TADbit is a complete Python library to deal with all steps to analyze, model and explore 3C-based data. With TADbit the user can map FASTQ files to obtain raw interaction binned matrices (Hi-C like matrices), normalize and correct interaction matrices, identify and compare the so-called Topologically Associating Domains (TADs), build 3D models f…
Clone or download
Latest commit af1591f Mar 14, 2018



Current version: v0.2.0.58 https://travis-ci.org/3DGenomes/TADbit.png?branch=master https://coveralls.io/repos/github/3DGenomes/TADbit/badge.svg?branch=master

TADbit is a complete Python library to deal with all steps to analyze, model and explore 3C-based data. With TADbit the user can map FASTQ files to obtain raw interaction binned matrices (Hi-C like matrices), normalize and correct interaction matrices, identify and compare the Topologically Associating Domains (TADs), build 3D models from the interaction matrices, and finally, extract structural properties from the models. TADbit is complemented by `TADkit for visualizing 3D models.

Hi-C experiments generate genomic interaction between loci located in the same or in different chromosomes. TADbit is built around the concept of a chromosome, and uses it as a central item to store and compare different Hi-C experiments. The library has been designed to be used by researchers with no expertise in computer science. All-in-one scripts provided in TADbit allow to run the full analysis using one single command line; advanced users may produce their own programs using TADbit as a complementary library.



If you have any question remaining, we would be happy to answer informally:

Join the chat at https://gitter.im/3DGenomes/tadbit

Frequently asked questions

Check the label FAQ in TADbit issues.

If your question is still unanswered feel free to open a new issue.


Please, cite this article if you use TADbit.

Serra, F., Baù, D., Goodstadt, M., Castillo, D. Filion, G., & Marti-Renom, M.A. (2017). Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors. PLOS Comp Bio 13(7) e1005665. doi:10.1371/journal.pcbi.1005665

Methods implemented in TADbit

In addition to the general citation for the TADbit library, please cite these articles if you used TADbit for:


TADbit has been previously used for modeling genomes and genomic domains. Here is the list of published articles:

Other programs

TADbit uses other major software packages in biology. Here is the list of their articles:

TADbit training

Next editions

  • To be announced.

Past editions


[Ay2015]Ay, F., Vu, T.H., Zeitz, M.J., Varoquaux, N., Carette, J.E., Vert, J.-P., Hoffman, A.R. and Noble, W.S. 2015. Identifying multi-locus chromatin contacts in human cells using tethered multiple 3C. BMC Genomics 16, p. 121.
[BaùMarti-Renom2012]Baù, D. and Marti-Renom, M.A. 2012. Genome structure determination via 3C-based data integration by the Integrative Modeling Platform. Methods 58(3), pp. 300–306.
[Baù2011]Baù, D., Sanyal, A., Lajoie, B.R., Capriotti, E., Byron, M., Lawrence, J.B., Dekker, J. and Marti-Renom, M.A. 2011. The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules. Nature Structural & Molecular Biology 18(1), pp. 107–114.
[Belton2015]Belton, J.-M., Lajoie, B.R., Audibert, S., Cantaloube, S., Lassadi, I., Goiffon, I., Baù, D., Marti-Renom, M.A., Bystricky, K. and Dekker, J. 2015. The conformation of yeast chromosome III is mating type dependent and controlled by the recombination enhancer. Cell reports 13(9), pp. 1855–1867.
[Enright2002]Enright, A. J., Van Dongen, S., & Ouzounis, C. A. (2002). An efficient algorithm for large-scale detection of protein families. Nucleic Acids Research, 30(7), 1575–1584.
[Imakaev2012](1, 2) Imakaev, M., Fudenberg, G., McCord, R.P., Naumova, N., Goloborodko, A., Lajoie, B.R., Dekker, J. and Mirny, L.A. 2012. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nature Methods 9(10), pp. 999–1003.
[Le_Dily2014]Le Dily, F., Baù, D., Pohl, A., Vicent, G.P., Serra, F., Soronellas, D., Castellano, G., Wright, R.H.G., Ballare, C., Filion, G., Marti-Renom, M.A. and Beato, M. 2014. Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation. Genes & Development 28(19), pp. 2151–2162.
[Lieberman-Aiden2009]Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., Sandstrom, R., Bernstein, B., Bender, M.A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L.A., Lander, E.S. and Dekker, J. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950), pp. 289–293.
[Marco-Sola2012]Marco-Sola, S., Sammeth, M., Guigo, R. and Ribeca, P. 2012. The GEM mapper: fast, accurate and versatile alignment by filtration. Nat Methods 9(12), pp. 1185-1188.
[Rao2014]Rao, S.S.P., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Robinson, J.T., Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S. and Aiden, E.L. 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159(7), pp. 1665–1680.
[Russel2011]Russel, D., Lasker, K., Webb, B., Velázquez-Muriel, J., Tjioe, E., Schneidman-Duhovny, D., et al. (2012). Putting the Pieces Together: Integrative Modeling Platform Software for Structure Determination of Macromolecular Assemblies. PLoS Biology, 10(1), e1001244.
[Trussart2015]Trussart, M., Serra, F., Baù, D., Junier, I., Serrano, L. and Marti-Renom, M.A. 2015. Assessing the limits of restraint-based 3D modeling of genomes and genomic domains. Nucleic Acids Research 43(7), pp. 3465–3477.
[Trussart2017]Trussart, M., Yus, E., Martinez, S., Baù, D., Tahara, Y.O., Pengo, T., Widjaja, M., Kretschmer, S., Swoger, J., Djordjevic, S., Turnbull, L., Whitchurch, C., Miyata, M., Marti-Renom, M.A., Lluch-Senar, M. and Serrano, L. 2017. Defined chromosome structure in the genome-reduced bacterium Mycoplasma pneumoniae. Nature Communications 8, p. 14665.
[Umbarger2011]Umbarger, M.A., Toro, E., Wright, M.A., Porreca, G.J., Baù, D., Hong, S.-H., Fero, M.J., Zhu, L.J., Marti-Renom, M.A., McAdams, H.H., Shapiro, L., Dekker, J. and Church, G.M. 2011. The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. Molecular Cell 44(2), pp. 252–264.