock and normally gives empty responses. To have WireMock server return filled responses, stubs stored in tests/src/test/resources/ directory must be provided. The stubs can be recorded by starting a WireMock server in recording mode by:

java -jar tests/lib/wiremock-standalone-2.5.0.jar --proxy-all="" \
--port=8089 --record-mappings --verbose --root-dir=tests/src/test/resources/
java -jar tests/lib/wiremock-standalone-2.5.0.jar --proxy-all="http://localhost:8084/" \
--port=8089 --record-mappings --verbose --root-dir=tests/src/test/resources/

Then in a KNIME workflow in the KripoDB nodes set the base path to http://localhost:8089. Executing the workflow will fetch data from via the WireMock server and cause new stubs to be recorded in the tests/src/test/resources/ directory.

To run the test workflows from inside KNIME desktop enviroment start the WireMock server in mock mode by:

java -jar tests/lib/wiremock-standalone-2.5.0.jar --port=8089 --verbose --root-dir=tests/src/test/resources/

Then import the test workflows in tests/src/knime/ directory, select the workflow in the KNIME explorer and in the context menu (right-click) select Run as workflow test.


Knime node for KripoDB package




No packages published
You can’t perform that action at this time.